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Abstract
The task of ultra-fine entity typing (UFET)
seeks to predict diverse and free-form words
or phrases that describe the appropriate types
of entities mentioned in sentences. A key chal-
lenge for this task lies in the large number of
types and the scarcity of annotated data per
type. Existing systems formulate the task as a
multi-way classification problem and train di-
rectly or distantly supervised classifiers. This
causes two issues: (i) the classifiers do not
capture the type semantics because types are
often converted into indices; (ii) systems de-
veloped in this way are limited to predicting
within a pre-defined type set, and often fall
short of generalizing to types that are rarely
seen or unseen in training.

This work presents LITE , a new approach
that formulates entity typing as a natural lan-
guage inference (NLI) problem, making use
of (i) the indirect supervision from NLI to in-
fer type information meaningfully represented
as textual hypotheses and alleviate the data
scarcity issue, as well as (ii) a learning-to-rank
objective to avoid the pre-defining of a type set.
Experiments show that, with limited training
data, LITE obtains state-of-the-art perfor-
mance on the UFET task. In addition, LITE
demonstrates its strong generalizability by not
only yielding best results on other fine-grained
entity typing benchmarks, more importantly, a
pre-trained LITE system works well on new
data containing unseen types.1

1 Introduction

Entity typing, inferring the semantic types of the
entity mentions in text, is a fundamental and

∗ This work was done when the first author was visiting
the University of Southern California.

1Our models and implementation are available at https://
github.com/luka-group/lite.

long-lasting research problem in natural language
understanding, which aims at inferring the seman-
tic types of the entities mentioned in text. The
resulted type information can help with grounding
human language components to real-world con-
cepts (Chandu et al., 2021), and provide valuable
prior knowledge for natural language understand-
ing tasks such as entity linking (Ling et al., 2015;
Onoe and Durrett, 2020), question answering
(Yavuz et al., 2016), and information extraction
(Koch et al., 2014). Prior studies have mainly
formulated the task as a multi-way classification
problems (Wang et al., 2021; Zhang et al., 2019;
Chen et al., 2020a; Hu et al., 2020).

However, earlier efforts for entity typing are
far from enough for representing real-world sce-
narios, where types of entities can be extremely
diverse. Accordingly, the community has recently
paid much attention to more fine-grained model-
ing of types for entities. One representative work
is the Ultra-fine Entity Typing (UFET) bench-
mark created by Choi et al. (2018). The task seeks
to search for the most appropriate types for an
entity among over ten thousand free-form type
candidates. The drastic increase of types forces us
to question whether the multi-way classification
framework is still suitable for UFET. In this con-
text, two main issues are noticed from prior work.
First, prior studies have not tried to understand
the target types since most classification systems
converted all types into indices. Without know-
ing the semantics of types, it is hard to match
an entity mention to a correct type, especially
when there is not sufficient annotated data for
each type. Second, existing entity typing systems
are far behind the desired capability in real-world
applications in which any open-form types can
appear. Specifically, those pre-trained multi-way
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classifiers cannot recognize types that are unseen
in training, especially when there is no reasonable
mapping from existing types to unseen type la-
bels, unless the classifiers are re-trained to include
those new types.

To alleviate the aforementioned challenges, we
propose a new learning framework that seeks to
enhance ultra-fine entity typing with indirect su-
pervision from natural language inference (NLI)
(Dagan et al., 2006). Specifically, our method
LITE , (Language Inference based Typing of
Entities), treats each entity-mentioning sentence
as a premise in NLI. Using simple, template-based
generation techniques, a candidate type is trans-
formed into a textual description and is treated as
the hypothesis in NLI. Based on the premise sen-
tence and a hypothesis description of a candidate
type, the entailment score given by an NLI model
is regarded as the confidence of the type. On top
of the pre-trained NLI model, LITE conducts a
learning-to-rank objective, which aims at scoring
hypotheses of positive types higher than the hy-
potheses of sampled negative types. Finally, the
label candidates whose hypotheses obtain scores
above a threshold are given as predictions by
the model.

Technically, LITE benefits ultra-fine entity
typing from three perspectives. First, the in-
ference ability of a pre-trained NLI model can
provide effective indirect supervision to improve
the prediction of type information. Second, the
hypothesis, as a type description, also provides
a semantically rich representation of the type,
which further benefits few-shot learning with in-
sufficient labeled data. Moreover, to handle the
dependency of type labels in different granulari-
ties, we also utilize the inference ability of an NLI
model to learn that the finer label hypothesis of an
entity mention entails its general label hypothe-
sis. Experimental results on the UFET benchmark
(Choi et al., 2018) show that LITE drastically
outperforms the recent state-of-the-art (SOTA)
systems (Dai et al., 2021; Onoe et al., 2021; Liu
et al., 2021) without any need of distantly super-
vised data as they do. In addition, our LITE also
yields the best performance on traditional (less)
fine-grained entity typing tasks.2 What’s more,
because we adopt a learning-to-rank objective to

2Note that although these more traditional entity typing
tasks are termed ‘‘fine-grained entity typing’’, their typing
systems are much less fine-grained than that of UFET.

optimize the inference ability of LITE rather than
classification on a specified label space, it is fea-
sible to apply the trained model across different
typing data sets. We therefore test its transferabil-
ity by training on UFET and evaluate on traditional
fine-grained benchmarks to get promising results.
Moreover, we also examined the time efficiency
of LITE, and discussed about the trade-off be-
tween training and inference costs in comparison
with prior methods.

To summarize, the contributions of our work
are three fold. First, to our knowledge, this is the
first work that uses NLI formulation and NLI su-
pervision to handle entity typing. As a result, our
system is able to retain the labels’ semantics and
encode the label dependency effectively. Second,
our system offers SOTA performance on both
ultra-fine entity typing and regular fine-grained
typing tasks, being particularly strong at predict-
ing zero-shot and few-shot cases. Finally, we
show that our system, once trained, can also
work on different test sets that are free to have
unseen types.

2 Related Work

Entity Typing. Traditional entity typing was in-
troduced and thoroughly studied by Ling and Weld
(2012). One main challenge that earlier efforts
have focused on was to obtain sufficient training
data to develop the typing model. To do so, auto-
matic annotation has been commonly used in the
a series of studies (Gillick et al., 2014; Ling and
Weld, 2012; Yogatama et al., 2015). Later research
was developed for further improvement by model-
ing the label dependency with a hierarchy-aware
loss (Ren et al., 2016; Xu and Barbosa, 2018).
External knowledge from knowledge bases has
also been introduced to capture the semantic re-
lations or relatedness of type information (Jin
et al., 2019; Dai et al., 2019; Obeidat et al., 2019).
Ding et al. (2021) adopt prompts to model the re-
lationship between entities and type labels, which
is similar to our template-based type description
generation. However, their prompts are intended
for label generation from masked language mod-
els whereas our templates realize the supervision
from NLI.

More recently, Choi et al. (2018) proposed
the ultra-fine entity typing (UFET) task, which
involved free-form type labeling to realize the
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open-domain label space with much more com-
prehensive coverage of types. As the UFET
tasks non-trivial learning and inference problems,
several methods have been explored by more
effectively modeling the structure of the label
space. Xiong et al. (2019) utilized a graph propa-
gation layer to impose label-relation bias in order
to capture type dependencies implicitly. Onoe
and Durrett (2019) trained a filtering and rela-
beling model with the human annotated data to
denoise the automatically generated data for train-
ing. Onoe et al. (2021) introduced box embeddings
(Vilnis et al., 2018) to represent the dependency
among multiple levels of type labels as topol-
ogy of axis-aligned hyper-rectangles (boxes). To
further cope with insufficient training data, Dai
et al. (2021) used pre-trained language model for
augmenting (noisy) training data with masked en-
tity generation. Different from their strategy of
augmenting training data, our approach generates
type descriptions to leverage indirect supervision
from NLI which requires no more data samples.

Natural Language Inference and Its Applica-
tions. Early approaches towards NLI problems
were based on studying lexical semantics and
syntactic relations (Dagan et al., 2006). Sub-
sequent research then introduced deep-learning
methods to this task to capture contextual se-
mantics. Parikh et al. (2016) utilized Bi-LSTM
(Hochreiter and Schmidhuber, 1997) to encode
the input tokens and use attention mechanism to
capture substructures of input sentences. Most re-
cent work develops end-to-end trained NLI models
that leverage pre-trained language models (Devlin
et al., 2019; Liu et al., 2019) for sentence pair rep-
resentation and large learning resources (Bowman
et al., 2015; Williams et al., 2018) for training.

Specifically, because pre-trained NLI models
benefit with generalizable logical inference, cur-
rent literature has also proposed to leverage NLI
models to improve prediction tasks with insuf-
ficient training labels, including zero-shot and
few-shot text classification (Yin et al., 2019).
Shen et al. (2021) adopted RoBERTa-large-MNLI
(Liu et al., 2019) to calculate the document similar-
ity for document multi-class classification. Chen
et al. (2021) proposed to verify the output of a QA
system with NLI models by converting the ques-
tion and answer into a hypothesis and extracting
textual evidence from the reference document as
the premise.

Recent work by Yin et al. (2020) and White
et al. (2017) is particularly relevant to this topic,
which utilizes NLI as a unified solver for sev-
eral text classification tasks such as co-reference
resolution and multiple choice QA in few-shot
or fully-supervised manner. Yet our work han-
dles a learning-to-rank objective for inference in
a large candidate space, which not only enhances
learning under a data-hungry condition, but is also
free to be adapted to infer new labels that are
unseen to training. Yin et al. (2020) also proposed
an approach to transform co-reference resolution
task into NLI manner and we modified this as
one of our template generation methods, which is
discussed in §3.2.

3 Method

In this section, we introduce the proposed method
for (ultra-fine) entity typing with NLI. We start
with problem definition and an overview of our
NLI-based entity typing framework (§3.1), fol-
lowed by technical details of type description gen-
eration (§3.2), label dependency modeling (§3.3),
learning objective (§3.4), and inference (§3.5).

3.1 Preliminaries

Problem Definition. The input of an entity typ-
ing task is a sentence s and an entity mention of
interest e ∈ s. This task aims at typing e with
one or more type labels from the label space L.
For instance, in ‘‘Jay is currently working on his
Spring 09 collection, which is being sponsored
by the YKK Group.’’, the entity ‘‘Jay’’ should be
labeled as person, designer, or creator instead of
organization or location.

The structure of the label space L can vary.
For example, in some benchmarks like OntoNotes
(Gillick et al., 2014), labels are provided in canon-
ical form and strictly depend on their ancestor
types. In this case, a type label bridge appears as
/location/transit/bridge. However, in benchmarks
like FIGER (Ling and Weld, 2012), partial la-
bels have a dependency with their ancestors while
the others are free-form and uncategorized. For
instance, the label film is given as /art/film but
currency appears as a single word. For our pri-
mary task, for ultra fine-grained entity typing, the
UFET benchmark (Choi et al., 2018) provides
no ontology of the labels and the label vocab-
ulary consists of free-form words only. In this
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Figure 1: Entity typing by LITE with indirect supervision from NLI.

case, film star and person can appear indepen-
dently in an annotation set with no dependency
information provided.

Overview of LITE. Given a sentence with at
least an entity mention, LITE treats the sen-
tence as the premise in NLI, and then learns
to type the entity in three consecutive steps
(Figure 1). First,LITE employs a simple, low-cost
template-based technique to generate a natural
language description for a type candidate. This
type description is treated as the hypothesis in
NLI. For this step, we explore three different de-
scription generation templates (§3.2). Second, to
capture label dependency, whether or not the type
ontology is provided, LITE consistently gener-
ates type descriptions for any ancestors of the
original type label on the previous sentence and
learns their logical dependencies (§3.3). These two
steps create positive cases of type descriptions for
the entity mention in the previous sentence. Last,
LITE fine-tunes a pre-trained NLI model with a
learning-to-rank objective that ranks the positive
case(s) over negative-sampled type descriptions
according to the entailment score (§3.5). During
the inference phase, given another sentence that
mentions an entity to be typed, our model predicts
type that leads to the hypothetical type description
with the highest entailment score. In this way,
LITE can effectively leverage indirect supervi-
sion signals of a (pre-trained) NLI model to infer
the type information of a mentioned entity.

We describe the technical details of training and
inference steps of LITE in the rest of the section.

3.2 Type Description Generation

Given each sentence s with an annotated entity
mention e,LITE first generates a natural language
type description T (a) for the type label annotation
a. The description will later act as a hypothesis in
NLI. Specifically, we consider several generation
technique to obtain such type descriptions, for
which the details are described as follows.

• Taxonomic statement. The first template di-
rectly connects the entity mention and the
type label with an ‘‘is-a’’ statement, namely,
‘‘[ENTITY] is a [LABEL]’’.

• Contextual explanation. The second tem-
plate generates a declarative sentence that
adds a context-related connective. The gen-
erated type description is in the form of
‘‘In this context, [ENTITY] is referring to
[LABEL]’’.

• Label substitution. Yin et al. (2020) proposed
to transform co-reference resolution problem
into NLI manner by replacing the pronoun
mentions with candidate entities. Inspired by
their transformation, this technique directly
replaces the [ENTITY] in the original sen-
tence with [LABEL]. Therefore, the NLI
model will treat the modified sentence with
a ‘‘type mention’’ as the hypothesis of the
original sentence with the entity mention.

As shown in Table 1, each template provides a
semantically meaningful way to connect the entity
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Templates Type Descriptions Premise-Hypothesis Pairs for NLI
Taxonomic Statement Jay is a producer. Premise: ‘‘Jay is currently working on his Spring 09 collection, . . . ’’

Hypothesis: ‘‘Jay is a producer.’’

Contextual Explanation In this context, career at a
company is referring
to duration.

Premise: ‘‘No one expects a career at a company any more, . . . ’’
Hypothesis: ‘‘In this context, career at a company is
referring to duration.’’

Label Substitution Musician knows how to make a
hip-hop record sound good.

Premise: ‘‘He knows how to make a hip-hop record sound good.’’
Hypothesis: ‘‘Musician knows how to make a hip-hop record
sound good.’’

Table 1: Type description instances of three templates. Entity mentions are boldfaced and underlined
whereas label words are only boldfaced.

with a label. In this way, the inference ability of
an NLI model can be leveraged to capture the
relationship of entity and label, given the original
entity-mentioning sentence as the premise.

In particular, we have also tried the automatic
template generation method proposed by Gao
et al. (2021), which has led to the adoption of
the contextual explanation template. Such a tem-
plate technique adopts the pre-trained text-to-text
Transformer T5 (Raffel et al., 2020) to generate
prompt sentences for fine-tuning language mod-
els. In our case, T5 mask tokens are added between
the sentence, the entity, and the label. Since T5
is trained to fill in the blanks within its input, the
output tokens can be used as the template for our
type description. For example, given the sentence
‘‘Anyway, Nell is their new singer, and I would
never interrupt her show.’’, the entity Nell and
the annotations (singer, musician, person), we can
formulate the input to T5 as ‘‘Anyway, Nell is their
new singer, and I would never interrupt her show.
<X> Nell <Y> singer <Z>’’. T5 will then fill
in the placeholders <X>, <Y>, <Z> and output
‘‘. . . I would never interrupt her show. In fact,
Nell is a singer.’’ We observe that most of the
generated templates given by T5 have appeared as
the format where a prepositional phrase (in fact,
in this context, in addition, etc.) followed by a
statement such as ‘‘[ENTITY] is a [LABEL]’’ or
‘‘[ENTITY] became [LABEL]’’. Accordingly, we
select the above contextual explanation template,
which is the most representative pattern observed
in the generations.

In the training process, we use one of the three
templates to generate the hypotheses, for which
the same template will also be used to obtain
the candidate hypotheses in inference. According
to our preliminary results on the dev set, the
taxonomic statement generation generally gives
better performance than the others under most
settings, for which the analysis is presented in

§4.3. Thus, the main experimentation is reported
as the configuration where LITE uses the type
descriptions based on taxonomic statement.

3.3 Modeling Label Dependency

The rich entity type vocabulary may form hier-
archies that enforce logical dependency among
labels of different specificity. Hence, we extend
the generation process of type description to bet-
ter capture such a label dependency. In detail, for
a specific type label for which LITE has gen-
erated a type description, if there are ancestor
types, we not only generate descriptions for each
of the ancestor types, but also conduct learning
among these type descriptions. The descendant
type description would act as the premise and the
ancestor type description would act as the hypoth-
esis. For instance, in OntoNotes (Gillick et al.,
2014) or FIGER (Ling and Weld, 2012), suppose
a sentence mentions the entity London and is la-
beled as /location/city, if the taxonomic statement
based description generation is used, LITE will
yield descriptions for both levels of types, that is,
‘‘London is a city’’ and ‘‘London is a location’’.
In such a case, the more fine-grained type descrip-
tion ‘‘London is a city’’ can act as the premise of
the more coarse-grained description ‘‘London is
a location’’, so as to help capture the dependency
between two labels ‘‘city’’ and ‘‘location’’. Such
paired type descriptions are added to training and
will be captured by the dependency loss Ld as
described in §3.4.

This technique to capture label dependency can
be easily adapted to tasks where a type ontol-
ogy is unavailable, but each instance is directly
annotated with multiple type labels of different
specificity. Particularly for the UFET task (Choi
et al., 2018), while no ontology is provided for
the label space, the task separates the type la-
bel vocabulary into different specificity, namely,

611

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00479/2022954/tacl_a_00479.pdf by guest on 31 M
ay 2022



general, fine, and ultra-fine ones. Because its an-
notation to an entity from a sentence includes
multiple labels of different specificity, we can still
utilize the aforementioned dependency modeling
method. For instance, an entity Mike Tyson may
be simultaneously labeled as person (general),
sportsman (fine), and boxer (ultra-fine). Similar
to using an ontology, each pair of descendant and
ancestor descriptions among the three generations
‘‘Mike Tyson is a sportsman’’, ‘‘Mike Tyson is a
person’’, and ‘‘Mike Tyson is a sportsman’’ are
also added to training.

3.4 Learning Objective
Let L be the type vocabularies, and the learning
objective of LITE is to conduct learning-to-rank
on top of the NLI model. Given a sentence s with
mentioned entity e, we useP to denote all true type
labels of e that may include the original label and
any induced ancestor labels as described in §3.3.
Then, for each label p ∈ P whose type descrip-
tion is generated as H(p) by one of the techniques
in §3.2, the NLI model calculates the entailment
score ε(s,H(p)) ∈ [0, 1] for the premise s and
hypothesis H(p). Meanwhile, negative sampling
randomly selects a false label p′ ∈ L \P . Follow-
ing the same procedure as above, the entailment
score ε(s,H(p′)) is obtained for the premise s
and the negative-sample hypothesis H(p′). The
margin ranking loss for an annotated training case
is then defined as

Lt = [ε(s,H(p′))− ε(s,H(p)) + γ]+.

[x]+ denotes the positive part of the input x (i.e.,
max(x, 0)) and γ is a non-negative constant.

We also similarly define a ranking loss to model
the label dependency. Still given the above anno-
tated sentence s and the set of all true type labels
P , as described in §3.3, for any exiting pair of
ancestor type pan and descendant type pde from
P , the training phase also captures the entailment
relation between their descriptions. This process
regards H(pde) as the premise and H(pan) as the
hypothesis, and the NLI model therefore yields
an entailment score ε(H(pde), H(pan)). The label
dependency loss is then defined as the following
ranking loss:

Ld = [ε(H(pde), H(p′an))

− ε(H(pde), H(pan)) + γ]+,

where p′an is negative-sampled type label.

The eventual learning objective is to optimize
the following joint loss:

L =
1

|S|
∑

s∈S

1

|Ps|
∑

p∈Ps

Lt + λLd

where S denotes the dataset containing sentences
with typed entities, and Ps denotes the set of
true labels on an entity of the sentence instance
s. In this way, all annotations of each entity
mention will be involved in training. λ here is
a non-negative hyperparameter that controls the
influence of dependency modeling.

3.5 Inference
The inference phase of LITE performs ranking
on descriptions for all type labels from the vo-
cabulary. For any given sentence s mentioning
an entity e, LITE accordingly generates a type
description for each candidate type label. Then,
taking the sentence s as the premise, the fine-tuned
NLI model ranks the hypothetical type descrip-
tions according to their entailment scores. Finally,
LITE selects the type label whose description
receives the highest entailment score, or predicts
with a threshold of entailment scores in cases
where multi-label prediction is required.

4 Experiment

In this section, we present the experimental
evaluation for LITE framework, based on both
UFET (§4.1) and traditional (less) fine-grained
entity typing tasks (§4.2). In addition, we also
conduct comprehensive ablation studies to un-
derstand the effectiveness of the incorporated
techniques (§4.3).

4.1 Ultra-Fine Entity Typing
We use the UFET benchmark created by Choi
et al. (2018) for evaluation. The UFET dataset
consists of two parts. (i) Human-labeled data (L):
5,994 instances split into train/dev/test by 1:1:1
(1,998 for each); (ii) Distant supervision data (D):
including 5.2M instances that are automatically
labeled by linking entity to KB, and 20M instances
generated by headword extraction. We follow the
original design of the benchmark to evaluate loose
macro-averaged precision (P), recall (R), and F1.

Training Data. In our approach, the supervision
can come from the MNLI data (NLI) (Williams
et al., 2018), distant supervision data (D), and the

612

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00479/2022954/tacl_a_00479.pdf by guest on 31 M
ay 2022



human-labeled data (L). Therefore, we investigate
the best combination of training data by exploring
the following different training pipelines:

• LITENLI: Pre-train on MNLI3, then predict
directly, without any tuning on D or L;

• LITEL: Only fine-tune on L;

• LITENLI+L: Pre-train on MNLI, then
fine-tune on L;

• LITED+L: Pre-train on D, then fine-tune on
L;

• LITENLI+D+L: First pre-train on MNLI, then
on D, finally fine-tune on L.

Model Configurations. Our system is first ini-
tialized as RoBERTa-large (Liu et al., 2019) and
AdamW (Loshchilov and Hutter, 2018) is used to
optimize the model. The hyperparameters as well
as the output threshold are tuned on the dev set:
batch size 16, pre-training (D) learning rate 1e-6,
fine-tuning (L) learning rate 5e-6, margin γ = 0.1
and λ = 0.05. The pre-training epochs are lim-
ited to 5, which is enough considering the large
size of pre-training data. The fine-tuning epochs
are limited to 2,000; models are evaluated every
30 epochs on dev and the best model is kept to
conduct inference on test.

Baselines. We compare LITE with the follow-
ing strong baselines. Except for LRN which is
merely trained on the human annotated data, all the
other baselines incorporate the distant supervision
data as extra training resource.

• UFET-biLSTM (Choi et al., 2018) repre-
sents words using the GloVe embedding
(Pennington et al., 2014) and captures se-
mantic information of sentences, entities,
as well as labels with a bi-LSTM and
a character-level CNN. It also learns a
type label embedding matrix to operate in-
ner product with the context and mention
representation for classification.

• LabelGCN (Xiong et al., 2019) improves
UFET-biLSTM by stacking a GCN layer on
the top to capture the latent label dependency.

• LDET (Onoe and Durrett, 2019) applies
ELMo embeddings (Peters et al., 2018) for

3This is obtained from huggingface.co/roberta
-large-mnli.

word representation and adopts LSTM as
its sentence and mention encoders. Similar
to UFET-biLSTM, it learns a matrix to com-
pute inner product with each input represen-
tation for classification. Additionally, LDET
also trains a filter and relabeler to fix the
label inconsistency in the distant supervision
training data.

• BOX4Types (Onoe et al., 2021) introduces
box embeddings to handle the type depen-
dency problems. It uses BERT-large-uncased
(Devlin et al., 2019) as the backbone and
projects the hidden classification vector to
a hyper-rectangular (box) space. Each type
from the label space is also represented as
a box and the classification is fulfilled by
computing the intersection of the input text
and type boxes.

• LRN (Liu et al., 2021) encodes the context
and entity with BERT-base-uncased. Then
two LSTM-based auto-regression networks
capture the context-label relation and the
label-label relation via attention mechanisms,
respectively, in order to generate labels. They
simultaneously construct bipartite graphs for
sentence tokens, entities, and generated labels
to perform relation reasoning and predict
more labels.

• MLMET (Dai et al., 2021), the prior SOTA
system, first generates additional distant
supervision data by the BERT Masked Lan-
guage Model, then stacks a linear layer on
BERT to learn the classifier on the union
label space.

Results. Table 2 comparesLITEwith baselines,
in which LITE adopts the taxonomic statement
template (i.e., ‘‘[ENTITY] is a [LABEL]’’).

Overall, LITENLI+L demonstrates SOTA per-
formance over other baselines, outperforming the
prior top system MLMET (Dai et al., 2021) with
1.5% absolute improvement on F1. Recall that
MLMET built a multi-way classifier on the its
newly collected distant supervision data and the
human-labeled data, our LITE optimizes a tex-
tual entailment scheme on the entailment data
(i.e., MNLI) and the human-labeled entity typing
data. This comparison verifies the effectiveness
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Model P R F1
UFET-biLSTM (Choi et al., 2018) 48.1 23.2 31.3
LabelGCN (Xiong et al., 2019) 50.3 29.2 36.9
LDET (Onoe and Durrett, 2019) 51.5 33.0 40.1
Box4Types (Onoe et al., 2021) 52.8 38.8 44.8
LRN (Liu et al., 2021) 54.5 38.9 45.4
MLMET (Dai et al., 2021) 53.6 45.3 49.1

LITE

NLI 1.5 7.1 2.5
L 48.7 45.8 47.2
D+L 27.5 56.4 37.0
NLI+D+L 45.4 49.9 47.4
NLI+L 52.4 48.9 50.6
–w/o label dependency 53.3 46.6 49.7

Table 2: Results on the ultra-fine entity typing
task. LITE series are equipped with the
Taxonomic Statement template. ‘‘w/o label de-
pendency’’ is applied to the ‘‘NLI+L’’ setting.
The F1 result by LITENLI+L is statistically signif-
icant (p-value < 0.01 in t-test) in comparison with
the best baseline result by MLMET.

of using the entailment scheme and the indirect
supervision from NLI.

The bottom block in Table 2 further explores
the best combination of available training data.
First, training on MNLI (i.e., LITENLI) alone
does not provide promising results. This could
be because the MNLI does not generalize well
to this UFET task. LITEL removes the super-
vision from NLI as compared to LITENLI+L,
causing a noticeable performance drop. In addi-
tion, the comparison between LITENLI+L and
LITED+L illustrates that the MNLI data, as an
out-of-domain resource, even provides more ben-
eficial supervision than the distant annotations.
To our knowledge, this is already the first work
that shows rather than relying on gathering dis-
tant supervision data in the (entity-mentioning
context, type) style, it is possible to find more
effective supervision from other tasks (e.g., from
entailment data) to boost the performance. How-
ever, when we incorporate the distant supervi-
sion data (D) into LITENLI+L, the new system
LITENLI+D+L performs worse. We present more
detailed analyses in §4.3.

In addition, we also investigate the contribution
of label dependency modeling by removing it
from LITENLI+L. As results show in Table 2,
incorporating label dependency helps improve the
recall with a large margin (from 46.6 to 48.9)
despite a minor drop for the precision, leading to
notable overall improvement in F1.

4.2 Fine-grained Entity Typing

In addition to UFET, we are also interested in
(i) the effectiveness of our LITE to entity typing
tasks with much fewer types, and (ii) seeing if
our learned LITE model from the ultra-fine task
can be used for inference on other entity typing
tasks, which often have unseen types, even without
further tuning. To that end, we evaluate LITE on
OntoNotes (Gillick et al., 2014) and FIGER (Ling
and Weld, 2012), two popular fine-grained entity
typing benchmarks.

OntoNotes contains 3.4M automatically la-
beled entity mentions for training and 11k
manually annotated instances that are split into
8k for dev set and 2k for test set. Its label space
consists of 88 types and one more other type.
In inference, LITE outputs other if none of
the 88 types is scored over the threshold described
in §3.5. FIGER contains 2M data samples labeled
with 113 types. The dev set and test set include
1,000 and 562 samples, respectively. Within its
label space, 82 types have a dependency relation
with their ancestor or descendant types while the
other 30 types are uncategorized free-form words.

Results. Table 3 reports baseline results as
well as results of two variants of LITE: One
is pre-trained on UFET and directly transfers
to predict on the two target benchmarks, the
other conducts task-specific training on the tar-
get benchmark after pre-training on MNLI. The
task-specific training variant outperforms respec-
tive prior SOTA on both benchmarks (OntoNotes:
86.4 vs. 85.4 in macro-F1, 80.9 vs. 80.4 in
micro-F1; FIGER: 86.7 vs. 84.9 in macro-F1,
83.3 vs. 81.5 in micro-F1).

An interesting advantage of LITE lies in
its transferability across benchmarks. Table 3
demonstrates that our LITE (pre-trained on
UFET) offers competitive performance on both
OntoNotes and FIGER even with only zero-shot
transfer (it even exceeds the ‘‘task-specific train-
ing’’ version on OntoNotes).4 Although there are
disjoint type labels between these two datasets
and UFET, there exist manually crafted mappings
from UFET labels to them (e.g., ‘‘musician’’ to

4LITE pre-trained on UFET performs worse on FIGER
than LITEwith task-specific training. The main reason could
be that a larger portion of FIGER test data comes with an
entity of proper noun to be labeled with more compositional
types, such as government agency, athlete, sports facility,
which have appeared much less often on UFET.
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OntoNotes FIGER
Model macro-F1 micro-F1 macro-F1 micro-F1

Hierarchy-Typing (Chen et al., 2020b) 73.0 68.1 83.0 79.8
Box4Types (Onoe and Durrett, 2020) 77.3 70.9 79.4 75.0
DSAM (Hu et al., 2020) 83.1 78.2 83.3 81.5
SEPREM (Xu et al., 2021) – – 86.1 82.1
MLMET (Dai et al., 2021) 85.4 80.4 – –

LITE
pre-trained on NLI+UFET 86.6 81.4 80.1 74.7
NLI+task-specific training 86.4 80.9 86.7 83.3

Table 3: Results for fine-grained entity typing. All LITE model results are
statistically significant (p-value < 0.05 in t-test) in comparison with the best baseline
results by MLMET on OntoNotes and by SEPREM on FIGER.

Data Source Sentence Labels

Entity Linking
(a) From 1928-1929 , he enrolled in graduate coursework at
Yale University in New Haven , Connecticut.

location, author,
province, cemetery,
person

(b) Once Upon Andalasia is a video game based on the film
of the same name.

art, film

(c) You can also use them in casseroles and they can be grated
and fried if you want to make hash browns.

brown

Head Word (d) He has written a number of short stories in different
fictional worlds, including Dragonlance, Forgotten Realms,
Ravenloft and Thieves’ World.

number

(e) Despite obvious parallels and relationships , video art is
not film.

film

Table 4: Examples of two sources of distant supervision data (one from entity linking, the other from
head word extraction). In the right ‘‘Labels’’ column, correct types are boldfaced while incorrect ones
are in gray.

‘‘/person/artist/music’’). In this way, traditional
multi-way classifiers still work across the datasets
after type mapping though we do not prefer
human-involvement in real-world applications. To
further test the transferability of LITE, a more
challenging experimental setting for zero-shot
type prediction is conducted and analyzed in §4.3.

4.3 Analysis

Through the following analyses, we try to answer
following questions: (i) Why did the distant su-
pervision data not help (as Table 2 indicates)? (ii)
How effective is each type description template
(Table 1)? (iii) With the NLI-style formulation
and the indirect supervision, does LITE general-
ize better for zero-shot and few-shot prediction?
Is trained LITE transferable to new benchmarks
with unseen types? (iv) On which entity types

does our model perform better, and which ones
remain challenging? (vi) How efficient is LITE?

Distant Supervision Data. As Table 2 in-
dicates, adding distant supervision data in
LITENLI+D+L even leads to a drop of 3.2% ab-
solute score in F1 from LITENLI+L. This should
be due to the fact that the distant supervision data
(D) are overall noisy (Onoe and Durrett, 2019).
Table 4 lists some frequent and typical prob-
lems that exist in D based on entity linking and
head-word extraction. In general, they will lead to
two problems.

On the one hand, a large number of false positive
types are introduced. Considering example (a) in
Table 4, the state Connecticut is labeled as au-
thor, cemetery, and person. For example (c), hash
brown is labeled as brown, turning the concept
of food into color. Additionally, the head-word
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LITENLI+L LITENLI+D+L LITED+L

Templates P R F1 P R F1 P R F1
Taxonomic Statement 52.4 48.9 50.6 45.4 49.9 47.4 27.5 56.4 37.0
Contextual Explanation 50.8 49.2 50.2 45.3 48.5 46.8 26.9 55.4 36.2
Label Substitution 47.4 49.3 48.3 42.5 50.7 46.2 24.8 59.3 35.0

Table 5: Behavior of different type description templates under three training settings.

method is short in capturing the semantics. In
example (d), number is falsely extracted as the
type for a number of short stories because of the
preposition ‘‘of’’.

On the other hand, such distant supervision
may not comprehensively recall positive types.
For instance, examples (b) and (e) are both
about the entity ‘‘film’’ where the recalled types
are correct. However, in the human annotated
data, entity ‘‘film’’ may also be labeled as
(‘‘film’’, ‘‘art’’, ‘‘movie’’, ‘‘show’’, ‘‘entertain-
ment’’, ‘‘creation’’). In this situation, those missed
positive types (i.e., ‘‘movie’’, ‘‘show’’, ‘‘enter-
tainment’’, and ‘‘creation’’) will be selected by
the negative sampling process of LITE and there-
fore negatively influence the performance. The
comparison between LITENLI+L and LITED+L

can further justify the superiority of the indirect
supervision from NLI over that from the distant
supervision data.

Type Description Templates. Table 5 reveals
how template choices affect the typing perfor-
mance. It is obvious that taxonomic statement
outperforms the other two under all of the three
training settings. The contextual explanation tem-
plate yields close yet worse results, but the label
substitution leads to more noticeable F1 drop. This
may result from the absence of an entity mention in
the hypothesis by label substitution. For instance,
in ‘‘Soft eye shields are placed on the babies to
protect their eyes.’’, LITE with label substitution
generates related but incorrect type labels such as
treatment, attention, or tissue.

Few- and Zero-shot Prediction. In §4.2, we
discussed transferring LITE trained on UFET to
other fine-grained entity typing benchmarks. Nev-
ertheless, because UFET labels are still inclusive
of them with mapping, we conducted a further
experiment in which portions of UFET training
labels are randomly filtered out so that 40% of
the testing labels are unseen in training. We then
investigated the LITENLI+L performance on test

Figure 2: Performance comparison of our system LITE
and the prior SOTA system, MLMET, on the filtered
version of UFET for zero-shot and few-shot typing.
The zero-shot labels correspond to the 40% test set
type labels that are unseen in training. We also report
the performance on other few-shot type labels.

types that have zero or a few labeled examples
in the training set. Figure 2 shows the results of
LITENLI+L and the strongest baseline, MLMET.
Note that while the held-out set of type labels is
completely unseen to LITE, the full type vocabu-
lary is provided for MLMET during its LM-based
data augmentation process in this experiment.

As shown in the results, it is as expected that the
performance on more frequent labels is better than
on rare labels. LITENLI+L outperforms MLMET
on all the listed sets of zero- and few-shot labels;
this reveals the strong low-shot prediction perfor-
mance of our model. Particularly, on the extremely
challenging zero-shot labels, LITENLI+L drasti-
cally exceeds MLMET by 32.9% vs. 10.8% in F1.
Hence, it is demonstrated that the NLI-based en-
tity typing succeeds in more reliably representing
and inferring rare and unseen entity types.

The main difference between the NLI frame-
work and multi-way classifiers is that NLI makes
use of the semantics of input text as well as the
label text; conventional classifiers, however, only
model the semantics of input text. Encoding the

616

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00479/2022954/tacl_a_00479.pdf by guest on 31 M
ay 2022



Input True Labels Prediction
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L
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T
(a) The University of California
communications major gave her
mother a fitting present, surprising
herself by winning the 50-meter
backstroke gold medal.

athlete, person,
swimmer*, contestant,
scholar, child

LITE:
athlete, person, swimmer*,
female, student, winner
MLMET:
athlete, person, child,
adult, female, mother, woman

(b) The apology is being viewed
as a watershed in Australia , with
major television networks airing it
live and crowd gathering around
huge screens in the city.

event, apology*,
plea, regret

LITE:
event, apology*,
ceremony, happening, concept
MLMET:
event, message

(c) A drawing table is also sometimes
called a mechanical desk because, for
several centuries, most mechanical
desks were drawing tables.

object, desk,
furniture*, board,
desk, table

LITE:
object, desk, furniture*
MLMET:
object, desk, computer

M
L

M
E

T
ex

ce
ed

s
L
I
T
E

(d) He attended the University of
Virginia, where he played basketball
and baseball; his brother Bill also
played baseball for the University.

basketball*, baseball, fun,
action, activity, contact sport,
game, sport, athletics,
ball game, ball, event

LITE:
activity, game, sport, event,
ball game, ball, athletics
MLMET:
activity, game, sport,
event, basketball*

(e) The manner in which it was
confirmed however smacked of an
acrimonious end to the relationship
between club and player with Chelsea.

manner*, way, concept,
style, method

LITE:
event
MLMET:
manner*, event

Table 6: Case study of labels on which LITE improves MLMET or MLMET outperforms LITE.
Correct predictions are in blue and * indicates the representative label words for the discussed pattern.

semantics of on the label side is particularly ben-
eficial when the type set is super large and many
types lack training data. When some test labels
are filtered out in the training process, LITE
still performs well with its inference manner but
classifiers (like MLMET) fail to recognize the
semantics of unseen labels merely with their fea-
tures. In this way, LITE maintains high perfor-
mance when transferring across benchmarks with
disjoint type vocabularies.

Case Study. We randomly sampled 100 labels
on which LITE improves MLMET by at least
50% in F1 and here are the recognized typical
patterns:

• Contextual inference (28%): In case (a) of
Table 6, considering the information ‘‘win-
ning the 50-meter backstroke gold medal’’,
LITE successfully types her with swim-
mer in addition to athlete that is given by
MLMET.

• Coreference (20%): In case (b), LITE
correctly refers the pronoun entity it to ‘‘apol-
ogy’’ but MLMET merely captures local
information ‘‘tv network airing’’ to obtain
the label words event, message.

• Hypernym (19%): In case (c), even if there
is no mention of furniture in the text, LITE
gives a high confidence score to this type
that is a hypernym of mechanical desks.
Nevertheless, MLMET only obtains trivial
answers such as desk, object.

On the other hand, we also sampled 100 labels
on which MLMET performs better and it can be
concluded that LITE falls short mainly in the
following scenarios:

• Multiple nominal words (30%): In sample
(d) of Table 6, due to the ambiguous
meaning of the type hypothesis ‘‘basketball
and baseball is a basketball’’, LITE fails to
predict the groundtruth label basketball.

• Clause (28%) Instance (e) illustrates a com-
mon situation when clauses are included in

617

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00479/2022954/tacl_a_00479.pdf by guest on 31 M
ay 2022



Named Entity Pronoun Nominal
P R F1 P R F1 P R F1

LITENLI+L 58.6 55.5 57.0 51.2 57.5 54.2 45.3 47.1 46.2
MLMET 58.3 54.4 56.3 57.2 50.0 53.4 49.5 38.9 43.5

Table 7: Performance comparison of LITE and prior SOTA, MLMET, on
named entity, pronoun, and nominal entities, respectively.

the entity mention, where the effectiveness
of type descriptions is harmed. The clausal
information distracts LITE from focusing on
the key part of the entity.

Prediction on Different Categories of Entity
Mentions. We also investigated the prediction
of LITE on three different categories of entity
mentions from the UFET test data: named entities,
pronouns, and nominals. For each category of
mentions, we randomly sample 100 instances;
the performance comparison against MLMET is
reported in Table 7.

According to the results, LITE consistently
outperforms MLMET on all three categories of
entities and the improvement on nominal phrases
(46.2% vs. 43.5% in F1) is most significant. This
partly aligns with the capability of making infer-
ences based on noun hypernyms, as discussed in
the Case Study. Meanwhile, typing on nominals
seeks to be more challenging than on the other two
categories of entities, which, from our observa-
tion, is mainly due to two reasons. First, Nominal
phrases with multiple words are more difficult to
capture by the language model in general. Sec-
ond, nominals are sometimes less concrete than
pronouns and named entities, hence LITE also
generates more abstract type labels. For example,
LITE has labeled the drink in an instance as sub-
stance, which is too abstract and is not recognized
by human annotators.

Time Efficiency. In general, LITE has much
less training cost, of around 40 hours, than the pre-
vious strongest (data-augmentation-based) model
MLMET, which requires over 180 hours, on the
UFET task.5 During the inference step, it takes
about 35 seconds per new sentence for our model
to do inference with a fixed type vocabulary of

5All time estimations are given by experiments performed
on a commodity server with a TITAN RTX. Training and
evaluation batch sizes are maximized to 16 or 128 for LITE
and MLMET, respectively.

over 10,000 different labels while a common
multi-way classifier merely requires around 0.2
seconds. In fact, such a big difference in infer-
ence cost results from encoding longer texts and
multiple encoding calculation time for the same
text. It can be accelerated by modifying the en-
coding model structure which will be discussed
in §5. However, LITE is much more efficient
on dynamic type vocabulary. It requires almost
no re-calculation when new, un-mappable labels
are added to an existing type set but multi-way
classifiers need re-training with an extended clas-
sifier every time (e.g., over 180 hours by the
previous SOTA).

5 Conclusion and Future Work

We propose a new model, LITE, that leverages
indirect supervision from NLI to type entities
in texts. Through template-based type hypothesis
generation,LITE formulates the entity typing task
as a language inference task and meanwhile the
semantically rich hypothesis remedies the data
scarcity problem in the UFET benchmark.

Additionally, the learning-to-rank objective
further helps LITE with generalized predic-
tion across benchmarks with disjoint type sets.
Our experimental results illustrate that LITE
promisingly offers SOTA on UFET, OntoNotes,
and FIGER, and yields strong performance on
zero-shot and few-shot types. LITE pretrained on
UFET also yields strong transferability by out-
performing SOTA baselines when directly make
predictions on OntoNotes and FIGER.

For future research, as mentioned in §4.3, we
first plan to investigate ways to accelerate LITE
by utilizing a late-binding cross-encoder (Pang
et al., 2020) for linear-complexity NLI, and incor-
porating high-dimensional indexing techniques
like ball trees in inference. To be specific, the
premise and hypotheses can first be encoded re-
spectively and the resulting representations can
later be used to evaluate the confidence score of
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premise-hypothesis representation pairs through a
trained network. With little expected loss in per-
formance, LITE can still maintain its feature of
strong transferability and zero-shot prediction.

In addition, we plan to extend NLI-based in-
direct supervision to information extraction tasks
such as relation extraction and event extraction. In-
corporating abstention-awareness (Dhamija et al.,
2018) for handling unknown types is another
meaningful direction. Additionally, Poliak et al.
(2018) recast diverse types of reasoning datasets
including NER, relation extraction, and sentiment
analysis into the NLI structure, which we plan to
incorporate as extra indirect supervision for LITE
to further enhance the robustness of entity typing.
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