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Abstract Mitochondrial metabolism is of central importance to diverse aspects of cell and devel-
opmental biology. Defects in mitochondria are associated with many diseases, including cancer,
neuropathology, and infertility. Our understanding of mitochondrial metabolism in situ and dysfunc-
tion in diseases are limited by the lack of techniques to measure mitochondrial metabolic fluxes with
sufficient spatiotemporal resolution. Herein, we developed a new method to infer mitochondrial
metabolic fluxes in living cells with subcellular resolution from fluorescence lifetime imaging of
NADH. This result is based on the use of a generic coarse-grained NADH redox model. We tested
the model in mouse oocytes and human tissue culture cells subject to a wide variety of perturbations
by comparing predicted fluxes through the electron transport chain (ETC) to direct measurements of
oxygen consumption rate. Interpreting the fluorescence lifetime imaging microscopy measurements
of NADH using this model, we discovered a homeostasis of ETC flux in mouse oocytes: perturba-
tions of nutrient supply and energy demand of the cell do not change ETC flux despite significantly
impacting NADH metabolic state. Furthermore, we observed a subcellular spatial gradient of ETC
flux in mouse oocytes and found that this gradient is primarily a result of a spatially heterogeneous
mitochondrial proton leak. We concluded from these observations that ETC flux in mouse oocytes is
not controlled by energy demand or supply, but by the intrinsic rates of mitochondrial respiration.

Editor's evaluation

This paper describes the derivation and validation of a coarse-grained model to measure mitochon-
drial metabolism at cellular and subcellular resolution by exploiting fluorescence lifetime imaging
of NADH. This technique is applied to mouse oocytes subjected to a variety of metabolic stresses
and to human tissue culture cells, revealing spatial gradients in mitochondrial NADH oxidation. This
method represents an exciting new approach to quantifying mitochondrial electron transport chain
rates and provides for the first time a method to study mitochondrial metabolic flux with subcellular
resolution.

Introduction

Cells transduce energy from the environment to power cellular processes. Decades of extensive
research have produced a remarkable body of detailed information about the biochemistry of
mitochondrial energy metabolism (Salway, 2017). In brief, metabolites, such as pyruvate, are
transported into mitochondria, where they are broken down and their products enter the tricar-
boxylic acid cycle (TCA). The TCA is composed of a number of chemical reactions, which ultimately
reduces NAD" to NADH. NADH and oxygen are then utilized by the electron transport chain

Yang et al. eLife 2021;10:e73808. DOI: https://doi.org/10.7554/eLife.73808

1of 44


https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.73808
mailto:xingbo_yang@fas.harvard.edu
https://doi.org/10.1101/2020.11.20.392225
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

eLife

Biochemistry and Chemical Biology | Physics of Living Systems

(ETC) to pump hydrogen ions across the mitochondrial membrane. ATP synthase uses this proton
gradient to power the synthesis of ATP from ADP (Mitchell, 1961). The activities of mitochondrial
energy metabolism are characterized by the fluxes through these pathways: that is, the number
of molecules turned over per unit time (Stephanopoulos, 1999). However, despite the wealth of
knowledge concerning mitochondrial biochemistry, the spatiotemporal dynamics of cellular energy
usage remains elusive and it is still unclear how cells partition energy across different cellular
processes (Dumollard et al., 2007; Van Blerkom, 2011; Yellen, 2018; Yang et al., 2021) and
how energy metabolism is misregulated in diseases (Brand and Nicholls, 2011; Lin and Beal,
2006; Wallace, 2012; Bratic and Larsson, 2013; Lowell and Shulman, 2005; Mick et al., 2020).
Metabolic heterogeneities, between and within individual cells, are believed to be widespread,
but remain poorly characterized (Takhaveev and Heinemann, 2018; Aryaman et al., 2018). Mito-
chondria have been observed to associate with the cytoskeleton (Lawrence et al., 2016), spindle
(Wang et al., 2020), and endoplasmic reticulum (Dumollard et al., 2004) and display subcellular
heterogeneities in mtDNA sequence (Morris et al., 2017) and mitochondrial membrane potential
(Smiley et al., 1991). These observations suggest the potential existence of subcellular patterning
of mitochondrial metabolic fluxes that could be critical in processes such as oocyte maturation
(Yu et al., 2010) and embryo development (Sanchez et al., 2019). The limitations of current
techniques for measuring mitochondrial metabolic fluxes with sufficient spatiotemporal resolution
present a major challenge. In particular, there is a lack of techniques to measure mitochondrial
metabolic fluxes with single cell and subcellular resolution.

Bulk biochemical techniques for measuring metabolic fluxes, such as oxygen consumption and
nutrient uptake rates (Ferrick et al., 2008; Houghton et al., 1996; Lopes et al., 2005), and isotope
tracing by mass spectrometry (Wiechert, 2001), require averaging over large populations of cells. Such
techniques cannot resolve cellular, or subcellular, metabolic heterogeneity (Takhaveev and Heine-
mann, 2018; Aryaman et al., 2018). Biochemical approaches for measuring mitochondrial metabolic
fluxes, such as mass spectrometry, are also often destructive (Wiechert, 2001; Saks et al., 1998),
and thus cannot be used to observe continual changes in fluxes over time. Fluorescence microscopy
provides a powerful means to measure cellular and subcellular metabolic heterogeneity continuously
and non-destructively, with high spatiotemporal resolution. However, while fluorescent probes can be
used to measure mitochondrial membrane potential (Perry et al., 2011) and the concentration of key
metabolites (Imamura et al., 2009, Berg et al., 2009, Diaz-Garcia et al., 2017; San Martin et al.,
2014), it is not clear how to relate those observables to mitochondrial metabolic fluxes.

NADH is an important cofactor that is involved in many metabolic pathways, including the TCA
and ETC in mitochondria. NADH binds with enzymes and acts as an electron carrier that facilitates
redox reactions. In the ETC, for example, NADH binds to complex | and donates its electron to ubiqui-
none and ultimately to oxygen, becoming oxidized to NAD*. Endogenous NADH has long been used
to non-invasively probe cellular metabolism because NADH is autofluorescent, while NAD* is not
(Heikal, 2010). Fluorescence lifetime imaging microscopy (FLIM) of NADH autofluorescence allows
quantitative measurements of the concentration of NADH, the fluorescence lifetimes of NADH, and
the fraction of NADH molecules bound to enzymes (Becker, 2012; Becker, 2019; Bird et al., 2005;
Skala et al., 2007; Heikal, 2010; Sharick et al., 2018; Sanchez et al., 2018; Sanchez et al., 2019,
Ma et al., 2019). It has been observed that the fraction of enzyme-bound NADH and NADH fluores-
cence lifetimes are correlated with the activity of oxidative phosphorylation, indicating that there is
a connection between NADH enzyme-binding and mitochondrial metabolic fluxes (Bird et al., 2005,
Skala et al., 2007). The mechanistic basis of this empirical correlation has been unclear.

Here, we developed a generic coarse-grained NADH redox model that enables the inference of
ETC flux with subcellular resolution from FLIM measurements. We validated this model in mouse
oocytes and human tissue culture cells subject to a wide range of perturbations by comparing
predicted ETC fluxes from FLIM to direct measurements of oxygen consumption rate (OCR), and by
a self-consistency criterion. Using this method, we discovered that perturbing nutrient supply and
energy demand significantly impacts NADH metabolic state but does not change ETC flux. We also
discovered a subcellular spatial gradient of ETC flux in mouse oocytes and found that this flux gradient
is primarily due to a spatially heterogeneous mitochondrial proton leak. We concluded from these
observations that ETC flux in mouse oocytes is not controlled by energy demand or supply, but by
the intrinsic rates of mitochondrial respiration. Thus, FLIM of NADH can be used to non-invasively and
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Figure 1. FLIM measurements of the response of mitochondrial NADH as a function of oxygen level. (a) Top row: oxygen level (black circles) and
mitochondrial NADH intensity (red circles) as a function of time. Middle row: NADH intensity images of MIl mouse oocyte at high and low oxygen levels
corresponding to times indicated by the vertical lines. Scale bar, 20 um. Bottom row: NADH fluorescence decay curves of the corresponding oocyte at
low and high oxygen levels, with corresponding fits. (b) NADH-intensity-based segmentation of mitochondria and cytoplasm. (c) Mitochondrial NADH
long fluorescence lifetime 71 (upper left), short fluorescence lifetime 75 (upper right), and bound fraction f (lower left) as a function of oxygen level
(n=68 oocytes). These FLIM parameters can be used in combination with intensity, 1, and proper calibration, to obtain the concentration of free NADH,
[NADHf], and the concentration of enzyme-bound NADH, [NADHb], in mitochondria as a function of oxygen (lower right). Error bars are standard error
of the mean (s.e.m) across individual oocytes. FLIM, fluorescence lifetime imaging microscopy.

The online version of this article includes the following figure supplement(s) for figure 1:
Figure supplement 1. Machine learning based segmentation of mitochondria from NADH intensity images.
Figure supplement 2. Calibration and conversion of NADH concentrations from fluorescence intensities and lifetimes in vitro.

Figure supplement 3. Measurement of concentrations of free and bound NADH in vitro from FLIM of NADH.
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continuously measure mitochondrial ETC fluxes with subcellular resolution and provides novel insights
into the spatiotemporal regulation of metabolic fluxes in cells.

Results

Quantifying response of mitochondrial metabolism to changing oxygen
levels and metabolic inhibitors using FLIM of NADH

We used meiosis Il arrested mouse oocytes as a model system. Mll oocytes are in a metabolic steady-
state, which eases interpretations of metabolic perturbations. ATP synthesis in mouse oocytes occurs
primarily through oxidative phosphorylation using pyruvate, without an appreciable contribution from
glycolysis (Houghton et al., 1996), providing an excellent system to study mitochondrial metabolism.
Mouse oocytes can be cultured in vitro using chemically well-defined media (Biggers and Racowsky,
2002). In our work, we used AKSOM as the culturing media (Summers, 2013). The oocytes can
directly take up pyruvate supplied to them or derive it from lactate through the activity of lactate
dehydrogenase (LDH) (Lane and Gardner, 2000), and they can remain in a steady-state for hours
with constant metabolic fluxes. While NADH and NADPH are difficult to distinguish with fluorescence
measurements due to their overlapping fluorescence spectrum, the concentration of NADH in mouse
oocytes is 40 times greater than the concentration of NADPH for the whole cell (Bustamante et al.,
2017) and potentially even greater in mitochondria (Zhao et al., 2011), so the autofluorescence signal
from these cells (particularly from mitochondria) can be safely assumed to result from NADH.

To investigate how FLIM measurements vary with mitochondrial activities, we performed quanti-
tative metabolic perturbations. We first continually varied the concentration of oxygen in the media,
from 50+2 pM to 0.26+0.04 pM, over a course of 30 min while imaging NADH autofluorescence of
oocytes with FLIM (Figure 1a, top, black curve; Video 1). NADH is present in both mitochondria and
cytoplasm where it is involved in different metabolic pathways. To specifically study the response of
NADH in mitochondria, we used a machine learning-based algorithm to segment mitochondria from
the NADH intensity images (Berg et al., 2019, Figure 1b and Figure 1—figure supplement 1). We
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Figure 2. FLIM measurements of mitochondrial NADH under the impact of metabolic inhibitors. (a—=d) NADH intensity images (scale bar, 20 ym) and the
corresponding changes of FLIM parameters in response to 9 mM oxamate (a) (n=28), and with an additional 5 pM rotenone (b) (n=28), 5 uM oligomycin
() (n=37), and 5 uM FCCP (d) (n=31) perturbations. n is the number of oocytes. 15-30 min have elapsed between the administration of the drugs

and the measurements. (e) Free NADH concentrations ([NADHf]). (f) Bound NADH concentrations ([NADHb]). Error bars represent standard error

of the mean (s.e.m) across different oocytes. Student's t-test is performed between parameters before and after the perturbation. *p<0.05, **p<0.01,
***5<0.001. FLIM, fluorescence lifetime imaging microscopy.

The online version of this article includes the following source data for figure 2:

Source data 1. Excel spreadsheet of single-oocyte FLIM data used for Figure 2a-f.
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verified the accuracy of the segmentation with a
mitochondrial labeling dye, MitoTracker Red FM,
which showed a 80.6+1% (SEM) accuracy of the
segmentation (Appendix 1).

Using the segmentation mask, we obtained the
intensity of NADH, 1, in mitochondria by averaging
the photon count over all mitochondrial pixels.
0 The intensity increased with decreasing oxygen
o x o concentration (Figure 1a, top, red), as is readily

fime(mm seen from the raw images (Figure 1a, middle).
Restoring oxygen to its original level caused a
recovery of NADH intensity, indicating that the

Video 1. NADH intensity in mouse oocyte as a observed changes are reversible (Figure 1a;
function of oxygen level. Left: imaging of NADH from Video 1). These observations are consistent with
autofluorescence of mouse oocyte. Right: real time the expectation that NADH concentration will
measurement of oxygen level in the imaging chamber. increase at low oxygen levels due to oxygen'’s role
https://elifesciences.org/articles/73808/figurestvideo’ as the electron acceptor in the ETC. In addition

to intensity, FLIM can be used to determine the
enzyme engagement of NADH by measuring the
photon arrival times, from which fluorescence lifetimes can be fitted. Enzyme-bound NADH has a
much longer fluorescence lifetime than free NADH (Sharick et al., 2018), allowing bound and free
NADH to be separately resolved, but the precise fluorescence lifetimes of NADH depend on a range
of factors, including viscosity, pH, and the identity of the enzyme NADH binds to (Sharick et al., 2018,
Ghukasyan and Heikal, 2015). To fit NADH fluorescence lifetimes, we grouped all detected photons
from mitochondria to form histograms of photon arrival times from NADH autofluorescence for each
time point (Figure 1a, lower). We fitted the histograms using a model in which the NADH fluorescence
decay, F(7), is described by the sum of two exponentials,

Fr=f-exp(~5)+ (1) -exp (- Z). @

where 71 and 75 are long and short fluorescence lifetimes, corresponding to enzyme-bound NADH
and free NADH, respectively, and f is the fraction of enzyme-bound NADH (Sanchez et al., 2018,
Sanchez et al., 2019) (Materials and methods).

We repeated the oxygen drop experiments for a total of 68 oocytes. Since the oxygen drop is
much slower than the NADH redox reactions (30 min compared to a timescale of seconds), the oxygen
perturbation can be safely assumed to be quasistatic, allowing the FLIM measurements to be deter-
mined as a function of oxygen levels. We averaged data from all oocytes to obtain a total of four FLIM
parameters: mitochondrial NADH intensity, I, long and short fluorescence lifetimes, 71 and 7, and the
fraction of enzyme-bound NADH, f. We determined how these parameters varied with oxygen level
(Figure 1a and c). All parameters are insensitive to oxygen level until oxygen drops below ~10 pM.
This observation is consistent with previous studies that showed mitochondria have a very high
apparent affinity for oxygen (Chance and Williams, 1955; Gnaiger et al., 1998).

We next explored the relationship between the measured FLIM parameters and the concentration
of NADH. Since bound and free NADH have different fluorescence lifetimes, and hence different
molecular brightnesses, the NADH concentration is not generally proportional to NADH intensity.
Assuming molecular brightness is proportional to fluorescence lifetime (Lakowicz, 2006), we derived
a relation between NADH intensity, fluorescence lifetimes, and concentrations as

[NADHY] = ey (22)
[NADH,] = [NADH] 5, (2b)

where ¢s is a calibration factor that relates intensities and concentrations (see Appendix 1). We
measured the calibration factor by titrating free NADH in vitro and acquiring FLIM data (Figure 1—
figure supplement 2, Equation S4). To test the validity of this approach, we used Equations 2a,b to
measure concentrations of free and bound NADH in solutions with different concentrations of purified
LDH, an enzyme to which NADH can bind. The measured NADH bound concentration increases with
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LDH concentration while the sum of free and bound NADH concentration remains a constant and
equal to the amount of NADH added to the solution (Figure 1—figure supplement 3). This result
demonstrates that Equations 2a,b can be used to measure free and bound NADH concentrations
from NADH intensity and lifetimes. It is well established that FLIM can be used to distinguish bound
and free NADH in vivo based on the large change of fluorescence lifetime when NADH binds to
enzymes (Skala et al., 2007, Heikal, 2010). Even though the exact amount that the lifetime changes
depend on the specific enzyme NADH binds to (Sharick et al., 2018), enzyme-bound NADH always
has a much longer fluorescence lifetime than free NADH. Therefore, the method to calculate free and
bound concentrations of NADH from FLIM measurements is expected to hold in vivo. We next used
this method to study NADH in mitochondria in oocytes. We applied Equations 2a,b to our FLIM data
from oocytes and determined how the concentrations of free NADH, [NADH¢|, and enzyme-bound
NADH, [NADHy, depended on oxygen level (Figure 1c, lower right). Interestingly, [NADHg| increased
as oxygen fell below ~10 pM, while [NADH] did not vary with oxygen level.

We next explored the impact of metabolic inhibitors on mitochondrial NADH. We first inhibited
LDH by adding 9 mM of oxamate to the AKSOM media. This led to a decrease of NADH intensity
in the mitochondria (Figure 2a, upper) and significant changes in all FLIM parameters (Figure 2a,
lower, p<0.001). We next inhibited complex | of the ETC using 5 pM of rotenone (in the presence
of 9 mM of oxamate, to reduce cytoplasmic NADH signal for better mitochondrial segmentation).
This resulted in a dramatic increase of NADH intensity in the mitochondria (Figure 2b, upper) and
significant changes in NADH bound ratio and long lifetime (Figure 2b, lower, p<0.001). Then we
inhibited ATP synthase with 5 uM of oligomycin (in the presence of 9 mM of oxamate), which, similar
to rotenone, resulted in an increase of mitochondrial NADH intensity (Figure 2c, upper) and signifi-
cant changes in all FLIM parameters (Figure 2c, lower, p<0.001). Finally, we subjected the oocytes to
5 uM of FCCP (in the presence of 9 mM of oxamate), which uncouples proton translocation from ATP
synthesis, and observed a decrease of mitochondrial NADH intensity (Figure 2d, upper) and signifi-
cant changes in FLIM parameters (Figure 2d, lower, p<0.001). Interestingly, the direction of change
of FLIM parameters under FCCP is opposite to those under rotenone and oligomycin. For each of
these conditions, we used Equations 2a,b to calculate the concentrations of free NADH, [NADH¢|,
(Figure 2e) and bound NADH, [NADHb], (Figure 2f) from the measured intensity and FLIM parame-
ters. While rotenone and oligomycin significantly increased [NADH¢| and decreased [NADH,, |, FCCP
decreased [NADH¢]. It remains unclear how to relate these changes of the free and bound concentra-
tions of NADH to the activities of mitochondrial respiration.

Developing a coarse-grained NADH redox model to relate FLIM
measurements of NADH to activities of mitochondrial metabolic
pathways

We next developed a mathematical model of NADH redox reactions to relate these quantitative
FLIM measurements to activities of mitochondrial metabolic pathways. NADH is a central coenzyme
that binds to enzymes and facilitates redox reactions by acting as an electron carrier. There are two
categories of enzymes associated with NADH redox reactions, which together form a redox cycle:
oxidases that oxidize NADH to NAD* and reductases that reduce NAD* to NADH. The major NADH
oxidase in mitochondria is complex | of ETC for mammalian cells. There are many NADH reductases
in mitochondria because NADH can be reduced through different pathways depending on the energy
substrate. These pathways include the TCA cycle, fatty acid catabolism via beta oxidation, amino acid
catabolism such as glutaminolysis and the malate-aspartate shuttle (Salway, 2017). A comprehen-
sive NADH redox model will include all the oxidases and reductases. For generality, we consider N
oxidases and M reductases.

For convenience, we introduced a reduced notation to describe models of the enzyme kinetics
of these oxidases and reductases. We began by illustrating our reduced notation using reversible
Michaelis-Menten kinetics as an example (Keleti, 1986; Miller and Alberty, 2002; Smith, 1992). The
conventional, full notation for these kinetics (Figure 3a, left) explicitly displays all chemical species
that are modeled in this reaction scheme — free NADH, NADHy, free enzyme, Ox;, free NAD*, NAD;r,
and NADH bound to the enzyme — as well as the forward and reverse reaction rates — k_y, k;, k_»,
and k, Our reduced notation for reversible Michaelis-Menten kinetics (Figure 3a, right) is an alterna-
tive way of representing the same mathematical model. In this reduced notation, only free NADH, free
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a Reversible Michaelis-Menten kinetics b Generalized enzyme kinetics

Reduced notation

Full notation Reduced notation
+
b kgxi 1b ngi
k_1 1[, k1 ngi 1b kOXi

G

o b Teke

kol k; ko, 1 ko,

kgxi = k(t))xi([oxi]) = k,[0x;]
kox, = ko, ([0x;]) = k_,[0x,]

u — A S—
kOXi - k—ll kOXi - k2

o, AV ke,

k = k([0x;], [NADH¢], [Metabolites], pH, ...)
r = r([0x;], NADH¢], [Metabolites], pH, ...)

Figure 3. Generalized enzyme kinetics with reduced notation. (a) (left) Full notation for reversible Michaelis-Menten kinetics. (right) A mathematically
equivalent reduced notation, in which the free enzyme concentration, is incorporated into the binding rates. (b) Generalized enzyme kinetics where all
kinetic rates are general functions of enzyme and metabolite concentrations and other factors.

NAD*, and NADH bound to the enzyme are explicitly shown, while the free enzyme concentration
is only represented as entering through the effective binding rates k5, and k(/,?(i. The conventional,
full notation, and the reduced notation are alternative ways of representing the same mathematical
model, but the reduced notation is convenient to use in the derivation that follows (see Appendix 2).

We next introduced a generalized enzyme kinetics using our reduced notation (Figure 3b), which
contains not only free NADH, free NAD", and NADH bound to the enzyme, but also NAD* bound to the
enzyme, and the reaction rates for oxidation and reduction of the bound coenzymes. In this reduced
notation, all the binding and unbinding rates, and the reaction rates, can be functions of metabolite
concentrations, protein concentrations, and other factors such as pH and membrane potential. As
in the reversible Michaelis-Menten kinetics example, these rates can depend on the concentration
of the free enzyme itself. This dependency on free enzyme concentration can be nonlinear, as could
occur if the enzyme oligomerizes. Furthermore, the rates may depend on the concentration of free
NADH, free NAD*, and the enzyme complexes. Thus, while the reduced notation for the generalized
enzyme might appear to describe a first-order reaction, it can actually be used to represent reactions
of any order, with arbitrary, nonlinear dependencies on the concentration of the enzyme itself, as well
as arbitrary, nonlinear dependencies on other factors. In order to model the dynamics of enzymes
described by such generalized kinetics, it is necessary to specify the functional form of all the rates,
as well as specify mathematical models for all the variables that enter these rates (i.e., free enzyme
concentration, membrane potential, pH, etc.) (Appendix 2). However, in what follows, we will derive
results that hold true, irrespective of the functional form of the rates or the presence of additional,
implicit variables. Thus, remarkably, these quantitative predictions are valid for enzyme kinetics of any
order, with arbitrary nonlinearities in the rates.

To begin our derivation, we note that under this generalized enzyme kinetics (Figure 3b), the net
flux through the ith oxidase at steady-state is:
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Jox, = rax; [NADH - Ox;] — rox, [NAD* - Ox;] = kB, [NADH;] — k&, [NADH - Ox;] , ?3)

where [NADH - Ox;|, [NAD" - Ox;], and [NADH¢| are the concentrations of the ith oxidase-bound
NADH, NAD*, and free NADH, respectively. rx. and ryy. are the forward and reverse oxidation rates.
kS, and kY, are the binding and unbinding rates. The second equality in Equation 3 results from the
steady-state condition, where the net binding and unbinding flux equals the net oxidation flux.

We next considered a redox cycle between NADH and NAD* with multiple oxidases and reduc-
tases. To account for all possible NADH redox pathways, we developed a detailed NADH redox
model with N oxidases and M reductases described by the generalized enzyme kinetics (Figure 4a
and Figure 4—figure supplement 1). In this model, NADH and NAD* can bind and unbind to each
oxidase and reductase. Once bound, NADH can be reversibly oxidized to NAD* by the oxidases, and
NAD* can be reversibly reduced to NADH by the reductases, forming a redox cycle. The functional
dependencies of the binding and unbinding rates, and the reaction rates, can be different for each
oxidase and reductase, and each of these rates can be nonlinear functions of free enzyme concen-
trations, NADH concentration, and other factors such as pH and membrane potential. Modeling the
dynamics of this redox cycle requires specifying the precise number of oxidases and reductases, the
functional forms of the rates, and mathematical models for all the variables the rates implicitly depend
on. However, we will show that quantitative predictions regarding the interpretation of FLIM measure-
ments can be made that generally hold, independent of these modeling choices.

FLIM cannot resolve the association of NADH with individual enzymes in cells, but rather, provides
quantitative information on the global states of bound and free NADH. Thus, to facilitate comparison
to FLIM experiments, we coarse-grained the detailed redox model by mapping all N oxidases into a
single effective oxidase and all M reductases into a single effective reductase (Figure 4b and Appendix
3). This coarse-graining is mathematically exact and involves no approximations or assumptions.

In the coarse-grained redox model, NADH can be bound to the effective oxidase, NADH - Ox,
bound to the effective reductase, NADH - Re, or can be free, NADH;. Hence, the concentration of
NADH bound to all enzymes is, [NADH,,| = [NADH - Ox] + [NADH - Re], and the total concentration
of NADH is, [NADH| = [NADH,,| + [NADHg|. The kinetics of the effective oxidase and reductase are
represented by the coarse-grained forward, ry, and reverse, r;;, oxidation rates, and the forward, rit,
and reverse, r, reduction rates. The global flux through all the oxidases in the detailed redox model
equals the global flux through the coarse-grained oxidase, which at steady-state is:

N
Jox = 3 Jox; = rix [NADH - Ox] — ro [NAD* - Ox] = k§ [NADHs] — k [NADH - Ox] , 4)

i=1

where kS is the rate that free NADH binds the effective oxidase, ki is the rate that NADH unbinds
the effective oxidase, and the last equality results because the coarse-grained redox loop is a linear
pathway so the global oxidative flux must equal the global binding and unbinding flux at steady-state.
The conservation of global flux explicitly relates the effective binding and unbinding rates and the
reaction rates of the coarse-grained model to those of the detailed model (Appendix 3, Figure 4—
figure supplement 1). The binding and unbinding kinetics of NADH and NAD" to the effective oxidase
and reductase are described by eight coarse-grained binding and unbinding rates (Figure 4b). The
coarse-grained reaction rates and binding and unbinding rates can be arbitrary functions of metab-
olite concentrations, enzyme concentrations, and other factors (i.e., pH, membrane potential, etc.).
These effective rates can even be functions of [NADH¢, [NAD{ ], and the concentration of other vari-
ables, and thus can include reactions of arbitrary order. Hence, this coarse-grained model is a generic
model of NADH redox reactions. Fully specifying this model would require explicitly choosing the
functional form of all the rates and incorporating additional equations to describe the dynamics of all
the implicit variables that the rates depend on (Appendix 2). We next demonstrate that quantitative
predictions regarding the interpretation of FLIM measurements of NADH can be made that are valid
irrespective of the form of the rates or the presence of implicit variables.
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Figure 4. Coarse-graining the NADH redox model. (a) Schematic of the detailed NADH redox model. We consider all possible NADH redox pathways
by modeling N oxidases (Ox) and M reductases (Re). Free NADH, NADH¢, and free NAD", NAD}, can bind and unbind with each oxidase and
reductase. Once bound, NADH can be oxidized reversibly to NAD* by the oxidases, and NAD* can be reduced reversibly to NADH by the reductases,
forming a redox cycle. Gray arrows represent the total fluxes through all oxidases and reductases of the redox cycle. (b) Coarse-grained NADH

redox model. All oxidases and reductases are coarse-grained into a single effective oxidase and reductase, respectively. 78, and rgy are the coarse-
grained forward and reverse oxidation rates of the oxidase; 1 and ris are the coarse-grained forward and reverse reduction rates of the reductase.
Koy, K8y, kb, K% and k;,t)’(, k:,g'(, k;g, k;g are the coarse-grained binding and unbinding rates of NADH and NAD*, respectively, to the oxidase and
reductase. (c) At steady-state, all the kinetics of the model can be further coarse-grained into the turnover rate of free NADH, Fox, and the turnover rate
of free NAD", e, characterizing the two branches of the cycle.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. The detailed NADH redox model.

Accurately predicting ETC flux from FLIM of NADH using the NADH
redox model

At steady-state, the model can be further coarse-grained, without approximation, to consider only
free NADH, with a turnover rate of 7ox, and free NAD*, with a turnover rate of 7. (Figure 4c). Our key
prediction is that the steady-state global oxidative flux of NADH is (Appendix 4):

Jox = Koy [NADH¢| — kox [NADH - Ox] = 7ox [NADH], (5a)
where
Fox = a (B — Beq) » (5b)
and
B=q5. (5¢)

This prediction results from the steady-state assumption where the net binding and unbinding
flux of NADH from the oxidase balances the net oxidative flux through the oxidase (Equation 4
and Appendix 4). The turnover rate of free NADH, 7oy, is proportional to the difference between
the NADH bound ratio 3, that is, the ratio between bound and free NADH concentrations, and the
equilibrium NADH bound ratio, Seq (i.e., what the bound ratio would be if the global oxidative flux is
zero). feq and the prefactor a are independent of the reaction rates of the oxidase and reductase and
can be explicitly related to the binding and unbinding rates of the coarse-grained model (Appendix
4, Equation S43 and $45).

In mitochondria, the major NADH oxidation pathway is the ETC. Thus, Equations 5a-c predict that
there is a direct connection between quantities that can be measured by FLIM of NADH in mitochon-
dria (i.e., 8 and [NADHg)) and the flux through the ETC (i.e., Jox). Equations 5a-c suggest a procedure
for using FLIM to infer flux through the ETC: if a condition can be found under which there is no net
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flux through the ETC, then Seq can be measured with FLIM. Once Seq is known, then subsequent FLIM
measurements of 3 allows 7ox, and hence Jox, to be inferred (up to a constant of proportionality «)
(Appendix 5).

Equations 5a-c are valid irrespective of the functional forms of the rate laws, which may have
nonlinear dependencies on metabolite concentrations, enzyme concentrations, and other factors.
While Equation 5a seems to imply first-order kinetics in [NADHy], the rates can also be arbitrary func-
tions of [NADH¢|, so Equations 5a—c hold for kinetics of any order. Equations 5a-c are also applicable
if the rates depend on additional variables that have their own dynamical equations (as long as the
system is at steady-state): as an example, Appendix 7 shows that Equations 5a-c result when the N
oxidases and M reductases are each described by reversible Michaelis-Menten kinetics, a model in
which the rates depend on the concentration of free enzymes (which is a dynamical variable). More
generally, if detailed biophysical models of the NADH oxidases are available, then parameters of
these models can be explicitly mapped to the coarse-grained parameters of the NADH redox model.
Appendix 7 and Appendix 7—table 1 contain mappings between the coarse-grained model and a
number of previously proposed detailed biophysical models of NADH oxidation in the ETC (Beard,
2005; Korzeniewski and Zoladz, 2001; Hill, 1977, Jin and Bethke, 2002; Chang et al., 2011).
However, since Equations 5a-c are valid for a broad set of models, they can be used for flux inference
without the need to specify the functional form of the rates or the variables they depend on. This is
because the rates are coarse-grained into two effective parameters a and Seq, which can be exper-
imentally determined. This generality results from the steady-state assumption and the topology of
the reactions resulting in the net binding and unbinding flux of NADH from the oxidase balancing the
net oxidative flux. Thus, Equations 5a—c provide a general procedure to infer the ETC flux from FLIM
measurements of NADH in mitochondria.

We applied this procedure to analyze our oxygen drop experiments (Figure 1) by assuming that
there was no net flux through the ETC at the lowest oxygen level achieved for each oocyte (implying
that the measured value of § at that oxygen concentration corresponds to feq for that oocyte). We
also assumed that o and S¢q do not change with oxygen levels, which is reasonable since, as noted
above, they are independent of the reaction rates of the oxidase and reductase. The measured value
of fBeq allowed us to obtain a prediction for Jox as a function of oxygen concentration for the oocytes
(Figure 5a). To test these predictions, we directly determined Jox as a function of oxygen concentra-
tion by measuring the OCR of the oocytes using a nanorespirometer (Lopes et al., 2005) (Materials
and methods). The direct measurements of Jox from OCR quantitatively agree with the predictions of
Jox from FLIM for all oxygen concentrations (Figure 5a), strongly arguing for the validity of the model
and the inference procedure. This agreement supports the assumption that « and Seq are indepen-
dent of oxygen levels.

So far, we have inferred the ETC flux up to a constant of proportionality «, allowing the relative
changes of ETC flux to be inferred from FLIM of NADH. « cannot be determined by FLIM alone. If an
absolute measurement of the ETC flux can be obtained at one condition, then « can be calibrated to
predict absolute ETC fluxes for other conditions. OCR measurement provides a means to calibrate
a (Appendix 5, Equation S48). We used oocytes cultured in AKSOM media at 50+2 pM oxygen as a
reference state, which, from our OCR measurements yielded Jox = 56.6 & 2 uM/s (SEM) and hence a
constant of proportionality of o = 5.4 4- 0.2 s~!. Using this value of o, we can predict absolute values
of Jox under various perturbations assuming a remains a constant. We note that Jox is a flux density
with units of concentration per second, an intensive quantity that does not depend on the mitochon-
drial volume. Multiplying Jox by the volume of mitochondria in an oocyte gives the total ETC flux,
proportional to OCR, in that oocyte. In all subsequent discussions, ETC flux refers to flux density
unless otherwise noted.

We next applied the inference procedure and a constant of o = 5.4 4 0.2 s~! to analyze the exper-
iments of oxamate, FCCP, rotenone and oligomycin perturbations (Figure 2). We dropped oxygen
levels to determine feq in the presence of oxamate (Figure 5—figure supplement 1h) and applied
Equations 5a-c to infer the impact of oxamate on Jox at 50 pM oxygen (i.e., control levels of oxygen).
Surprisingly, while the addition of oxamate greatly impacts FLIM parameters, including a 29+2%
(SEM) decrease in intensity and a 10+3% increase in bound ratio (Figure 2a), this procedure revealed
that the predicted ETC flux with oxamate (Jox = 55.2 £ 3.2 uM/s) is the same as that without oxamate
(Jox = 55.4 + 1.9 uM/s) (Figure 5b; p=0.95), which was confirmed by direct measurements of oocytes’
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OCR that yielded Jox =554+ 1.5 uM/s and Jox = 54.9 £ 0.7 uM/s before and after the addition of
oxamate, respectively (Figure 5b; p=0.85). We next analyzed the FCCP experiment. We obtained feq
by dropping oxygen in the presence of FCCP (Figure 5—figure supplement 1h) and applied Equa-
tions 5a-c to infer the impact of FCCP on Jox at 50 pM oxygen. We predicted that FCCP increased
the flux to Jox = 67.7 £ 1.5 uM/s, which was confirmed by the directly measured Jox = 74.0 &+ 3.7 uM/s
from OCR (Figure 5b; p=0.30). Following the same FLIM based inference procedures, we predicted
that the addition of rotenone and oligomycin reduced the fluxes to Jox = 16.7 £ 1.4 uM/s and
Jox = 15.7 + 1.3 uM/s, respectively, which was again confirmed by corresponding direct measurements
of OCR that yielded Jox = 11.1 £ 0.4 uM/s and Jox = 22.3 £ 0.6 uM/s (Figure 5b; p=0.31 and p=0.17).
The quantitative agreement between predicted fluxes from FLIM and directly measured fluxes from
OCR under a variety of conditions (i.e., varying oxygen tension, sodium oxamate, FCCP, rotenone,
and oligomycin) demonstrates that Equations 5a-c can be successfully used to infer flux through the
ETC in mouse oocytes. This agreement also supports the assumption that «a is a constant across these
different perturbations.

The work described above used the relation 7ox = v (8 — Beq) to predict the flux through the ETC
from FLIM measurements. We next show that the model also predicts a relationship between 7ox and
the fluorescence lifetime of enzyme-bound NADH, 7}, in mitochondria. This provides a second means
to use the model to infer 7ox, and hence Jox, from FLIM of NADH. Specifically, we assumed that NADH
bound to the oxidases have a different average lifetime, 7ox, than NADH bound to the reductases, T,
which is reasonable because NADH bound to different enzymes do exhibit different fluorescence life-
times (Sharick et al., 2018). This assumption implies that the experimentally measured long lifetime
of NADH in mitochondria, 7, is a weighted sum of these two lifetimes,

[NADH-Ox]

[NADH-Re]
ToX TNADH.-Ox]+ [NADHRe]

NADH-Ox] + [NADH Re] * (6)

= + Tre [
Using the coarse-grained NADH redox model at steady-state, Equation 6 leads to a non-trivial
prediction that 7 is linearly related to 1/8 (Appendix 5):

n=A%+B, @)

where the slope A and offset B can be explicitly related to 7ox, Tre, and the coarse-grained binding
and unbinding rates. Such a linear relationship is indeed observed in individual oocytes subject to
oxygen drops (Figure 6a and Figure 6—figure supplement 1), supporting the assumptions of the
model. Combining Equations 7 and 5b leads to a predicted relationship between 7ox and NADH long
fluorescence lifetime (Appendix 5):

~, _ A Teq —T1
Fox = az g (T, 8)

where Teq is the equilibrium NADH long fluorescence lifetime, that is, the value of the long life-
time when the global oxidative flux is zero. This provides a second means to infer 7ox from FLIM
measurements: dropping oxygen and plotting the relationship between 7 and 1/8 provides a means
to measure A and B from Equation 7, while 1eq can be obtained from the NADH long fluorescence
lifetime obtained at the lowest oxygen level. Once A, B, and 7¢q are known, 7ox can be inferred solely
from NADH long fluorescence lifetime 7, using Equation 8.

We next used the lifetime method (Equation 8) and the bound ratio method (Equation 5b) to
separately infer Fox in oocytes subject to a wide variety of conditions (varying oxygen levels, with
oxamate, FCCP, rotenone, and oligomycin). We obtained A, B, feq, and Teq for these different condi-
tions (Figure 5—figure supplement 1 and Figure 6—figure supplement 1), and used the two
different methods to provide two independent measures of 7ox (assuming « is constant across all
conditions). The predictions of 7ox from these two methods quantitatively agree under all conditions
(Figure 6b, p=0.73), which is a strong self-consistency check that further supports the use of the
model to infer ETC flux from FLIM measurements of NADH.
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Figure 5. Coarse-grained NADH redox model enables accurate prediction of flux through the ETC from FLIM measurements of NADH. (a) Predicted
flux through the ETC, Jox, from the FLIM of NADH (n=68 oocytes) agrees quantitatively with Jox from oxygen consumption rate (OCR) measurements
(N=3 measurements) for all oxygen concentrations. Jox is normalized by its value at 50 uM oxygen. (b) Predicted Jox from FLIM and measured Jox from
OCR for AKSOM (n=68, N=4) and with perturbations of 9 mM oxamate (n=20, N=2), 5 uM FCCP (n=31, N=2), 5 uM rotenone (n=28, N=2) and 5 uM
oligomycin (n=37, N=3). Predicted Jox agrees with measured Jox in all cases. n denotes number of ococytes for single-oocyte FLIM measurements. N
denotes number of replicates for batch oocytes OCR measurements. Each batch contains 10-15 oocytes. p values are calculated from two-sided two-
sample t-test. Error bars denote standard error of the mean across individual oocytes for FLIM measurements and across batches of oocytes for OCR

measurements. ETC, electron transport chain; FLIM, fluorescence lifetime imaging microscopy; OCR, oxygen consumption rate.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Excel spreadsheet of single-oocyte FLIM data and batch OCR data used for Figure 5b.

Figure supplement 1. FLIM measurements of NADH in mitochondria under different biochemical perturbations.

Figure supplement 1—source data 1. Excel spreadsheet of single-oocyte FLIM data used for Figure 5—figure supplement 1a-h.

The NADH redox model enables accurate prediction of ETC flux in
human tissue culture cells
After thoroughly testing the NADH redox model and the inference procedure in mouse oocytes, we
next investigated if it can be used in other cell types. We chose human tissue culture cells for this
purpose, since they are widely used as model systems to study metabolic dysfunctions in human
diseases including cancer (Vander Heiden et al., 2009) and neuropathology (Lin and Beal, 2006).
While mouse oocytes have a negligible level of NADPH compared to NADH (Bustamante et al.,
2017), the concentrations of NADH and NADPH are similar in tissue culture cells (10-100 uM aver-
aged over the whole cell) (Lu et al., 2018; Park et al., 2016; Blacker et al., 2014). Since NADPH and
NADH have overlapping fluorescent spectra (Patterson et al., 2000), the presence of NADPH may
complicate the interpretation of FLIM experiments. Thus, we investigated the impact of background
fluorescence, such as from NADPH, on the flux inference procedure. If the background fluorescence
does not change with the perturbations under study, then it can be treated as an additive offset that
systematically makes the measured concentrations of free and bound NADH different from their actual
values. In this case, a derivation in Appendix 5 demonstrates that the background fluorescence can be
incorporated into the equilibrium bound ratio Seq and does not impact the flux inference procedures.
In other words, if the modified Seq can be reliably determined, then the measured concentrations of
free and bound fluorescent species can be used in place of the true values of NADH in Equations 5a-c
to infer the ETC flux. An alternative possibility is that the background fluorescence does change with
the perturbations under study, but in a manner that is proportional to the change in NADH. In this
case, the background fluorescence can be incorporated into the equilibrium bound ratio « and, once
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Figure 6. Coarse-grained NADH redox model self-consistently predicts NADH turnover rate from bound ratio and long fluorescence lifetime. (a)
NADH long lifetime, 7, is linearly related to the inverse of NADH bound ratio, 1/3, from the oxygen drop experiment of individual oocytes treated with
oxamate and rotenone (results from five representative oocytes are shown for each condition). Each shade corresponds to results from an individual
oocyte (symbols are experimental measurements and dashed lines are linear fits). (b) NADH turnover rate 7ox obtained from NADH long lifetime (1)
using Equation 8 agrees quantitatively with that from NADH bound ratio (3), obtained from Equation 5b, across all perturbations (p=0.73). The solid
line denotes where 7ox from lifetime equals that from bound ratio, the gray region denotes +5% variation from equality. Error bars represent standard

error of the mean (s.e.m) across different oocytes. p value is calculated from Student’s t-test.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Excel spreadsheet of single-oocyte FLIM data used for Figure 6b.

Figure supplement 1. NADH long fluorescence lifetime 77 is linearly related to the inverse of the NADH bound ratio 1/5.

Figure supplement 1—source data 1. Excel spreadsheet of single-oocyte FLIM data used for Figure 6—figure supplement 1f,g.

more, does not impact the flux inference procedures (Appendix 5). If the background fluorescence
changes in some more complicated manner, then the inference procedure may no longer be valid.
Thus, depending on the behavior of NADPH, it either might or might not interfere with the inference
procedure: no impact if NADPH is either constant or proportional to changes in NADH, a possible
impact otherwise. Therefore, the validity of the inference procedure in the presence of significant
NADPH fluorescence must be established empirically.

We next tested the inference procedures experimentally in hTERT-RPE1 (hTERT-immortalized
retinal pigment epithelial cell line) tissue culture cells. We started by exploring the impact of meta-
bolic perturbations on mitochondrial NAD(P)H: the combined signal from NADH and NADPH (which
are indistinguishable) from mitochondria. We first cultured the cells in DMEM with 10 mM galactose
(Materials and methods). We then inhibited complex | of the ETC by adding 8 uM of rotenone to the
media. This resulted in a significant increase of mitochondrial NAD(P)H intensity (Figure 7a, upper).
We segmented mitochondria using a machine learning-based algorithm from the intensity images
of NAD(P)H, and fitted the fluorescence decay curves of mitochondrial NAD(P)H to obtain changes
in FLIM parameters (Materials and methods). All FLIM parameters displayed significant changes
(Figure 7a, lower, p<0.001, and Figure 7—figure supplement 1). We next uncoupled proton trans-
location from ATP synthesis by adding 3.5 uM CCCP to the media. This led to a decrease of NAD(P)
H intensity in the mitochondria (Figure 7b, upper) and significant changes in NAD(P)H bound ratio
and short lifetime, but in opposite directions as compared to rotenone perturbation (Figure 7b,
lower, p<0.01, and Figure 7—figure supplement 1). Finally, we perturbed the nutrient conditions by
culturing the cells in DMEM with 10 mM glucose. FLIM imaging revealed an increase of mitochondrial
NAD(P)H intensity (Figure 7¢c, upper) and significant changes in all FLIM parameters as compared to
the galactose condition (Figure 7¢, lower, p<0.001, and Figure 7—figure supplement 1).
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Inference of the ETC flux from FLIM measurements requires a measurement of feq. Since rotenone
is known to drastically decrease the OCR of hTERT-RPE1 cells to near zero (MacVicar and Lane,
2014), we used the NAD(P)H bound ratio measured in the presence of rotenone as (eq. Different
values of 3eq were obtained for glucose and galactose conditions by adding 8 pM of rotenone to each
condition (Figure 7—figure supplement 1). We next calculated the concentrations of free NAD(P)H,
[NAD(P)H¢], from the FLIM parameters using Equation 2a. [NAD(P)Hy] displayed significant changes
for all perturbations (Figure 7d). Using Equation 5b and assuming « is a constant, we calculated
the NAD(P)H turnover rate, Fox, from the FLIM measurements and Seq. 7ox changed significantly for
all perturbations (Figure 7e). Multiplying 7ox and [NAD(P)Hf], we obtained the predicted ETC flux,
Jox, which increased under FCCP, decreased under glucose and reduced to zero under rotenone
(Figure 71).

To test the model predictions, we compared the predicted ETC flux with previous direct OCR
measurements of the same cell type that we used, under the same conditions (MacVicar and Lane,
2014). Remarkably, the predicted changes in ETC fluxes are in quantitative agreement with the
directly measured OCR across all conditions as estimated from Figure 1A of MacVicar and Lane,
2014: CCCP is predicted to increase the ETC flux by 14+3% (SEM), in agreement with the 18+21%
increase from OCR measurement (p=0.80); Glucose is predicted to decrease ETC flux by 33+3%, in
agreement with the 46+9% decrease from OCR measurements (p=0.30), shifting metabolism from
oxidative phosphorylation to aerobic glycolysis. Since we used 3 from rotenone treatment as feq,
the predicted decrease in ETC flux after the addition of rotenone is 101+2%, which is in agreement
with the 82+2% decrease from OCR measurement (p=0.28). This quantitative agreement between
predicted ETC fluxes and measured OCR across all perturbations demonstrated the applicability of
the NADH redox model and the flux inference procedures to tissue culture cells, even though they
contain substantial levels of NADPH.

Homeostasis of ETC flux in mouse oocytes: perturbations of nutrient
supply and energy demand impact NADH metabolic state but do not
impact ETC flux

Having established the validity of the NADH redox model and the associated flux inference proce-
dures, we next applied it to study energy metabolism in mouse oocytes. We began by investigating
the processes that determine the ETC flux in MIl mouse oocytes. Mitochondrial-based energy metab-
olism can be viewed as primarily consisting of three coupled cycles: the NADH/NAD" redox cycle
(which our NADH redox model describes), the proton pumping/dissipation cycle, and the ATP/ADP
production/consumption cycle (Figure 8a). At the most upstream portion of this pathway, the reduc-
tion of NAD* to NADH is powered by a supply of nutrients, while at the most downstream portion,
energy-demanding cellular processes hydrolyze ATP to ADP. To test whether nutrient supply and
energy demand set ETC flux, we investigated the effect of perturbing these processes. To perturb
supply, we first varied the concentration of pyruvate in the media from 181 pM (which is standard for
AKSOM) to either 18.1 uM or 1.81 mM, and observed significant changes in NADH intensity and FLIM
parameters (Figure 8b, left), demonstrating that the NADH metabolic state is altered. To perturb
demand, we began by adding 10 pM nocodazole to the media, which disassembled the meiotic
spindle, an energy user, and resulted in significant changes in NADH FLIM parameters (Figure 8b,
center). Similarly, the addition of 10 uM latrunculin A disassembled the actin cortex and also produced
significant changes in NADH FLIM parameters (Figure 8b, right).

We next performed additional perturbations of nutrient supply, inhibiting the conversion of lactate
to pyruvate by LDH (with 9 mM oxamate) and inhibiting the malate-aspartate shuttle (with 11 mM
AOA). We performed additional perturbations of energy demand by inhibiting protein synthesis (with
1 mM cycloheximide) and ion homeostasis, by varying extracellular potassium concentrations from 0
mM to 15 mM, inhibiting the Na*/K* pump (with 2 mM ouabain), and adding an ionophore (10 pM
gramicidin). All perturbations resulted in significant changes in NADH FLIM parameters (Figure 8—
figure supplement 1), showing that NADH metabolic state is generally impacted by varying nutrient
supply and cellular energy demand. We next used the NADH redox model and the measured FLIM
parameters to infer the concentration and effective turnover rate of free NADH for these perturbations.
The free NADH concentrations, [NADHf], and turnover rates, 7ox, displayed large variations across the
perturbations, ranging from 33.5+1 pM (SEM) to 56.0+2.8 uM and from 1.0+0.05 s™ to 1.65+0.09 s,
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Figure 7. NADH redox model accurately predicts ETC flux in hTERT-RPE1 human tissue culture cells. (a—c) NAD(P)H intensity images (scale bar, 30 pm)
and the corresponding changes of FLIM parameters in response to metabolic perturbations with the addition of 8 uM rotenone (a) (N=61), 3.5 uM
CCCP (b) (N=72), and the change of nutrients from 10 mM galactose to 10 mM glucose (c) (N=77). Rotenone and CCCP are added to culturing media
with 10 mM galactose (N=145). Measurements were taken within 30 min after the addition of the drugs. N specifies the number of images analyzed
for each condition. A typical image contains dozens of cells as shown in (a—c). (d—f) Free NAD(P)H concentrations ([NAD(P)Hf]) (d), NAD(P)H turnover
rate (Fox) (€), and inferred ETC flux (Jox) (f) in response to CCCP, rotenone, and glucose perturbations. Student’s t-test is performed pairwise between
perturbations and the 10 mM galactose condition. *p<0.05, **p<0.01, ***p<0.001. Error bars represent standard error of the mean (s.e.m) across
different images. ETC, electron transport chain; FLIM, fluorescence lifetime imaging microscopy.

The online version of this article includes the following source data and figure supplement(s) for figure 7:
Source data 1. Excel spreadsheet of single image FLIM data used for Figure 7a-f.

Figure supplement 1. NAD(P)H FLIM parameters and TMRM measurements in response to mitochondrial inhibitors and nutrient perturbations for
hTERT-RPE1 cells.

Figure supplement 1—source data 1. Excel spreadsheet of single image TMRM data used for Figure 7—figure supplement 1.
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respectively (Figure 8c). Surprisingly, the changes in [NADH¢| and 7ox were highly anti-correlated such
that the data points primarily fell within a region where the inferred ETC flux, Jox = Fox [NADHf], is a
constant 55.5 pM-s™ (Figure 8c, solid line, shaded region indicates 5% error). Indeed, ANOVA tests
confirmed that perturbing nutrient supplies and cellular energy demand lead to no significant change
in either the inferred ETC flux (Figure 8d, p=0.20) or directly measured OCR (Figure 8e, p=0.07).
Thus, while nutrient supply and cellular energy demand strongly affect mitochondrial NADH redox
metabolism, they do not impact ETC flux. In contrast, ETC flux is impacted by perturbing proton leak
and ATP synthesis (Figure 5). Taken together, this suggests that the ETC flux in mouse oocytes is set
by the intrinsic properties of their mitochondria, which can adjust their NADH redox metabolism to
maintain a constant flux when nutrient supplies and cellular energy demand are varied. The mecha-
nistic basis of this homeostasis of ETC flux is unclear and will be an exciting topic for future research.

Subcellular spatial gradient of ETC flux in mouse oocytes: spatially
inhomogeneous mitochondrial proton leak leads to a higher ETC flux in
mitochondria closer to cell periphery

Our results presented so far were performed by averaging together FLIM measurements from all mito-
chondria within an oocyte. However, FLIM data is acquired with optical resolution, enabling detailed
subcellular measurements. To see if there are spatial variations in FLIM measurements within individual
oocytes, we computed the mean NADH fluorescence decay time for each mitochondrial pixel. The
mean NADH fluorescence decay time displays a clear spatial gradient, with higher values closer to the
oocyte center (Figure 9a).

To quantify this gradient in more detail, we partitioned mouse oocytes into equally spaced concen-
tric regions (Figure 9b) and fitted the fluorescence decay curves from mitochondrial pixels within each
region to obtain FLIM parameters as a function of distance from the oocyte center. NADH intensity,
bound ratio, and long lifetime in mitochondria all display significant spatial gradient within oocytes
(Figure 9c). Next, using Equations 5a-c and [3eq obtained at the lowest oxygen level, and confirming
that Beq is uniform within the oocyte with complete inhibition of ETC using high concentration of rote-
none (Figure 9—figure supplement 1), we predicted the ETC flux, Jox, as a function of distance from
the oocyte's center. The ETC flux displayed a strong spatial gradient within oocytes, with a higher flux
closer to the cell periphery (Figure 9d). Note that, as described above, Jox is actually a flux density
with units of concentration per second. Thus, the measured flux gradient is not merely a reflection of
variations in mitochondrial density, but instead indicates the existence of subcellular spatial heteroge-
neities in mitochondrial activities.

To investigate the origin of this flux gradient, we inhibited ATP synthase using 5 pM of oligomycin
and repeated measurements of subcellular spatial variations in inferred fluxes. After inhibition, Jox
decreased at all locations throughout the oocytes and displayed an even more dramatic flux gradient
(Figure 9e). If oligomycin completely blocks ATP synthase, then the remaining flux must be the result
of proton leak. If it is further assumed that proton leak remains the same with and without oligomycin,
then the flux due to ATP synthase in control oocytes can be determined by subtracting the flux after
oligomycin inhibition (i.e., the proton leak) from the flux before inhibition. Performing this procedure
throughout oocytes indicates that proton leak greatly increases in mitochondria near the periphery
of oocytes, where ATP production decreases (Figure 9f). This implies that the subcellular gradient in
ETC flux is primarily caused by a gradient in proton leak and that mitochondria near the periphery of
oocytes are less active in ATP production than those in the middle of the oocyte.

We hypothesized that a gradient in proton leak would result in a gradient of mitochondrial
membrane potential, with lower membrane potential closer to the cell periphery where proton leak
is the greatest. To test this, we measured mitochondrial membrane potential using the membrane
potential-sensitive dye TMRM, which preferentially accumulates in mitochondria with higher membrane
potential (Al-Zubaidi et al., 2019). We observed a strong spatial gradient of the intensity of TMRM
in mitochondria within oocytes, with dimmer mitochondria near the cell periphery (Figure 9g and h),
indicating that mitochondria near the periphery of the oocyte have a lower membrane potential. This
result is robust to locally normalizing TMRM intensity by mitochondrial mass using a membrane poten-
tial insensitive dye (Mitotracker Red FM), or using an alternative membrane potential-sensitive dye,
JC-1 (Figure 9—figure supplement 2). The predicted flux of proton leak and mitochondrial TMRM
intensity shows a strong negative correlation (Figure 9i), confirming our hypothesis.
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Figure 8. Homeostasis of ETC flux in mouse oocytes: perturbations of nutrient supply and energy demand impact NADH metabolic state but do
not impact ETC flux. (a) The three coupled cycles of mitochondrial-based energy metabolism: the NADH/NAD* redox cycle, the proton pumping/
dissipation cycle, and the ATP/ADP production/consumption cycle. Nutrients supplied from the cytoplasm (blue) power the reduction of NAD*

to NADH. Energy-demanding cellular processes in the cytoplasm (red) hydrolyze ATP to ADP. (b) Oocyte images (top) and change in NADH FLIM

Figure 8 continued on next page
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parameters relative to control (bottom) for changing pyruvate concentration (left), addition of 10 uM nocodazole (center) and addition of 10 pM
latrunculin A (right). Student’s t-test were performed for the change of FLIM parameters (*p<0.05, **p<0.01, ***p<0.001). The spindle disassembles
after addition of 10 uM nocodazole (top, center) and the actin cortex disassembles after addition of 10 pM latrunculin A (top, right). (¢) NADH turnover
rate (Fox) and NADH free concentrations ([NADHf]) inferred from FLIM measurements under a variety of perturbations of nutrient supply and energy
demand. Error bars are standard error of the mean (s.e.m) across oocytes. The black line corresponds to 7ox and [NADHf} values with an inferred flux
of Jox = 55.5 uM -s~1, and the gray shaded region corresponds to a variation of £5% around that value. (d) The inferred ETC flux and (e) measured
OCR show no change across different perturbations of nutrient supply and energy demand (ANOVA, p=0.20 and p=0.07, respectively). ETC, electron
transport chain; FLIM, fluorescence lifetime imaging microscopy; OCR, oxygen consumption rate.

The online version of this article includes the following source data and figure supplement(s) for figure 8:

Source data 1. Excel spreadsheet of single-oocyte FLIM data and batch OCR data used for Figure 8c—e.

Figure supplement 1. NADH FLIM parameters for mouse oocytes under all nutrient supply and energy demand perturbations.

Figure supplement 1—source data 1. Excel spreadsheet of single-oocyte FLIM data used for Figure 8—figure supplement 1.

Taken together, these results show that MIl mouse oocytes contain subcellular spatial heteroge-
neities of mitochondrial metabolic activities. The observation that proton leak is responsible for the
gradient of ETC flux suggests that the flux heterogeneity is a result of intrinsic mitochondrial hetero-
geneity. This is consistent with our conclusion from the homeostasis of ETC flux (Figure 8) that it is
the intrinsic rates of mitochondrial respiration, not energy demand or supply, that controls the ETC
flux. The causes and consequences of the subcellular spatial variation in mitochondrial activity remain
unclear and are an exciting topic for future research.

Discussion

The NADH redox model is a general model to relate FLIM
measurements of NADH to ETC fluxes

Despite extensive studies and applications of FLIM in metabolic research (Bird et al., 2005; Skala
et al., 2007; Heikal, 2010; Sharick et al., 2018; Sanchez et al., 2018; Liu et al., 2018; Sanchez
et al., 2019, Ma et al., 2019), it remains a challenge to relate FLIM measurements to the activities
of the underlying metabolic pathways in cells. We overcame this challenge by developing a coarse-
grained NADH redox model that leads to quantitative predictions for the relationship between FLIM
measurements and the flux through the ETC. The model was constructed by explicitly coarse-graining
a detailed NADH redox model with an arbitrary number of oxidases and reductases that represent all
the possible enzymes involved in NADH redox reactions. The reactions in the detailed NADH redox
model can be of arbitrary order and depend on implicit variables (i.e., free enzyme concentration,
membrane potential, pH, etc.), which obey their own dynamical equations. The dynamics of the redox
model will, of course, depend on the precise number of oxidases and reductases, the functional forms
of the rates, and specific mathematical models for all the variables the rates implicitly depend on.
However, the quantitative predictions relating FLIM measurements and ETC flux are independent
of these modeling choices. Coarse-graining the detailed NADH redox model reduces all oxidases
to an effective oxidase and all reductases to an effective reductase. The kinetic rates of the coarse-
grained model can be related to those of the detailed model by keeping the global fluxes through the
oxidases and the reductases the same in both models. The coarse-grained model predicts that the flux
through the ETC is a product of the turnover rate and the concentration of free NADH (Equation 5a).
The turnover rate is proportional to the difference between the nonequilibrium and the equilibrium
NADH bound ratio (Equation 5b), which are measurable by FLIM of NADH (Equation 5c). Thus, this
model provides a generic framework to relate FLIM measurements of NADH to the flux through the
ETC in mitochondria.

The central assumption required for the validity of Equations 5a-c is that the redox reactions, and
binding and unbinding processes, can be approximated as being at steady-state (i.e., undergoing
only quasistatic changes over perturbations or development). At steady-state, the net binding and
unbinding flux balances the oxidative flux of NADH. Therefore, the measurement of binding and
unbinding state of NADH from FLIM allows the inference of the ETC flux, irrespective of the detailed
behaviors of the oxidative reactions.
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Figure 9. Subcellular mitochondrial heterogeneity in mouse oocytes: spatially inhomogeneous mitochondrial proton leak leads to a higher ETC flux in
mitochondria closer to cell periphery. (a) Heatmap of the mean NADH fluorescence decay time in mitochondria exhibits a subcellular spatial gradient
within oocytes. (b) NADH intensity image of the oocyte partitioned with equally spaced concentric rings. (¢) Mitochondrial normalized NADH intensity
(upper left), bound ratio 3 (upper right), long fluorescence lifetime 7 (lower left), and short fluorescence lifetime 75 (lower right) as a function of distance

Figure 9 continued on next page
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Figure 9 continued

from the oocyte center (n=67). (d) Predicted ETC flux from FLIM of NADH as a function of distance from the oocyte center (n=67). (e) ETC flux gradient
is enhanced by 5 uM oligomycin (n=37), suggesting the flux gradient is determined by proton leak. CT is AKSOM with oxamate (n=32). 9 mM oxamate
is present in oligomycin condition to reduce cytoplasmic NADH signal for better mitochondrial segmentation. (f) Opposing flux gradients of proton leak
and ATP production, where proton leak (ATP production) is maximal (minimal) at the cell periphery. (g) Heatmap of the TMRM intensity in mitochondria,
which increases with mitochondrial membrane potential, exhibits a subcellular spatial gradient within oocytes. (h) Mitochondrial TMRM intensity as a
function of distance from the oocyte center (n=16). (i) Predicted flux of proton leak correlates negatively with mitochondrial membrane potential as
measured by mitochondrial TMRM intensity. Scale bar, 20 um. Error bars represent standard error of the mean (s.e.m) across different oocytes. ETC,
electron transport chain; FLIM, fluorescence lifetime imaging microscopy.

The online version of this article includes the following figure supplement(s) for figure 9:
Figure supplement 1. 3, is uniform within the oocyte.

Figure supplement 2. Subcellular spatial gradient of mitochondrial membrane potential.

Remarkably, all the binding and unbinding rates of the NADH redox model are coarse-grained into
two effective parameters: o and Seq, which can be experimentally measured. We determined the value of
afrom an OCR measurement (Appendix 5, Equation S48), and we determined the value of Seq from FLIM
of NADH at low oxygen levels or from rotenone perturbation (Appendix 5, Figure 5—figure supplement
1h). In MIl mouse oocytes, a do not significantly vary in response to oxygen or drug and nutrient pertur-
bations. This is demonstrated by the agreement between the predicted ETC flux and the measured OCR
with a constant a of 5.4+0.2 s™ across a variety of conditions (Figure 5). « is predicted to depend only on
the coarse-grained unbinding rates of NADH from the enzymes (Equation S43), so the observed constancy
of o implies that the perturbations in this study primarily impacted the reduction/oxidation reaction rates
(and not the unbinding rates). In other scenarios, such as when the concentrations of enzymes change, the
coarse-grained unbinding rates might change, so oz might not be a constant. In contrast, Seq does vary with
drug and nutrient perturbations, but not with oxygen level, allowing eq to be obtained at the lowest oxygen
level for different drug and nutrient conditions (Figure 5—figure supplement 1h and Figure 8—figure
supplement 1). Using these two parameters, we inferred the effective turnover rate of free NADH, 7ox,
from FLIM measurements of NADH. By multiplying this turnover rate with the concentration of free NADH,
[NADHf} (also obtained from FLIM measurements using Equation 2a), we inferred the ETC flux from Equa-
tion 5a. Thus, all the complex behaviors of the binding and unbinding and reaction rates are captured by the
variations in FLIM parameters of NADH, and our coarse-grained model provides a generic way to interpret
these variations.

While we found that Seq is smaller than 3 in mouse oocytes, this does not generically have to be
true. Thus, if a perturbation is observed to decrease the NADH bound ratio 3, it does not necessarily
imply a decrease of the ETC flux. Similarly, a decrease of NADH long lifetime is not necessarily asso-
ciated with an increase of the ETC flux. Therefore, measurements of o and Seq are required to use
Equations 5a-c to infer ETC flux from FLIM measurements of NADH.

The underlying assumptions and limitations of the NADH redox model
In this section, we clarify the underlying assumptions and limitations of the model to facilitate the
accurate interpretation of FLIM measurements of NADH in different biological contexts.

To use the coarse-grained NADH model, segmentation needs to be performed to separate the mito-
chondrial NADH signal from the cytoplasmic NADH signal, because they encode different metabolic
fluxes. In mouse oocytes, the segmentation can be reliably performed based on NADH images due to
the higher NADH intensity in mitochondria than cytoplasm. Mitochondrial movements are also slow in Mll
oocytes (Video 1); hence, long exposure times can be used to obtain high contrast NADH images. For cells
where NADH contrast is low, such as in yeast cells (Papagiannakis et al., 2017, Shaw and Nunnari, 2002),
MitoTracker dye (Appendix 1 Figure 1—figure supplement 1) or mitochondrial associated fluorescent
proteins (Westermann and Neupert, 2000) will likely be needed for reliable segmentation of mitochondria.

One of the most important assumptions that enables the coarse-grained model to be used to
predict fluxes is that the NADH redox cycle can be well approximated as being at steady-state, that
is, the rate of change of NADH concentrations is much slower than the kinetic rates, including the
binding/unbinding rates and the reaction rates. This is true for mouse oocytes, where the NADH
intensity does not significantly change over the course of hours. This assumption also holds for slow
processes such as the cell cycle (Papagiannakis et al., 2017), which occurs on the timescale of hours
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compared to timescales of seconds for the kinetic rates. This claim is supported by the success of the
model on human tissue culture cells. The steady-state approximation could fail for rapid dynamics of
NADH, such as the transient overshoot of NADH in neurons induced by acute external stimulus (Diaz-
Garcia et al., 2021), but this needs to be tested experimentally.

While NADH and NADPH share the same fluorescence spectrum, NADH concentration is 40 times
greater than the concentration of NADPH for the whole mouse oocytes and presumably even higher for
mitochondria (Bustamante et al., 2017). NADPH concentration can be comparable to that of NADH for
other cell types such as tissue culture cells (Park et al., 2016). However, we have shown that the presence of
NADPH signal and other background fluorescence signals only affect the equilibrium bound ratio Seq or the
prefactor «, and hence does not affect the flux inference procedure if S¢q can be reliably determined and «
remains a constant (Appendix 5). This was validated in tissue culture cells by comparing predicted ETC flux
(Figure 7) with previous OCR measurements (MacVicar and Lane, 2014).

Finally, when relating NADH FLIM measurements to the ETC flux, we did not explicitly consider the
contribution to the flux through FADH,. This is a valid approximation when the FADH, oxidative flux
is much smaller than the NADH oxidative flux, as is often the case since pyruvate dehydrogenase plus
the TCA cycle yields four NADH molecules but only one FADH, molecule per cycle. Alternatively, if
the FADH, flux is proportional to the NADH flux, then a rescaled value of a can be used in Equation
5b to effectively account for both fluxes. The proportionality of FADH, flux and NADH flux is expected
when NADH and FADH, are produced from the same redox cycle with fixed stoichiometry, such as the
pyruvate dehydrogenase and TCA cycle. This proportionality will break down if significant amounts of
NADH and FADH, are produced in independent cycles where the stoichiometry varies, for example,
when the glycerol phosphate shuttle acts as a reductase in mitochondria for FADH, but not for NADH.

Given these underlying assumptions, the model needs to be tested before being applied to other
biological systems. The present study provides an example for such tests in mouse oocytes and human
tissue culture cells by comparing the predicted ETC flux from FLIM with direct measurements of OCR across
a wide range of perturbations.

Towards spatiotemporal regulations of metabolic fluxes in cells

Cells transduce energy from nutrients to power various cellular processes. The ETC flux represents the
total rate of energy conversion by mitochondria. Despite the detailed knowledge of the biochemistry of
mitochondrial metabolism, it is still unclear what cellular processes determine ETC flux or how cells parti-
tion energetic fluxes to different cellular processes, including biosynthesis, ion pumping, and cytoskeleton
assemblies. Energetic costs of specific cellular processes have been estimated from theoretical calculations
(Stouthamer, 1973) or through inhibition experiments (Mookerjee et al., 2017). The latter typically involves
measurements of the change of metabolic fluxes, such as OCR, upon inhibition of specific cellular processes,
and interpreting this change as the energetic cost of the inhibited process. This interpretation is valid if meta-
bolic flux is determined by the energy demand of different cellular processes in an additive manner. This
assumption has not been thoroughly tested. Using the NADH redox model, we discovered a homeostasis
of ETC flux in mouse oocytes where perturbing energy demand and supply do not impact ETC flux despite
significantly changing NADH metabolic state. On the other hand, perturbing ATP synthesis and proton leak
greatly impacted the ETC flux. From these results, we concluded that it is the intrinsic rates of mitochondrial
respiration, rather than energy supply or demand, that controls the ETC flux in mouse oocytes. While NADH
metabolic state significantly changed in response to perturbing energy demand and supply, indicating cell
metabolism was indeed impacted, it is unclear if these perturbations also influenced ATP, ADP, or AMP
levels. Future work, including direct measurements of ATP, ADP, and AMP levels, will be required to uncover
the mechanism of flux homeostasis. More broadly, our work demonstrates that it is a prerequisite to under-
stand the regulation of ETC fluxes in order to correctly interpret the changes of ETC flux upon inhibiting
subcellular processes.

The mechanism of the homeostasis of ETC flux is unclear. One possibility is the presence of flux buffering
pathways, where the change of ATP fluxes induced by process inhibition is offset by the opposing change
of fluxes through the buffering pathways. Enzymes such as adenylate kinase are known to buffer concentra-
tions of adenine nucleotide (De la Fuente et al., 2014), but it is unclear if they also buffer fluxes. Another
possibility is a global coupling of cellular processes, where the change of ATP consumption by one process
is offset by the change of others. Changes in proton leak could also compensate for changes in ATP produc-
tion. Additional work will be required to distinguish between these (and other) possibilities.
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FLIM data is obtained with optical resolution, enabling subcellular measurements of NADH meta-
bolic state. Interpreting these measurements using the NADH redox model enables inference of
metabolic fluxes with subcellular resolution. Using this method, we discovered a subcellular spatial
gradient of ETC flux in mouse oocytes, where the ETC flux is higher in mitochondria closer to the cell
periphery. We found that this flux gradient is primarily a result of a spatially heterogeneous mitochon-
drial proton leak. It will be an exciting aim for future research to uncover the causes and consequences
of the subcellular spatial variation in mitochondrial activity.

Materials and methods

resource Designation Source or reference Identifiers Additional information
ATCC Cat# CRL-4000,

Cell line (Homo sapiens) hTERT-RPE1 lain Cheeseman Lab RRID:CVCL_4388

Biological sample (mouse) Ml oocytes EmbryoTech Strain: B6C3F1

Commercial assay or kit

MitoTracker Red FM

Thermo Fisher Scientific

Cat.#: M22425

Cat.#: T5428
Commercial assay or kit TMRM Sigma-Aldrich CAS: 115532-50-8
Commercial assay or kit JC-1 Thermo Fisher Scientific  Cat.#: T3168
Commercial assay or kit SiR-Tubulin Cytoskeleton Inc Cat.#: CY-SC006
Commercial assay or kit Phalloidin Thermo Fisher Scientific  Cat.#: F432
Cat.#: 02751
Chemical compound, drug  Sodium oxamate Sigma-Aldrich CAS: 565-73-1
Cat.#: R8875
Chemical compound, drug  Rotenone Sigma-Aldrich CAS: 83-79-4
Cat.#: 75351
Chemical compound, drug  Oligomycin A Sigma-Aldrich CAS: 579-13-5
Cat.#: C2920
Chemical compound, drug  FCCP Sigma-Aldrich CAS: 370-86-5
Cat.#: C2759
Chemical compound, drug  CCCP Sigma-Aldrich CAS: 555-60-2
Cat.#: D9434
Chemical compound, drug  Glucose Sigma-Aldrich CAS: 50-99-7
Cat.#: 48260
Chemical compound, drug  Galactose Millipore CAS: 59-23-4
Cat.#: P2256
Chemical compound, drug  Pyruvate Sigma-Aldrich CAS: 113-24-6
Cat.#: C4859
Chemical compound, drug  Cycloheximide Sigma-Aldrich CAS: 66-81-9
Cat.#: M1404
Chemical compound, drug  Nocodazole Sigma-Aldrich CAS: 31430-18-9
Cat.#: L5163
Chemical compound, drug  Latrunculin A Sigma-Aldrich CAS: 76343-93-6
Cat.#: 50845
Chemical compound, drug  Gramicidin Sigma-Aldrich CAS: 11029-61-1
Cat.#: 03125
Chemical compound, drug  Ouabain Sigma-Aldrich CAS: 11018-89-6
Cat.#: C13408
Chemical compound, drug  Aminooxyacetic acid (AOA) Sigma-Aldrich CAS: 2921-14-4

Software, algorithm

FLIM data acquisition (SPCM)

Becker & Hickl

RRID:SCR_018310

Continued on next page
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Continued

Reagent type (species) or

resource Designation Source or reference Identifiers Additional information
Software, algorithm FLIM data acquisition (Labview) National Instruments RRID:SCR_014325

Software, algorithm

FLIM data analysis (MATLAB
R2015b) MathWorks RRID:SCR_001622

Software, algorithm

OCR data acquisition
(SensorTrace Profiling) Unisense

Culturing of mouse oocytes

Frozen MIl mouse oocytes (Strain B6C3F1) were purchased from EmbryoTech. Oocytes were thawed
and cultured in droplets of AKSOM media purchased from MilliporeSigma in plastic petri dish. Mineral
oil from VitroLife was applied to cover the droplets to prevent evaporation of the media. Oocytes
were then equilibrated in an incubator at 37°C, with 5% CO, and air saturated oxygen before imaging.
For imaging, oocytes were transferred to a 2-pl media droplet in a 35-mm glass bottom FluoroDish
from WPI covered with 400-500 pl of oil. The glass bottom dish was placed in an Ibidi chamber
with temperature and gas control during imaging. Temperature was maintained at 37°C via heated
chamber and objective heater. CO, was maintained at 5% using gas tanks from Airgas.

Cell lines

The hTERT-RPE1 cell line is an established wild-type cell line received from the Cheeseman lab that
has been validated based on behavior and properties. The hTERT-RPE1 cell line was maintained and
tested for mycoplasma contamination in the Needleman lab on a regular basis (Southern Biotech).

Culturing of hTERT-RPE1 cells

Cell lines were maintained at 37°C and 5% CO,. Cells were grown in Dulbecco’s modified Eagle’s
medium (DMEM) (11966025, Gibco) supplemented with 10% fetal bovine serum (FBS), 0.5 mM
sodium pyruvate, 5 mM HEPES, 1% penicillin and streptomycin, and either 10 mM glucose or 10 mM
galactose. Cells were passaged in glucose or galactose at least three times before imaging. Cells were
plated on 35 mm glass bottom FluoroDishes from WPI for imaging. Right before imaging, the media
was replaced with 1 ml of phenol red-free DMEM (A1443001, Gibco) supplemented with 0.5 mM
sodium pyruvate, 4 mM L-glutamine, 10 mM HEPES, and either 10 mM glucose or 10 mM galactose.

FLIM measurements

Our FLIM system consists of a two-photon confocal microscope with a 40x 1.25 NA water immersion
Nikon objective, Becker and Hickle Time Correlated Single Photon Counting (TCSPC) acquisition
system and a pulsed MaiTai DeepSee Ti:Sapphire laser from Spectra-Physics. NADH autofluorescence
was obtained at 750 nm excitation wavelength with a 460/50 nm emission filter. Laser power at the
objective was maintained at 3 mW. The scanning area was 512 by 512 pixels with a pixel size of
420 nm. Acquisition time was 30 s per frame. Oocytes were imaged with optical sectioning across
their equators. A histogram of NADH fluorescence decay times was obtained at each pixel of the
image.

Oxygen measurements

Oxygen level was measured in the Ibidi chamber with an electrode-based oxygen sensor (GasLab).
Since the oil layer covering the media droplet was very thin, the oxygen level in the droplet was
assumed to be in instant equilibration with the chamber.

Image and FLIM data analysis

To separate mitochondrial NADH signal from cytoplasmic signal, we performed machine learning-
based segmentation algorithms on NADH intensity images. We used the freeware llastik (Berg et al.,
2019), which implements a supervised learning algorithm for pixel classification. The classifiers were
trained to separate mitochondrial pixels from cytoplasmic pixels with a greater than 80% accuracy, as
tested by MitoTracker Red FM (Appendix 1, Figure 1—figure supplement 1). We grouped photons
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from all mitochondrial pixels to obtain a histogram of NADH decay times for each oocyte and for
each image of tissue culture cells. To extract the FLIM parameters of NADH bound fraction f, long
lifetime 7 and short lifetime 75, we fitted the histogram with G = IRFx (C|F + C;), where * indicates

a convolution, and IRF is the instrument response function of the FLIM system, measured using a
T

urea crystal. F () =f-exp (—%) + (1 —f) -exp (—;ﬁ) is the two-exponential model for the NADH
fluorescence decay. C; is the amplitude of the decay and C; is the background noise. The fitting was
performed with a custom MATLAB code using a Levenberg-Marquardt algorithm (Yoo, 2018). To
obtain the intensity, 7, of mitochondrial NADH, we first measured the average number of photons
per mitochondrial pixel, and divided it by the pixel area, 0.185 um?, and pixel scanning time 4.09 ps.
The flux of ETC is inferred using Equations 5a-c for each oocyte and for tissue culture cells in a single
image. Heatmaps of mean NADH fluorescence decay times were obtained by computing NADH fluo-
rescence decay time of each mitochondrial pixel and averaging over neighboring mitochondrial pixels
weighted by a Gaussian kernel with a standard deviation of 20 pixels. All FLIM measurements were
taken from distinct individual oocytes and distinct images of tissue culture cells. Error bars in all figures
of FLIM represent standard error of the mean across different individual oocytes or across different
images for tissue culture cells. Number of oocytes is reported with n. Number of images for tissue
culture cells is reported with N.

Error analysis

FLIM curves were independently fit for each individual oocyte. The reported error bars in this manu-
script are standard errors of the mean (SEMs) across these measurements, which depends on the
level of variation (the standard deviation) between the oocytes. Two sources of variation in FLIM
measurements across the oocytes are: (1) true biological variations between oocytes and (2) fitting
errors in the FLIM analysis. To estimate the error of fitting, we performed bootstrapping with randomly
drawn points with substitution from each fluorescence decay curve for 53 oocytes. There are ~66,000
photons per oocyte, from which we generated 10 bootstrapped decay curves per oocyte to estimate
the fitting error. The fitting error is computed as the variance and covariance of the fitted parameters
across bootstrapped decay curves and averaged over 53 oocytes.

At high oxygen level in the AKSOM condition, the bootstrapping yields a variance of 2.2x10%,
4.6x107 ns?, and 6.0x10* ns? for bound fraction, long lifetime, and short lifetime, respectively. The
cell-to-cell variances obtained from a single fit per oocyte are 4.4x10%, 9.5x10° ns?, and 1.6x107
ns? for bound fraction, long lifetime, and short lifetime, respectively. Hence the bootstrapping error
accounts for 50%, 49%, and 40% of the cell-to-cell variance in bound fraction, long lifetime, and short
lifetime, respectively. The bootstrapping yields a covariance of -1.0x103 ns between bound fraction
and long lifetime, which only accounts for ~20% of the covariance between these two variables during
oxygen drop experiment. The inferred mean flux for oocytes at high oxygen levels in AKSOM is
(Jox) = 56.6 uM - s~ L. Propagating the error of fitting in all parameters from the bootstrapping analysis
to the inferred flux gives a standard error of the mean in Jox of 1.1 uM:s”". The standard error of the
mean in Jox obtained from a single fit per oocyte was 2.0 pM-s™. Thus, fitting errors account for ~50%
of the standard error of the mean in Jox .

Metabolic and demand perturbations

Oxygen drop experiments for oocytes were performed by mixing nitrogen-balanced 5% O, gas with
0% O, gas at different ratios to create a continuous oxygen drop profile. CO, was maintained at 5%.
Oocytes were imaged for 10 min at 5% O,, 30 min during the continuous drop from 5% O, to approx-
imately 0% O,, and 20 min after quickly returning to 5% O,. Oxygen levels were simultaneously moni-
tored with an electrode-based oxygen sensor in the Ibidi chamber. 5% O, corresponds to ~50 pM of
oxygen concentration in the culturing media. All the drug perturbations for oocytes were performed
by equilibrating oocytes in the AKSOM media containing the corresponding drug for 15-30 min
before the oxygen drop experiments. Pyruvate and potassium perturbations were performed by
making KSOM media following Cold Spring Harbor Laboratory protocols with varying concentrations
of sodium pyruvate and potassium, respectively. For oligomycin, FCCP, rotenone and pyruvate pertur-
bations, 9 mM of sodium oxamate was also added to the media to suppress cytoplasmic NADH signal
for better mitochondrial segmentation. The addition of the oxamate does not change the ETC flux of
the mitochondria (Figure 5b).
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For hnTERT-RPE1 cells, drug perturbations were performed by replacing the media with drug-containing
media through pipetting. Cells were imaged for 20-30 min immediately after drug perturbations.

All drugs were purchased from Sigma-Aldrich. Temperature was maintained at 37°C. CO, was main-
tained at 5%.

Oxygen consumption rate measurement

The OCR of the oocytes was measured using the nanorespirometer from Unisense (Lopes et al.,
2005). A batch of 10-15 oocytes was placed at the bottom of a glass capillary with a diameter of
0.68 mm and a height of 3 mm. The capillary well is filled with AKSOM media or drug-containing
media for metabolic perturbations. After an equilibration time of ~2 hr, a steady-state linear oxygen
gradient is established in the capillary well due to the balance of oocyte respiration and oxygen diffu-
sion. A motor-controlled electrode-based oxygen sensor (Unisense) is used to measure the oxygen
gradient. The OCR is calculated as the product of the oxygen gradient, diffusivity of oxygen in the
media, taken to be 3.37x10° cm?%s, and the cross-sectional area of the capillary well, which was 0.36
mm?. The entire system was enclosed in a custom-built chamber with temperature and gas control.
Temperature was maintained at 37°C. Oxygen level was continuously varied during oxygen drop
experiments by slowly mixing 20% O, with 0% O, from gas tanks, and maintained at the air saturation
level for drug and pyruvate perturbations. OCR was measured on a group of 10-15 oocytes at a time.
Single-oocyte OCR was obtained by dividing the measured OCR by the number of oocytes in the
group. Error bars in all figures of OCR represent standard error of the mean across different groups of
oocytes normalized by the number of oocytes in each group. Number of oocytes is reported with n.
Number of groups is reported with N.

Statistical analysis

For the comparison between inferred ETC flux and measured ETC flux of the oocytes, two-sample t-test
was performed on the vectors of inferred single-cell ETC flux (with n elements, where n is the number of
oocytes) and the batch OCR measurements (with N elements, where N is the number of batch groups).
For the comparison between inferred ETC flux and measured ETC flux of the tissue culture cells, two-
sample t-test was performed on the vectors of inferred relative change of ETC flux (with n elements,
where n is the number of images) and the relative change of OCR estimated from Figure 1A of MacVicar
and Lane, 2014 (with N elements, where N is the estimated number of OCR data points).

Mitochondrial membrane potential measurement
The spatial distribution of mitochondrial membrane potential within oocytes was measured with
a potential-sensitive dye TMRM (Sigma-Aldrich). Oocytes were cultured in AKSOM with 100 nM
TMRM for 30 min before imaging. TMRM signal was obtained at 830 nm excitation wavelength
with 560/40 nm emission filter. Mitochondrial TMRM intensity in different regions of the oocyte was
computed by dividing the total number of photons from that region by the number of pixels in the
same region. Heatmaps of mitochondrial TMRM intensity were obtained by computing photon counts
for each mitochondrial pixel and averaging over neighboring mitochondrial pixels weighted by a
Gaussian kernel with a standard deviation of 20 pixels. To normalize TMRM intensity by mitochondrial
mass, we cultured oocytes in AKSOM with 100 nM MitoTracker Red FM and 25 nM TMRM for 30 min
before imaging. We also cultured oocytes in AKSOM with 1 pg/ml JC-1 dye for 3 hr before imaging.
Mitochondrial membrane potential of hTERT-RPE1 cells was measured with TMRM. The cells were
cultured in DMEM with 100 nM TMRM for 15-30 min before imaging. To measure membrane potential
under drug perturbations, the original media was pipetted out and replaced with media containing
both 100 nM TMRM and the drug. The cells were imaged for 20-30 min immediately after drug
perturbations. TMRM intensity ratio was obtained by normalizing the mitochondrial TMRM intensity
by the cytoplasmic TMRM intensity.
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Appendix 1

Segmentation of mitochondria and calculation of NADH concentrations

Segmentation of mitochondria

We used llastik, a machine learning-based software for image analysis, to classify pixels in the NADH
intensity images containing mitochondria (Berg et al., 2019). For each experiment, we generated
a time-lapse movie of NADH (Video 1). We used a few images in the movie as the training data set
to train the software to classify mitochondrial pixels by manually selecting clustered high brightness
pixels. Other pixels are classified as either cytoplasm or background. We then applied the trained
pixel classifier to generate a mitochondrial probability map for each image in the entire movie, with
each pixel assigned a probability between 0 and 1 to be mitochondrial pixel. Pixels with a probability
higher than 0.7 were considered to be mitochondrial pixels.

To test the accuracy of this segmentation algorithm, we immersed the oocytes in AKSOM media
containing MitoTracker Red FM, a dye that specifically labels mitochondria. Pixels with intensity
above 60 percentile in the MitoTracker image were considered to be mitochondrial pixels. We
imaged NADH and MitoTracker for the same oocyte and compared the resulting distribution of
mitochondria (Figure 1—figure supplement 1). We defined the accuracy of the NADH-based
segmentation as the fraction of photons originating from true mitochondrial pixels. The accuracy of
the segmentation is 80.6+1% (SEM) for the control condition as averaged over seven oocytes. We
repeated the analysis for oxamate, oligomycin, FCCP and rotenone perturbations, and obtained an
accuracy of segmentation of 78.6+1.4%, 84.1+1.6%, 83.7+0.5%, and 81.7+2%, respectively, similar
to the control condition.

Converting NADH intensity to NADH concentrations

Since the molecular brightness of NADH depends on the fluorescence lifetime of NADH, which
changes drastically upon binding enzymes, the NADH concentration is not linearly proportional
to NADH intensity. FLIM provides an accurate way of measuring NADH concentrations by
simultaneously measuring fluorescence intensity and lifetime. We now derive the NADH intensity-
concentration relation from the FLIM measurements. Assuming molecular brightness is proportional
to the fluorescence lifetime, and therefore that free and bound NADH have different contributions
to the measured intensity, we have

I = cs7s [NADHy] + cs7) [NADH, | , (S1)

where [ is the intensity of NADH and ¢ is a calibration factor that depends on the laser power. From
Equation S1, we obtained the concentrations of free and bound NADH:

[NADH¢| = % (S2)
[NADH] = [NADH{] 1L, (S3)

where f is the fraction of bound NADH.
To get the calibration factor cs, we titrated NADH in AKSOM solutions and fitted the calibration
curve using:

I = csTg) [NADHgql] , (S4)

where 7 is the lifetime of NADH in solution. 7y, was directly measured by FLIM (Figure 1—figure
supplement 2), allowing us to obtain ¢s from the fit (Figure 1—figure supplement 2).

FLIM can be used to accurately measure concentrations of bound and
free NADH in vitro

To test if absolute concentrations of free and bound NADH can be accurately measured from
FLIM of NADH, we prepared solutions with known total concentration of NADH, and titrated the
concentration of LDH, an enzyme to which NADH can bind. We prepared the solutions with 50 mM
TRIS buffer, 150 mM NaCl at pH 7.6 and 37°C. We added a total concentration of 50 pM NADH
to the solution and titrated LDH concentrations at 0, 1.4, and 3.5 uM. We first performed single
exponential fitting of the NADH decay curve at 0 uM LDH, where all NADH are free, to obtain the
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NADH short lifetime (Figure 1—figure supplement 3d). From the NADH intensity (Figure 1—figure
supplement 3a), we obtained the calibration factor ¢s using Equation S4 with [NADHSOI] = 50uM.We
then fixed the short lifetime and performed two-exponential fitting of the NADH decay curve at LDH
concentrations of 1.4 uM and 3.5 pM to obtain the bound ratio (Figure 1—figure supplement 3b)
and long lifetime (Figure 1—figure supplement 3c). As expected, NADH bound ratio increases with
LDH concentrations, as there is more enzyme for NADH to bind. Finally, we calculated free NADH
concentration [NADH¢| and bound NADH concentration [NADHy | using Equations S2 and S3 from
the FLIM parameters. Remarkably, the free and bound concentrations of NADH both change with
LDH concentrations but the total concentration remains at 50 uM (Figure 1—figure supplement
3e). This result shows that Equations S2-S3 can be used to accurately measure the concentrations
of free and bound NADH from FLIM measurements of NADH.
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Appendix 2

Reversible Michaelis-Menten kinetics, full and reduced notations
The kinetic equations of the reversible Michaelis-Menten kinetics (Figure 3a, left) for the ith oxidase
are

d[NADHd] _ 4 | [NADH - Ox;] — ki [Ox;] [NADH] . >
w = ki [Ox;] [NADHy] — k_; [NADH - Ox;| + k_, [Ox;] [NAD{] — k» [NADH - Ox;] , (S6)
d[N?tDﬂ =ky [NADH . OXJ —k_ [Oxi] [NADH ’ 7

dfox] _

== =k_ [NADH - Ox;] — k; [Ox;] [NADHg| + k; [NADH - Ox;| — k_; [Ox;] [NAD{].  (S8)

where [NADH;¢] is the concentration of free NADH, [NAD{ | is the concentration of free NAD", [Ox;]
is the concentration of free oxidase, and [NADH . ox,-] is the concentration of the NADH-oxidase
complex. k_y, ki, k_5, and k; are the forward and reverse reaction rates.

In the reduced notation as introduced in Figure 3a (right), the same enzyme kinetics is described
by

% = ki, [NADH - Ox;] — kS, [NADH] , (S9)
d[NADH-OX] _ 4b [NADH;] — &%, [NADH - Ox,] + k%, [NAD}] — ki, [NADH-Ox;].  (S10)
d[NAD] _ 4w [NADH - Ox;] — &, [NAD}] . (511)

where k'SX[ and kgy, are the effective binding and unbinding rates of NADH to the oxidase, and
k;t,"i and ké,‘)’q are the effective binding and unbinding rates of NAD* to the oxidase. In this reduced
notation, the concentration of the free oxidase [Ox;] is absorbed into the effective binding rates: that
is, kbx, = k_1, kox, = k1 [Ox;], k;‘)’(i = ky, and k;t,"i = k_5 [Ox;]. Hence [Ox;] becomes an implicit variable
whose behavior is not evident from the reduced notation diagram (Figure 3a, right). Modeling the
full dynamics of a reversible Michalis-Menten enzyme requires specifying the equation for [Ox;]:

49%] _ k_, [NADH - Ox;] — k; [Ox;] [NADH;] + k, [NADH - Ox;] — k_ [Ox;] [NAD}]. (512)

The reduced notation (Figure 3a, right; Equations S9-512) and the full notation (Figure 3a, left;
Equations S5-58) are mathematically identical and describe the exact same kinetics.

Generalized enzyme kinetics, reduced notation
The reduced notation for the ith oxidase displaying generalized enzyme kinetics (Figure 3b) refers
to the following class of mathematical models:

d[NADHi] _ 4o [NADH - Ox;] — kS, [NADH{] . (513)
d[NADH-ON] _ 4b  [NADHy] — k%, [NADH - Ox;] — rfy, [NADH - Ox;] + 7y, [NAD* - Ox;] . (S14)
dINADZON] _ 5. [NADH - Ox,] — ry, [NAD* - O] — ki, [NAD® - Ox;] + k%, [NAD{]. (515

ANPEL = kG5, [NAD* - Oxi] — K2, [NADF]. (516)

where [NADHg] is the concentration of free NADH, [NAD{ | is the concentration of free NAD*,
[Ox,] is the concentration of free oxidase, [NADH - Ox;| is the concentration of the NADH-oxidase
complex, and [NADJr -Ox,-] is the concentration of the NAD*-oxidase complex. ng[ and koy, are the
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effective binding and unbinding rates of NADH to the oxidase, k;';l. and k;)l)lq are the effective binding
and unbinding rates of NAD" to the oxidase, and i, and o, are the forward and reverse oxidation
rates. These rates can be arbitrary functions of implicit variables, such as the concentration of free
oxidase, [Ox,-], the mitochondrial membrane potential, AGy, pH, and other factors:

kbx, = kbx, (10x;], AGy, pH, [NADH], ...) , (S17a)

KSx, = Kby, ([Ox;], AGy, pH, [NADH], ...} , (S17b)
+ _ 4+

réx = rox, ([0xi], AGy, pH, [NADHg], . . .) (S17¢)
Tox; = Tox; ([Ox;1, AGy, pH, [NADH], ...) , (S17d)
kel = ket (IOx;1, AGy, pH, [NADH], . ..) , (S17¢)
ke, = k2, (IOxil, AGy, pH, [NADH], . ..) . (S179)

Thus, while Equations S13-516 superficially appear to be linear and first order, they can actually
refer to nonlinear reactions of any order because the rate can depend on [NADH¢| and other variables
(Equations S17a-f).

The implicit variables that these rates depend on can each be governed by their own dynamics
that are arbitrary functions of other variables:

d[ox] _ . d[AGu] _ . d[pH]

T = e g = s g Bt (S518)

Describing the dynamics of the enzyme requires specifying the implicit variables that the rates
depend on, the functional form of these dependencies, and the additional equations for the dynamics
of the implicit variables (Equations S18). However, we will show that the predicted relationship
between FLIM measurements of NADH and fluxes does not depend on these modeling choices.
Thus, the reduced notation is convenient for deriving these relations for a broad class of models.
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Appendix 3
Coarse-graining the detailed NADH redox model

We consider an NADH redox loop consisting of M reductases and N oxidases (Figure 4—figure
supplement 1), each of which is described by the generalized enzyme kinetics (Figure 3b; Equations
S§13-516). We coarse-grain this detailed NADH redox model by coarse-graining all oxidases into a
single effective oxidase and all reductases into a single effective reductase (Figure 4b). We relate
the kinetic rates of the coarse-grained model to those of the detailed model by keeping the global
binding and unbinding fluxes and the global reaction fluxes through the oxidases and reductases the
same as the detailed model.

We first coarse-grain the oxidases and reductases:
M
[NADH - Ox] = >~ [NADH - Ox;], [NADH-Re| = > [NADH - Re;] . (519)

—_
—_

=

We require the global binding and unbinding fluxes of NADH to the effective oxidase and
reductase to be equal to the sum of their binding and unbinding fluxes to all of the individual
oxidases and reductases:

N
J5 = [NADHg] 3 kb, = kbx [NADHy] (S20)
i=1
N
Jox = Y kox, [NADH - Oxi] = kg, [NADH - Ox] , (s21)
i=1
M b b
J% = [NADHy] 3" kb, = k% [NADHy], (S22)
i=1
M
Jie =" ke, [NADH - Re;| = ki [NADH - Re] , (523)
i=1
which leads to
N M
kgx = Z kgx,w k]r)e = Z klrje,‘, (S24)
i=1 i=1
N NADH-Ox; M NADH-Re;
kox = z‘i kox [[NADH-O):(]] ke = 2‘1 ke [[NADHRZ]] : (525)
=

=

We require the global forward and reverse reaction flux through the effective oxidase and
reductase to be equal to the sum of the reaction fluxes through all of the individual oxidases and
reductases:

N

Jéx =Y rdx, [NADH - Ox;] = rdx [NADH - Ox] , (S26)
i=1
N

Jox = Z rox; INADY - Ox;] = rox [NAD' - Ox] , (527)

=

which leads to

N
_ + [NADH-Ox;]
= ; Tox; [NADH-OX} ? (528)

— [NAD*.Ox/]

Fox = Z:rox[m- (529)
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By applying the same procedure to NAD*, we can obtain the effective reduction rates i, rox and
the effective binding and unbinding rates of NAD™ : k;l,’(, k;E, k;‘}(, k;,‘;. We omit the derivation here
because these rates are not needed to infer ETC flux. We hence explicitly related the kinetic rates of
the coarse-grained model (Figure 4b) to those of the detailed model (Figure 4—figure supplement
1). We note that under the generalized enzyme kinetics (Figure 3b; Equations S13-516), all kinetic
rates are considered to be general functions of enzyme concentrations, metabolite concentrations,
and other factors, and thus, all of the rates in the coarse-grained model can also depend on all of
those factors. These implicit variables can obey their own dynamical equations (Equation S18). The
coarse-graining presented here is mathematically exact and independent of both the functional
forms of these rates and the functional form of the dynamic equations of the implicit variables.
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Appendix 4

Predicting the ETC flux using the coarse-grained NADH redox model
The coarse-grained NADH redox model

We start with the equations characterizing the dynamics of the coarse-grained NADH redox model
as described in Figure 4b:

w = kf. [NADH;] — ki [NADH - Re] + 1z [NAD" - Re] — riz [NADH - Re] , (530
dINADH] _ i [NADH - Re] + ki [NADH - Ox] — k% [NADH;] — k8 [NADH] . (S31)
ANABHON. — 4, [NADH,] — ki [NADH - Ox] — rfy [NADH - Ox] + rox [NAD* - 0], (§32)
d[NAD-O] _ b [NAD}] — k% [NAD* - Ox] + 7 [NADH - Ox] — rgy [NAD* - Ox],  (S33)
d[NAD] _ 74 [NAD* - Re] + k% [NAD* - Ox] — k2 [NAD}] — k& [NAD}] | (534)
ANATEL — k2 [NADY] - k2 [NAD* -Re] — 7 [NAD" - Re] +7ic [NADH -Re] . (535)

where [NADH¢| and [NAD{ | are the concentrations of free NADH and free NAD*; [NADH - Re| and
[NAD" - Re] are concentrations of reductase-bound NADH and NAD*; [NADH - Ox] and [NAD™ - Ox]
are concentrations of oxidase-bound NADH and NAD*; k denotes binding (b) and unbinding (u)
rates, with subscript re and ox denoting reductase and oxidase, respectively; rii and r;; are the
forward and reverse reaction rates of the reductase; ri; and rg are the forward and reverse reaction
rates of the oxidase. The reaction rates, and binding and unbinding rates, can be arbitrary functions
of metabolite concentrations, enzyme concentrations, and other variables (such as membrane
potential, oxygen concentration, etc, each of which can obey their own dynamical equations).

Predicting the ETC flux
The flux through the ETC is

Jox = rax [NADH - Ox] — rox [NAD* - Ox] . (S36)

At steady-state (or in the quasistatic limit), all the time derivatives are zero. Setting d[NADH - Ox]/dt
(Equation S32) to zero, we obtained the steady-state flux through the ETC:

Jox = kb [NADH;] — kb [NADH - Ox] . (S37)
Setting d[NADH¢]/dt (Equation S31) to zero gives:
(Kb, + k&) [NADH;] = ki [NADH - Ox] + ki [NADH - Re] , (538)
and using:
[NADH - Re| + [NADH - Ox] = [NADHj] , (S39)

from which we solved for[NADH - Ox] :

R+ K.
[NADH - Ox] = kﬁit/‘c’i [NADH;| — g5 [NADHp) . (540)
Substituting [NADH - Ox| in Equation S37 with Equation 540, we obtained our central result:
Jox = Fox [NADHf] . (S41)

From Equation S41, we see that the flux through the ETC is a product of the turnover rate of free
NADH, Fox, and the concentration of free NADH, [NADH¢], where
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Tox = « (5 - Beq) > (542)
and
o= gk, (543)

where we defined the NADH bound ratio and its equilibrium counterpart as:

[NADH ]

B = INapbm’ (S44)
Beq = B + Begs (545)
B = ko, (546)

re _ K
Peq = g (547)
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Appendix 5

Flux inference procedures using the coarse-grained NADH redox model
Equations S41-S42, or equivalently Equations 5a-c from the main text, can be used to infer the
flux through the ETC, Jox, from FLIM measurements of NADH across a wide range of metabolic
perturbations (Figure 5—figure supplement 1). To do so, we infer the turnover rate of free NADH,
Fox, and the concentration of free NADH, [NADH¢|. The product of 7ox and [NADH| gives Jox. [NADH]
can be obtained using Equation S2 (Figure 5—figure supplement 1). In this section, we describe
two procedures to obtain 7ox: one from the measurement of NADH bound ratio 8, and the other
from the measurement of NADH long fluorescence lifetime ;.

Inferring 7., from NADH bound ratio 3

Equation S42, 7ox = « (ﬁ — 5eq), provides a method to obtain 7ox. We measure the NADH bound
ratio, 3, using B8 =f/(1 — f), where f is the NADH bound fraction obtained by fitting the fluorescence
decay curve of NADH (see Materials and methods). We obtain the equilibrium bound ratio, Seq, by
dropping the oxygen level to the lowest achievable value with our setup: [0,] = 0.26 £ 0.04 uM, and
assuming feq does not change with oxygen levels. Note that Seq does change with drug perturbations,
and therefore needs to be separately determined for each condition (Figure 5—figure supplement
1h). We obtain « using direct measurement of Jox from OCR measurements:

— Jox _ OCR
O = (5 Fe) INADE] = 2 (5~ Fe) [NADH] Vs (548)

where Vin = 9.5 x 10% um? is the average volume of mitochondria per oocyte approximated from the
area fraction of mitochondria based on the segmentation, where the mitochondrial area fraction is
estimated at 46% and oocyte volume at 2x10° pm?*. Using OCR = 2.68 =+ 0.06 fmol/s per oocyte in the
control condition (AKSOM media at 50 uM oxygen level), we get o = 5.4 + 0.2 s\ o is approximated
as a constant that does not vary with perturbations, hence « calibrated at one condition can be used
for all other conditions (as confirmed by the agreement between FLIM based inference and OCR
measurements in Figures 5 and 8).

Once « is calibrated at the control condition using Equation 548, and feq is determined from an
oxygen drop experiment, then subsequent FLIM measurements of 3 and [NADH¢] can be used with
Equation S42 and S41 to determine the absolute value of 7ox and Jox for all conditions (Figure 5).

Inferring 7., from NADH long fluorescence lifetime »,

In this section, we derive an alternative procedure for determining the turnover rate of free NADH 7oy,
and hence Jox, using changes in the NADH long fluorescence lifetime. The NADH long fluorescence
lifetime, 7, is associated with enzyme-bound NADH (Sharick et al., 2018). In the coarse-grained
NADH redox model described above, and in Figure 4b, the enzyme-bound NADH consists of
reductase-bound NADH ([NADH -Re)) and oxidase-bound NADH ([NADH - Ox]). We therefore
assume that the experimentally measured NADH long lifetime, 7, is a linear combination of the
lifetimes of [NADH - Ox] and [NADH - Rel:

[NADH-Ox]
NADH-Ox]+[NADH Re

[NADH-Re]
NADH-Ox] + [NADH Re] * (549)

TI=TOX[ J +’Tre[

where Tox and T are the fluorescence lifetimes corresponding to the oxidase-bound NADH and
reductase-bound NADH, respectively. Solving for [NADH - Ox] and [NADH - Re| as a function of 3
using Equations $39-540 and S44, and substituting into Equation S49, we predict that the NADH
long fluorescence lifetime 7 is linearly related to the inverse of the NADH bound ratio 1/3:

= A% + B, (S50)
with
b b
A = (Tox — Tre) o (S51)
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B= S (s52)

The predicted linear relationship between 71 and 1/3 is empirically observed during oxygen drop
experiments, as shown in Figure 6a and Figure 6—figure supplement 1. This is a self-consistency
check that argues for the validity of the assumption in Equation S49.

At equilibrium, when there is no flux through the ETC (i.e., Jox = 0), Equation S50 gives:

Teq = Ag- +B, (S53)

where T¢q is the NADH long lifetime at equilibrium. Solving for 3 and feq as a function of 7 and 7eq
from Equations S50 and S53 and substituting into Equation S42, we obtain 7ox in terms of 7 :

Foo = az iy (g, (S54)

where A and B are the slope and offset of the linear relation between 7; and 1/8 in Equation S50.

We experimentally measured A and B for each oocyte from the slope and offset of a linear
fit between 7 and 1/8 during oxygen drop experiments across all drug perturbations (Figure 6a;
Figure 6—figure supplement 1). We obtained the equilibrium long lifetime, 7q, by FLIM
measurements at the lowest achievable oxygen level in our set up: [0;] = 0.26 + 0.04 uM. Once A,
B, and 7q are measured, Equation S54 can be used to determine 7ox from FLIM measurements of 7.
If o is not known, this procedure can only be used to obtain 7ox up to a constant of proportionality. If
a is independently measured from Equation S48 at one condition, then Equation $54 can be used
to determine the absolute value of 7ox for all conditions (Figure 6b).

As described in the main text, 7ox inferred from 7y using Equation $54 produces the same results
as 7ox inferred from 8 using Equation S42 (Figure 6b). The agreement between these two methods
is a strong self-consistency check of the NADH redox model.

Accounting for NADPH and other background fluorescence

Equation S41 provides a method to infer ETC flux since all factors in it, except for the constant of
proportionality, a, depend only on [NADH,| and [NADH¢], which can be measured from FLIM of
NADH. One potential complication with this procedure is that NADPH, another autofluorescent
electron carrier, shares a similar fluorescence spectrum with NADH, resulting in a mixed NAD(P)
H signal from the autofluorescence measurement. While NADH concentration is 40 times greater
than the concentration of NADPH for the whole mouse oocytes (Bustamante et al., 2017), and
presumably even higher for mitochondria, NADPH concentration can be comparable to that of
NADH for other cell types such as tissue culture cells (Park et al., 2016). In this section, we generalize
Equation S41 to predict the ETC flux by explicitly considering the potential contributions of other
fluorescence species, such as NADPH, to the measured autofluorescence signal.

We start from the fact that concentrations of bound and free fluorescent species measured
from FLIM using Equations $2-S3, [N¢] and [Ny, could be different from the actual concentrations
of free and bound NADH, [NADH¢| and [NADH|. If the signal from NADPH and other additional
fluorescence species is additive, then:

[N¢] = [NADHg]| + C, (S55)
[Np] = [NADH,| + G, (S56)

where C; and Cy, are the non-NADH contributions to the measured concentrations of free and bound
fluorescent species. We substitute Equations S55-S56 to the predicted ETC flux in Equation S41
and obtain

Jon= o [[I;*j:g: — feq) ([Ne] = 1), (S57)
Rearranging, we obtain

Jox = « (BN - BN,eq) [Nf] s (558)

where
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Ny
BN = [[Nd}, (S59)
BN.eq = Beq + (%‘; - ,Beq) [I%;] (S60)

Comparing Equation S58 with Equation S41, we notice that the background fluorescence does
not change the form of the equation of the predicted ETC flux because the concentrations of the
background fluorescent species are incorporated into the equilibrium bound ratio By.eq - If On.eq can
be reliably measured, the background fluorescence will not affect the flux inference procedures.
In other words, [N¢] and [Ny]| can be used for flux inference in place of [NADH;| and [NADH,] in
Equations S41-S42. Therefore, an additive offset to the measured concentrations of free and bound
species will not affect the flux inference procedure, whether that additive offset comes from NADPH
or from other sources of fluorescent background.

Alternatively, if the signal from background fluorescence changes proportionally with NADH,
then:

[N¢] = [NADH;] + C; [NADH{] = (1 + cf) [NADH] , (S61)
[Ny = [NADHp] + Cy, [NADHy] = (1+C, ) [NADH, ], (562)

we have
Jox = ax By = Breq) N (s63)

where
N =T (564)
Ny

i = Yt (565)
Brea = 1y¢) fea (566)

Comparing Equation S63 with Equation S41, we again obtained the same form for Jox, but with
a rescaled an. Therefore, a background fluorescence signal that changes proportionally with NADH
will not affect the flux inference procedure, whether that background comes from NADPH or from
other sources.
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Appendix 6

Spatial gradient of mitochondrial metabolism in mouse oocytes

Beqis uniform within the oocyte

To obtain subcellular ETC flux as a function of distance to the oocyte's center using Equations 5a-c
in the main text, we need to know the spatial variation of Seq. While the NADH bound ratio at the
lowest oxygen level gives a good approximation for the average fq of the cell (Figure 5—figure
supplement 1h), subpopulations of mitochondria closer to the cell periphery are exposed to slightly
higher oxygen level than those away from the cell periphery, obscuring the determination of the
spatial variation of Seq from oxygen drop experiment. Hence to obtain the spatial variation of Seq
throughout the oocyte, we inhibited the ETC completely using 15 pM of rotenone, an inhibitor of
complex |in the ETC, for an extended period of time until the NADH bound ratio reaches the lowest
level. We then fitted the NADH decay curves from mitochondrial pixels within equal-distanced
concentric rings (Figure 9—figure supplement 1a) to obtain feq as a function of distance from
the oocyte's center (Figure 9—figure supplement 1b). A linear fit yielded a slope of 0.001+0.0012
(SEM), which is statistically indistinguishable from 0 (p=0.42). Therefore, the resulting Seq is uniform
throughout the oocyte and is equal to the average [eq obtained by fitting the decay curve from
all mitochondrial pixels in the oocyte at the lowest oxygen level (Figure 5—figure supplement
1h). Hence, we used a constant (.q throughout the oocyte to compute the subcellular ETC flux
(Figure 9d).

Subcellular spatial gradient of mitochondrial membrane potential

As shown in the main text, we observed a strong spatial gradient of the intensity of TMRM in
mitochondria in oocytes. TMRM is a potential-sensitive dye that preferentially accumulates in
mitochondria with higher membrane potential (Figure 9g and h). To test whether this spatial
gradient is due to the subcellular variation of mitochondrial membrane potential or the variation
in mitochondrial mass, we labelled mitochondria with a potential-insensitive dye MitoTracker Red
FM to quantify mitochondrial mass, together with TMRM. We did not observe a strong gradient
of MitoTracker intensity (Figure 9—figure supplement 2b, f) as compared to TMRM intensity
(Figure 9—figure supplement 2a, e) within the same oocyte, indicating the mitochondrial mass
is uniformly distributed. We further normalized the TMRM intensity by the MitoTracker intensity,
and observed a strong spatial gradient of the ratio (Figure 9—figure supplement 2¢, g). These
results suggest that the spatial gradient of TMRM is due to the variation of mitochondrial membrane
potential, rather than the variation of mitochondrial mass. Finally, to test the robustness of the
result, we used an alternative potential-sensitive dye JC-1, and observed a similar spatial gradient
of mitochondrial membrane potential (Figure 9—figure supplement 2d, h). Taken together, these
results show that the subcellular spatial gradient of mitochondrial membrane potential is a robust
observation that does not depend on the variation of mitochondrial mass or the type of dye used.
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Appendix 7

Flux prediction for a NADH redox model with each enzyme described
by the reversible Michaelis-Menten kinetics

In this section, we derive the ETC flux for a NADH redox model where each of the N oxidase and
M reductase obeys reversible Michaelis-Menten kinetics (Equations S9-S11). We achieve this by

reducing the flux prediction of the generalized enzyme kinetics to that of the reversible Michaelis-
Menten kinetics.

We first consider an NADH redox model with a single oxidase and a single reductase, each of
which obeys reversible Michaelis-Menten kinetics (i.e., N=M=1). The flux through the oxidase is:

Jox = ki [Ox;] [NADHy] — k_; [NADH - Ox;] . (S67)

We show that Equations S41-S43 that characterize the flux of the generalized NADH redox
model can be reduced to Equation S67 that characterizes the flux of the reversible Michaelis-
Menten model in the limit:

ke > ki, ke > ke, ke > kox. (S68)
In this limit, we have from Equation S43:
a X VMM = *kgx = *k_]. (569)

where ‘MM’ stands for ‘Michaelis-Menten.’ Similarly, from Equation $45-S47, we have

k[0
feg ~ BUM = f = B[] (570)
From Equation S40, we have in this limit:
[NADH,,| ~ [NADH - Ox ] . (S71)

Substituting the expressions for anm, ,ngM, and [NADH,| from Equations $69-S71 to the
predicted ETC flux in Equation S41, we obtain

Jox = o (8~ BM) [NADH] = ki [Ox,] [NADH{] — k_; [NADH - Oxy] . (572)

Thus, we have shown that the flux of the generalized NADH redox model reduces to the flux
of the reversible Michaelis-Menten model in the limit where the unbinding rate of NADH from the
reductase is much faster than any other rates in the model.

We note that the predicted flux-concentration relation for the reversible Michaelis-Menten model
(Equation S72) remains exactly the same as the generalized model (Equation $41), but with different
expressions for « and feq as expressed in Equations S69-570.

Next, we generalize the results in Equation S72 to a detailed model with N oxidase and M
reductase, each of which is described by the reversible Michaelis-Menten kinetics. Unpacking the
coarse-grained binding and unbinding rates from Equations $24-525, we obtain

[NADH-Ox;]

amm = Zk 11 TNADH-Ox] (573)
/MM — o) (S74)

e [NADH- OX/]
Z 1 TNADH.Ox]

where k;; and k_; ; denote the binding and unbinding rates of NADH to the ith oxidase.

Connecting the NADH redox model to detailed biophysical models of
mitochondrial metabolism

In this section, we show that the coarse-grained NADH redox model described above, and in
Figure 4b of the main text, can be directly related to detailed biophysical models of mitochondrial
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metabolism, including previously published models (Beard, 2005; Korzeniewski and Zoladz, 2001,
Hill, 1977; Jin and Bethke, 2002; Chang et al., 2011).

In mitochondria, NADH oxidation is catalyzed by complex | of the ETC, which has the overall
reaction:

H* + NADH + Q = NAD" + QH, + 4AHTY, (S75)

where two electrons are transferred from NADH to ubiquinone Q, and four protons are pumped out
of the mitochondrial matrix. To connect our model with detailed model of complex I, we rewrite the
flux through the ETC:

Jox = réx [NADH - Ox] — rox [NAD* - Ox] , (S76)
using
[NADH - Ox] = a (2 + 7 — £ ) [NADH], (577)
[NAD" - Ox] = o/ (BC‘* + G e f—) [NAD{], (578)
where
ko ke
o= g, 8= [NADR, B + BE = Beq, B = 12, B = ,;, (579)
K NAD} ] / r K
of = gutker, B = DADH. B4" + B = Beg. 5" = 22, W it (580)
Jox = FaxINADHg] — 7ox [NAD{ ] = 7ox[NADH], (S81)
where
g
o= ( Ly kﬁ) rh (S82)
P = o < f;qu + ff:qu - %) o (583)
Fox = o (B = Bea) = (P +Tox 12 ) = Trabr 7o
ox — eq) — (D¢ oxX 1+,B [NADH:} OX* (584)

The last equality in Equation S84 is obtained by assuming that the total concentration of NADH
plus NAD" is constant:

N = [NADH¢| + [NAD{] + [NADHy| + [NAD{] . (585)

Equation S81 allows us to connect our coarse-grained model to previously published detailed
models of complex I. By equating the flux through complex |, Jcy, in previous models to the flux
through the ETC in our NADH redox model, Jox, we can determine 7ox (and 7 and 75;) in terms
of variables defined in those more detailed models. In Appendix 7—table 1, we summarize the
relationship between the NADH redox model and several previously published models of complex I.

Appendix 7—table 1. Connection of the NADH redox model to detailed models of complex I.
AGy s the proton motive force. AG¢y is the free energy difference of the reaction at complex I.
AG c is the standard free energy difference of the reaction at complex I. [Q], [QH;], and [Qr] are
the concentrations of the oxidized, reduced, and total ubiquinone concentrations.
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Model Flux ;g—x ;“;( ;ox
Ja = Ff [NADH]
—7ox [NAD*
ox [ ] . Adg B Fou = (;4. +;71LB/> N -
Beard, 2005 Tox = Xcie KT Fox = Xc1 ox %48 [NADH;] "%
P [Nt] [Qr]
Tox = Vimax ([NT]+Ks,D) ([QT]+KS.A) x
[Q] 1 %
[QI+[QH: Kz ) \ INADH(I+[NAD; [Kr p
AG,
Chang et al., 2011; (1 —e RTCI )
Jin and Bethke, ~
2002 Jer = Tox [NADHf] N/A N/A
Jer = Jmax
—AGg
X (1 —e  RT )
— AG,
Hill, 1977 N/A N/A Fox = Jmax ( 1 —e ®T a ) / [NADHf]
Korzeniewski and
Zoladz, 2001 Jer = kerAGar NA NA Fox = kit AGer / [NADH]
(1]

AGcr = — [AGO,CI +4AGy—RTIn (1077

_ Q]
) Rnn( Qi

AGer = AGep — RTln( [NADHf]);AGo,CI = —69.37 kl/mol

[NAD] ]

[Nr] = [NADH;] + [NAD{T.[Qr] = [Q] + [QH:]

)_

[NADH1\ 1.
RTln( o, )] :
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