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Abstract
Natural mitochondrial DNA (mtDNA) mutations enable the inference of clonal relationships 
among cells. mtDNA can be profiled along with measures of cell state, but has not yet been 
combined with the massively parallel approaches needed to tackle the complexity of human tissue. 
Here, we introduce a high-throughput, droplet-based mitochondrial single-cell Assay for 
Transposase Accessible Chromatin with sequencing (mtscATAC-seq), a method that combines 
high-confidence mtDNA mutation calling in thousands of single cells with their concomitant high-
quality accessible chromatin profile. This enables the inference of mtDNA heteroplasmy, clonal 
relationships, cell state, and accessible chromatin variation in individual cells. We reveal single-
cell variation in heteroplasmy of a pathologic mtDNA variant, which we associate with intra-
individual chromatin variability and clonal evolution. We clonally trace thousands of cells from 
cancers, linking epigenomic variability to subclonal evolution and infer cellular dynamics of 
differentiating hematopoietic cells in vitro and in vivo. Taken together, our approach enables the 
study of cellular population dynamics and clonal properties in vivo.

Introduction
Mitochondria play a central role in metabolism and are unique organelles that carry their 
own genome, often in high copy number, encoding a subset of proteins, tRNAs, and rRNAs 
essential to their function. Mutations in the mitochondrial genome are associated with a 
multitude of clinical phenotypes that are estimated to affect ~1 in 4,300 individuals, making 
them among the most common inherited metabolic disorders1. Critically, the fraction of 
mitochondrial genomes carrying a specific variant, heteroplasmy, may dictate the degree of 
disease severity in affected patients1,2,3. Furthermore, the high mutation rate (~2–10x that of 
nuclear DNA), leads to accumulation of somatic mtDNA mutations that may contribute to 
aging phenotypes1. While genomic approaches are emerging to quantify heteroplasmy, the 
majority of sequencing assessments have been based on bulk cell populations, limiting 
detection of somatic mutations in individual cells4,5.

Recently, we and others have shown that single-cell sequencing approaches can detect 
heteroplasmic or homoplasmic mutations, which we further leveraged as natural genetic 
markers in clone and lineage tracing of human cells, while also measuring cell state6,7. Due 
to the small size of the mitochondrial genome (16.6 kb) and its higher copy number per cell, 
retrospective inference of cellular relationships by somatic mtDNA mutations is significantly 
more cost-effective and robust compared to mutation detection in the nuclear genome by 
single-cell whole-genome sequencing8. Moreover, single-cell RNA- and ATAC-seq (scRNA/
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ATAC-seq) allow concomitant mtDNA mutation detection along with the transcriptional or 
accessible chromatin cell state. While this presents a powerful system for clonal/ lineage 
tracing in humans in vivo, only modest-throughput single-cell genomic assays had sufficient 
coverage of mitochondrial sequences for reliable mutation detection, whereas the massively 
parallel methods needed to draw meaningful conclusions on many biological systems had 
insufficient mitochondrial coverage6.

As recently reported droplet-based scATAC-seq techniques enable the profiling of accessible 
chromatin in thousands of cells per experiment9,10, we hypothesized that with appropriate 
modification, they may facilitate the enrichment of transposase-accessible mtDNA6. 
However, these protocols rely on processing of nuclei, thereby depleting mitochondria and 
resulting in only ~1% of reads mapping to mtDNA, compared to 20–50% in the original 
ATAC-seq protocol11,12, a level that is inadequate for single-cell mutation calling and clonal 
inference.

Here, we establish mtscATAC-seq, a massively parallel protocol for high and uniform 
single-cell mitochondrial genome coverage that retains high-quality chromatin accessibility 
data, and combine it with computational methods to identify rare, clonal mtDNA mutations 
in healthy and diseased cells. We demonstrate the wide applicability of mtscATAC-seq to 
quantify single-cell mitochondrial genotypes in the context of mitochondrial disease and 
clonally trace thousands of human cells in vitro and in vivo. Given the multi-omic nature, we 
envision the broad utility and applicability of mtscATAC-seq to enhance our understanding 
of mtDNA genotype-phenotype correlations and reconstruct clonal dynamics across diverse 
areas of human health and disease.

Results
Development and validation of mtscATAC-seq

To develop mtscATAC-seq, we modified the droplet-based scATAC-seq workflow of the 
widely used 10x Genomics platform to improve mtDNA yield and genome coverage. As 
most scATAC-seq protocols use nuclei, depleting cytoplasmic mitochondria, we turned to 
processing whole cells to retain mtDNA. We reasoned that mild lysis or permeabilization of 
cells would be required for the Tn5 enzyme to integrate adapters into accessible nuclear 
chromatin and mtDNA. Moreover, as cells contain multiple mitochondria, which may be 
more readily released upon lysis or permeabilization, we reasoned that fixation should 
minimize mixing of mtDNA between cells. Finally, we aimed to identify conditions 
retaining high-quality chromatin accessibility data.

We systematically tested for conditions that satisfy these features in a mixture of two cell 
lines (GM11906 and TF1; Fig. 1a) by evaluating mtDNA abundance, cross-contamination, 
and mtDNA and chromatin fragment complexity. Because each cell line harbored private 
homoplasmic mutations, we sensitively detected mtDNA abundance, cell doublets, and 
possible mtDNA crosstalk due to cell lysis/ permeabilization and tagmentation that occurs in 
a pool. Omitting digitonin and Tween-20 in the lysis and wash buffers (“Condition A”) 
yielded substantially more mtDNA fragments per single-cell (median 21.5%) than the 
recommended protocol (1.9%; Fig. 1b; Supplementary Table 1; Methods), consistent with 
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earlier observations11,12. These conditions retain high-quality chromatin accessibility data: 
while per-cell complexity of nuclear fragments slightly decreased (Extended Data Fig. 1a), 
other metrics associated with scATAC-seq data quality improved (Fig. 1c; Extended Data 
Fig. 1b). BioAnalyzer traces confirmed an increased ratio of nucleosome free to 
mononucleosome fragments, consistent with the increased recovery of mtDNA (Extended 
Data Fig. 1c). Based on 43 high-confidence homoplasmic mtDNA variants private to each 
cell line, ~8.7% of barcodes carried otherwise cell type-specific homoplasmic variants at 
intermediate (60%−90%) heteroplasmy, indicating contamination of mtDNA fragments 
between cells (Fig. 1d; Extended Data Fig. 1d; Methods). Because this contamination may 
occur due to the release of mitochondria during processing, we added a formaldehyde (FA) 
fixation step. Indeed, fixation with 0.1 or 1% FA led to a ~3x reduction in mtDNA fragment 
cross-contamination (Fig. 1e,f; Extended Data Fig. 1d), a 69% increase in mtDNA fragment 
complexity, and restoration of chromatin library complexity (Extended Data Fig. 1e). After 
removing cell doublets, the empiric rate of contamination was 0.19% (Fig. 1f; Methods), 
which is consistent with the order of magnitude for short-read sequencing error13. 
Importantly, FA treatment did not introduce additional mtDNA mutations (Extended Data 
Fig. 1f).

Furthermore, we observed regions of lower coverage across the mitochondrial genome, 
which we determined were due to high homology (and thus low mappability) to nuclear 
mitochondrial DNA segments (NUMT). We reasoned that due to the high mtDNA copy 
number and the high Tn5 accessibility of mtDNA, ambiguous fragments could be 
confidently assigned to the mitochondrial genome with a low false positive rate. Utilizing a 
compendium of DNase hypersensitivity data14,15 and additional public scATAC-seq data, we 
estimated that only ~1 accessible fragment from NUMTs would be detected per cell 
(Methods), such that these are unlikely to be a confounding element in heteroplasmy 
estimation. We therefore developed a computational approach that effectively assigns reads 
that map to both the mitochondrial and nuclear genome strictly to mtDNA, facilitating near-
uniform coverage without altering chromatin complexity (Fig. 1g; Extended Data Fig. 1g–i). 
Some residual variation in coverage remained after reference genome masking and was 
correlated with GC content of the mtDNA genome (r=0.33; Extended Data Fig. 1j), likely 
reflecting PCR amplification and Tn5 insertion bias16.

Overall, mtscATAC-seq combines fixation, modified lysis, and computational analysis of 
multi-mapping reads, leading to a ~20-fold increase in mean mtDNA coverage per cell (from 
9.6x to 191.0x; Fig. 1g) and in fraction of mtDNA reads (median per cell from 1.9% to 
36.8%; Extended Data Fig. 1h) with only modest reduction in chromatin complexity 
(median per cell from 87,569 to 73,864; Extended Data Fig. 1e) and in reads mapping to 
pre-annotated DNase hypersensitivity peaks (from 74.1% to 72.3%), retaining cell type-
specific accessible chromatin peaks (93.8% of 77,704 peaks; Extended Data Fig. 1k; 
Methods).

Single-cell features of pathogenic mtDNA mutations
We used mtscATAC-seq to identify pathogenic mtDNA mutations, and gain insights into 
their impact. The GM11906 lymphoblastoid cells used in the mixing experiment (Fig. 1) 
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were derived from a patient with myclonic epilepsy with red ragged fibers (MERFF), a 
mitochondrial disorder that in 80–90% of cases is caused by a 8344A>G mutation that alters 
tRNA function2 (Fig. 2a). Bulk ATAC-seq analyses of these cells estimated a population 
heteroplasmy of 44% for the 8344A>G allele, consistent with previous reports17. We 
retained 818 high-quality data GM11906 cells with at least 50x single-cell mtDNA coverage 
and 40% reads in peaks (Fig. 2b). Interestingly, we observed a broad range of heteroplasmy 
(0% to 100%) for the 8344A>G allele, with a median of 38%, consistent with the bulk 
ATAC-seq data (Fig. 2c) and previous family studies of this mutation18. We independently 
replicated the distribution of heteroplasmy levels using the Fluidigm scATAC-seq platform19 

and in situ genotyping20 (Fig. 2c–e; Extended Data Fig. 2a; Supplementary Table 2).

Analysis of matched chromatin profiles highlighted specific loci and transcription factor 
(TF) activities that are associated with different levels of the 8344A>G allele. First, 
promoter accessibility scores9,10 of 32 and 94 genes were positively or negatively correlated, 
respectively, with single-cell 8344A>G heteroplasmy, corresponding to a <1% false 
discovery rate (FDR) (Fig. 2f; Methods). Binning cells into high (>60%; n=273), 
intermediate (10–60%; n=228), and low (<10%; n=313) heteroplasmy for the pathogenic 
allele highlighted distinct chromatin features near the NR2F2, TRMT5, and SENP5/ 
NCBP2-AS2 loci (Fig. 2g–i). Notably, nearby genes have been broadly linked to 
mitochondria biology21–24. The accessibility profiles at other loci were virtually 
indistinguishable (Extended Data Fig. 2b,c), suggesting that the observed variations (Fig. 
2g–i) may be a consequence of disease allele heteroplasmy. Furthermore, we identified TFs 
whose activity may be associated with the mutation by scoring TF binding sites (from ChIP-
seq data; Methods). In particular, MEF2A and MEF2C were strongly anti-correlated with 
pathogenic heteroplasmy (Extended Data Fig. 2d,e). Notably, the transcription factor MEF2 
is a target of mitochondrial apoptotic caspases, supporting a model where pathogenic allele 
heteroplasmy may regulate nuclear factor activity25. These analyses demonstrate the 
potential to study the altered cellular circuits resulting from pathogenic mtDNA variants in a 
heteroplasmy-dependent manner.

Notably, a second mutation, 8202T>C (bulk heteroplasmy 34%) was the most correlated 
mutation with the 8344A>G variant (Fig. 2j). Using MITOMAP26, we annotated the non-
synonymous variant (phenylalanine to serine) as a “probably damaging” mutation in the 
cytochrome C oxidase II (MT-CO2) gene. 456 of 818 GM11906 cells were positive for both 
mutations (>5% heteroplasmy), whereas the remaining cells showed 0% heteroplasmy for 
either both mutations or 8202T>C alone, but not 8344A>G alone (Fig. 2k). Of the 5,230 
reads that covered both variants, 99.6% exclusively contained either both mutated or 
wildtype alleles (Fig. 2l). The co-occurrence of both mutations on the same haplotype and 
the presence of 8344A>G+/8202T>C- cells suggests the evolution of at least two subclonal 
populations, each spanning the complete spectrum from low to very high 8344A>G 
heteroplasmy (Fig. 2k,m), demonstrating how mtscATAC-seq can enhance our 
understanding of clonal dynamics in the context of mitochondrial disease.
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Inference of mutations for clonal lineage tracing
To facilitate clonal tracing of human cells based on reliable mtDNA variation, we developed 
the Mitochondrial Genome Analysis Toolkit (mgatk; Fig. 3a; Methods), a computational 
pipeline to identify clonal substructure in complex populations profiled using mtscATAC-
seq. Here, we define clonal mutations as those with similar heteroplasmy that may 
genetically mark an individual cell and its immediate descendants to distinguish it from 
other more distantly related cells. Recent variant callers developed for single-cell genotyping 
were designed to separate amplicon error from true mutations27 or account for allelic 
dropout28, neither of which predominantly confound heteroplasmy estimates from 
mtscATAC-seq (Methods). Instead, mgatk focuses specifically on clonal mtDNA variant 
calling in single cells, by leveraging the deep per-cell coverage from mtscATAC-seq. 
Specifically, mgatk identifies high-confidence clonal mutations by aggregating signal across 
cells, leveraging between-cell variability (per mutation variance mean ratio; VMR) and 
strand bias (Pearson correlation of counts per strand; Fig. 3a; Methods). Thus, rather than 
calling variants in individual cells, mgatk leverages the high-throughput nature of our data to 
identify between-cell properties to distinguish signal from noise. The resulting mutations are 
then used as a feature set for downstream analyses, such as the inference of clonal families.

We validated mgatk by identifying anticipated clonal substructure in the 855 TF1 cells (>50x 
mitochondrial genome coverage) profiled in the mixture experiment (Fig. 1). Because these 
cells were expanded from 30 individually sorted TF1 cells, we expected to observe multiple 
sub-clones6. We identified 48 reliable mtDNA variants by bivariate filtering of variants with 
a relatively high VMR and concordant heteroplasmy from both strands (Fig. 3b; Methods). 
Using these 48 variants as features, we determined 12 clonal cell subsets using a shared 
nearest neighbor clustering approach (Fig. 3c; Methods). Variants called by other 
approaches lacked sensitivity or had substantial strand bias compared to mgatk (Extended 
Data Fig. 3a–c; Methods) The 48 high-confidence variants enabled us to reconstruct a 
putative phylogenetic tree for the identified TF1 subclones (Fig. 3d).

Though mgatk was optimized for mtscATAC-seq data, its unsupervised application 
performed comparably well to our previous supervised identification of multiple 
hematopoietic colony specific variants from 935 cells profiled by SMART-seq26 (Extended 
Data Fig. 3d–h; Methods). Furthermore, variants identified by mgatk substantially 
outperformed other unsupervised approaches in discerning cells that shared a clonal origin 
(Methods). However, as SMART-seq2 and other scRNA-seq methods detect a substantial 
number of false-positive variants, corroboration by mtDNA sequencing is highly 
recommended6; conversely, mtscATAC-seq captures DNA directly, minimizing potential 
artifacts. Simulations with empirically-derived parameters indicated that mtscATAC-seq has 
high sensitivity, high positive predictive value (PPV), and low dropout, particularly for sub-
clonal variants of at least 5% heteroplasmy with at least ~50x coverage per cell (Extended 
Data Fig. 3i,j; Methods). Overall, the combination of mtscATAC-seq and mgatk provide a 
robust and high-throughput means to identify high-quality mtDNA variants associated with 
single cell states.
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Clonal heterogeneity in human malignancies
To evaluate mtscATAC-seq in vivo, we studied cells from patients with presumed clonal 
malignancies. We first profiled peripheral blood mononuclear cells (PBMCs) from two 
patients with chronic lymphocytic leukemia (CLL), which is conventionally characterized as 
a monoclonal B-cell malignancy (Fig. 4a; Extended Data Fig. 4a). Single-cell B-cell 
receptor sequencing by 5’ scRNA-seq confirmed a predominantly monoclonal population of 
leukemic cells in both patients (Fig. 4b; Methods). Based on our previous work, we 
hypothesized that somatic mtDNA mutations may arise during tumorigenesis, which mark 
and enable tracking of genetic subclones to aid in resolving intra-tumor heterogeneity6. We 
collected 23,467 high-quality mtscATAC-seq profiles (mean 55.5x mtDNA coverage; 11,423 
unique nuclear fragments per cell and 70.8% in peaks), and applied mgatk to CD19+ 

leukemic cells to reveal 43 mutations and 15 putative subclones across the two patients (Fig. 
4c; Extended Data Fig. 4b,c). This marked genetic diversity in a perceived highly clonal 
malignancy reinforces the effectiveness of our approach to identify rare subclonal structure, 
including a cluster marked by the 12067C>T mutation present in 0.4% of the leukemic 
population (Fig. 4c).

Next, we related the mtDNA clones with both their chromatin profiles and receptor 
clonotypes, leveraging the mtDNA coverage from 5’ scRNA-seq (Extended Data Fig. 4d,e) 
to link to variants identified from mtscATAC-seq. Interestingly, leukemic cells with the 
14858G>A mtDNA mutation did not carry the predominant BCR clonotype, presenting a 
distinct sub-clonal population showing various differentially-expressed genes (Fig. 4b,d; 
Extended Data Fig. 4f; Methods). Moreover, all cells in Patient 1 were positive for trisomy 
12 (Methods), a common cytogenetic abnormality in CLL29, suggesting that the copy 
number alteration preceded the somatic mtDNA diversity detected (Fig. 4e). Performing a 
per-peak association with our putative subclones, we observed hundreds of loci associated 
with subclonal structure in these tumors (Fig. 4f; Extended Data Fig. 4g), including 
promoters of the ZNF257 and TIAM1 genes, the latter of which had been associated with 
chemoresistance in CLL and colorectal cancer30,31 (Fig. 4g,h). These results provide a broad 
basis for how mtscATAC-seq can resolve epigenetic differences in malignant sub-
populations at single-cell resolution.

Among the identified variants from mgatk, six mutations (four in patients 1, two in patient 2) 
attained homoplasmy in a subset of cells and were markedly enriched in the CD19+ 

population (Extended Data Fig. 4h,i). Notably, the same variants were also identified in T 
lymphocytes, natural killer (NK), and myeloid cells (Fig. 4i–l; Extended Data Fig. 4j,k). 
These results point to the possible involvement of an early progenitor cell with residual 
multi-lineage capacity in the pathogenesis of CLL, as suggested by previous reports32–34. 
These results could further be corroborated in the scRNA-seq data of patient 2 upon 
integration of calling somatic mutations in nuclear genes (i.e. chr4:109,084,804A>C “LEF1” 
and chr19:36,394,730G>A “HCST”; identified by exome sequencing) (Extended Data Fig. 
4j,k).

Next, we profiled a human colorectal cancer resection (Fig. 4m). Using variance in 
chromatin accessibility and marker gene scores, we identified six major cell populations, 
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including tumor-derived epithelial cells and distinct immune cell populations (Fig. 4n,o; 
Extended Data Fig. 4l). Using integrated calling of somatic chromosomal copy number 
variants (CNV) (Fig. 4p; Methods) and mtDNA mutations (Fig. 4q), we suggest a model 
where copy number gains on chromosomes 6, 7, 8, 9, and 12 and a homoplasmic 16147C>T 
variant are shared across the dominant malignant cell population (Fig. 4p–r). Multiple 
additional mtDNA mutations then further resolve subclonal structure within the malignant 
cells, as well as in non-malignant immune cells (Extended Data Fig. 4m–o). Taken together, 
our results highlight the utility of mtscATAC-seq/ mgatk platform to enable the retrospective 
inference of cellular population dynamics in malignancies6.

Linking cell state to fate in hematopoietic differentiation
The multi-modal output of mtscATAC-seq simultaneously informs about cell state and 
clonal relationships, allowing us to study complex physiologic processes, where genetic 
barcoding is not possible. We focused on hematopoiesis, a process thought to be sustained 
by 10,000–100,000s distinct hematopoietic stem/progenitor cells (HSPCs) under steady 
state35,36, potentially requiring the sampling of large cell numbers to capture the full 
spectrum of clonal diversity.

We first benchmarked mtscATAC-seq in an in vitro model of human hematopoiesis, where 
clonal contributions could be anticipated. We cultured ~500 or ~800 CD34+ HSPCs in 
progenitor expansion media, before induction of monocytic or erythroid differentiation. 
Over the course of 20 days we profiled cells from two independent cultures (two and three 
timepoints for the 500 and 800 cell input, respectively), yielding 18,259 high quality 
mtscATAC-seq cell profiles (Fig. 5a; Methods), with a mean of 24,944 unique nuclear 
fragments per cell, 49.1% of which were in accessibility peaks, and a mean 74.8x mtDNA 
coverage per cell. Dimensionality reduction37, TF motif scoring38, and inference of 
pseudotime trajectories highlighted differentiation continuums from HSPCs to either the 
erythroid or monocytic fates (Fig. 5b,c; Extended Data Fig. 5a–d; Methods). These findings 
verify that mtscATAC-seq can reconstruct cell state transitions comparable to previous 
scATAC-seq studies9,10,39–41.

Mgatk identified 175 and 305 high-confidence, heteroplasmic variants in the 500 cell and 
800 cell input cultures, respectively, which were enriched for transitions (96.0 and 94.8%; 
Fig. 5d; Methods), consistent with previous findings6. In both cultures, there were 
substantial shifts in heteroplasmy, including significantly wider distribution of allele 
frequency fold changes than expected if the HSPCs underwent differentiation in a 
homogeneous manner (Fig. 5e,f; Kolmogorov–Smirnov p<2.2×10−16). Along with our 
sequential sampling experiment, the heteroplasmy change in the 800-cell input culture from 
the second sampling largely explained the third (Fig. 5g), suggesting that clonal 
contributions largely did not diverge further during continued differentiation. However, our 
sequential clonal tracing captures complexities in these temporal cell state transitions, 
including putative clone proliferation dynamics, such as cells that expanded earlier 
(3712G>A) or later (14322A>G) (Fig. 5h). Analysis of 19 shared mutations between the two 
cultures suggested that proliferation capacity was independent of the specific mutations as 
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their heteroplasmy fold-changes were not correlated between the two experiments (Extended 
Data Fig. 5e–g).

Interestingly, we observed six “confirmed” pathogenic mutations between the two cultures, 
including 12316G>A and 3243A>T (Fig. 5h), both of which alter mitochondrial tRNA 
function26, possibly explaining their observed decreased population frequencies over the 
course of the culture. Each of these six mutations occurs at a maximum of 0.1% allele 
frequency in the bulk population, but exceed 30% heteroplasmy in some individual cells 
(Extended Data Fig. 5h).

Combining the mtDNA mutation and clonal status with the cells’ chromatin profiles, we 
inferred properties and possible fates of HSPCs, distinguishing bi-potent progenitors from 
those biased in favor of an erythroid vs. monocytic fate. We partitioned the cells from the 
two cultures to 197 clonal groups by mtDNA mutations with most cells carrying at least one 
high-quality somatic mtDNA mutation (Extended Data Fig. 5i–k; Methods). We then 
examined the states of the cells in each clone, to identify HSPCs from day 8 in clones with 
biased (enriched) membership of monocytic or erythroid cells on day 20 (Fig. 5i). 
Specifically, of the 57 clonal populations with at least 10 cells at day 20 we observed in the 
800 input culture, 10 were erythroid-biased and 21 were monocytic-biased (z-score >5; Fig. 
5j; Methods). Next, we examined the chromatin features of HSPCs in biased clones and in 
bi-potent ones. Indeed, well characterized erythroid (GATA1 and KLF1) or monocytic TF 
motifs (SPI1 and CEBPA) were more accessible in day 8 cell clones that preferentially gave 
rise to daughter cells of erythroid or monocytic lineage by day 20, respectively (Fig. 5k; 
Methods). However, when restricting this analysis towards day 8 cells within the early 
progenitor cluster (cluster 9; Extended Data Fig. 5c), this association diminishes, though our 
power to detect such lineage biasing features (if present and causal for such observations) 
may be limited given the number of cells profiled at this stage (n=257).

Clonal tracing in human hematopoiesis in vivo
Finally, we utilized mtscATAC-seq to gain insights into the clonal architecture of 
hematopoiesis in vivo35,36. We profiled bone marrow-derived CD34+ HSPCs (n=7,474 
quality-controlled cells) along with PBMCs (n=8,591) that were obtained after a three 
months interval from a 47 year old healthy donor (Fig. 6a). Using reference scATAC-seq39 

and scRNA-seq data, we annotated cell states, revealing cellular heterogeneity and distinct 
hematopoietic lineages (Fig. 6b–d; Extended Data Fig. 6a). Our high-quality chromatin 
accessibility (mean of 23,551 and 9,874 unique nuclear fragments for CD34+ and PBMCs, 
respectively) and mtDNA data enabled detailed analysis of cell states, including the 
inference of relatively low mtDNA copy number in plasmacytoid dendritic cells (pDCs), 
further corroborated by analysis of bulk RNA-seq data42, and consistent with a previous 
report of mitophagy in DCs43 (Extended Data Fig. 6b,c).

Within the HSPCs and PBMCs, mgatk called 351 and 130 high-confidence variants, 
respectively (HSPCs had greater mtDNA coverage than the PBMCs), 52 of which were 
shared among both compartments (Extended Data Fig. 6d,e). Although the 429 unique 
mutations were only present at low frequencies (<1%) in pseudobulk populations (Fig. 6e,f), 
allele frequencies in individual cells showed considerable homoplasmy (Extended Data Fig. 
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6f), and the mutational signatures of identified mtDNA variants were consistent with 
previous reports (Fig. 6g)6,44.

A community detection algorithm partitioned cells into 257 clonal groups with a median 9 
and 12 cells per clone in the PBMC and HSPC compartments, respectively, noting that 92% 
of clones contained less than 1% of assayed cells (Fig. 6h; Extended Data Fig. 6g; 
Methods). Focusing on a select set of highly heteroplasmic and homoplasmic variants, we 
observed clonal patterns that may reflect physiologic waves of hematopoietic activity, both 
in terms of expansion in the HSPC compartment and in terms of contribution to the PMBC 
compartment (Fig. 6e,i–k). For instance, clone 008 (marked by 2788C>A) and clone 119 
(12868G>A) are present in distinctive proportions in HSPCs with variable output 3 months 
later as reflected in their different abundance in the PBMC compartment (Fig. 6i,j). By 
contrast, clone 032 (3209A>G) had similar prevalence in HSPCs as clone 008 but reduced 
output in the following months based on decreased detection in PBMCs (Fig. 6k). Overall, 
our results suggest relative stable clonal output over the assessed time interval, with 
observed shifts in heteroplasmy in the HSPC and PBMC populations, either reflecting 
undersampling (Fig. 6l) or clonal succession45. These findings clearly support stable 
propagation of mutations present in stem and progenitor cells to the peripheral blood (Fig. 
6e,i–k), and indicate that steady state hematopoiesis is fueled by a large pool of HSPCs 
where the contributions of individual clones to healthy blood cell production is low (<1%), 
consistent with previous reports35,36.

To further understand the clonal contributions to the major lineages of peripheral blood, we 
examined the association between clonal output and inferred cell state from the mtscATAC-
seq data. While we observed variability in composition of inferred clones (Fig. 6m), such a 
distribution is statistically consistent with random sub-sampling of cell states (Fig. 6n,o). 
These results stand in contrast to the observations of biased clonal output (Fig. 5), which 
may reflect conditions in an in vitro system, where fate decisions may be restricted by 
limited cytokine availability. Moreover, these observations may further be confounded by 
distinct longevity of different cell types or the averaging of rare clones not detectable from 
the current sample size. In this regard, additional analysis designed to discover high-
confidence mtDNA mutations present in no more than three HSPCs recovered an additional 
923 distinct mtDNA mutations (Extended Data Fig. 6h; Methods). Though rare, these 
mutations showed concordant mutational spectra and significantly lower frequency in the 
pseudobulk population (Extended Data Fig. 6h,i) and may mark quiescent or low activity 
clones.

Taken together, our in vivo analysis demonstrates the potential, along with some of the 
challenges, to dissect complex physiologic systems. Our results highlight the ability of our 
framework to facilitate systematic studies aimed at investigating clonal population structures 
at single-cell resolution in vivo, which were previously limited to model organisms or gene 
therapy trials46–50.
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Discussion
Here, we develop a high-throughput platform for measuring mtDNA mutation heteroplasmy 
along with accessible chromatin states in thousands of single-cells. We verify data standards 
(Fig. 1), chart the cis- and trans- effects of pathogenic mutations (Fig. 2), and infer subclonal 
population structure (Fig. 3), all from a single experiment. By leveraging somatic mtDNA 
variation in more complex settings, our results further indicate the potential of natural 
genetic mtDNA barcodes to resolve clonal heterogeneity within malignancies (Fig. 4), and 
assess clonal dynamics in hematopoiesis (Fig. 5 and 6), while also obtaining rich 
information on variation in cell state. Unlike conventional high-throughput scRNA-seq 
approaches that suffer from uneven coverage of mitochondrial RNA, a high false positive 
error rate6, or require a priori knowledge of specific variants51, our framework enables de 
novo discovery of variants to enable the inference of subclonal structure in complex settings, 
including tissue specimens directly obtained from patients. We expect that additional 
improvements in variant calling, clonal detection methods, and heteroplasmy-specific 
distance functions will aid to resolve cellular hierarchies in greater detail.

In addition to pathogenic mitochondrial variants, such as 8344A>G, our high-throughput 
platform should facilitate the examination of functional mtDNA mutations in relatively 
common disease settings1. Specifically, alterations in mtDNA have been associated with a 
variety of complex human diseases, including Alzheimer’s Disease52, Parkinson’s 
Disease53, cardiomyopathies54, pediatric cancers55 and more generally aging 
phenotypes1,56. As our approach facilitates rapid genotyping and concomitant chromatin 
profiles in thousands of cells, potential molecular consequences of mtDNA variants may 
now be dissected (Fig. 2), which is not otherwise possible using bulk approaches5.

Despite the relatively small size of the mitochondrial genome, the prevalence of somatic 
mutations, though not necessarily present in every cell, enabled inferences about cellular 
population dynamics in complex human tissues6,45 (Fig. 6). For future applications, we 
emphasize that care should be taken with respect to biological conclusions, which may 
require validation via orthogonal methodology across multiple donors. For example, our 
analyses in the context of malignancies (Fig. 4) provides a vignette of integrating nuclear 
point mutations, copy number alterations, immune receptor rearrangements, and mtDNA 
variation to further resolve clonal structure and functional heterogeneity. Though the 
hematopoietic system was the focus of our investigations (with the exception of the 
colorectal cancer sample), we expect our mtscATAC-seq framework to be compatible with 
most human tissues6,45. Overall, the advances presented here now enable new avenues to 
study the role of cellular dynamics in human health and disease.

ONLINE METHODS
Cell lines and cell culture

TF1 cells (ATCC) were maintained in Roswell Park Memorial Institute Medium (RPMI) 
1640, 10% fetal bovine serum (FBS), 2 mM L-Glutamine and 2 ng/ml recombinant human 
Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) (Peprotech) and incubated 
at 37°C and 5% CO2. GM11906 cells (Corriell) were maintained in Roswell Park Memorial 

Lareau et al. Page 11

Nat Biotechnol. Author manuscript; available in PMC 2021 April 14.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



Institute Medium (RPMI) 1640, 15% fetal bovine serum (FBS) and 2 mM L-Glutamine and 
incubated at 37°C and 5% CO2.

Primary cells and cell culture
CD34+ hematopoietic stem and progenitor cells were obtained from the Fred Hutchinson 
Hematopoietic Cell Processing and Repository (Seattle, USA) or StemCell Technologies. 
The CD34+ samples were de-identified and approval for use of these samples for research 
purposes was provided by the Institutional Review Board and Biosafety Committees at 
Boston Children’s Hospital. Healthy donor peripheral blood mononuclear cells were 
obtained from StemCell Technologies. CD34+ cells were thawed and cultured in StemSpan 
II with 1x CC100 (StemCell Technologies, Inc.) at 37°C and 5% CO2. At indicated time 
points, these cells were seeded in media supporting the differentiation into monocytic and 
erythroid cells57,58. Briefly, cells were cultured at a density of 105 - 106 cells per milliliter 
(ml) in IMDM supplemented with 2% human AB plasma, 3% human AB serum, 1% 
penicillin/streptomycin, 3 IU/ml heparin, 10 mg/ml insulin, 200 mg/ml holo-transferrin, 1 IU 
erythropoietin (Epo), 10 ng/ml stem cell factor (SCF) and 1 ng/ml IL-3 and incubated at 
37°C and 5% CO2. For mtscATAC-seq processing at indicated time points and when 
additional cells were to be maintained to enable sampling of cells at a later time, ⅓ of the 
cultured cells were maintained and ⅔ of the cells were forwarded to single cell sequencing 
as described below.

Chronic lymphocytic leukemia samples
Cryopreserved peripheral blood mononuclear cells from chronic lymphocytic leukemia 
(CLL) patients consented on institutional review board approved protocols were obtained 
from AllCells (Patient 1) or from Adrian Wiestner at the National Institute of Health (Patient 
2). Cytogenetic analysis of Patient 1 CLL cells detected an extra copy of chromosome 12 
(trisomy 12) as detected by fluorescence in situ hybridization (FISH). Cryopreserved cells 
were thawed by serial dilution in RPMI with 10% fetal bovine serum. B lymphocytes were 
isolated using the negative selection Mojosort Human Pan B Cell Isolation Kit (Biolegend, 
480082) and CD19 negative immune cells were isolated from a separate aliquot using the 
positive selection Mojosort Human CD19 selection Kit (Biolegend, 480106).

Flow cytometry analysis and sorting
For flow cytometry analysis and sorting, cells were washed in FACS buffer (1% FBS in 
PBS) before antibody staining. For the CLL patient derived PBMC staining a FITC-
conjugated CD19 antibody (HIB19, 302206, Biolegend) was used at 1:50 dilution. For live/ 
dead cell discrimination Sytox Blue was used according to the manufacturer’s instructions 
(Thermo Fisher, S34857). FACS analysis was conducted on a BD Bioscience Fortessa flow 
cytometer at the Whitehead Institute Flow Cytometry core. Data was analyzed using FlowJo 
software v10.4.2. Cell sorting was conducted using the Sony SH800 sorter with a 100 μm 
chip at the Broad Institute Flow Cytometry Facility. Sytox Blue (ThermoFisher) was used 
for live/ dead cell discrimination.
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Colorectal cancer sample
A primary untreated colorectal tumor was surgically resected from an 84-year-old female 
patient with pathologically diagnosed colorectal adenocarcinoma at Massachusetts General 
Hospital. Written informed consent for tissue collection was provided in compliance with 
IRB regulations (IRB compliance protocol number 02–240; Broad Institute ORSP project 
number ORSP-1702). For mtscATAC-seq, fresh tissue was collected into RPMI 1640 
medium supplemented with 2% human serum (Sigma), cut into 1 mm2 pieces, and 
enzymatically digested for 20 min at 37°C using the Human Tumor Dissociation Kit 
(Miltenyi Biotec). The cell suspension was passed through 70 μm cell strainers and 
centrifuged for 7 min at 450 g at 4°C. Supernatant was removed and cells were subject to 
ACK Lysis Buffer (Life Technologies) for 2 min on ice, centrifuged for 7 min at 450 g at 
4°C, and resuspended in RPMI 1640 supplemented with 2% human serum (Sigma). The 
single cell suspension was stained with Zombie Violet in PBS (Invitrogen) for 10 min on ice, 
then stained for 15 min with antibodies (Biolegend) against human CD235a, CD326, CD45, 
CD66b, lineage cocktail (CD2, CD3, CD19, CD20, CD56), subsequently fixed with 1% 
formaldehyde, quenched in 0.125 M glycine, washed and sorted for Zombie Violet-negative, 
CD235a-negative, CD66b-negative cells into a 1.5 ml DNA LoBind tube (Eppendorf) prior 
to cell lysis and mtscATAC-seq processing as described below.

Single cell ATAC-seq (C1 Fluidigm)
The C1 Fluidigm platform using C1 single cell Auto Prep IFC for Open App and Open App 
Reagent Kit were used for the preparation of single cell ATAC-seq libraries as previously 
described19. Briefly, cells were washed and loaded at 350 cells/μl. Successful cell capture 
was monitored using a bright-field Nikon microscope and was >85%. Lysis and 
tagmentation reaction and 8 cycles of PCR were run on chip, followed by 13 cycles off chip 
using custom index primers and NEBNext High-Fidelity 2X PCR Master Mix (NEB). 
Individual libraries were pooled and purified using the MinElute PCR kit (QIAGEN) and 
quantified using a Qubit dsDNA HS Assay kit (Invitrogen) and a High Sensitivity DNA chip 
run on a Bioanalyzer 2100 system (Agilent).

Single cell ATAC-seq and mtscATAC-seq
ScATAC-seq libraries were generated using the 10x Chromium Controller and the 
Chromium Single Cell ATAC Library & Gel Bead Kit (#1000111) according to the 
manufacturer’s instructions (CG000169-Rev C; CG000168-Rev B) or as detailed below with 
respect to the modifications enabling increased mtDNA yield and genome coverage. 1.5 ml 
or 2 ml DNA LoBind tubes (Eppendorf) were used to wash cells in PBS and downstream 
processing steps. After washing cells were fixed in 0.1 or 1% formaldehyde (FA; 
ThermoFisher #28906) in PBS for 10 min at RT, quenched with glycine solution to a final 
concentration of 0.125 M before washing cells twice in PBS via centrifugation at 400 g, 5 
min, 4°C. Cells were subsequently treated with lysis buffer (10mM Tris-HCL pH 7.4, 10mM 
NaCl, 3mM MgCl2, 0.1% NP40, 1% BSA) for 3 min for primary cells and 5 min for cell 
lines on ice, followed by adding 1 ml of chilled wash buffer and inversion (10mM Tris-HCL 
pH 7.4, 10mM NaCl, 3mM MgCl2, 1% BSA) before centrifugation at 500 g, 5 min, 4°C. 
The supernatant was discarded and cells were diluted in 1x Diluted Nuclei buffer (10x 
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Genomics) before counting using Trypan Blue and a Countess II FL Automated Cell 
Counter. If large cell clumps were observed a 40 μm Flowmi cell strainer was used prior to 
processing cells according to the Chromium Single Cell ATAC Solution user guide with no 
additional modifications. Briefly, after tagmentation, the cells were loaded on a Chromium 
controller Single-Cell Instrument to generate single-cell Gel Bead-In-Emulsions (GEMs) 
followed by linear PCR as described in the protocol using a C1000 Touch Thermal cycler 
with 96-Deep Well Reaction Module (BioRad). After breaking the GEMs, the barcoded 
tagmented DNA was purified and further amplified to enable sample indexing and 
enrichment of scATAC-seq libraries. The final libraries were quantified using a Qubit 
dsDNA HS Assay kit (Invitrogen) and a High Sensitivity DNA chip run on a Bioanalyzer 
2100 system (Agilent).

We further note the following related to mtscATAC-seq optimizations: Comparison of 
mtDNA cross-contamination between cell lines using data from Fig. 1b suggested higher 
levels at 0.1% formaldehyde (contamination 1.54%) compared to 1% formaldehyde fixation 
(contamination 1.14%). Therefore, cells were fixed in 1% formaldehyde for 10 min at RT. 
This has yielded excellent results and has been used throughout the manuscript unless 
indicated. Additional incubation (30 min to 12 h) at 60°C to further facilitate decrosslinking 
prior to the first 72°C elongation step did not improve results (data not shown) and we 
recommend using the PCR conditions specified in the 10x scATAC-seq protocol. Related to 
10x Chromium microfluidic chip handling, cell loading, and recovery, we have followed the 
general recommendations from 10x Genomics and observe concordant results relative to 
their standard protocol. As hematopoietic cell suspensions were used for protocol 
optimizations, additional modifications may be required to obtain optimal results for other 
tissues of interest.

Single cell RNA-seq
ScRNA-seq libraries were generated using the 10x Chromium Controller and the Chromium 
Single Cell 5′ Library Construction Kit and human B cell and T cell V(D)J enrichment kit 
according to the manufacturer’s instructions. Briefly, the suspended cells were loaded on a 
Chromium controller Single-Cell Instrument to generate single-cell Gel Bead-In-Emulsions 
(GEMs) followed by reverse transcription and sample indexing using a C1000 Touch 
Thermal cycler with 96-Deep Well Reaction Module (BioRad). After breaking the GEMs, 
the barcoded cDNA was purified and amplified, followed by fragmenting, A-tailing and 
ligation with adaptors. Finally, PCR amplification was performed to enable sample indexing 
and enrichment of scRNA-Seq libraries. For T cell and B cell receptor sequencing, target 
enrichment from cDNA was conducted according to the manufacturer’s instructions. The 
final libraries were quantified using a Qubit dsDNA HS Assay kit (Invitrogen) and a High 
Sensitivity DNA chip run on a Bioanalyzer 2100 system (Agilent).

mtscATAC-seq sequencing and preprocessing
All libraries were sequenced using Nextseq High Output Cartridge kits and a Nextseq 550 
sequencer (Illumina). 10x scATAC-seq libraries were sequenced paired end (2 × 72 cycles). 
10× 5’ scRNA-seq libraries were sequenced as recommended by the manufacturer. Raw 
sequencing data was demultiplexed using CellRanger-ATAC mkfastq. Raw sequencing reads 
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for all libraries were aligned to the regular and modified (for the mtDNA black list) hg19 
reference genome using CellRanger-ATAC count version 1.0 (for cell-line mixing 
experiment) and version 1.2 (for all other samples).

With respect to mtscATAC-seq sequencing depth and cell numbers, we further note that for 
hematopoietic cells we have generally aimed to match the estimated overall library 
complexity of the sample, e.g. sequence 100 million reads for a library with an estimated 
complexity of 100 million unique fragments (estimated exclusively from the nuclear 
genome). Furthermore, we have aimed to obtain at least 20x mitochondrial genome coverage 
after removal of PCR duplicated reads to enable confident mtDNA mutation calling. 
Mitochondrial genome coverage may improve with deeper sequencing than used here. 
Moreover, because mtDNA content may vary from one cell type or state to another, the 
required sequencing depth may vary and higher coverage may be readily achieved in some 
cell types, which would in turn enable more confident detection of low frequency mutations.

We cannot currently specify general guidance for the number cells to be profiled, as this will 
inevitably depend on the specific context (i.e. tissue and question of interest). Generally, this 
will be a function of the “clonality” of each tissue and the diversity of cell types and states, 
the complexity of which we currently may not be able to accurately anticipate, given the 
relative lack of data in this area for many human tissues. All methods, when applied to a 
random sampling of cells, including genetic engineering approaches, are more likely to 
detect dominant clones, whereas the resolution of lower frequency clones ultimately 
improves with an increasing number of cells sequenced. Based on our experience with data 
in this manuscript, we suggest that profiles from as few as ~1,000 cells can highlight 
subclonal structures in malignant cell populations (Fig. 4). For steady state hematopoiesis 
~10,000 cells have provided initial informative insights (Fig. 6), though deeper profiling 
may be desired depending on the question at hand.

Masked reference genome and NUMT comparison
To effectively assign putative multi-mapping reads to the mtDNA, we modified the existing 
CellRanger-ATAC reference genome by hard-masking nuclear mitochondrial DNA segments 
(NUMT). These regions were detected by simulating reads of length 20 from the reference 
mtDNA genome and encoding 1 base “errors” via the ART program59. Simulated reads were 
then aligned to the reference genome (with the mitochondrial chromosome excluded). As 
these reads were simulated to originate from the mtDNA genome but aligned to the nuclear 
genome, we hard masked these regions using bedtools60. Comparisons of data from Fig. 1 
were performed by re-aligning the same datasets to the reference genome with and without 
masking. Complete documentation to reproduce the masking and modification of the 
CellRanger-ATAC reference genome are available as part of the mgatk wiki (https://
github.com/caleblareau/mgatk/wiki).

To estimate the number of accessible NUMT fragments that would be assigned to mtDNA, 
we considered two different approaches. First, we used a public GM12878 dataset from 10x 
Genomics (https://www.10xgenomics.com/solutions/single-cell-atac/) that was aligned to the 
standard hg19 reference and counted the number of fragments per cell overlapping our 
NUMT blacklisted regions, which resulted in a mean 1.4 and median 1.0 fragments per cell. 

Lareau et al. Page 15

Nat Biotechnol. Author manuscript; available in PMC 2021 April 14.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript

https://github.com/caleblareau/mgatk/wiki
https://github.com/caleblareau/mgatk/wiki
https://www.10xgenomics.com/solutions/single-cell-atac/


Second, we used a compendium of DNase accessible peaks from 164 distinct samples from 
the ENCODE15 and Roadmap14 consortia, and estimated that these samples contained a 
mean 22.6 peaks overlapping our NUMT blacklist. Next, using the GM12878 peakset and 
the same scATAC-seq dataset, we determined that a mean 4.1% of the GM12878 DNase 
peaks were detected over all cells. The product of these two numbers (22.6*0.041=0.93 
fragments/cell) provides an alternative estimate for the number of accessible chromatin 
fragments overlapping NUMTs (~1 fragment) that were blacklisted. As our mtscATAC-seq 
assay generates ~5,000–10,000 mtDNA fragments, we conclude that our blacklist approach 
yields negligible NUMT contamination.

Comparison of experimental conditions
For all comparisons shown in the boxplots and violin plots, the top 1,000 cells/barcodes 
based on chromatin library complexity were plotted. The top 1,000 number was chosen to 
ensure the selection of real cells rather than barcode multiplets61 or other barcodes 
associated with low counts. For the overall coverage comparison (Fig. 1g), the top 2,000 
cells based on nuclear complexity were averaged (to represent the expected 2,000 cell yield 
from the experiment).

Cells were assigned TF1, doublet, or GM11906 using the sum of alleles at homoplasmic 
mitochondrial SNP loci (Extended Data Fig. 1d) using a 99% threshold for assignment to 
either major cell-type for our final protocol. We assigned barcodes as cell doublets (Fig. 
1d,e) when this 99% threshold was not met for the major celltype. For both mtDNA and 
chromatin complexity estimation (Extended Data Fig. 1e), we used the number of unique 
and duplicate fragments as part of the CellRanger-ATAC (chromatin) and mgatk 
(mitochondria) output as inputs into the Lander-Waterman equation62, which estimates the 
total number of unique molecules present given these two measurements. Complexity 
measures were computed per barcode passing the knee filter from the default CellRanger-
ATAC execution.

To verify that cell type-specific accessible peaks were retained in mtscATAC-seq, we 
determined 77,704 peaks present in either the TF1 or GM11906 cell lines using the regular 
10x scATAC-seq conditions. These were determined from assigning barcodes to either cell 
line using mtDNA SNPs and calling peaks on the aggregate bulk population as previously 
described9. We repeated this peak calling procedure with our mtscATAC-seq data, 
identifying 72,887 peaks that overlapped the 77,704 peaks (93.8%).

To model the residual variation in mtDNA coverage (Fig. 1g), we computed rolling averages 
of GC content and mean coverage after masked alignment in 50 bp bins with a 25 bp step 
size (Extended Data Fig. 1j).

Mitochondrial pathogenic variants
We queried MITOMAP26 version r102 and filtered for “Confirmed” pathogenic base-
substitution variants. 46 variants were annotated to alter tRNA function whereas 42 were 
annotated to alter protein coding sequences in one or more protein-coding genes. Two 
additional variants were annotated to alter rRNA function.
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In situ detection of mtDNA heteroplasmy

Sample preparation and imaging—All solutions below were prepared in 1x phosphate 
buffered saline (PBS), and incubations were carried out at RT unless otherwise specified. 
Two million GM11906 cells were fixed with 2 ml 1% paraformaldehyde for 10 min and 
quenched by adding 666 μl 1 M Tris-HCl pH 8 and incubation for 5 min. Cells were then 
permeabilized with 0.5% Triton-X 100 for 20 min and embedded in 4% acrylamide gels63. 
The mitochondrial target sequence (on the antisense strand) was made accessible for 
hybridization by enzymatic removal of the sense strand64,65: restriction digest with 0.5 U/μl 
XbaI at 37°C for 1 h, followed by adding 0.2 U/μl lambda exonuclease (both New England 
Biolabs) at 37°C for 30 min. The oligonucleotide probe sequences against the wildtype (/
5PHOS/
ACCAACACCTCTTTACtaataCAGCCAATCTCGGGAACGCTGAAGAcggcACGTACGT
GTTAAAGATTAAGAGA) and mutant (/5PHOS/
GCCAACACCTCTTTACtaataCTGTGAGTCTCGGGAACGCTGAAGAcggcTTCCTTCC
GTTAAAGATTAAGAGA) alleles were pooled at 100 nM each in 2x SSC and 20% 
formamide, hybridized to the cell gels at 37°C overnight, and circularized with 6 U/μl T4 
ligase (Enzymatics) for 2 h. Rolling circle amplification, crosslinking, and in situ sequencing 
were performed as previously described20. The cell gel was stained with DAPI (Thermo 
Fisher) and imaged on a Nikon Eclipse Ti microscope with a Yokogawa CSU-W1 confocal 
scanner unit and an Andor Zyla 4.2 Plus camera using a Nikon Plan Apo 60X/1.40 
objective. Z-stack images spanning 24 μm at 0.4 μm intervals were acquired in the following 
channels: 405 nm excitation with a 452/45 emission filter; 488 nm excitation with a 525/50 
emission filter; 561 nm excitation with a 579/34 emission filter.

Image processing and heteroplasmy quantification—Each image stack was 
transformed into 2D by taking the maximum intensity projection across z-planes. Individual 
nuclei boundaries were defined by performing watershed segmentation on the DAPI 
staining. Wild-type and mutant probes were detected using a local maxima finder and 
uniquely assigned to individual cells based on spatial proximity. Probes that could not be 
unambiguously assigned to a cell were excluded from heteroplasmy and coverage 
measurements.

Epigenomic correlates with pathogenic heteroplasmy
To identify chromatin accessibility features associated with pathogenic heteroplasmy in the 
GM11906 cell line, we considered two approaches that complemented our estimation of 
heteroplasmy at the single-cell level. First, to assess cis-associations, we computed single-
cell gene scores as previously described9,10 and computed per-gene associations with 
heteroplasmy using Spearman correlation (Fig. 2f). To establish a background distribution, 
we permuted heteroplasmy per-cell and recomputed the per-gene association statistic. We 
reported the number of gene scores correlated with heteroplasmy if the magnitude of the 
Spearman correlation exceeded 0.2. However, we note that a 1% false positive rate from the 
permutation testing would be a threshold of 0.087, resulting in 752 positively and 1,992 
negatively correlated gene scores. We reported the more conservative results after 
examination of the accessible chromatin tracks where loci exceeding a magnitude 0.2 
correlation revealed more robust peak differences. Second, to assess trans-associations, we 
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downloaded a compendium of 78 high-quality ChIP-seq peak sets from lymphoblastoid cell 
lines from the ENCODE project15. Per single-cell deviation scores were computed for these 
factors using chromVAR38.

Variant calling and evaluation

Overview—To best identify informative clonal mutations from our mtscATAC-seq assay, 
we first considered existing variant calling approaches. Notably, algorithms designed for 
genotyping typically utilize a Bayesian framework to determine the empirical probability of 
a certain non-reference allele being truly observed at a particular location. In this setting, the 
ploidy of the genome is often parameterized in the model, and the allele frequency directly 
influences the confidence of detecting the mutation. As mtDNA copy number per cell is 
variable and informative clonal mutations may occur at very low allele frequencies, we 
found these existing approaches to be unsuitable for our mtscATAC-seq assay. Therefore, we 
developed a variant calling framework to identify high-confidence heteroplasmic mutations 
in a manner that 1) is largely independent of the mean allele frequency; 2) is robust to 
variability in genome ploidy of a cell; and 3) utilizes the features intrinsic to the high-
throughput single-cell mtDNA data, including near-uniform deep coverage, minimal dropout 
per-cell, and thousands of single-cells per experiment. Our resulting variant calling 
framework, mgatk, achieves these goals.

Analysis of mtscATAC-seq data from this manuscript revealed that certain positions with 
substantial heteroplasmy across biological diverse sources was primarily driven by 
sequencing error. These “recurrently-mutated” loci were due in part to several low-
complexity stretches in the mitochondrial genome. However, by further evaluation of these 
variants, we determined that the erroneous heteroplasmy was primarily driven by one strand, 
reflective of a photobleaching effect from surrounding “G”s on successive cycles66.

Identification of subclonal variants with mgatk—The raw output of the CellRanger-
ATAC count execution, specifically the barcodes passing knee and the position-sorted .bam 
file, serve as inputs into the command-line interface of mgatk. This execution produces 
intermediate plaintext sparse matrix files of PCR-deduplicated, per-cell, per-strand count of 
all alleles at all positions in the reference mitochondrial genome.

To determine high quality variants to infer clonal cell populations, mgatk then computes per 
variant summary statistics that are used to define high-quality variants. First, it computes a 
Pearson correlation coefficient between allele counts for all cells that have at least one count 
observed for the alternate allele (i.e. removing 0,0 points from the calculation). Intuitively, a 
high correlation captures the agreement of heteroplasmy between the strands and mitigates a 
widespread technical bias of sequencer photobleaching (Extended Data Fig. 3c). Explicitly, 
the Pearson correlation coefficient is the “strand concordance” value in Fig. 3b and 5d, and 
Extended Data Fig. 3d,e, 4b, and 6d. For all applications in this paper, we used a threshold 
of 0.65. Next, we compute a per-variant variance mean ratio (VMR; y-axis of the same 
figures) and subsequently filter out variants with a VMR < 0.01 (Fig. 3b, 5d and Extended 
Data Fig. 3d,e, 4b, and 6d). Default values for these two thresholds were based on 
performance in the hematopoietic clone data (Extended Data Fig. 3). Finally, mgatk reports 
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the number of cells where the variant was confidently detected, defined by the mutation 
being detected in at least two fragments aligned to both strands. Here, we require the variant 
to be confidently detected in at least five cells for downstream analyses (which minimizes 
the inclusion of mutations that would not be associated with subclonal structure). While the 
workflow enables custom user-defined thresholds, we consistently applied these stated 
thresholds across the datasets in this study.

When visualizing variants in heatmaps, we have utilized different dynamic ranges (such as 
up to 10% or up to 100% heteroplasmy) to help display mutations in the relevant context of 
each figure. In general, we recommend visualizing variant x cell heatmaps at a variety of 
dynamic ranges to ensure best results. Specifically, the mutations displayed in Fig. 3c are of 
low frequency that mark smaller subclonal groups of cells. Conversely, variants shown in 
Fig. 4d are highly heteroplasmic or homoplasmic, which would not be conveyed when 
keeping an upper threshold of 10% heteroplasmy for visualization.

Finally, while our approach works for mtscATAC-seq and full-length scRNA-seq methods 
(e.g. SMART-seq2; Extended Data Fig. 3d–h), our approach is not appropriate for 3’ 
scRNA-seq methods (as data from such platforms are typically only derived from 
sequencing one strand).

Comparisons to other approaches—To compare our proposed variant calling 
approach to other tools, we analyzed the 855 TF1 single cells (Fig. 3) profiled in this 
manuscript. First, our execution of monovar28 failed as the genotype likelihood model is a 
function of a factorial of the max depth, which cannot be stored for the extremely deep 
coverage that results from our protocol. We then evaluated samtools/bcftools67 and 
FreeBayes68, treating each of the 855 cells as individual samples. To compare to mgatk 
(Extended Data Fig. 3a,b), the resulting .vcf files from each of these tools were filtered to 
remove clear homoplasmic variants and that had a variant quality ≥100. While our analyses 
indicated mgatk had greater sensitivity in resolving heteroplasmic variants informative for 
subclonal structure, relaxing this variant quality threshold did not improve detection of these 
informative variants and instead resulted in far more variants with strand discordance 
(Extended Data Fig. 3c). Finally, we acknowledge that other variant calling tools, such as 
GATK, utilize a Fisher’s exact test to flag variants with high strand discordance that can be 
removed in downstream processing. We found this approach to be unsuitable for this data 
due to the high copy-number, resulting in extremely-small p-values for all variants, 
including those that clearly correlated with subclonal structure.

Simulations—We estimated the sensitivity and positive predictive value (PPV) of 
mtscATAC-seq using a simulation where we varied mutation heteroplasmy and mutation 
coverage (Extended Data Fig. 3i). For each of 10,000 iterations per condition, we simulated 
data for 1,000 cells such that 100 cells contained the subclonal mutation (denoted by the set 
I). For heteroplasmy p (p ∈ {0.02,0.05,0.15,0.25,0.35,0.45}) and coverage n (n ∈ 
{20,50,100}), we simulated the variant allele frequency (AF) for cell i ∈ I as:

AFi = rbinom n, p /n
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The simulated allele frequencies for the 900 cells that lacked the mutation (denoted by the 
set J), were computed in an analogous manner instead using a value q, corresponding to the 
contamination (or noise) of mtscATAC-seq. From our experiments in Fig. 1, we empirically 
derived q = 0.19. Thus, for cell j ∈ J,

AFj = rbinom n, q /n

For ‘detection’, we required the cell to have at least half of the simulated heteroplasmy (p / 
2). Sensitivity and PPV were reported using I as the set of true positives, and J as the set of 
true negatives by the mean of the 10,000 iterations per condition.

To estimate the dropout rate of a mutation, defined by zero observations of the alternate 
allele, we simulated m = 10,000 observations for each value (indexed by k) of n and p and 
computed the ratio of draws of a binomial distribution that were identically zero to the total 
number of draws:

dropout n, p = ∑
k

rbinomk n, p = 0 /m

All code to reproduce all simulations is contained in the online resources.

Evaluation of mgatk with SMART-seq2 data
To further benchmark our variant calling algorithm, we reanalyzed 895 high-quality cells 
from poly-clonal hematopoietic cells carrying somatic mtDNA mutations identified from 
SMART-seq2 scRNA-seq data6. Previously aligned .bam files were re-processed with mgatk 
for each donor, and variant calling mirror the parameters established in the TF1 example (i.e. 
strand concordance ≥ 0.65; -log10(VMR) ≥ 2; see Extended Data Fig. 3g,h). From these 
samples, we had previously identified 78 variants showing subclonal structure using a 
supervised approach (i.e. the per-cell colony annotations were used in the identification of 
the variants). This set of 78 variants represents a “silver standard” as variants showed 
disproportionate heteroplasmy in a particular clone based on a Mann-Whitney U-test 
previously described6.

Overall, mgatk identified 103 variants across the two donors. This set replicated 64 of the 76 
(84.2%) previously identified sub-clonal variants. The variants that were not replicated were 
rarer in the population of cells (p=0.00045; Wilcoxen Rank-Sum Test; Extended Data Fig. 
3f). While we generally believe the mgatk variant calling approach to be sensitive to low-
frequency variants, we note that this supervised variant calling procedure (when clonal 
annotations are known) is theoretically better-powered to detect low-frequency mutations. 
However, we note that one previously-identified variant, 4214T>C, had only non-zero 
heteroplasmy on one strand, strongly suggestive of an artifactual variant that was 
nonetheless identified by our previous supervised approach6.

To evaluate the efficacy of variant identification approaches for inferring clones, we tested 
their ability to correctly classify true-positive pairs of cells that were derived from the same 
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clone6. We computed per cell pair mtDNA cosine similarity metric, using mutations 
identified by three unsupervised approaches (mgatk, bcftools, and FreeBayes), as well as our 
previous supervised approach for each donor. Area under the receiver operating curve 
(AUROC, Extended Data Fig. 3g,h) were computed and can be interpreted as the efficacy of 
classifying pairs of cells from the same clone based on sets of mtDNA variants.

TF1 analyses
To identify putative subclones, we used the square root of the heteroplasmy matrix as inputs 
into the FindNeighbors / FindClusters functions from Seurat69 with slight modifications for 
these functions (cosine distance metric, k.param = 10; resolution = 1.0). In principle, this 
approach identifies communities of cells whose overall mutations are similar (using a shared 
nearest neighbors approach), and subclones are identified using a modularity optimization. 
Finally, we performed tree reconstruction using neighbor-joining on the cosine distance 
between the average heteroplasmy of cells per clone using hierarchical clustering.

Chronic lymphocytic leukemia scATAC analyses
For each mtscATAC-seq library, cells were processed using CellRanger-ATAC with default 
settings, including the `--force-cells 6000` flag. Each library was further filtered such that 
cells had minimum 50% fragments in accessibility peaks, 1,000 unique nuclear fragments, 
and 20x mtDNA coverage. Somatic mtDNA mutations were identified using mgatk with the 
default parameters for the CD19 positive cells profiled with mtscATAC-seq (Extended Data 
Fig. 4b). Putative sub-clones were identified using the mutations for patient 1 (n=18) and 
patient 2 (n=24) separately using the FindNeighbors/ FindClusters functions from Seurat 
with a cosine distance function on the square root of the heteroplasmy matrix. We used 
parameters for patient 1 (k.param = 20; resolution = 0.2; Fig. 4c) and patient 2 (k.param = 
30; resolution = 1.0; Extended Data Fig. 4c) to effectively identify subclones. For 
visualization of cell by mutation heatmaps, subsets of cells from Patient 1 (2,246/5,624; Fig. 
4c) and Patient 2 (3,057/5,874; Extended Data Fig. 4c) were visualized as the remaining 
cells had largely 0% heteroplasmy at called mutations.

To determine copy number alterations (Fig. 4e), we first constructed overlapping 10Mb bins 
genome-wide using a step size of 2Mb. Next, we overlapped the .fragments.tsv file from the 
10x CellRanger-ATAC output with these bins to compute a bin x cell matrix for both the 
CLL samples as well as a healthy control PBMC sample. Next, we computed a per-cell, per-
bin z-score of the number of fragments after normalizing each cell to a consistent 
sequencing depth. The chromosome 12 z-score (Fig. 4e) represents the per-cell mean of the 
z-scores from the bins mapping to this chromosome. To interpret the z-score, we computed 
the percentage of unique autosomal reads mapping to chromosome 12 for the CLL (8.1%) 
and healthy PBMC samples (mean 5.3%). The 53% increase in reads mapping to 
chromosome 12 in CLL cells supported trisomy (rather than a higher copy number) as the 
chromosomal aberration.

To identify chromatin accessibility peaks associated with mtDNA mutation-derived 
subclones, we performed a series of χ2 association tests. After binarizing the chromatin 
accessibility count per-peak, per-cell, a contingency table of dimension n x 2 was assembled, 
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where n is the number of subclones per tumor. The resulting chi-squared statistics were 
associated with p-values using n - 1 degrees of freedom, and correction for multiple testing 
was performed using the Benjamini–Hochberg procedure. To further visualize a null 
association statistics, we permuted the subclone annotations per peak to visualize a null 
distribution of the chi-square statistics (see gray from Fig. 4f; Extended Data Fig. 4g). The 
TIAM1 and ZNF257 loci were selected based on strong association (both in the top 10 most-
associated peaks) and proximity to annotated transcription start sites.

To identify non-B-cells with mtDNA mutations, we first embedded a healthy PBMC 5k cell 
sample from the 10x Genomics public dataset using LSI and UMAP as previously 
described37. Using the LSI components the projection capability of UMAP, we projected 
CD19 negative cells from both CLL donors onto the reduced dimension space (Fig. 4j,k). 
Cells were annotated as positive for specific mtDNA mutations if the heteroplasmy exceeded 
20% (corresponding to at least 4 unique molecules containing the alternate allele; Fig. 4j,k).

Colorectal cancer scATAC-seq analyses
The colorectal cancer sequencing library was processed with CellRanger-ATAC with default 
settings. Each cell was further filtered such that it had a minimum 40% of fragments 
overlapping a compendium of DNase hypersensitivity peaks (integrated in the CellRanger-
ATAC workflow), 1,000 unique nuclear fragments, and 10x mtDNA coverage. Somatic 
mtDNA mutations were identified using mgatk using default parameters. Dimensionality 
reduction, clustering, and gene activity scores were determined using standard processing 
via Seurat and Signac69. Single-cell copy number inference was performed as described in 
the CLL scATAC analysis section, and the reported amplified chromosomes were 
corroborated by Whole-Exome Sequencing data (data not shown).

Exome sequencing
Enriched CLL cells and in vitro expanded CD3+ T lymphocytes to serve as a germline 
control were subjected to whole exome sequencing using the clinical somatic exome 
workflow through the Broad Institute Genomics Platform. The exome product targets 35.1 
Mb with a total bait size of 38.9 Mb and are optimized to cover the following: 99% of 
ClinVar variants; complete Mitochondrial genome; full ACMG59 gene list; Online 
Mendelian Inheritance in Man (OMIM) putative gene sequences; Catalogue of Somatic 
Mutations in Cancer (COSMIC) variants; Internal ‘ONCO Panel’ and additional key 
promoters and other motifs that have been identified as potential cancer hot spots. 
Automated library preparation occurs as follows. Samples were plated at a concentration of 
2 ng/μl and volume of 50 μl (total 100 ng input) into fresh matrix tubes allowing positive 
barcode tracking throughout the process.

Samples were sheared to yield ~180 bp size distribution. Kapa Hyperprep kits were used to 
construct libraries in a process optimized for somatic samples, involving end repair, adapter 
ligation with forked adaptors containing unique molecular indexes and addition of P5 and P7 
sample barcodes via PCR. After SPRI purification libraries were quantified with Pico Green. 
Libraries were normalized and equimolar pooling was performed to prepare multiplexed sets 
for hybridization. Sample pools were then split and hybridized in up to 8 separate reaction 
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wells to accommodate volumes. Automated capture was performed, followed by PCR of the 
enriched DNA and SPRI purification.

Multiplex pools were quantified with Pico Green and DNA fragment size was estimated 
using Bioanalyzer electrophoresis. Final libraries were quantitated by qPCR and loaded 
across the appropriate number of Illumina flow cell lanes to achieve the target coverage. 
Completed exomes contained >= 85% of target bases covered at >= 50x depth and ranged 
from 130–160x mean coverage of the targeted region. Both tumor and normal samples were 
processed and used for variant identification.

CLL scRNA-seq analyses
5’ scRNA-seq libraries, including VDJ sequencing, were processed using default parameters 
with CellRanger 3.1.0. Mitochondrial genotyping was conducted using mgatk with the “--
umi-barcode” tag specifying the SAM tag from the CellRanger .bam output marking the 
error-corrected UMI barcode. Cell-type specific signatures (Fig. 4k; Extended Data Fig. 4k) 
were computed using Seurat’s AddModuleScore69 where gene bins were computed on a 
control set of healthy PBMCs. Cell-type specific genes were determined from the Immune 
Cell Atlas (available here: https://github.com/caleblareau/immune_cell_signature_genes). 
Two nuclear variants, chr4:109,084,804A>C (“LEF1”; p.S112A) and chr19:36,394,730G>A 
(“HSCT”; p.A56T), encoded missense mutations that were detected using whole-exome 
sequencing and somatic mutation calling. These mutations were covered by the 5’ scRNA-
seq libraries, enabling single-cell examination (Extended Data Fig. 4k). Cells were 
annotated as positive for mtDNA mutations if at least two distinct UMIs supported the 
mutation (Fig. 4l; Extended Data Fig. 4k). Datasets used for the comparison of scRNA-seq 
technologies (Extended Data Fig. 4d,e) are detailed in Supplementary Table 4.

In vitro CD34+ cell culture analyses
For each mtscATAC-seq library, cells were processed using CellRanger-ATAC with default 
settings, including the `--force-cells 6000` flag. Each library was further filtered such that 
cells had minimum 25% fragments in accessibility peaks, 1,000 unique nuclear fragments, 
and 20x mtDNA coverage. Cutoffs were determined from examination of the density of each 
parameter. Somatic mtDNA mutations were identified using default thresholds from mgatk 
for each culture independently.

Clustering and embedding using Uniform Manifold Approximation and Projection70 

(UMAP) were performed on the top 30 reduced dimensions from Latent Semantic Indexing 
(LSI) as previously described for the chromatin accessibility features37. Annotation of cell 
states were determined using transcription factor motif scoring via chromVAR38 with default 
parameters, noting that the background peak selection was performed using all libraries 
merged. Pseudotime trajectories were defined using a semi-supervised approach from LSI 
and embedding as previously described10.

To determine cell clones, we used the mutations by cells matrix as input to the 
FindNeighbors/ FindClusters functions from Seurat with hyperparameters k.param = 10, 
resolution = 1.5, and cosine distance function, which yielded good separation of the rare cell 
clones. Clone-specific mutations were shown for all mutations exceeding 0.5% mean 
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heteroplasmy in cell clones (Extended Data Fig. 5i,j). We defined erythroid and monocytic 
cells in the day 20 library as those that exceeded a 0.5 pseudotime score along the specific 
axes (from Fig. 5c) and retained 57 clones from the 800 cell culture that had at least 10 total 
cells that were differentiated. To compute the lineage bias z-score (Fig. 5j), we computed the 
fraction of monocytic/erythroid labels in a cell clone and permuted these labels 100 times 
over the day 20 library. Finally, to infer putative lineage-priming chromatin accessibility, we 
identified 10 erythroid-biased and 21 monocytic-biased clones (z-score >5 from Fig. 5j) and 
computed the mean transcription factor deviation scores38 from the day 8 cells belonging to 
each clone. The difference in means between the erythroid and monocytic-biased clones 
represents the putative lineage bias score and is plotted in Fig. 5k.

In vivo hematopoiesis analyses
The four mtscATAC-seq libraries (2x PBMC; 2x CD34+ HSPC cells) were processed using 
CellRangerATAC-count with the `--force-cells 6000` flag. Each library was further filtered 
such that cells had minimum 25% (CD34+ HSPCs) or 60% (PBMCs) fragments in 
accessibility peaks, 1,000 unique nuclear fragments, and 20x mtDNA coverage. Cutoffs 
were determined from examination of the density of each parameter. Somatic mtDNA 
mutations were identified using default thresholds from mgatk for each sample separately.

To define cell states for the CD34+ HSPC dataset, clustering and embedding using Uniform 
Manifold Approximation and Projection70 (UMAP) were performed on the top 30 reduced 
dimensions from LSI as previously described37 for the chromatin accessibility features and 
utilized for the PBMC data. Here, we utilized the previously published peak set37 to 
facilitate projection of FACS-sorted progenitors (Fig. 6c). For the PBMC data, clustering, 
reduced dimensionality, and gene activity scores were determined using standard processing 
via Seurat and Signac69. This workflow was utilized to facilitate high resolution cell-type 
label transfer from an existing public 10x scRNA-seq v3 PBMC dataset (Extended Data Fig. 
6a).

To determine cell clones, we used the mutations by cells matrix as input to the 
FindNeighbors/ FindClusters functions from Seurat with hyperparameters k.param = 10, 
resolution = 3.5, and cosine distance function, which produced cell clones, where one 
mtDNA variant often corresponded to one cluster (Extended Data Fig. 6g). To determine 
putative clonal lineage bias (Fig. 6m–o), we performed a Chi-squared goodness of fit for the 
observed per-clone proportions compared to the total proportions of cells. For the CD34+ 
HSPC data, we used the 12 chromatin clusters (Fig. 6c) and for the PBMC data the three 
main large clusters (T/NK cells; B-cells, monocytes; Fig. 6d). Here, clones were filtered 
such that at least 10 cells were present in the analyzed clones.

To identify the 923 additional rare variants (Extended Data Fig. 6h,i), we identified 
mutations that met the following criteria: a) “confidently detected” with at least 2 unique 
fragments aligning to both the top and bottom strand (minimum 4 total reads) in 1, 2, or 3 
cells; b) present at no more than 5% heteroplasmy in no more than 5 cells (to further exclude 
the possibility of unaccounted bias). We emphasize that none of the additional 923 mutations 
overlapped with the 429 clonal variants identified using the standard mgatk processing.
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DATA AVAILABILITY
Data associated with this work is available at GEO accession GSE142745.

CODE AVAILABILITY
Software and documentation for mitochondrial variant calling via mgatk is available at 
http://github.com/caleblareau/mgatk. Custom code to reproduce all analyses and figures is 
available at https://github.com/caleblareau/mtscATACpaper_reproducibility.
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Extended Data

Extended Data Fig. 1: Additional validation of biotechnological and computational basis for 
single-cell mtDNA genotyping.
(a) Comparison of chromatin library complexity (estimated number of unique fragments) 
across screened lysis conditions as shown in Fig. 1. (b) The same variable lysis conditions 
showing the TSS rate per cell. (c) BioAnalyzer traces of mtscATAC-seq library fragment 
size distribution for regular conditions and mtDNA-enriched conditions. (d) Heteroplasmy 
heatmap of single cells (columns) for 43 private homoplasmic mutations (rows) in the TF1 
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or GM11906 cell lines with (left) and without (right) FA treatment. Color bar, heteroplasmy 
(% allele frequency). (e) Comparison of mtDNA fragment complexity and chromatin 
complexity between the original/ regular 10x scATAC protocol and modified lysis conditions 
with and without formaldehyde (FA) treatment. (f) Heteroplasmy of sum of single-cell 
ATAC-seq libraries with variable FA treatment. (g) Schematic, method, and results of 
improving mtDNA genome coverage via hard-masking the reference genome (Methods). 
(h) Comparison of % reads mapping to mtDNA and (i) chromatin complexity with (red) and 
without (blue) the hard masking. (j) Comparison of average coverage of mtscATAC-seq (y 
axis) and GC content (x axis) at each 50bp bin (dot) in the mtDNA genome. (k) Accessible 
chromatin landscapes aggregated from single cells near the ETV2 locus for both cell lines as 
assayed via regular scATAC-seq and mtscATAC-seq. For boxplots in (a,b,e,h,i), each 
condition represents the top 1,000 cells (based on chromatin complexity) for one 
experiment. Boxplots: center line, median; box limits, first and third quartiles; whiskers, 
1.5x interquartile range.

Extended Data Fig. 2: Further inferences in analysis of the GM11906 (MERRF) lymphoblastoid 
cell line.
(a) Alternative field of view for GM11906 in situ genotyping imaging experiment. 
Representative image selected from one of seven fields of view for one experiment. Pseudo 
bulk accessibility track plots are shown for the (b) ETV2 and (c) CD19 loci. Pseudo-bulk 
groups represent 0–10% (low), 10–60% (mid), and 60–100% (high) m.8344A>G 
heteroplasmy. (d) Spearman correlation of heteroplasmy against the ChIP-seq deviation 
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scores computed via chromVAR. Each bar is a single transcription factor with selected 
factors highlighted. (e) Depiction of MEF2C deviation scores from chromVAR for 
m.8344A>G heteroplasmy bins, corresponding to 0–10% (Low), 10–60% (Mid), and 60–
100% (High). Boxplots: center line, median; box limits, first and third quartiles; whiskers, 
1.5x interquartile range. Bins contain single cells collected over one experiment where bins 
correspond to high (>60%; n=273), intermediate (10–60%; n=228), and low (<10%; n=313) 
heteroplasmy (see Fig. 2c).
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Extended Data Fig. 3: Supporting information for somatic mtDNA mutation calling via mgatk.
(a) Venn diagrams depicting comparisons of heteroplasmic mutations identified by mgatk, 
samtools/ bcftools, and (b) FreeBayes. (c) Comparison of heteroplasmy estimated from 
reads aligned to either strand. The top row are three variants called specifically by mgatk; 
3549C>A was identified only by FreeBayes. 7399C>G and 546A>C were called specifically 
by bcftools. (d) Identification of 67 and (e) 36 heteroplasmic variants from previously 
published SMART-seq2 hematopoietic colony data. Blue variants represent known RNA-
editing events. (f) Comparison of population heteroplasmy values for variants replicated by 
mgatk from a previous supervised approach. Boxplots: center line, median; box limits, first 
and third quartiles; whiskers, 1.5x interquartile range. Statistical test: two-sided Mann-
Whitney U Test. (g) Concordance between discerning cells sharing a clonal origin based on 
colony-specific mtDNA mutations and their unsupervised identification using indicated 
algorithms (mgatk, bcftools, FreeBayes) and previously described supervised approach6. 
Receiver operating characteristic (ROC) using the per cell pair mtDNA similarity metric to 
identify pairs of cells sharing a clonal origin based on sets of mtDNA variants. The number 
of variants in each set is also depicted. (h) Area under the ROC (AUROC) is denoted for 
each donor group and indicated variant caller as depicted in (g). Each bar represents the 
statistic from one evaluation per donor per tool. (i) Estimated sensitivity (y axis, left), 
positive predictive value (y axis, right), and (j) estimated % dropout (y axis) for mtscATAC-
seq at different simulated levels of heteroplasmy (x axis; Methods). Vertical line: 5% 
heteroplasmy for a subclonal mutation. The in-graph numbers indicate the values from the 
curve at a single-cell heteroplasmy of 5% with colors corresponding to different per-cell 
coverage values in the simulation.
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Extended Data Fig. 4: Supporting information for clonal and functional heterogeneity in 
malignant populations revealed by mtDNA mutations.
(a) Flow cytometry gating strategy of CLL patient derived PBMCs showing expansion of 
CD19+ cells. (b) Identification of high-confidence variants for Patient 1 (top) and Patient 2 
(bottom). The number of variants n is indicated. (c) Inference of subclonal structure from 
somatic mtDNA mutations for patient 2. Cells (columns) are clustered based on 
mitochondrial genotypes (rows). Colors at the top of the heatmap represent clusters or 
putative subclones. Color bar, heteroplasmy (% allele frequency). (d) Dot plots showing the 
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mitochondrial genome coverage (log10; y-axis) for the top 500 cells per technology for four 
indicated scRNA-seq technologies. (e) The mean per-position mitochondrial genome 
coverage for the same 500 cells as in (d). (f) Volcano plot showing differential gene 
expression analysis from major and minor clonotypes defined by BCR sequence. 
Immunoglobulin (IG) genes are shown in purple; all other genes with an FDR < 0.05 are 
shown in blue. (g) Results for per-peak chi-squared association with sub-clonal group. Each 
dot is a peak rank-sorted by the chi-squared statistic. (h) Heteroplasmy from the sum of 
single-cells in the CD19+ and CD19- mtscATAC-seq experiments for indicated mutations 
and patients. (i) Histograms showing the distribution of heteroplasmy across the profiled 
population of cells for six selected variants, four from Patient 1 (left) and two from Patient 2 
(right). The number of variants in the top heteroplasmy bin (>90%) are shown in red. (j) 
Allele frequency from the sum of single cells from the 5’ CD19+ and CD19- scRNA-seq 
libraries for two indicated variants - chr4:109,084,804A>C (“LEF1”) and 
chr19:36,394,730G>A (“HSCT”). (k) Corroboration of T cells based on gene expression 
signatures and carrying indicated somatic nuclear and mtDNA mutations (Patient 2). (l) 
Gene activity scores supporting cell type annotations in Fig. 4n. Arrows: cluster enriched for 
respective gene score. (m) All mtDNA mutations (rows) by cells (columns) observed in the 
CRC tumor. Columns are colored by defined chromatin cell state defined as in Fig. 4n. (n,o) 
Chromatin-derived UMAP with cells marked by select mtDNA mutations enriched in (n) 
epithelial and (o) immune cells. Color bar: heteroplasmy (% allele frequency).
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Extended Data Fig. 5: Supporting information for clonal lineage tracing across accessible 
chromatin landscapes and time in an in vitro model of hematopoiesis.
(a) Depiction of single-cell UMAP embedding showing the original distribution of cells for 
each library/ time point, (b) relative cell density, (c) Louvain cluster, and (d) mitochondrial 
DNA coverage per single cell. (e) Overlap of variants called for each of the two datasets. (f) 
Comparison of log2 fold change in heteroplasmy from day 14 to day 8 for 19 overlapping 
variants. The p-value shown is for the beta 1 coefficient of the depicted linear regression 
model. (g) Proportion of cells (%) at day 8 of the 500 cell (x axis) and 800 cell (y axis) input 
culture carrying shared mtDNA variants as derived from panel (e) suggests limited clonal 
overlap. (h) Known pathogenic mtDNA mutations detected from a healthy donor. Each dot 
is a cell separated by the sampled library. All cells with a heteroplasmy of at least 2% are 
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shown. (i) Depiction of unsupervised clustering of groups of cells based on shared somatic 
mtDNA mutations (y-axis) with corresponding individual mtDNA mutations (x-axis) 
associated with each cluster for the 500 cell input and (j) 800 cell input culture. Color bar, 
heteroplasmy (% allele frequency). (k) Fraction of cells (y-axis) carrying number of somatic 
mtDNA variants (x-axis) above indicated thresholds (≥1%, ≥5%, ≥10% heteroplasmy; red, 
black, and blue lines, respectively) for indicated cultures.

Extended Data Fig. 6: Support information for cellular population dynamics in native 
hematopoiesis in vivo resolved by mtDNA based tracing.
(a) Assignment probabilities (%, colorbar) of scRNA-seq data derived transfer labels (rows) 
across mtscATAC-seq derived Louvian data clusters (columns) as identified in Fig. 6d. (b) 
Distribution of percent mitochondrial reads derived from mtscATAC-seq data (y axis) across 
PBMC populations (x axis). (c) Percent mitochondrial counts (y axis) in FACS sorted 
populations (x axis) from bulk RNA-seq data. (d) Identification of high confidence variants 
from CD34+ HSPC and PBMC cell populations. Number of variants passing both thresholds 
(dotted lines) is indicated. A Venn diagram depicts the overlap of shared mutations. (e) 
Percent duplicates of sequenced mtDNA fragments, mean mtDNA coverage and percent 
mitochondrial reads for CD34+ HSPC and PBMC cell populations as derived from 
mtscATAC-seq data. Boxplots: center line, median; box limits, first and third quartiles; 
whiskers, 1.5x interquartile range. (f) Distribution of maximum level of heteroplasmy of 
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mgatk derived variants from (d) in individual cells. (g) Unsupervised clustering of groups of 
cells based on shared somatic mtDNA mutations (y-axis) with corresponding individual 
mtDNA mutations (x-axis) associated with each cluster/clone. (h) Fold-change (observed 
over expected) of identified rare mutations (y axis) in each class of mononucleotide and 
trinucleotide change from the CD34+ HSPC data. (i) Comparison of pseudobulk allele 
frequencies from mgatk identified variants (blue) and rare variants (green). Boxplots for 
(b,c,e): center line, median; box limits, first and third quartiles; whiskers, 1.5x interquartile 
range. Bounds are contained within the data range shown. Sample sizes exceed 100 single 
cells from one experiment.
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Figure 1 - Optimization of a high-throughput single-cell mitochondrial DNA genotyping 
platform with concomitant accessible chromatin measurements.
(a) Schematic of cell line mixing experiment between indicated two human hematopoietic 
cell lines. (b) Distribution of percentage of mtDNA reads per single cell for screened 
conditions. (c) Distribution of percentage of reads mapping to annotated DNase 
hypersensitivity peaks (nuclear reads only) per single cell. Each condition in panels (b,c) 
represents the top 1,000 cells (based on chromatin complexity) from one experiment. (d) 
Mitochondrial SNP mixing depiction of variants for the TF1 or GM11906 cell line for 
“Condition A” as in (b). Both axes are log10 transformed. (e) Same as (d) but for “Condition 
A” with 1% FA treatment. (f) Summary of contamination (percent of reads from minor cell 
population) for FA treated and untreated comparison. Each bar represents the mean over one 
experiment. (g) Depiction of overall mitochondrial genome coverage improvements from 
three biotechnological and computational optimizations (mtscATAC-seq) compared to the 
original protocol. Boxplots for (b,c): center line, median; box limits, first and third quartiles; 
whiskers, 1.5x interquartile range.
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Figure 2 - Pathogenic mtDNA variability and clonal evolution in cells derived from a patient with 
MERRF.
(a) Schematic of the mitochondrial lysine tRNA secondary structure with sequence and the 
pathogenic single nucleotide variant (8344A>G). (b) Quality control filtering for GM11906 
single cells based on mean mtDNA genome coverage and percentage of nuclear reads in 
chromatin accessibility peaks. (c) Quantification of 8344A>G heteroplasmy variability in 
single GM11906 cells across three technologies. Numbers (n) of cells plotted are shown. 
Color represents the within-assay coverage percentile. Black bars indicate the median 
heteroplasmy per technology; the dotted line presents the mean heteroplasmy as determined 
for bulk ATAC-seq. (d) Field of view for in situ genotyped GM11906 cells, highlighting (e) 
single cells with low, medium, and high heteroplasmy as indicated for the pathogenic allele. 
Representative image selected from one of seven fields of view for one experiment. (f) Per-
gene score Spearman correlations with the 8344A>G allele heteroplasmy. The grey dots 
show values for a permutation. Pseudo bulk chromatin accessibility track plots are shown for 
the (g) NR2F2, (h) TRMT5, and (i) SENP5/ NCBP2-AS2 loci. Pseudo-bulk groups were 
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binned based on 0–10% (low), 10–60% (mid), and 60–100% (high) 8344A>G heteroplasmy. 
(j) Per-mutation heteroplasmy correlation with 8344A>G allele. The 8202T>C mutation is 
highlighted as the most correlated mutation. (k) Single-cell heteroplasmy for two indicated 
mutations. The circled population represents a double-positive population for both 
mutations. (l) Abundances of each variant on single molecule sequencing reads in the double 
positive population. (m) Schematic of the co-evolution of two subclonal populations marked 
by indicated mutations detected based on single-cell genotyping data. Putative cell 
transitions are indicated with solid arrows that may be a result of selective pressure of the 
pathogenic variant or genetic drift.
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Figure 3 - Identification of high-confidence variants and subclonal structure in TF1 cells.
(a) Schematic of mgatk workflow. (b) Identification of high-confidence variants from high 
strand concordance in paired-end sequencing data and high variance mean ratio (VMR). (c) 
Unsupervised clustering of TF1 cells using 48 high-quality variants into 12 population 
clusters. Each column is a cell. Rows show detected mutation. Heatmap color indicates 
percent heteroplasmy. (d) Phylogenetic reconstruction of clonal TF1 groups. The tree was 
constructed using neighbor joining; each tip represents a cell cluster from (c).
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Figure 4 - Clonal and functional heterogeneity in human malignancies resolved by somatic 
mtDNA mutations.
(a) Schematic of experimental design. Populations of peripheral blood mononuclear cells 
(PBMCs) from two CLL patients were separated by FACS or magnetic bead enrichment and 
profiled with mtscATAC-seq and 10× 5’ scRNA-seq. (b) Fraction of CD19+ cells with major 
B cell receptor (BCR) clonotype as determined from V(D)J receptor sequencing. (c) 
Inference of subclonal structure from somatic mtDNA mutations for patient 1. Cells 
(columns) are clustered based on mitochondrial genotypes (rows). Colors at the top of the 
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heatmap represent clusters or putative subclones. Color bar, heteroplasmy (% allele 
frequency). (d) Clonotype receptors (columns) associated with somatic mtDNA mutations 
(rows) from patient 1. Colors at the top of the heatmap represent BCR clonotypes. Color bar, 
heteroplasmy (% allele frequency). (e) Estimated copy number of chromosome 12 across 
putative subclones for patient 1. Patient derived cells showed elevated DNA read counts of 
chromosome 12, consistent with a trisomy for this chromosome (Methods). Boxplots: center 
line, median; box limits, first and third quartiles; whiskers, 1.5x interquartile range. (f) Sub-
clone associations with accessible chromatin. Red dots denote peaks associated at a false-
discovery rate of <0.01. (g,h) Examples of subclone-associated differential accessibility 
peaks near the (g) TIAM1 and (h) ZNF257 promoters. (i) Schematic of scATAC projection 
framework using latent semantic indexing (LSI) and UMAP. A healthy PBMC reference 
embedding with indicated cell types is shown. (j) Projection of cells collected from Patient 1 
and (k) Patient 2. Colors indicate cells positive for indicated somatic mtDNA mutations. 
Non-B-cells are highlighted. (l) Gene signature plots of PBMCs from single-cell RNA-seq 
for Patient 1 corroborating mtDNA mutations in non-B-cells. (m) Schematic showing 
mtscATAC-seq profiling of a colorectal cancer resection specimen. (n) Two dimensional 
embedding of all quality controlled tumor derived cells using UMAP showing the 
distribution of cells based on Louvain clustering and annotation based on marker gene scores 
as exemplified in panel (o) and Extended Data Fig. 4l. (o) Projection of marker gene scores 
for indicated genes EPCAM, PTPRC and IL1RL1. Color bar, gene score activity. (p) 
Inferred CNV profiles for indicated cell types (x axis) and chromosomes. Arrows indicate 
relative increase of copy numbers in the epithelial tumor cells. Cells from the basophil-like 
population are shown as a control group of cells. Color bar, z-score transformed fragment 
abundance. (q) Inference of subclonal structure from somatic mtDNA mutations in 
colorectal cancer. Epithelial cells (columns) are clustered based on mitochondrial genotypes 
(rows). Color bar, heteroplasmy (% allele frequency). (r) Putative model of clonal evolution 
of the profiled colorectal cancer specimen as suggested based on integrated analysis of 
nuclear CNV and somatic mtDNA mutation profiles.
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Figure 5 - Clonal lineage tracing across accessible chromatin landscapes and time in an in vitro 
model of hematopoiesis.
(a) Schematic of experimental design. Approximately 800 or 500 CD34+ HSPCs were 
derived from the same donor, expanded, and differentiated in two independent cultures over 
the course of 20 days as shown. Stars represent timepoints/ populations of cells that were 
profiled via mtscATAC-seq. (b) Two dimensional embedding of all quality controlled cells 
using UMAP. Single-cell TF motif deviation scores for indicated factors are shown in color 
for all cells. (c) Pseudotime trajectories for monocytic and erythroid trajectories are 
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depicted. (d) Identification of high confidence variants derived from both cultures. The 
number of variants passing both thresholds (dotted lines) is indicated. (e) Changes in 
heteroplasmy for 175 variants identified from the 500 input culture from day 8 to day 14. 
Values represent the mean over all single-cells in the library. (f) Increased variability in 
heteroplasmy shifts for the 500 cell input culture. P-value is reported from a two-sided 
Kolmogorov–Smirnov test comparing the observed and permuted distributions log fold-
changes of heteroplasmy. (g) Comparison of heteroplasmy shifts for the 800 cell input 
culture. Linear regression indicates that most of the variability in heteroplasmy changes at 
the late time point (day 20, y-axis) can be explained by the intermediate time point (day 14, 
x-axis). Colored dots are mutations highlighted in the next panel. (h) Heteroplasmy 
trajectories for four selected mutations from (g). Values represent the mean over all single-
cells in the library for the indicated time point. (i) Three examples of clonal populations 
marked by indicated mutations identified in the 800 cell input culture that result in erythroid, 
monocytic, or bipotent lineage outcomes. (j) Systematic identification of clonal outcomes 
using the late time point (day 20). y-axis depicts the difference between z-score in erythroid 
and monocytic bias of a single clone. (k) Differences in transcription factor motif activity 
comparing erythroid-biased and monocytic biased clones at the earliest sampled time point 
(day 8).
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Figure 6 - Cellular population dynamics in native hematopoiesis in vivo resolved by mtDNA 
mutations.
(a) Schematic of experimental design. CD34+ HSPCs and PBMCs were derived from the 
same healthy donor at 0 and 3 months, respectively, and processed using mtscATAC-seq. 
(b,c) Two dimensional embedding of all quality controlled CD34+ cells using (b) UMAP 
colored by Louvain clustering or (c) by cell cluster annotation using previously published 
reference data. CLP = common lymphoid progenitor, CMP = common myeloid progenitor, 
GMP = granulocyte monocyte progenitor, HSC = hematopoietic stem cell, LMPP = 
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lymphoid-primed multipotent progenitors, MEP = megakaryocyte-erythrocyte progenitors, 
MPP = multipotent progenitor, pDC = plasmacytoid dendritic cells. (d) Two dimensional 
embedding of all quality controlled PBMCs using UMAP colored by the distribution of cells 
based on Louvain clustering and annotation using scRNA-seq data derived label transfer 
(Extended Data Fig. 6a). (e) % heteroplasmy (log10 scale) of mgatk nominated variants and 
respective allele frequencies in pseudobulk CD34+ HSPC (x axis) and PBMC populations (y 
axis). Indicated select variants are further highlighted in panels (i-k). (f) Distribution of 
mgatk nominated mutations along the mitochondrial genome averaged over both populations 
(pseudobulk). Inner circle, mitochondrial genome; dots, % heteroplasmy of each mutation; 
outer gray circle, genome coordinates; annotation shows color coded mitochondrial genes. 
(g) Substitution rate (observed over expected) of mgatk identified heteroplasmic mutations 
(y-axis) in each class of mononucleotide and trinucleotide change resolved by the heavy (H) 
and light (L) strand of the mitochondrial genome. (h) Empirical cumulative distribution plots 
of the number of cells per clone for both HSPCs and PBMCs. The median number of cells 
per clone n is shown for each of the two populations. (i-k) Specific mutations (top) and cell 
clones to which they belong (bottom) marking CD34+ cells and PBMCs chromatin 
accessibility profiles (as in b-d). Number of cells n assigned to the respective clonal groups 
are shown for the CD34+ HSPC and PBMC cell populations. Color bar, heteroplasmy (% 
allele frequency). (l) Distribution of heteroplasmy shifts in the CD34+ HSPC over the 
PBMC cell population. P-value: two-sided Kolmogorov–Smirnov test comparing the 
observed and permuted distributions log2 fold-changes of clonal abundances. (m) Relative 
proportion of cells from indicated hematopoietic lineages (y axis) in each clone (x axis) 
identified in PBMCs. (n,o) Summary statistics of (n) CD34+ HSPC and (o) PBMC 
association between lineage (cell state) and clone. Adjusted p-values (of lineage association) 
represent the Benjamini-Hochberg adjusted Chi-squared goodness of fit per clone with at 
least 10 cells.
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