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A Port-Hamiltonian Control Framework to Render a
Power Electronic System Passive

Qing-Chang Zhong, Fellow, IEEE, and Márcio Stefanello, Member, IEEE

Abstract—In this note, a control framework is proposed to
render a power electronic system passive by adopting the port-
Hamiltonian (pH) systems theory. The system has a power
electronic converter, either grid-tied or islanded. The control
framework consists of a lossless interconnection block and three
control channels. It makes the power converter behave as a
virtual synchronous machine (VSM). The three channels are
designed to, respectively, generate the frequency and the flux of
the VSM and a third quantity that is necessary for forming the
lossless interconnection. It is proven that the closed-loop system is
passive without the need of assuming constant frequency, constant
voltage, and/or constant loads. It is sufficient to only assume that
the load can be described as a passive pH model. Hence, the
proposed control framework is very generic.

Index Terms—Power electronic converter, virtual synchronous
machine (VSM), port-Hamiltonian (pH) systems, passivity, dis-
tributed generation.

I. INTRODUCTION

THe integration of distributed energy resources, such as
renewable energy, storage systems and electrical vehi-

cles, into the electrical power system has become a topic of
intensive research [1], [2], [3]. Power electronic converters
are often used as the interfacing device [2] and the control of
power electronic converters is critical to maintain stable and
reliable operation of power systems.

Power converters in grid-tied applications are usually
current-controlled. That is, there is a primary layer that
synthesizes reference currents for power tracking or sharing.
However, this may cause detrimental impact [4] on the sta-
bility of power systems because the existing power systems
are based on synchronous machines that behave as voltage
sources. Hence, there is a trend to adopt voltage-controlled
power converters. Following this line, some approaches, such
as the droop control [5], the virtual synchronous machine
(VSM) [6], [7], [8], [9]; controllers based on the Kuramoto
oscillator [10] and dispatchable virtual oscillators [11], [12],
have been proposed. Note that the droop control principle
plays an important role in all of these approaches.

A challenging problem to be solved in this field is how
to guarantee the stability of a power electronic converter,
either grid-tied or islanded. A more challenging problem is
the stability of a system with multiple converters operated
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together [13]. Although local stability can be established with
small-signal analysis and linearization [14], [15], [16], [17],
nonlinearities, such as the calculation of the real power and the
reactive power and the coupling effect between frequency and
voltage dynamics, make it necessary to adopt nonlinear control
techniques. The port-Hamiltonian (pH) systems theory [18],
[19], [20], [21], [22], [23] has emerged as a very promising
tool to address this problem. Works like [24] and [25] have
explored the stability and control of microgrids using pH
models. In [26], the analogy between a power electronic
converter and a synchronous machine has been established
with pH models. Furthermore, the conventional power systems
with synchronous generators can be modeled and analyzed
with pH models; see e.g. [27]. However, most of the works
assume that the voltage, the frequency, and/or the loads are
constant. Practically, this is not true and makes it even more
challenging to study the stability of this kind of systems.

Because of the significant challenges in directly studying
the stability of a power electronic system, either with a single
converter or with multiple converters, it is worthwhile studying
the passivity of the system as an intermediate step and then
studying the stability of the system by bridging the gap
between stability and passivity.

In this paper, a generic control framework based on the
pH systems theory is proposed to render a power electronic
converter passive with the only assumption of loads being
passive. The converter can be operated in the grid-tied mode
or in the islanded mode. Moreover, the proposed control
framework makes the converter behave like a VSM. It consists
of a lossless interconnection block and three control chan-
nels: a torque-frequency channel to generate the frequency, a
quorte-flux channel to generate the flux, and a third channel
introduced to form a lossless interconnection. The new word
quorte, as coined in [28], represents the quantity that is dual
to the torque. The three control channels are designed to
render the closed-loop system passive for any loads that are
passive. Note that the assumption on the loads being passive is
not conservative because most nonlinear loads, including ones
with active switching devices, can be modeled as passive pH
systems [29], [30].

It is well known that the lossless interconnection of a
passive control block and a passive control plant is passive;
see e.g. [20], [21], [22], [23]. The novelty of this paper lies
in identifying the right pairs of signals, constructing a suitable
lossless interconnection, and constructing a passive control
block for a power electronic system, without the conventional
assumptions of constant voltage, constant frequency and/or
constant loads, while incorporating the fundamental principles
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of synchronous machines into the control framework.
The rest of this paper is organized as follows. In Section II,

some preliminaries are given. In Section III, the mathematical
model of the system under consideration, together with the
problem formulation, are presented. The control framework is
presented in Section IV and the main result about the passivity
of the closed-loop system is presented in Section V. Some
simulation results are presented in Section VI and conclusions
are made in Section VII.

II. PRELIMINARIES

For a dynamic system, the concept of passivity involves in a
non-negative function of the state vector x, called the storage
function Hs (x). A dynamic system is passive if the energy
absorbed by the system over any period of time [0, t] is greater
than or equal to the increase in the energy stored in the system
over the same period, that is, if

ˆ t

0

uT (τ) y (τ) dτ ≥ Hs (x (t))−Hs (x (0)) . (1)

Moreover, it is lossless if both sides of (1) are equal or
dHs
dt (x(t)) = uT y.

Passivity is a compositional property and can be studied
with different frameworks; see e.g., [31], [32]. The port-
Hamiltonian (pH) systems theory [18] offers a systematic
mathematical framework for structural modeling, analysis and
control of complex networked multi-physics systems with
lumped and/or distributed parameters, which interact with the
environment through ports. The usual input-state-output form
of a pH system [18], [20], [33], [34] is

ẋ = [J (x)−R (x)]
∂H (x)

∂x
+G (x)u

y = GT (x)
∂H (x)

∂x
,

(2)

where J (x) = −J (x)
T is skew-symmetric, R (x) = R (x)

T

is symmetric, u, y ∈ Rm are the input and output pair of the
system, x = [x1, . . . , xn]

T ∈ Rn is the state of the system,
and H (x) : Rn → R is a smooth function called Hamiltonian
of the system. The input and output pair (u, y) forms a power
port of the pH system (2) and the product uT y has the unit
of power. Furthermore, if R (x) ≥ 0 and H (x) is positive
semidefinite, then the system (2) is passive with H (x) being
a storage function of the system.

III. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

A. System Description

The control plant under consideration is a three-phase
DC/AC power electronic converter connected to the grid. As
illustrated in Fig. 1, the converter is represented with an
ideal voltage source e =

[
ea eb ec

]T
. This is because a

power electronic converter is often operated at a switching
frequency much higher than the fundamental frequency and,
from the viewpoint of control, the switching effect of the
power semiconductor devices can be neglected [2], according
to the well-established averaging theory; see e.g. [35].

The converter may be operated in the grid-tied mode or in
the islanded mode with the grid breaker closed or open.

Figure 1: A DC/AC power converter connected to the grid
with the converter represented by the voltage source e.

The converter-side L1 and R1 model the filter inductor
and the capacitor Cf models the filter capacitor. The supply-
side elements L2 and R2 model the line impedance. Assume
that the per-phase load can be represented by the following
generalized dissipative pH model [29]:

MLw q̇w = (JLw −RLw) qw +GLwvw

iLw = GTLwqw,
(3)

where w = a, b, c stands for the three electrical phases
with JLw = −JTLw, RLw = RTLw ≥ 0 and MLw = MT

Lw

nonsingular. The converter breaker and the grid breaker are
assumed to be closed. By defining the state of the load as
q =

[
qTa qTb qTc

]T ∈ R3m, the current drawn by the load
as iL =

[
iLa iLb iLc

]T
and the voltage of the load as

v =
[
va vb vc

]T
, the load can be modeled as

MLq̇ = (JL −RL) q +GLv

iL = GTLq
(4)

with JL = −JTL , RL = RTL ≥ 0 and ML = MT
L nonsingular,

all with appropriate dimensions.
Denote the converter current as i =

[
ia ib ic

]T
, the grid

supply current as ig =
[
iga igb igc

]T
, and the grid supply

voltage as vg =
[
vga vgb vgc

]T
. Then the system shown in

Fig. 1 can be modeled as

L1
di

dt
= −R1i− v + e,

Cf
dv

dt
= i−GTLq + ig,

L2
dig
dt

= −v −R2ig + vg,

ML
dq

dt
= (JL −RL) q +GLv.

(5)

By defining the state of the plant as

xP =
[
L1i

T Cfv
T L2i

T
g (MLq)

T
]T

and selecting the Hamiltonian function of the plant as

HP =
1

2
L1i

T i+
1

2
Cfv

T v +
1

2
L2i

T
g ig +

1

2
qTMLq, (6)

the system (5) can be rewritten as the following pH model

ΣP :


ẋP = (JP −RP )

∂HP

∂xP
+GP e+Ggvg

i = GTP
∂HP

∂xp

ig = GTg
∂HP

∂xP

(7)
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with ∂HP
∂xP

=
[
iT vT iTg qT

]T
, GP =

[
I 0 0 0

]T
,

Gg =
[
0 0 I 0

]T
,

JP =


0 −I 0 0
I 0 I −GTL
0 −I 0 0
0 GL 0 JL

 andRP =


R1I 0 0 0

0 0 0 0
0 0 R2I 0
0 0 0 RLI


where I is the 3 × 3 identity matrix. Apparently, the pH
system (7) is passive with HP ≥ 0, ∀t, for any passive load as
described in (4). This holds true even when the grid breaker
is open, in which case Gg =

[
0 0 0 0

]T
.

B. Problem Formulation

The control problem to be solved in this paper is to design
a control law and supply it as the input e for the system shown
in Fig. 1 so that the closed-loop system is passive.

IV. CONTROL FRAMEWORK

A. Control Structure and Control Law

Because of the significance of controlling power electronic
converters to behave as VSM [1], [36], the proposed control
structure, as shown in Fig. 2, follows the principles of VSM.
The closed-loop system consists of a control block ΣC , an
interconnection block ΣI , and the open-loop plant ΣP . The
control law is designed as

e = ωϕψz, (8)

where z =
[
sin θ sin

(
θ − 2π

3

)
sin
(
θ + 2π

3

)]T
with θ

being the angle of the phase-a voltage ea, ω = θ̇ and ϕ are
the frequency and the virtual flux of the VSM, and ψ is a
third variable that is critical for the design and analysis of
the system. The control block ΣC consists of three channels:
(T, ω), (Γ, ϕ), and (Υ, ψ). The quantities T and Γ are the
torque of the VSM and its dual quantity quorte as coined
in [28], respectively, and the quantity Υ is critical for the
controller design and analysis. Note that this is different from
the conventional VSM design, which only involves in two
channels. As will be seen later, the third channel (Υ, ψ) plays
a crucial role in rendering the closed-loop system passive.

B. Interconnection Block ΣI

According to the ghost power theory [1], [37], the active
power P and the reactive power Q delivered by the converter
can be calculated as

P = eT i and Q = −eTg i, (9)

where eg = ωϕψzg is the ghost signal of e with zg =[
cos θ cos

(
θ − 2π

3

)
cos
(
θ + 2π

3

)]T
being the ghost signal

of z. The real power P and the reactive power Q can be
alternatively rewritten as

P = ωT and Q = ϕΓ, (10)

with the torque T and the quorte Γ given as

T = ϕψzT i and Γ = −ωψzTg i. (11)

Figure 2: Control framework to render a power electronic
system passive

The new quantity Υ is defined as

Υ , −Q
ψ

= ωϕzTg i. (12)

As a result, the interconnection block ΣI with four ports (e, i),
(−T, ω), (−Γ, ϕ), and (−Υ, ψ) can be described as

ΣI :



e
−T
−Γ
−Υ

 =


0 ϕψz 0 0

−ϕψzT 0 −ψzTg i ϕzTg i
0 ψzTg i 0 0
0 −ϕzTg i 0 0



i
ω
ϕ
ψ

 .
(13)

It is easy to show that the interconnection block ΣI is
passive because its supply rate is ϕψωzT i − ϕψωzT i −
ϕψωzTg i+ ϕψωzTg i+ ϕψωzTg i− ϕψωzTg i = 0.

C. Design of the Control Block ΣC

The proposed control block ΣC , as shown in Fig. 2, consists
of three similar channels. The (T, ω) channel generates the
frequency ω according to the torque feedback −T ; the (Γ, ϕ)
channel generates the flux ϕ according to the quorte feedback
−Γ; and the (Υ, ψ) channel generates ψ according to the
feedback −Υ. There are many different ways to design these
channels. In this paper, these channels are designed according
to the droop control principle [1], [38], [39] to satisfy the
steady-state performance governed by

ω = ωr +Dω (Tset − T ) ,

ϕ = ϕr +Dϕ (Γset − Γ) ,

ψ = ψr +Dψ (Υset −Υ) ,

where D· > 0 with · = ω, ϕ, ψ are the droop coefficients,
Tset, Γset and Υset are the set-points for T , Γ and Υ, and ωr,
ϕr and ψr are the reference values for ω, ϕ and ψ that can be
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set to their nominal values ωn, ϕn and ψn, respectively. The
following low-pass filters

Σ· =
1

τ·s+ 1
, (14)

with τ· > 0 being the time constants, are adopted to provide
the necessary inertia for the frequency channel and to decouple
the frequency channel from the ϕ and ψ channels. Then, the
differential equations of the three-channel controllers are

ω̇ = − 1

τω
ω − Dω

τω
T +

1

τω
ωr +

Dω

τω
Tset,

ϕ̇ = − 1

τϕ
ϕ− Dϕ

τϕ
Γ +

1

τϕ
ϕr +

Dϕ

τϕ
Γset,

ψ̇ = − 1

τψ
ψ − Dψ

τψ
Υ +

1

τψ
ψr +

Dψ

τψ
Υset.

(15)

The set-points Tset and Γset can be chosen as

Tset = Pset/ωn and Γset = Qset/ϕn,

where ϕn is the nominal value of ϕ and Pset and Qset are the
set-points of the real power P and the reactive power Q. Note
that the ports (−Υ, ψ) and (−Γ, ϕ) are designed to satisfy
Q = ϕΓ = −ψΥ. Hence, it is reasonable to choose Υset =
−Γset. Considering the generated voltage in (8) and letting
ψn = ϕn, the nominal values ϕn and ψn can be obtained as

ϕn = ψn =

√√
2Vn/ωn,

where Vn is the nominal RMS phase voltage.

V. MAIN RESULT

Theorem 1. The closed-loop system shown in Fig. 2 with the
electrical plant (7), the three-channel controllers (15), and the
interconnection block (13) is passive for the passive load (4).

Proof: The three-channel controllers (15) can be rewritten
as 

ω̇ = −Rω
∂Hω

∂ω
+Gω

(
−T + Tset + 1

Dω
ωr

)
,

ω = Gω
∂Hω

∂ω

(16)


ϕ̇ = −Rϕ

∂Hϕ

∂ϕ
+Gϕ

(
−Γ + Γset + 1

Dϕ
ϕr

)
,

ϕ = Gϕ
∂Hϕ

∂ϕ

(17)


ψ̇ = −Rψ

∂Hψ

∂ψ
+Gψ

(
−Υ + Υset + 1

Dψ
ψr

)
,

ψ = Gψ
∂Hψ

∂ψ

(18)

with R· = D·
τ2
·

, G· = D·
τ·

and H· = 1
2
τ·
D·

(·)2 for · = ω, ϕ, ψ.
Define H = HP + Hω + Hϕ + Hψ and select the state

of the closed-loop system as x =
[
xP ω ϕ ψ

]T
. Then

H is a Hamiltonian of the closed-loop system with H ≥ 0.
Moreover, after combining (7), (13), (16), (17), and (18), the
closed-loop system can be described as

——————————————

Σ :



ẋPω̇ϕ̇
ψ̇

 =



JP −RP GPGωϕψz 0 0

−GωϕψzTGTP −Rω −GϕGωψzTg GTP
∂HP
∂xp

GϕGωGψz
T
g G

T
P

∂HP
∂xp

∂Hϕ
∂ϕ

0 GϕGωψz
T
g G

T
P

∂HP
∂xp

−Rϕ 0

0 −GϕGωGψzTg GTP
∂HP
∂xp

∂Hϕ
∂ϕ

0 −Rψ





∂HP
∂xP
∂Hω
∂ω
∂Hϕ
∂ϕ
∂Hψ
∂ψ



+

Gg 0 0 0
0 Gω 0 0
0 0 Gϕ 0
0 0 0 Gψ




vg
Tset + 1

Dω
ωr

Γset + 1
Dϕ

ϕr

Υset + 1
Dψ

ψr


igωϕ
ψ

 =

Gg 0 0 0
0 Gω 0 0
0 0 Gϕ 0
0 0 0 Gψ




∂HP
∂xP
∂Hω
∂ω
∂Hϕ
∂ϕ
∂Hψ
∂ψ


(19)

——————————————

The system (19) is in the pH form of (2) with Hamil-
tonian H ≥ 0 and R (x) = diag(RP , Rω, Rϕ, Rψ) =
RT (x) ≥ 0. Hence, it is passive with respect to the in-
puts ( vg, Tset + 1

Dω
ωr, Γset + 1

Dϕ
ϕr, Υset + 1

Dψ
ψr )

and the outputs ( ig, ω, ϕ, ψ ).

This holds true even when it is operated in the islanded

mode as well, in which case the grid breaker is open and
Gg =

[
0 0 0 0

]T
. This concludes the proof.
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Table I: Electrical and control system parameters.

Parameter Value Parameter Value
L1, L2 2.5 mH, 0.5 mH Dω 0.14
R1 = R2 0 Ω Dϕ 4.12 × 10−6

Cf 15µF Dψ 4.12 × 10−7

RL load 6.26 Ω, 6.64 mH τω 0.0001
Vn, fn 110 V, 60 Hz τϕ 0.001

ϕn = ψn

√√
2Vn
ωn

= 0.64 τψ 0.01

VI. SIMULATION EXAMPLE

Simulations were carried out for a 10 kVA three-phase sys-
tem depicted in Fig. 1. The electrical and control parameters
are summarized in Table I. Note that the self-synchronization
strategy proposed in [8] is adopted to facilitate the simulation.
As a result, the controller can work in the synchronization
mode to synchronize the converter with the grid, in the set
mode to send the set real power and reactive power to the
grid, and in the droop mode to regulate the system frequency
and voltage. It can also work in the islanded mode with the
droop functions on.

The results are shown in Fig. 3 with the details explained
below.

1) Operation in the Synchronization Mode.
At t = 0 sec, the power set-points are set to 0 and the

converter starts synchronization with the grid voltage. The grid
frequency is set at 59.8Hz and the initial phase angle is set
at 45◦. The values of T , Γ and Υ are synthesized using the
virtual current iv = 5

0.005s+1 (e− v). This causes large spikes
in P and Q but it does not matter because they are virtual.

At t = 2 sec, the converter is connected to the grid, very
smoothly without noticeable transients in the currents.

2) Operation in the Set Mode
At t = 4 sec, the real power set-point Pset is changed to 4

kW. The active power P is regulated to Pset (and, thus, T to
Tset). Accordingly, there are some transients in the frequency.

At t = 6 sec, the reactive power set-point Qset is changed
to 1 kVar. The reactive power Q is regulated to Qset quickly
(and, thus, Γ to Γset and Υ to Υset).

At t = 8 sec, a grid voltage sag of 10% is applied. There
are short large spikes on P and Q mainly due to numerical
calculation because the currents and the frequency behave
well, except some very short transients. The real power and
the reactive power sent to the grid in the steady state remain
nearly unchanged. The output voltage dropped accordingly.

3) Operation in the Droop Mode
At t = 10 sec, the droop functions of ω, ϕ and ψ are enabled

by setting ωr = ωn, ϕr = ϕn and ψr = ψn. The real power
sent to the grid increases because the grid frequency 59.8 Hz
is 0.2 Hz below the nominal frequency.

At t = 12 sec, the grid frequency is restored from 59.8
Hz to the nominal value of 60 Hz. The converter frequency
changes accordingly without visible impact on ϕ and ψ, nor
on Γ or Υ. As a result, no big changes are observed on the
rms voltage or on the reactive power.

4) Islanded Operation with Droop Functions on
At t = 14 sec, the converter is disconnected from the grid

to operate without a local load. The real power and reactive

(a) P [W] (red) and Q [var] (blue). (b) rms value of e (phase-a).

(c) T (×500) (red), Γ (blue) and
Υ (black).

(d) Flux ϕ (red) and ψ (blue).

(e) Frequency ω
2π

. (f) Output currents.

Figure 3: Simulation results.

power drop to close to 0. Since ϕ reaches a value of 0.6502, the
corresponding theoretical rms value of e is ωϕψ√

2
→ ωnϕψn√

2
=

111.34 V, very close to the measured rms voltage of 111.6 V.
Note that Pset is still 4kW so the frequency is about 60.25Hz.

At t = 16 sec, a three-phase 5 kW, 2 kVar inductive load
is connected. The frequency drops to slightly below 60 Hz.

At t = 18 sec, the set-points Pset and Qset are changed to
zero. The frequency and the voltage drop accordingly while
P and Q remain nearly unchanged because the load remains
unchanged.

VII. CONCLUSION

In this paper, a control framework has been proposed to
guarantee the passivity of a power electronic converter, either
grid-tied or islanded, using the port-Hamiltonian systems
theory. The major challenge lies in identifying the right pairs
of signals, constructing a suitable lossless interconnection
block, and constructing a passive control block with the right
number of control channels. The proposed control structure
consists of a lossless interconnection block and three control
channels. The passivity of the closed-loop system is rigorously
proven. No assumptions are made about the line impedance,
the voltage or the frequency. The only assumption is that the
load can be described by a passive port-Hamiltonian model.
Note that this assumption is not too conservative because most
nonlinear loads, including ones with active switching devices,
can be modeled as pH systems [29], [30]. The results in this
paper can also be applied to render loads that have a front-
end power electronic converter passive if needed. Hence, the
proposed control framework is very generic.
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The next step is to study the asymptotic stability of the
system via bridging the gap between passivity and stability.
For this, the dissipation obstacle [23] needs to be investigated.
While it is not going to be straightforward, it is very promising
from the simulations results given in this paper. Another
interesting topic for future research is to find out whether there
exists a two-channel structure to render the system passive. It
is also worth studying whether the assumption on loads being
passive is a necessary condition as well.
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[15] N. Pogaku, M. Prodanović, and T. C. Green, “Modeling, analysis and
testing of autonomous operation of an inverter-based microgrid,” IEEE
Trans. Power Electron., vol. 22, no. 2, pp. 613–625, 2007.

[16] X. Guo, Z. Lu, B. Wang, X. Sun, L. Wang, and J. M. Guerrero,
“Dynamic phasors-based modeling and stability analysis of droop-
controlled inverters for microgrid applications,” IEEE Trans. Smart Grid,
vol. 5, no. 6, pp. 2980–2987, 2014.

[17] A. D. Paquette and D. M. Divan, “Virtual impedance current limiting
for inverters in microgrids with synchronous generators,” IEEE Trans.
Ind. Appl., vol. 51, no. 2, pp. 1630–1638, 2015.

[18] A. van der Schaft and D. Jeltsema, “Port-Hamiltonian systems theory:
An introductory overview,” Foundations and Trends in Systems and
Control, vol. 1, no. 2-3, pp. 173–378, 2014. [Online]. Available:
http://dx.doi.org/10.1561/2600000002

[19] B. Maschke and A. Van Der Schaft, “Port controlled Hamiltonian
systems: modeling origins and system theoretic properties,” in IFAC
Symp. Nonlinear Control Systems Design, 1991, pp. 359–365.

[20] R. Ortega, A. van der Schaft, F. Castanos, and A. Astolfi, “Control by
interconnection and standard passivity-based control of port-Hamiltonian
systems,” IEEE Transactions on Automatic Control, vol. 53, no. 11, pp.
2527–2542, Dec. 2008.

[21] R. Ortega and J. G. Romero, “Robust integral control of port-
Hamiltonian systems: The case of non-passive outputs with unmatched
disturbances,” Systems & Control Letters, vol. 61, no. 1, pp. 11–17,
2012.

[22] S. Fiaz, D. Zonetti, R. Ortega, J. M. A. Scherpen, and A. J. Van der
Schaft, “A port-Hamiltonian approach to power network modeling and
analysis,” European Journal of Control, vol. 19, no. 6, pp. 477–485,
2013.

[23] R. Ortega, A. J. van der Schaft, I. Mareels, and B. Maschke, “Putting
energy back in control,” IEEE Control Systems, vol. 21, no. 2, pp. 18–33,
2001.

[24] J. Schiffer, R. Ortega, A. Astolfi, J. Raisch, and T. Sezi, “Conditions
for stability of droop-controlled inverter-based microgrids,” Automatica,
vol. 50, no. 10, pp. 2457–2469, 2014.

[25] J. Schiffer, E. Fridman, R. Ortega, and J. Raisch, “Stability of a class
of delayed port-hamiltonian systems with application to microgrids with
distributed rotational and electronic generation,” Automatica, vol. 74, pp.
71–79, 2016.

[26] C. Arghir, T. Jouini, and F. Dörfler, “Grid-forming control for power
converters based on matching of synchronous machines,” Automatica,
vol. 95, pp. 273–282, 2018.

[27] A. van der Schaft and T. Stegink, “Perspectives in modeling for control
of power networks,” Annual Reviews in Control, vol. 41, pp. 119–132,
2016.

[28] Q.-C. Zhong and M. Stefanello, “Port-Hamiltonian control of power
electronic converters to achieve passivity,” in Proc. of the 56th IEEE
Conference on Decision and Control, Dec 2017.

[29] G. C. Konstantopoulos and A. T. Alexandridis, “Generalized nonlinear
stabilizing controllers for Hamiltonian-passive systems with switching
devices,” IEEE Trans. Control Syst. Technol., vol. 21, no. 4, pp. 1479–
1488, 2013.

[30] C. Gaviria, E. Fossas, and R. Grino, “Robust controller for a full-bridge
rectifier using the IDA approach and GSSA modeling,” IEEE Trans.
Circuits Syst. I, vol. 52, no. 3, pp. 609–616, 2005.

[31] M. Xia, P. J. Antsaklis, V. Gupta, and F. Zhu, “Passivity and dissipativity
analysis of a system and its approximation,” IEEE Trans. Autom.
Control, vol. 62, no. 2, pp. 620–635, Feb 2017.

[32] F. Zhu, M. Xia, and P. J. Antsaklis, “On passivity analysis and passiva-
tion of event-triggered feedback systems using passivity indices,” IEEE
Trans. Autom. Control, vol. 62, no. 3, pp. 1397–1402, March 2017.

[33] D. Jeltsema and A. Doria-Cerezo, “Port-Hamiltonian formulation of
systems with memory,” Proceedings of the IEEE, vol. 100, no. 6, pp.
1928–1937, June 2012.

[34] B. Maschke, R. Ortega, and A. J. V. D. Schaft, “Energy-based Lyapunov
functions for forced Hamiltonian systems with dissipation,” IEEE Trans-
actions on Automatic Control, vol. 45, no. 8, pp. 1498–1502, Aug. 2000.

[35] B. Lehman and R. M. Bass, “Extensions of averaging theory for power
electronic systems,” IEEE Trans. Power Electron., vol. 11, no. 4, pp.
542–553, 1996.

[36] Q.-C. Zhong, “Virtual synchronous machines: A unified interface for
smart grid integration,” IEEE Power Electronics Magazine, vol. 3, no. 4,
pp. 18–27, Dec 2016.

[37] ——, “The ghost operator and its applications to reveal the physical
meaning of reactive power for electrical and mechanical systems and
others,” IEEE Access, vol. 5, pp. 13 038–13 045, 2017.

[38] Q.-C. Zhong and Y. Zeng, “Universal droop control of inverters with
different types of output impedance,” IEEE Access, vol. 4, pp. 702–712,
Jan. 2016.

[39] Q.-C. Zhong, W. L. Ming, and Y. Zeng, “Self-synchronized universal
droop controller,” IEEE Access, vol. 4, pp. 7145–7153, Oct. 2016.


