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ABSTRACT. We introduce the concept of d-approximate interpo-
lation in weighted Bargmann-Fock spaces as a natural extension
of the classical concept of interpolation. We then show that d-
approximate interpolating sequences satisfy a density condition,
similar to that classical interpolation sequences satisfy. More pre-
cisely, we show that the upper Beurling density of any d-approximate
interpolation sequence must be bounded from above by 1/(1 —d?).

1. INTRODUCTION

Let ¢ : C" — R be a plurisubharmonic function such that for all
zeC
i00¢ ~ i00|z|?, (1)
in the sense of positive currents. Here, and throughout the paper we
use the standard notation A < B to denote that there exists a constant
C > 0 such that A < CB, and A ~ B which means that A < B and
B < A. The implied constants may change from line to line.

The weighted Bargmann-Fock space F4(C") is the space of all entire
functions f : C" — C satisfying the integrability condition

112 := [ 7GR am(:) < o,

where dm denotes the Lebesgue measure on C" ~ R?". Equipped with
the norm ||-||, the weighted Bargmann-Fock space F4(C") is a repro-
ducing kernel Hilbert space (RKHS). We will denote its reproducing
kernel at A € C" by K{(2), and its normalized reproducing kernel
K{(2)/||KS|ls by kS (2). The classical Bargmann-Fock space F(C") is

an important special case obtained when ¢(z) = Z|z|>. We denote its

1 Research supported in part by National Science Foundation DMS grant #
1600874.
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norm simply by |||, i.e.,

117 = [ 17 e dma)

In this case, explicit formulas for the reproducing kernels are known,
K)\(Z) _ ew(z,)\)’ k:,\(z) — 67r<z’/\>7%‘)‘|2.

Recall that a countable set A = {\} C C" is said to be an interpola-
tion set for F,(C™), if for every square summable sequence of complex
numbers (cy) € 12(A) there exists f € Fy(C") such that (f,k{)y = c\
for all A € A. It is well known that A is an interpolation set if and
only if the corresponding sequence of normalized reproducing kernels
{kf} xea is a Riesz-Fischer sequence for F,;(C"). The following equiv-
alent definition of interpolation sets is most relevant for our purposes.
Namely, A is an interpolation set if and only if the following two con-
ditions hold: (i) for every A € A there exists fi € F,(C") such that
<f,\, l{;l‘f’>¢ = dy, for all v € A, and (ii) {fx}rea is a Bessel sequence for

F»(C"), i.e., there exists C' > 0 such that

ST P <CIFIE,

AEA

for every f € F4(C"). Here, and throughout the paper we use the
standard notation dy, = 1 for » = X and 0 otherwise.

If the interpolation can be guaranteed only for the standard basis
{0x}rea of I?(A), with norm control of the approximants, then we say
that A is a weak interpolation set. More precisely, A = {A\} C C" is a
weak interpolation set for F,(C"), if the following two conditions hold:
(i) for every A € A there exists f\ € F4(C") such that <f,\,k;f>¢ =

o for all v € A, (ii) supyes [[fall, < oco. Note that, A is a weak
interpolation set if and only if the corresponding sequence of normalized
reproducing kernels {k{}rca is uniformly minimal in F(C").

It is easy to see that every interpolation set is a weak interpolation
set. It was shown by Seip and Schuster [13] that in the classical one-
dimensional case (¢(z) = 5|z|>, n = 1) the converse is also true, i.e.,
these two classes of sets coincide.

Another important result of Seip and Wallstén [15,17] shows that in
the classical one-dimensional case interpolation sets can be completely
characterized in terms of the upper Beurling density D (A) of A defined
by,

. #{AN Ba,)}
D) s=tmsupsup = rpr T
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where B(a,r) denotes an Euclidean ball centered at a with radius r.
Namely, A is an interpolation set (or equivalently weak interpolation
set) for F(C) if and only if A is uniformly discrete, and D*(A) < 1.

It was proved by Berndtsson, Ortega-Cerda and Seip in [1, 12] that
in the weighted one-dimensional case, just as in the classical case, in-
terpolation sets can be completely characterized by an appropriately
defined weighted upper Beurling density

s #{A N B(a, 1)}
P o (B,

where dmy(z) = || K2||Ze72?*)dm(z). These results have been extended
in dimension one for an even more general class of weights [7], and the
necessity of this density condition was also proved in higher dimen-
sions [3,6]. The corresponding necessary density condition for weak
interpolation sets in the weighted case was proved very recently in [9].

Analogous density results for interpolation and weak interpolation
sets have been proved in the Paley-Wiener space [4,5,10], in the Bergman
space [16], and in de Branges space [8].

The goal of this paper is to provide a similar type necessary density
condition for an even larger class of “interpolating sets”. This type
of sets (to be defined momentarily) were relatively recently introduced
by Olevskii and Ulanovskii [11] in the Paley-Wiener setting, where it
was shown that all such sets must satisfy a Beurling density condition
similar to the one for usual interpolation sets. Our result can be viewed
as a Bargmann-Fock space counterpart of their result.

We now precisely define the above mentioned larger classes of “in-
terpolation sets”.

Definition 1.1. For a given 0 < d < 1 we will say that a countable
set A = {\} C C" is d-approzimate interpolation set for F,(C") if the
following two conditions hold.

(i) For every X € A there exists hy € F,(C™) such that

Z ‘<hm k’;¢>¢ — O

veEA

(i.e., the I*(A) distance between the sequences ({hy, kff’>¢) and

(0xy) is no greater than d)
(ii) {hatren from (i) is a Bessel sequence in F4(C"), i.e., there
exists C' > 0 such that

ST, < CfIE,

AEA

2
< d?
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for any f € Fu(C").

Note that 0-approximate interpolation sets coincide with interpola-
tion sets in Fyu(C").

Definition 1.2. For a given 0 < d < 1 we will say that a countable
set A = {\} € C" is d-approzimate weak interpolation set for Fu(C")
if the following two conditions hold.

(i) For every A € A there exists fr € F,(C") such that

S| (ke), — o

vEA

2
< d?

(i.e., the I>(A) distance between the sequences (<f,\,kf>¢) and
(0x,) is no greater than d)
(i) supsey |l < oc.

Again, 0-approximate weak interpolation sets coincide with weak in-
terpolation sets in F,(C"). Note that the two classes of approximately
interpolating sets differ only in the second condition. As the terminol-
ogy suggests every d-approximate interpolation set is a d-approximate
weak interpolation set. We don’t know if the converse is true in general.

Our first result is the following statement which gives a necessary
upper density condition on d-approximate weak interpolation sets in
the classical Bargmann-Fock space F(C").

Theorem 1. Let 0 < d < 1. Suppose A C C" is a uniformly discrete
set in C" that is a d-approzimate weak interpolation set for F(C").
Then

1
1—d?

This result can be easily extended to all classical weights of the form

B(z) = %]z\Q +5log 2, > 0. In the general weighted case we can only

prove the corresponding result for d-approximate interpolation sets.

D*(A) <

Theorem 2. Let 0 < d < 1. Suppose A C C" is a uniformly discrete

set in C™ that is a d-approximate interpolation set for F,(C"). Then
1

1—d?

Dj(A) <

2. PRELIMINARIES

In this section we collect some preliminary results that will play an
important role in the proofs of our main results.
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2.1. Reproducing kernels. In the classical case, due to the explicit
formulas for the reproducing kernel, it is easy to see that ||| =
e3 1 for all » € C", and | (k., ko) | = e zl=vl® for all z,w € C", ie.,
each normalized reproducing kernel k, € F(C") is sharply concentrated
around its indexing point z € C”. In the weighted case we still have
the following similar estimates, proved in [14] and [2] respectively:

K|, ~ e 2
1521, : (2)
(ke k8, | < cemeeml 3)

for every z,w € C", and some constants which only depend on the
implied constants in (1). These estimates will be of crucial importance
in all our proofs. As a simple consequence of (2) we have dmy ~ dm,
and therefore D*(A) ~ D (A). Also, since the Lebesgue measure m
satisfies the annular decay property so does the measure my, i.e., for
any p > 0,

B
lim sup sup my(B(a, 7 + p))

=1.
roo acCr Mg(B(a, 7))

2.2. Uniform discreteness and its consequences. Recall that a
set A C C" is said to be uniformly discrete if § := inf{|A —v| : X\ #
v € A} > 0. The constant 6 > 0 is called a separation constant of
A. We will need the following two, well-known, simple properties of
uniformly discrete sets. First, as simple counting argument shows, for
any Euclidean ball B(a,r) € C" with radius » > 1 we have #{A N
B(a,r)} < (1+2/8)*r*", where § > 0 is the separation constant of A.
In particular, #{A N B(a,r)} is finite, and the upper Beurling density
of A satisfies DJ(A) ~ D*(A) < 2:(1+4 2)* < co. Our main goal
is to show that under additional interpolation assumptions on A this
trivial density upper bound can be significantly improved (especially
when § > 0 is very small).

The second consequence of the uniform discreteness of A, that will be
used in our proofs, is that any uniformly discrete A C C" generates a
Bessel sequence of normalized reproducing kernels {kf\’} xea in Fy(CM),
i.e., there exists a constant Cs > 0 such that

> D6 < CsIIFII

AEA

for all f € F4(C"). This is a simple consequence of the mean value
inequality.
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2.3. Concentration operator. The following class of operators, usu-
ally called concentration operators (or sometimes Toeplitz operators),
will play an important role in our proofs. For any Borel set B C C"
with finite Lebesgue measure, define a concentration operator Tg :
Fo(C") — Fy(C") by

Tpf = /B (f.R2), k2dmy(2),

where the right-hand side is defined in the weak sense, i.e., as the
unique element in F4(C"™) such that

Tat gy = [ (1.82), (k2. 9), dmol:).

for all g € Fy(C™).
The following well-known, easy to prove, result contains all the basic
properties of concentration operators that we will need.

Proposition 1. For any Borel set B C C™ with finite Lebesque measure
the corresponding concentration operator T : Fs(C") — F4(C") is a
positive compact self-adjoint operator of trace class. Moreover, its trace
and Hilbert-Schmidt norm satisfy the following identities:

Tallar = T =molB) = [ [ [(62,52), [ dmoe)amatw) (@

T35 = / [ w202, [ dmoz)ams(w) )

2.4. Two lemmas. To prove our Theorem 1, we will adopt the proof
strategy of Olevskii and Ulanovskii [11]. The argument has two crucial
ingredients. The first one (essentially going back to Landau [5]) says
that any subspace of F;(C") consisting entirely of elements which are
concentrated on some fixed set of finite measure cannot have dimension
greater than the measure of the fixed set. The precise formulation of
this statement is as follows. Given a number 0 < ¢ < 1, we say that
a subspace G of the Fock space F,(C") is c-concentrated on the set
B CCrif

i < [ [(£02), [ dmate) = Tas ),

for every f € G.
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Lemma 1. Suppose B C C" s a Borel set in C* with finite Lebesgue
measure and 0 < ¢ < 1. If G is a subspace of the Fock space Fs(C")
which is c-concentrated on B, then

dim@G < M

c

Proof. Let Tg be the concentration operator over B. By T} is positive
compact self-adjoint. We can denote all its eigenvalues in the decreas-
ing order by Iy > -+ > I, > ---, where entries are repeated with
multiplicity. Let G’ be an arbitrary finite-dimensional subspace of G
and k = dimG’. By the min-max principle,

[y = max min  (Tsf,f), > min Tsf, f), >c.
dimH=k f€7%7||f\\¢=1< )o feg’,||f||¢=1< Jo

Then using Tr(Ts)/k > I > ¢ and (4), we obtain

dimG' < me(B)
- C

Since G’ was an arbitrary finite-dimensional subspace of G we obtain
that G is finite-dimensional and the same estimate holds for G. O

The following lemma is the second important ingredient in our proofs.
It allows us to generate a subspace of fairly high-dimension which is
concentrated so that we can apply Lemma 1. This second result is a
finite-dimensional result which can be applied in our proofs only when
we restrict the indexing set A to a ball.

Lemma 2 ([11], Lemma 2). Let {u;}1<j<ny be an orthonormal bastis
in an N-dimensional complex Euclidean space U. Given 0 < d < 1,
suppose that {v;}i<j<n is a set of vectors in U satisfying

v, —wl? <d? 1<j<N.

Then for any b with 1 < b < 1/d, there is a subspace X of CV, such
that

(i) (1 —=0*d*)N —1 < dimX;

(ii) the estimate

1 N N
(1- 5)2 Sl < 1D vl
s =1

holds for any vector ¢ = (¢y, o, ...,cn) € X.
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3. PROOF OF THEOREM 1

We now prove Theorem 1. Throughout this proof we will use the
following notation. For a > 0 we will denote by F,(C") the weighted
Bargmann-Fock space associated with ¢(z) = §|z|> + 2 log Z. We will
also denote by |||, , K¢, and k¢ the norm, the reproducing kernel, and
the normalized reproducing kernel (at z) of this space. Then ||K¢|| =
el Finally, we denote by m, the measure corresponding to m,
for this particular choice of ¢, i.e., dm, = %de' Recall that in the
classical case a = 7, by convention, we drop the sub(super)scripts in
the above notation.

Proof. Let ¢ > 0. For any A € A define g)(z) := fa(2)k5(2). Clearly
» : C" — C is entire as a product of two entire functions. Also, since
k5 (2)]2 < el for all z, A € C", we have

[ e Ean) < [ i@ ine) <.

Therefore, g, € }}JFE(C”) for all A € A. Moreover,

2
Z ‘<g k7r+€ 7r+5 o 5>‘” Z ‘<g>\’ KZT’H—e 7r+5 HKTH—EHW—F& — O

veA By
2
DTSR W
veEA
:Z|<f/\ak1/> /\, u> 6)\1/' <d2
veEA

for any A € A. Note that in this simple computation we used that
K7™ pe = IEG|IKG]|,. The analog of this identity doesn’t hold
for more general weights which forces us to use a somewhat different
strategy in the proof of Theorem 2.

Let B(a,r) be an arbitrary open ball in C". Since A is uniformly
discrete, A N B(a,r) is finite set. Let A N B(a,r) = {A\1, Ag, ..., An}.
Consider the following vectors in C

Vi = (<g)‘j’ k§j€>7r+s <g)‘J’ §;E>w+s>’1 < j < N’
and the standard basis u; := (0x,x,, -, Oaay), 1 < j <N,
By the above inequality we have

2
Ivi = wli2 < 37 [on k), .. = O

veN

<d?’ 1<j<N.

By Lemma 2, for any 1 < b < 1/d, there exists a subspace X of CV,
such that
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(i)
(1 - B*d?)N — 1 < dimX; (6)
(ii) the inequality

1 N N
(1- 5)2 el < 1D el (7)
j=1 j=1

holds for any vector ¢ = (cy, ...,cn) € X.
Let G := {Zjvzl cigrlc = (c1,...,en) € X} C Frye. Since
N N
1Y evill> > (1 - 5)2 > gl
j=1 j=1
holds for any vector ¢ = (cq, ..., cn) € X, we have

dimX < dimg. (8)
Let g = Zjvzl cjgx, € G for some (ci,...,cy) € X. Using that

{k{7*}ren is a Bessel sequence (due to the uniform discreteness of A)
and (7), we have
2

N N
oy <zgk>
i=1 T+e

lgl2,. = €Y7 (g, k57), ..
AEA

N
—CIIZCJVJHQ>C —1/b) Z\C]\z Ciy el (9)
j=1

7=1

for any g € G, where C is 1ndependent of r.

Fix a small ¢ > 0. A simple application of the Cauchy-Schwarz in-
equality and the already mentioned identity ||[KI7*¢|| .. = || K| || KZ].
yields

T+e

/ ‘g(Z)|26_(7r+6)|2|2_n10g(”:E)dm(Z)
B(a,r+or)c

—\7T Z2
=/B( o) (2
a,r+or)c

N 2

N /B(a,r+crr)c Z

=1

N N
2
<Sll [ S (k) (35, ) [ a2
=1 B(a,r+or)° j=1 €

6_(ﬂ—+8)‘z|2dmﬂ+5 (Z)

¢;fr; (2)R5, (2)
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We now estimate the second term. Applying sup,c, ||fal] < oo and
doing a simple change of variables, we obtain

N
\/B(a,rJrar)C ]2_; ‘<f)\j7 kz> <k5§\j7 k§>6’2 dmﬂ+a(z)
N
<C /
2

—ON / (kS k), 2 dimg e (2).
B(0,01)°

(8, ) | dmesa(2)

Aj,or)€

Now, using the uniform discreteness of A in the form N = #{A N
B(a,r)} < (142/8)*r?" we obtain that the last expression is bounded
by

[e.9]

2
C(14 <) / e Ao (2) = C'r™" / e,
0 B(0,01)° or

where C” depends only on n and ¢, and not on r. Denote the last
expression by Co = Cy(r). Observe that Co — 0 as 7 — 0o (to be used
in a moment). Using the last derivations we obtain

N
/ lg(2)F el dm (2) < G Y e, (10)
B(a,r+or)° j=1

for every g € G.
Combining (9) and (10) we obtain

C. .

(1—22)gl2,. < 1g(2)[2 e el —nlos(252) gy )
G Bla.r+or)
a,r+or

a /B(a,r-i—m")

for every g € G.
Let 0 < € < 1. Since Cy/C7 — 0 as r — 00, there exists R > 0, such
that (1 — ¢) ||g\|3r+€ < <T]3(a,r+o.r)g,g>7r+E for every g € G when r > R.

2
dmfn—Jre(Z) = <TB(a,7‘+ar)g7 g>7r+€ )

<g’ k§+€>7r+e

In other words, the subspace G is (1 — €)-concentrated on B(a,r + or)
whenever r > R.

By Lemma 1, we obtain dimG < my,.(B(a,r + or))/(1 —€). Com-
bining (6) and (8), we obtain

Mare(B(a,r + ar))'

(1 - BRd)#{ANB(a,r)} — 1 < o
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Therefore,

I #{A N B(a,r)}
DrA) =limewp sup = B @)
. Mapre(Bla,r + or 1
< limsup sup 77— e)(+1 (— Z)(QdQ)m(Bgc)L, M) - PE)m(Bla,n)
 (m4e)"(140)™
(1 —e)(1 — b2d?)
Thus, since € > 0,0 > 0,e > 0,b > 1 are arbitrary,
1
1—d?

D¥(A) <

4. PROOF OF THEOREM 2

Let Tp(a @ F(C*) = F4(C™) be the concentration operator over
the ball B(a,r) defined, as above, by

TB(a,r)f:/B( )<f?kf>¢kfdm¢(2)

Again, we will denote all its eigenvalues in the decreasing order by
1> L(TBar) = -+ = Li(TBy) = -+, where entries are repeated
with multiplicity.

Lemma 3. For any € > 0, there exists R > 0 such that

(1 - E) Z li(TB(a,T)> < Z li(TB(a,T)>2a
1=1 =1

for any a € C" and all r > R.

Proof. Since Y2 li(T(a,)) = TT(TBr)) = me(B(a, 7)), it’s sufficient
to show

o0

. 1 =
lim sup sup mo(Bla. ) (Z i(Than) — Z li(TB(a,r))2> =0.
’ i=1

r—oo aeCm Mg i—1

By Proposition 1 we have

li (TB(a,r))_ lz (TB([I,T)>2 - / /
; ; B(a,r) J B(a,r)°¢

Then by (3)

> i Tsan) = i(Ts@n)’ S / / e 2=l dmy (w)dmy (z).
i=1 i=1 B(a,r) J B(a,r)¢

(k¢ k¢>¢‘2 dmg(w)dmey(z).

zrw
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Let p > 0. We break the double integral above as follows

[ P
B(a,r) J B(a,r+p)° B(a,r) J B(a,r+p)

and estimate each term separately. In both estimates we will divide
by mg(B(a,r)) and use my(B(a,r)) ~ m(B(a,r)) with the implied
constants independent of a € C" and r > 0.

For the first term we have

e )
r) (a,r+p)°

1 7202 w
B(a,r ==l dm(w)dm(2)

o
1<a,r o Lo (e

a,r)) / —2ct / —2¢t,2n—1
:— e < dSdt ~ e T de.
m¢(B(a, 7)) p 9B(0,t) P

So for any € > 0, we can find a positive p such that

1
lim sup sup —/ / e~ 2=l dmy (w)dmg(2) < e.
r—oo acCn m¢(B(&7 71)) a,r a,r4p)e
(11)

We now estimate the second term, using the positive p > 0 from
above.

B</
i,

a
a
a

1

=2 () )
B(CL,T / (a,r) / B(a,r+p)\B(a,r) o o
1

—_— e*20|z7w\ m(2)dm(w
S (B(a,r))/ar+p)\3(ar)/n dm(z)dm(w)

BT ey o PN
_m(B(a, 'r+p \B a,r) / ety

~ o
_m(B(a,r+ p) \ B(a, 7)) unit
T m(Ba,r) —0 (12)

as r — oo (by the annular decay property of m).
Combining (11) and (12), we obtain

limsup sup ———— (Zl (Ts(ar) — Z lz‘(TB(am)>2) Se
i=1

r—oo a€eCn mqb
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Since € > 0 is arbitrary, we get the desired equality. O
We now proceed with the proof of Theorem 2.
Proof of Theorem 2. The beginning of the proof is very similar to the
proof of Theorem 1. Let B(a,r) be an arbitrary open ball in C". Since

A is uniformly discrete, A N B(a,r) is finite set. Let A N B(a,r) =
{\1, Aa, ..., An}. Consider the following vectors in C,

v (g k) e (oK) ) 1< <N,

and the standard basis of C", u; := (dx;a,,- * ,0aay), 1 <J < N.
Notice that

2
v —wl2 <> ‘(mj,m — o] <

veA

By Lemma 2, for any 1 < b < 1/d, there exists a subspace X of CV,
such that

(i) (1 —=b*d*)N — 1 < dimX;
(ii) the inequality

1 N N
(1- 5)22 i < 1> el (13)
j=1 j=1

holds for any vector ¢ = (cq, ...,cny) € X.

Let G = {Z;VZI cjhy,lc = (c1,...,en) € X}, As in Theorem 1 we
have

dimG > dimX > (1 — b*d*)N — 1. (14)

Let g = Z;V:1 cjhy, € G for some (ci,...,cy) € X. Using that {hx}aea
is a Bessel sequence and (13), we get

> [(a2),

=1
1., 1 N
>(1 - 5)2 > gl > - E)QCII > gz =Clglls,  (15)
=1 =1

‘ 2

=1

N N 2 N
=> <Z thxj,kfi> = 1> il
j=1 j=1

¢

for any g € G.
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Let ¢ be the separation constant of A. Then B(\,6/2)NB(v,§/2) =0
for any A # v € A. It follows from the mean value inequality that

N 2 N
¢
<ga k)\z> ‘ S 05/

< Cs / (g
B(a,rJr%)

for any g € G. Combining (15) and (16), we obtain

2
clalls < | ( 5)‘g,k>]dm¢ )= (Tprspg9),.  (17)
a,r+3

<g, kf>¢‘2 dmy(2)

K| dmaz), o)

for any g € G, where 0 < ¢ := C1/Cs < 1 is independent of a and r.

Let T’s(4,r+5/2) be the concentration operator over the ball B(a, 7+ §/2).
Denote all the eigenvalues of Ts(4,45/2) by {li(T(ar+s/2)) }i21 indexed
in decreasing order. Let k = dimG (k < oo, see Lemma 1). By the
min-max principle and (17),

Tatarey) = 205 (Titars 9.9,

> min <T gg,g> > c.
g€G,lgll,=1 \~ Bt T I/

For any 0 < ¢ < 1 — ¢, we have
dimG =k < #{i : (T (ar+)>c}

li<TB(ar+é)> li<TB(ar+§))
) 2 4 2
S I D D
l;>1—¢ c<l;<l—e
1 00
< 1—¢ Z li(TB(aﬂ”F Z l ar+ (18)
=1 l<1 €

Let 0 = ce2. By Lemma 3, there exists R > 0 such that for any
a € C" and all r > R, we have

(1 - U) Zli(TB(a,r)) < Zli(TB(a,r))2 = Z li(TB(a,r))2 + Z li(TB(a,r))2
=1 =1

1;<l—e¢ l;i>1—¢

S(l—S) Z li(TB(a,r))+ Z li(TB(ar Zl TB (a,r) _5 Z l TB (a,r))-

;<l—¢ l;i>1—e 1;<l—¢
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It follows that for any a € C" and all r > R,

- Z (T <€Zl (TB(ar))- (19)

l<16

Combining (18) and (19), we obtain that for any a € C" and all
r > R, we have

dimG < * 5_521 Blarsd)):

Therefore, by (14) and Proposition 1, for any a € C" and all r > R,
we have

(1= BN Blan) - 1< 2 (Bar+ D)),

Finally, using the annular decay property of m, we obtain

N #{A N B(a,r)}
Dol =P 20 o (Bla )

(14¢e—e*)my(B(a,r + ) 1

< lim sup sup

r—oo accr (1 —€)(1 — b2d?)my(B(a,r)) + (1 —b2d®)my(B(a,r))

. (I+e-¢%
(1 —e)(1 —b2d?)’

Thus, since € > 0,b > 1 are arbitrary,

1
1—d*

Dj(A) <
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