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Abstract. We introduce the concept of d-approximate interpo-
lation in weighted Bargmann-Fock spaces as a natural extension
of the classical concept of interpolation. We then show that d-
approximate interpolating sequences satisfy a density condition,
similar to that classical interpolation sequences satisfy. More pre-
cisely, we show that the upper Beurling density of any d-approximate
interpolation sequence must be bounded from above by 1/(1−d2).

1. Introduction

Let φ : Cn → R be a plurisubharmonic function such that for all
z ∈ Cn

i∂∂̄φ ' i∂∂̄|z|2, (1)

in the sense of positive currents. Here, and throughout the paper we
use the standard notation A . B to denote that there exists a constant
C > 0 such that A ≤ CB, and A ' B which means that A . B and
B . A. The implied constants may change from line to line.

The weighted Bargmann-Fock space Fφ(Cn) is the space of all entire
functions f : Cn → C satisfying the integrability condition

‖f‖2
φ :=

∫
Cn
|f(z)|2 e−2φ(z)dm(z) <∞,

where dm denotes the Lebesgue measure on Cn ' R2n. Equipped with
the norm ‖·‖φ the weighted Bargmann-Fock space Fφ(Cn) is a repro-

ducing kernel Hilbert space (RKHS). We will denote its reproducing

kernel at λ ∈ Cn by Kφ
λ (z), and its normalized reproducing kernel

Kφ
λ (z)/‖Kφ

λ‖φ by kφλ(z). The classical Bargmann-Fock space F(Cn) is
an important special case obtained when φ(z) = π

2
|z|2. We denote its

† Research supported in part by National Science Foundation DMS grant #
1600874.
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norm simply by ‖·‖, i.e.,

‖f‖2 :=

∫
Cn
|f(z)|2 e−π|z|2dm(z).

In this case, explicit formulas for the reproducing kernels are known,
Kλ(z) = eπ〈z,λ〉, kλ(z) = eπ〈z,λ〉−

π
2
|λ|2 .

Recall that a countable set Λ = {λ} ⊆ Cn is said to be an interpola-
tion set for Fφ(Cn), if for every square summable sequence of complex

numbers (cλ) ∈ l2(Λ) there exists f ∈ Fφ(Cn) such that 〈f, kφλ〉φ = cλ
for all λ ∈ Λ. It is well known that Λ is an interpolation set if and
only if the corresponding sequence of normalized reproducing kernels
{kφλ}λ∈Λ is a Riesz-Fischer sequence for Fφ(Cn). The following equiv-
alent definition of interpolation sets is most relevant for our purposes.
Namely, Λ is an interpolation set if and only if the following two con-
ditions hold: (i) for every λ ∈ Λ there exists fλ ∈ Fφ(Cn) such that〈
fλ, k

φ
ν

〉
φ

= δλν for all ν ∈ Λ, and (ii) {fλ}λ∈Λ is a Bessel sequence for

Fφ(Cn), i.e., there exists C > 0 such that∑
λ∈Λ

| 〈f, fλ〉φ |
2 ≤ C ‖f‖2

φ ,

for every f ∈ Fφ(Cn). Here, and throughout the paper we use the
standard notation δλν = 1 for ν = λ and 0 otherwise.

If the interpolation can be guaranteed only for the standard basis
{δλ}λ∈Λ of l2(Λ), with norm control of the approximants, then we say
that Λ is a weak interpolation set. More precisely, Λ = {λ} ⊆ Cn is a
weak interpolation set for Fφ(Cn), if the following two conditions hold:
(i) for every λ ∈ Λ there exists fλ ∈ Fφ(Cn) such that

〈
fλ, k

φ
ν

〉
φ

=

δλν for all ν ∈ Λ, (ii) supλ∈Λ ‖fλ‖φ < ∞. Note that, Λ is a weak
interpolation set if and only if the corresponding sequence of normalized
reproducing kernels {kφλ}λ∈Λ is uniformly minimal in Fφ(Cn).

It is easy to see that every interpolation set is a weak interpolation
set. It was shown by Seip and Schuster [13] that in the classical one-
dimensional case (φ(z) = π

2
|z|2, n = 1) the converse is also true, i.e.,

these two classes of sets coincide.
Another important result of Seip and Wallstén [15,17] shows that in

the classical one-dimensional case interpolation sets can be completely
characterized in terms of the upper Beurling densityD+(Λ) of Λ defined
by,

D+(Λ) := lim sup
r→∞

sup
a∈C

#{Λ ∩B(a, r)}
m(B(a, r))

,
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where B(a, r) denotes an Euclidean ball centered at a with radius r.
Namely, Λ is an interpolation set (or equivalently weak interpolation
set) for F(C) if and only if Λ is uniformly discrete, and D+(Λ) < 1.

It was proved by Berndtsson, Ortega-Cerdá and Seip in [1, 12] that
in the weighted one-dimensional case, just as in the classical case, in-
terpolation sets can be completely characterized by an appropriately
defined weighted upper Beurling density

D+
φ (Λ) := lim sup

r→∞
sup
a∈C

#{Λ ∩B(a, r)}
mφ(B(a, r))

,

where dmφ(z) = ‖Kφ
z ‖2

φe
−2φ(z)dm(z). These results have been extended

in dimension one for an even more general class of weights [7], and the
necessity of this density condition was also proved in higher dimen-
sions [3, 6]. The corresponding necessary density condition for weak
interpolation sets in the weighted case was proved very recently in [9].

Analogous density results for interpolation and weak interpolation
sets have been proved in the Paley-Wiener space [4,5,10], in the Bergman
space [16], and in de Branges space [8].

The goal of this paper is to provide a similar type necessary density
condition for an even larger class of “interpolating sets”. This type
of sets (to be defined momentarily) were relatively recently introduced
by Olevskii and Ulanovskii [11] in the Paley-Wiener setting, where it
was shown that all such sets must satisfy a Beurling density condition
similar to the one for usual interpolation sets. Our result can be viewed
as a Bargmann-Fock space counterpart of their result.

We now precisely define the above mentioned larger classes of “in-
terpolation sets”.

Definition 1.1. For a given 0 ≤ d < 1 we will say that a countable
set Λ = {λ} ⊆ Cn is d-approximate interpolation set for Fφ(Cn) if the
following two conditions hold.

(i) For every λ ∈ Λ there exists hλ ∈ Fφ(Cn) such that∑
ν∈Λ

∣∣∣〈hλ, kφν 〉φ − δλν∣∣∣2 ≤ d2,

(i.e., the l2(Λ) distance between the sequences (
〈
hλ, k

φ
ν

〉
φ
) and

(δλν) is no greater than d)
(ii) {hλ}λ∈Λ from (i) is a Bessel sequence in Fφ(Cn), i.e., there

exists C > 0 such that∑
λ∈Λ

| 〈f, hλ〉φ |
2 ≤ C ‖f‖2

φ ,
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for any f ∈ Fφ(Cn).

Note that 0-approximate interpolation sets coincide with interpola-
tion sets in Fφ(Cn).

Definition 1.2. For a given 0 ≤ d < 1 we will say that a countable
set Λ = {λ} ⊆ Cn is d-approximate weak interpolation set for Fφ(Cn)
if the following two conditions hold.

(i) For every λ ∈ Λ there exists fλ ∈ Fφ(Cn) such that∑
ν∈Λ

∣∣∣〈fλ, kφν 〉φ − δλν∣∣∣2 ≤ d2,

(i.e., the l2(Λ) distance between the sequences (
〈
fλ, k

φ
ν

〉
φ
) and

(δλν) is no greater than d)
(ii) supλ∈Λ ‖fλ‖φ <∞.

Again, 0-approximate weak interpolation sets coincide with weak in-
terpolation sets in Fφ(Cn). Note that the two classes of approximately
interpolating sets differ only in the second condition. As the terminol-
ogy suggests every d-approximate interpolation set is a d-approximate
weak interpolation set. We don’t know if the converse is true in general.

Our first result is the following statement which gives a necessary
upper density condition on d-approximate weak interpolation sets in
the classical Bargmann-Fock space F(Cn).

Theorem 1. Let 0 ≤ d < 1. Suppose Λ ⊆ Cn is a uniformly discrete
set in Cn that is a d-approximate weak interpolation set for F(Cn).
Then

D+(Λ) ≤ 1

1− d2
.

This result can be easily extended to all classical weights of the form
φ(z) = α

2
|z|2 + n

2
log π

α
, α > 0. In the general weighted case we can only

prove the corresponding result for d-approximate interpolation sets.

Theorem 2. Let 0 ≤ d < 1. Suppose Λ ⊆ Cn is a uniformly discrete
set in Cn that is a d-approximate interpolation set for Fφ(Cn). Then

D+
φ (Λ) ≤ 1

1− d2
.

2. Preliminaries

In this section we collect some preliminary results that will play an
important role in the proofs of our main results.
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2.1. Reproducing kernels. In the classical case, due to the explicit
formulas for the reproducing kernel, it is easy to see that ‖Kz‖ =

e
π
2
|z|2 for all z ∈ Cn, and | 〈kz, kw〉 | = e−

π
2
|z−w|2 for all z, w ∈ Cn, i.e.,

each normalized reproducing kernel kz ∈ F(Cn) is sharply concentrated
around its indexing point z ∈ Cn. In the weighted case we still have
the following similar estimates, proved in [14] and [2] respectively:∥∥Kφ

z

∥∥
φ
' eφ(z), (2)∣∣∣〈kφz , kφw〉φ∣∣∣ ≤ Ce−c|z−w|, (3)

for every z, w ∈ Cn, and some constants which only depend on the
implied constants in (1). These estimates will be of crucial importance
in all our proofs. As a simple consequence of (2) we have dmφ ' dm,
and therefore D+(Λ) ' D+

φ (Λ). Also, since the Lebesgue measure m
satisfies the annular decay property so does the measure mφ, i.e., for
any ρ > 0,

lim sup
r→∞

sup
a∈Cn

mφ(B(a, r + ρ))

mφ(B(a, r))
= 1.

2.2. Uniform discreteness and its consequences. Recall that a
set Λ ⊆ Cn is said to be uniformly discrete if δ := inf{|λ − ν| : λ 6=
ν ∈ Λ} > 0. The constant δ > 0 is called a separation constant of
Λ. We will need the following two, well-known, simple properties of
uniformly discrete sets. First, as simple counting argument shows, for
any Euclidean ball B(a, r) ⊆ Cn with radius r > 1 we have #{Λ ∩
B(a, r)} ≤ (1 + 2/δ)2nr2n, where δ > 0 is the separation constant of Λ.
In particular, #{Λ ∩B(a, r)} is finite, and the upper Beurling density
of Λ satisfies D+

φ (Λ) ' D+(Λ) ≤ n!
πn

(1 + 2
δ
)2n < ∞. Our main goal

is to show that under additional interpolation assumptions on Λ this
trivial density upper bound can be significantly improved (especially
when δ > 0 is very small).

The second consequence of the uniform discreteness of Λ, that will be
used in our proofs, is that any uniformly discrete Λ ⊆ Cn generates a
Bessel sequence of normalized reproducing kernels {kφλ}λ∈Λ in Fφ(Cn),
i.e., there exists a constant Cδ > 0 such that∑

λ∈Λ

|〈f, kφλ〉φ|
2 ≤ Cδ ‖f‖2

φ ,

for all f ∈ Fφ(Cn). This is a simple consequence of the mean value
inequality.
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2.3. Concentration operator. The following class of operators, usu-
ally called concentration operators (or sometimes Toeplitz operators),
will play an important role in our proofs. For any Borel set B ⊆ Cn

with finite Lebesgue measure, define a concentration operator TB :
Fφ(Cn)→ Fφ(Cn) by

TBf =

∫
B

〈
f, kφz

〉
φ
kφz dmφ(z),

where the right-hand side is defined in the weak sense, i.e., as the
unique element in Fφ(Cn) such that

〈TBf, g〉φ =

∫
B

〈
f, kφz

〉
φ

〈
kφz , g

〉
φ
dmφ(z),

for all g ∈ Fφ(Cn).
The following well-known, easy to prove, result contains all the basic

properties of concentration operators that we will need.

Proposition 1. For any Borel set B ⊆ Cn with finite Lebesgue measure
the corresponding concentration operator TB : Fφ(Cn) → Fφ(Cn) is a
positive compact self-adjoint operator of trace class. Moreover, its trace
and Hilbert-Schmidt norm satisfy the following identities:

‖TB‖Tr = Tr(TB) = mφ(B) =

∫
Cn

∫
B

∣∣∣〈kφz , kφw〉φ∣∣∣2 dmφ(z)dmφ(w) (4)

‖TB‖2
HS =

∫
B

∫
B

∣∣∣〈kφz , kφw〉φ∣∣∣2 dmφ(z)dmφ(w). (5)

2.4. Two lemmas. To prove our Theorem 1, we will adopt the proof
strategy of Olevskii and Ulanovskii [11]. The argument has two crucial
ingredients. The first one (essentially going back to Landau [5]) says
that any subspace of Fφ(Cn) consisting entirely of elements which are
concentrated on some fixed set of finite measure cannot have dimension
greater than the measure of the fixed set. The precise formulation of
this statement is as follows. Given a number 0 < c < 1, we say that
a subspace G of the Fock space Fφ(Cn) is c-concentrated on the set
B ⊆ Cn if

c ‖f‖2
φ ≤

∫
B

∣∣∣〈f, kφz 〉φ∣∣∣2 dmφ(z) = 〈TBf, f〉φ ,

for every f ∈ G.
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Lemma 1. Suppose B ⊆ Cn is a Borel set in Cn with finite Lebesgue
measure and 0 < c < 1. If G is a subspace of the Fock space Fφ(Cn)
which is c-concentrated on B, then

dimG ≤ mφ(B)

c
.

Proof. Let TB be the concentration operator over B. By TB is positive
compact self-adjoint. We can denote all its eigenvalues in the decreas-
ing order by l1 ≥ · · · ≥ lk ≥ · · · , where entries are repeated with
multiplicity. Let G ′ be an arbitrary finite-dimensional subspace of G
and k = dimG ′. By the min-max principle,

lk = max
dimH=k

min
f∈H,‖f‖φ=1

〈TBf, f〉φ ≥ min
f∈G′,‖f‖φ=1

〈TBf, f〉φ ≥ c.

Then using Tr(TB)/k ≥ lk ≥ c and (4), we obtain

dimG ′ ≤ mφ(B)

c
.

Since G ′ was an arbitrary finite-dimensional subspace of G we obtain
that G is finite-dimensional and the same estimate holds for G. �

The following lemma is the second important ingredient in our proofs.
It allows us to generate a subspace of fairly high-dimension which is
concentrated so that we can apply Lemma 1. This second result is a
finite-dimensional result which can be applied in our proofs only when
we restrict the indexing set Λ to a ball.

Lemma 2 ([11], Lemma 2). Let {uj}1≤j≤N be an orthonormal basis
in an N-dimensional complex Euclidean space U . Given 0 < d < 1,
suppose that {vj}1≤j≤N is a set of vectors in U satisfying

‖vj − uj‖2 ≤ d2, 1 ≤ j ≤ N.

Then for any b with 1 < b < 1/d, there is a subspace X of CN , such
that

(i) (1− b2d2)N − 1 < dimX;
(ii) the estimate

(1− 1

b
)2

N∑
j=1

|cj|2 ≤ ‖
N∑
j=1

cjvj‖2,

holds for any vector c = (c1, c2, ..., cN) ∈ X.
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3. Proof of Theorem 1

We now prove Theorem 1. Throughout this proof we will use the
following notation. For α > 0 we will denote by Fα(Cn) the weighted
Bargmann-Fock space associated with φ(z) = α

2
|z|2 + n

2
log π

α
. We will

also denote by ‖·‖α , Kα
z , and kαz the norm, the reproducing kernel, and

the normalized reproducing kernel (at z) of this space. Then ‖Kα
z ‖ =

e
α
2
|z|2 . Finally, we denote by mα the measure corresponding to mφ

for this particular choice of φ, i.e., dmα = αn

πn
dm. Recall that in the

classical case α = π, by convention, we drop the sub(super)scripts in
the above notation.

Proof. Let ε > 0. For any λ ∈ Λ define gλ(z) := fλ(z)kελ(z). Clearly
gλ : Cn → C is entire as a product of two entire functions. Also, since
|kελ(z)|2 ≤ eε|z|

2
for all z, λ ∈ Cn, we have∫

Cn
|gλ(z)|2e−(π+ε)|z|2dm(z) ≤

∫
Cn
|fλ(z)|2e−π|z|2dm(z) <∞.

Therefore, gλ ∈ Fπ+ε(Cn) for all λ ∈ Λ. Moreover,∑
ν∈Λ

∣∣∣〈gλ, kπ+ε
ν

〉
π+ε
− δλν

∣∣∣2 =
∑
ν∈Λ

∣∣∣〈gλ, Kπ+ε
ν

〉
π+ε

∥∥Kπ+ε
ν

∥∥−1

π+ε
− δλν

∣∣∣2
=
∑
ν∈Λ

∣∣∣〈fλ, Kν〉 〈kελ, Kε
ν〉ε
∥∥Kπ+ε

ν

∥∥−1

π+ε
− δλν

∣∣∣2
=
∑
ν∈Λ

|〈fλ, kν〉 〈kελ, kεν〉ε − δλν |
2 ≤ d2,

for any λ ∈ Λ. Note that in this simple computation we used that
‖Kπ+ε

ν ‖π+ε = ‖Kν‖ ‖Kε
ν‖ε. The analog of this identity doesn’t hold

for more general weights which forces us to use a somewhat different
strategy in the proof of Theorem 2.

Let B(a, r) be an arbitrary open ball in Cn. Since Λ is uniformly
discrete, Λ ∩ B(a, r) is finite set. Let Λ ∩ B(a, r) = {λ1, λ2, ..., λN}.
Consider the following vectors in CN

vj := (
〈
gλj , k

π+ε
λ1

〉
π+ε

, ...,
〈
gλj , k

π+ε
λN

〉
π+ε

), 1 ≤ j ≤ N,

and the standard basis uj := (δλjλ1 , ..., δλjλN ), 1 ≤ j ≤ N .
By the above inequality we have

‖vj − uj‖2 ≤
∑
ν∈Λ

∣∣∣〈gλj , kπ+ε
ν

〉
π+ε
− δλjν

∣∣∣2 ≤ d2, 1 ≤ j ≤ N.

By Lemma 2, for any 1 < b < 1/d, there exists a subspace X of CN ,
such that
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(i)

(1− b2d2)N − 1 < dimX; (6)

(ii) the inequality

(1− 1

b
)2

N∑
j=1

|cj|2 ≤ ‖
N∑
j=1

cjvj‖2, (7)

holds for any vector c = (c1, ..., cN) ∈ X.
Let G := {

∑N
j=1 cjgλj |c = (c1, ..., cN) ∈ X} ⊆ Fπ+ε. Since

‖
N∑
j=1

cjvj‖2 ≥ (1− 1

b
)2

N∑
j=1

|cj|2,

holds for any vector c = (c1, ..., cN) ∈ X, we have

dimX ≤ dimG. (8)

Let g =
∑N

j=1 cjgλj ∈ G for some (c1, ..., cN) ∈ X. Using that

{kπ+ε
λ }λ∈Λ is a Bessel sequence (due to the uniform discreteness of Λ)

and (7), we have

‖g‖2
π+ε ≥ C

∑
λ∈Λ

∣∣∣〈g, kπ+ε
λ

〉
π+ε

∣∣∣2 ≥ C
N∑
i=1

∣∣∣∣∣∣
〈

N∑
j=1

cjgλj , k
π+ε
λi

〉
π+ε

∣∣∣∣∣∣
2

=C‖
N∑
j=1

cjvj‖2 ≥ C(1− 1/b)2

N∑
j=1

|cj|2 = C1

N∑
j=1

|cj|2, (9)

for any g ∈ G, where C1 is independent of r.
Fix a small σ > 0. A simple application of the Cauchy-Schwarz in-

equality and the already mentioned identity ‖Kπ+ε
z ‖π+ε = ‖Kz‖ ‖Kε

z‖ε
yields ∫

B(a,r+σr)c
|g(z)|2 e−(π+ε)|z|2−nlog( π

π+ε
)dm(z)

=

∫
B(a,r+σr)c

|g(z)|2 e−(π+ε)|z|2dmπ+ε(z)

=

∫
B(a,r+σr)c

∣∣∣∣∣
N∑
j=1

cjfλj(z)kελj(z)

∣∣∣∣∣
2

e−(π+ε)|z|2dmπ+ε(z)

≤
N∑
j=1

|cj|2
∫
B(a,r+σr)c

N∑
j=1

∣∣∣〈fλj , kz〉 〈kελj , kεz〉
ε

∣∣∣2 dmπ+ε(z)
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We now estimate the second term. Applying supλ∈Λ ‖fλ‖ < ∞ and
doing a simple change of variables, we obtain∫

B(a,r+σr)c

N∑
j=1

∣∣∣〈fλj , kz〉 〈kελj , kεz〉
ε

∣∣∣2 dmπ+ε(z)

≤C
N∑
j=1

∫
B(λj ,σr)c

∣∣∣〈kελj , kεz〉
ε

∣∣∣2 dmπ+ε(z)

=CN

∫
B(0,σr)c

|〈kε0, kεz〉ε|
2 dmπ+ε(z).

Now, using the uniform discreteness of Λ in the form N = #{Λ ∩
B(a, r)} ≤ (1+2/δ)2nr2n we obtain that the last expression is bounded
by

C(1 +
2

δ
)2nr2n

∫
B(0,σr)c

e−ε|z|
2

dmπ+ε(z) = C ′r2n

∫ ∞
σr

e−εt
2

t2n−1dt,

where C ′ depends only on n and δ, and not on r. Denote the last
expression by C2 = C2(r). Observe that C2 → 0 as r →∞ (to be used
in a moment). Using the last derivations we obtain∫

B(a,r+σr)c
|g(z)|2 e−(π+ε)|z|2−nlog( π

π+ε
)dm(z) ≤ C2

N∑
j=1

|cj|2 , (10)

for every g ∈ G.
Combining (9) and (10) we obtain

(1− C2

C1

) ‖g‖2
π+ε ≤

∫
B(a,r+σr)

|g(z)|2 e−(π+ε)|z|2−nlog( π
π+ε

)dm(z)

=

∫
B(a,r+σr)

∣∣∣〈g, kπ+ε
z

〉
π+ε

∣∣∣2 dmπ+ε(z) =
〈
TB(a,r+σr)g, g

〉
π+ε

,

for every g ∈ G.
Let 0 < ε < 1. Since C2/C1 → 0 as r →∞, there exists R > 0, such

that (1 − ε) ‖g‖2
π+ε ≤

〈
TB(a,r+σr)g, g

〉
π+ε

for every g ∈ G when r > R.

In other words, the subspace G is (1− ε)-concentrated on B(a, r+ σr)
whenever r > R.

By Lemma 1, we obtain dimG ≤ mπ+ε(B(a, r + σr))/(1− ε). Com-
bining (6) and (8), we obtain

(1− b2d2)#{Λ ∩B(a, r)} − 1 <
mπ+ε(B(a, r + σr))

1− ε
.
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Therefore,

D+(Λ) = lim sup
r→∞

sup
a∈Cn

#{Λ ∩B(a, r)}
m(B(a, r))

≤ lim sup
r→∞

sup
a∈Cn

mπ+ε(B(a, r + σr))

(1− ε)(1− b2d2)m(B(a, r))
+

1

(1− b2d2)m(B(a, r))

=
(π + ε)n(1 + σ)2n

πn(1− ε)(1− b2d2)
.

Thus, since ε > 0, σ > 0, ε > 0, b > 1 are arbitrary,

D+(Λ) ≤ 1

1− d2
.

�

4. Proof of Theorem 2

Let TB(a,r) : Fφ(Cn) → Fφ(Cn) be the concentration operator over
the ball B(a, r) defined, as above, by

TB(a,r)f =

∫
B(a,r)

〈
f, kφz

〉
φ
kφz dmφ(z).

Again, we will denote all its eigenvalues in the decreasing order by
1 ≥ l1(TB(a,r)) ≥ · · · ≥ li(TB(a,r)) ≥ · · · , where entries are repeated
with multiplicity.

Lemma 3. For any ε > 0, there exists R > 0 such that

(1− ε)
∞∑
i=1

li(TB(a,r)) ≤
∞∑
i=1

li(TB(a,r))
2,

for any a ∈ Cn and all r > R.

Proof. Since
∑∞

i=1 li(TB(a,r)) = Tr(TB(a,r)) = mφ(B(a, r)), it’s sufficient
to show

lim sup
r→∞

sup
a∈Cn

1

mφ(B(a, r))

(
∞∑
i=1

li(TB(a,r))−
∞∑
i=1

li(TB(a,r))
2

)
= 0.

By Proposition 1 we have
∞∑
i=1

li(TB(a,r))−
∞∑
i=1

li(TB(a,r))
2 =

∫
B(a,r)

∫
B(a,r)c

∣∣∣〈kφz , kφw〉φ∣∣∣2 dmφ(w)dmφ(z).

Then by (3)
∞∑
i=1

li(TB(a,r))−
∞∑
i=1

li(TB(a,r))
2 .

∫
B(a,r)

∫
B(a,r)c

e−2c|z−w|dmφ(w)dmφ(z).
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Let ρ > 0. We break the double integral above as follows∫
B(a,r)

∫
B(a,r+ρ)c

+

∫
B(a,r)

∫
B(a,r+ρ)

,

and estimate each term separately. In both estimates we will divide
by mφ(B(a, r)) and use mφ(B(a, r)) ' m(B(a, r)) with the implied
constants independent of a ∈ Cn and r > 0.

For the first term we have

1

mφ(B(a, r))

∫
B(a,r)

∫
B(a,r+ρ)c

e−2c|z−w|dmφ(w)dmφ(z)

.
1

mφ(B(a, r))

∫
B(a,r)

∫
B(z,ρ)c

e−2c|z−w|dm(w)dm(z)

=
1

mφ(B(a, r))

∫
B(a,r)

∫
B(0,ρ)c

e−2c|w|dm(w)dm(z)

=
m(B(a, r))

mφ(B(a, r))

∫ ∞
ρ

e−2ct

∫
∂B(0,t)

dSdt '
∫ ∞
ρ

e−2ctt2n−1dt.

So for any ε > 0, we can find a positive ρ such that

lim sup
r→∞

sup
a∈Cn

1

mφ(B(a, r))

∫
B(a,r)

∫
B(a,r+ρ)c

e−2c|z−w|dmφ(w)dmφ(z) < ε.

(11)
We now estimate the second term, using the positive ρ > 0 from

above.

1

mφ(B(a, r))

∫
B(a,r)

∫
B(a,r+ρ)\B(a,r)

e−2c|z−w|dmφ(w)dmφ(z)

.
1

mφ(B(a, r))

∫
B(a,r+ρ)\B(a,r)

∫
Cn
e−2c|z−w|dm(z)dm(w)

=
1

mφ(B(a, r))

∫
B(a,r+ρ)\B(a,r)

∫
Cn
e−2c|z|dm(z)dm(w)

'm(B(a, r + ρ) \B(a, r))

m(B(a, r))

∫ ∞
0

e−2ctt2n−1dt

'm(B(a, r + ρ) \B(a, r))

m(B(a, r))

unif.−→ 0, (12)

as r →∞ (by the annular decay property of m).
Combining (11) and (12), we obtain

lim sup
r→∞

sup
a∈Cn

1

mφ(B(a, r))

(
∞∑
i=1

li(TB(a,r))−
∞∑
i=1

li(TB(a,r))
2

)
. ε.
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Since ε > 0 is arbitrary, we get the desired equality. �

We now proceed with the proof of Theorem 2.

Proof of Theorem 2. The beginning of the proof is very similar to the
proof of Theorem 1. Let B(a, r) be an arbitrary open ball in Cn. Since
Λ is uniformly discrete, Λ ∩ B(a, r) is finite set. Let Λ ∩ B(a, r) =
{λ1, λ2, ..., λN}. Consider the following vectors in CN ,

vj := (
〈
hλj , k

φ
λ1

〉
φ
, · · · ,

〈
hλj , k

φ
λN

〉
φ
), 1 ≤ j ≤ N,

and the standard basis of Cn, uj := (δλjλ1 , · · · , δλjλN ), 1 ≤ j ≤ N .
Notice that

‖vj − uj‖2 ≤
∑
ν∈Λ

∣∣∣〈hλj , kφν 〉φ − δλjν∣∣∣2 ≤ d2, 1 ≤ j ≤ N.

By Lemma 2, for any 1 < b < 1/d, there exists a subspace X of CN ,
such that

(i) (1− b2d2)N − 1 < dimX;
(ii) the inequality

(1− 1

b
)2

N∑
j=1

|cj|2 ≤ ‖
N∑
j=1

cjvj‖2, (13)

holds for any vector c = (c1, ..., cN) ∈ X.

Let G := {
∑N

j=1 cjhλj |c = (c1, ..., cN) ∈ X}. As in Theorem 1 we
have

dimG ≥ dimX > (1− b2d2)N − 1. (14)

Let g =
∑N

j=1 cjhλj ∈ G for some (c1, ..., cN) ∈ X. Using that {hλ}λ∈Λ

is a Bessel sequence and (13), we get

N∑
i=1

∣∣∣∣〈g, kφλi〉φ
∣∣∣∣2 =

N∑
i=1

∣∣∣∣∣∣
〈

N∑
j=1

cjhλj , k
φ
λi

〉
φ

∣∣∣∣∣∣
2

= ‖
N∑
j=1

cjvj‖2

≥(1− 1

b
)2

N∑
j=1

|cj|2 ≥ (1− 1

b
)2C‖

N∑
j=1

cjhλj‖2
φ = C1 ‖g‖2

φ , (15)

for any g ∈ G.
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Let δ be the separation constant of Λ. Then B(λ, δ/2)∩B(ν, δ/2) = ∅
for any λ 6= ν ∈ Λ. It follows from the mean value inequality that

N∑
i=1

∣∣∣∣〈g, kφλi〉φ
∣∣∣∣2 ≤ N∑

i=1

Cδ

∫
B(λi,

δ
2

)

∣∣∣〈g, kφz 〉φ∣∣∣2 dmφ(z)

≤ Cδ

∫
B(a,r+ δ

2
)

∣∣∣〈g, kφz 〉φ∣∣∣2 dmφ(z), (16)

for any g ∈ G. Combining (15) and (16), we obtain

c ‖g‖2
φ ≤

∫
B(a,r+ δ

2
)

∣∣∣〈g, kφz 〉φ∣∣∣2 dmφ(z) =
〈
TB(a,r+ δ

2
)g, g

〉
φ
, (17)

for any g ∈ G, where 0 < c := C1/Cδ < 1 is independent of a and r.
Let TB(a,r+δ/2) be the concentration operator over the ballB(a, r+ δ/2).

Denote all the eigenvalues of TB(a,r+δ/2) by {li(TB(a,r+δ/2))}∞i=1 indexed
in decreasing order. Let k = dimG (k < ∞, see Lemma 1). By the
min-max principle and (17),

lk(TB(a,r+ δ
2

)) = max
dimH=k

min
g∈H,‖g‖φ=1

〈
TB(a,r+ δ

2
)g, g

〉
φ

≥ min
g∈G,‖g‖φ=1

〈
TB(a,r+ δ

2
)g, g

〉
φ
≥ c.

For any 0 < ε < 1− c, we have

dimG = k ≤ #{i : li(TB(a,r+ δ
2

) ≥ c}
= #{i : li(TB(a,r+ δ

2
)) > 1− ε}+ #{i : c ≤ li(TB(a,r+ δ

2
)) ≤ 1− ε}

≤
∑
li>1−ε

li(TB(a,r+ δ
2

))

1− ε
+

∑
c≤li≤1−ε

li(TB(a,r+ δ
2

))

c

≤ 1

1− ε

∞∑
i=1

li(TB(a,r+ δ
2

)) +
1

c

∑
li≤1−ε

li(TB(a,r+ δ
2

)). (18)

Let σ = cε2. By Lemma 3, there exists R > 0 such that for any
a ∈ Cn and all r > R, we have

(1− σ)
∞∑
i=1

li(TB(a,r)) ≤
∞∑
i=1

li(TB(a,r))
2 =

∑
li≤1−ε

li(TB(a,r))
2 +

∑
li>1−ε

li(TB(a,r))
2

≤(1− ε)
∑
li≤1−ε

li(TB(a,r)) +
∑
li>1−ε

li(TB(a,r)) =
∞∑
i=1

li(TB(a,r))− ε
∑
li≤1−ε

li(TB(a,r)).
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It follows that for any a ∈ Cn and all r > R,

1

c

∑
li≤1−ε

li(TB(a,r)) ≤ ε
∞∑
i=1

li(TB(a,r)). (19)

Combining (18) and (19), we obtain that for any a ∈ Cn and all
r > R, we have

dimG ≤ 1 + ε− ε2

1− ε

∞∑
i=1

li(TB(a,r+ δ
2

)).

Therefore, by (14) and Proposition 1, for any a ∈ Cn and all r > R,
we have

(1− b2d2)#{Λ ∩B(a, r)} − 1 <
1 + ε− ε2

1− ε
mφ(B(a, r +

δ

2
)).

Finally, using the annular decay property of mφ we obtain

D+
φ (Λ) = lim sup

r→∞
sup
a∈Cn

#{Λ ∩B(a, r)}
mφ(B(a, r))

≤ lim sup
r→∞

sup
a∈Cn

(1 + ε− ε2)mφ(B(a, r + δ
2
))

(1− ε)(1− b2d2)mφ(B(a, r))
+

1

(1− b2d2)mφ(B(a, r))

=
(1 + ε− ε2)

(1− ε)(1− b2d2)
.

Thus, since ε > 0, b > 1 are arbitrary,

D+
φ (Λ) ≤ 1

1− d2
.

�
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Hilbert spaces of analytic functions, J. Reine Angew Math 464 (1995), 109–
128. ↑3

[2] G. M. Dal’Arra, Pointwise estimates of weighted Bergman kernels in several
complex variables, Adv. Math., 285 (2015), 1706–1740. ↑5
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