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The state and behaviour of a cell can be influenced by both genetic and environmental

factors. In particular, tumour progression is determined by underlying genetic
aberrations'* as well as the makeup of the tumour microenvironment>®. Quantifying
the contributions of these factors requires new technologies that can accurately
measure the spatial location of genomic sequence together with phenotypic
readouts. Here we developed slide-DNA-seq, amethod for capturing spatially
resolved DNA sequences fromintact tissue sections. We demonstrate that this
method accurately preserves local tumour architecture and enables the de novo
discovery of distinct tumour clones and their copy number alterations. We then apply
slide-DNA-seq to amouse model of metastasis and a primary human cancer, revealing
that clonal populations are confined to distinct spatial regions. Moreover, through
integration with spatial transcriptomics, we uncover distinct sets of genes that are
associated with clone-specific genetic aberrations, the local tumour
microenvironment, or both. Together, this multi-modal spatial genomics approach
provides a versatile platform for quantifying how cell-intrinsic and cell-extrinsic
factors contribute to gene expression, protein abundance and other cellular

phenotypes.

Tissue function requires precise spatial organization of cell types,
whose states areinfluenced by cell-intrinsic genetic factors and extrin-
sicenvironmental cues. In cancer, clonal populations of tumour cells
evolve a diverse repertoire of DNA mutations, copy number altera-
tions (CNAs), and large chromosomal rearrangements'?, resulting
inintra-tumour genetic heterogeneity, which is associated with an
increased risk of drug resistance, metastasis and relapse**. Concomi-
tantly, surrounding normal cells that make up the tumour microenvi-
ronment communicate to form spatial neighbourhoods with distinct
biochemical and biomechanical properties®® that influence cell
migration and invasion’®, as well as drug permeability’. Decoupling
and quantifying these genetic aberrations and environmental cues
within a tumour is critical to understanding cancer progression and
improving treatments.

Current methods for delineatingintratumour genetic heterogeneity
include deep sequencing to quantify mutantallele frequencies'" and
single-cell whole-genome sequencing ™, These methods leverage
genetic alterations that occur during the evolution of the tumour to
reconstruct phylogenetic cell lineages'® ™, but do not measure spa-
tial organization. By contrast, multi-region sequencing methods” "
such as laser-capture microdissection (LCM) preserve spatial con-
text, but are mostly limited to clearly observable late-stage cancers
and require manual selection of cells, constraining throughput and

de novo discovery. The recently developed in situ genome sequenc-
ing'® enables untargeted spatial measurements of DNA, but focuses
on high-resolution imaging of chromosome structure, precluding
analysis of tissue sections. It therefore remains poorly understood
how tumour clones are organized within a tissue, and to what extent
cancer progression is driven by clone-specific genetic aberrations or
environmental cues, highlighting a need for new methods that can
integrate genomic, transcriptomic and spatial measurements at scale.

Spatially resolved DNA sequencing

Slide-seq'? (hereafter referred to as slide-RNA-seq) is ascalable tech-
nology that uses barcoded bead arrays to capture spatially resolved
genome-wide expression. Here we developed slide-DNA-seq, amethod
that enables spatially resolved DNA sequencing from intact tissues.
We first generate a spatially indexed array of 3-mm beads, as devel-
oped for slide-RNA-seq'*?°. Each 10-pm polystyrene bead contains a
unique DNA barcode that corresponds to a spatial locationandis read
out using sequencing by ligation chemistry'>*, We then cryosection
tissues and transfer a single 10-um-thick fresh-frozen section onto the
sequenced bead array (Fig.1a). To enable unbiased capture of DNA, the
tissue section is treated with HCI to remove histones and transposed
with Tn5 to create genomic fragments flanked by custom adapter
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Fig.1|Slide-DNA-seq enables spatially resolved DNA sequencing.

a, Schematic ofinsitubead indexing. Anarray of randomly deposited beads is
spatially indexed by in situ sequencing of DNA barcodes. Fresh-frozen tissue is
cryosectioned onto the array. b, Schematic of slide-DNA-seq library
construction. Genomic DNAis transposed with Tn5. Hybridization of abridge
oligonucleotide enables ligation of photocleaved, spatially indexed bead
oligonucleotides to genomic fragments. BC, barcode; ME, mosaic ends; P5/P7,
Illuminaadaptor;R1, llluminaread1;R2, llluminaread 2. ¢, ADAPI-stained
cryosectionofamouse cerebellum. Thered circleindicates the approximate
regionshownind, e.d, Slide-DNA-seq of a cerebellar section withbeads
coloured by percentage of fragments aligned to mitochondrial genome.
mtDNA, mitochondrial DNA. e, Adjacent sectiontotheoneind, stained with

sequences?? (Supplementary Table 1). We then photocleave spatial
barcodes fromthebeads, ligate them to proximal genomic fragments,
and PCR amplify the resulting DNA sequencing library (Fig. 1b). Fol-
lowing library construction, we perform high-throughput paired-end
sequencingand use DNA barcodes to associate each genomic fragment
with aspatiallocation onthe bead array. These associations enable us to
reconstruct the spatial organization of DNAin atissue withoutimaging
the sample under a microscope. We developed optimizations for tissue
fixation, histone removal and bridge oligonucleotide hybridization
that collectively maximize library size, make chromatin uniformly
accessible to Tn5 (Extended Data Fig. 1), and preserve tissue architec-
ture (Extended Data Fig. 2). Following our initial optimizations, each
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array contains 20,000 to 40,000 beads with amedian 165 to 421 frag-
ments per bead (tumour tissues; Extended Data Fig. 3). Furthermore,
we developed a proof-of-concept protocol variant that uses repeated
Tn5 tagmentation to improve yield, resulting in a tenfold increase in
genomic fragments (Extended Data Fig. 3, Supplementary Methods).
Detailed metrics for all tissues analysed in this study are listed in Sup-
plementary Table 2.

To determine the spatial and genomic resolution of this approach, we
first applied slide-DNA-seq to the mouse cerebellum, which contains
distinct nuclei-dense (soma) and mitochondria-rich (neurites) regions
(Fig. 1c). We reasoned that these patterns should be reflected in the
spatial distribution of nuclear versus mitochondrial DNA fragments.



Indeed, striations of nuclear versus mitochondrial DNA content were
apparent from slide-DNA-seq data (Fig. 1d, Extended Data Fig. 3). We
thenused these patterns to measure our spatial resolution by perform-
ingimmunofluorescence and DAPIstaining on serial tissue sections of
the same cerebellum, resulting inalateral diffusion estimate of approxi-
mately 25 pm (Fig. 1e, Extended Data Fig. 4, Supplementary Methods).
To measure genomic resolution, we corrected the data for sequence
biases and normalized coverage using bulk sequencing of the same
tissue (Extended DataFig. 5, Supplementary Methods, Supplementary
Discussion). Using this approach, 99.78% of non-overlapping 1-Mb
genomicbins had anormalized copy number between1.5and 2.5 (Fig. 1f,
Extended Data Fig. 6). Together, these data show that slide-DNA-seq
can spatially localize genomic information within normal tissues.

Detecting spatial distribution of CNAs

We next applied slide-DNA-seq to measure the spatial distribution of
copy number alterations (CNAs) inatumour section using genetically
engineered mouse models of lung adenocarcinoma that are known to
harbour chromosomal amplifications and deletions®. First, we isolated
and expanded asingle tumour clone from aKras“?”* Trp53” (KP) mouse
lung tumour?*® and injected this clone into the tail vein of a mouse,
giving rise to large metastases in the liver (Fig. 1g). We then collected
multiple serial sections of liver metastases to performslide-DNA-seq,
along with haematoxylin and eosin (H&E) staining and immunofluores-
cence for HMGA2, alate-stage tumour marker. To characterize tumour
heterogeneity withinthe tissue, we developed aslide-DNA-seq analysis
workflow comprising two main tasks: (1) de novo identification and
spatial localization of clonal populations, and (2) characterization of
genomic CNAs for each clone.

First, to detect and localize tumour clones within a tissue, we
smoothed bead data on the basis of spatial proximity (k = 50 nearest
beads, approximately 110 um diameter; Extended Data Fig. 3; median
18,587 £ 5,300 fragments) and performed principal component analysis
(PCA) to find co-associated genomic regions with variable coverage
across the tissue. We then used these regions to assign a clonal iden-
tity to each bead on the slide-DNA-seq array by k-means clustering
(Extended DataFig. 7, Supplementary Methods). When we applied this
approachtotheslide-DNA-seqarray fromthe liver metastases, principal
component1(PC1,2.89% variance explained) showed spatial patterning
(Fig. 1h) that was visually concordant with immunofluorescenceona
serial section against the late stage tumour marker HMGA22¢ 8 (Fig. 1i).
To validate whether this approach could be used to identify geneti-
cally distinct tumour clones, we performed downsampling on bulk
sequencing of 4 tumour cell lines and found robust accuracy (99.38%)
with asfew as1,000 fragments per sample (Extended Data Fig. 8, Sup-
plementary Methods), suggesting that this strategy is sufficient for
slide-DNA-seq data.

The second taskin the analysis workflow is to characterize the CNAs
present in each tumour clone. To do this, we aggregated data from
hundredstothousands of raw beads on the basis of the cluster assign-
ments from the first task and visualized the genomic coverage of each
clusterat1-Mbresolution. When applied to the liver metastases array,
the tumour-associated cluster displayed significant CNAs, includ-
ing the amplification of chromosome (chr)6 that is characteristic for
Kras-induced lung tumours?, whereas the normal cluster showed
comparatively uniform coverage (Fig. 1j). Further comparisons to a
biological replicate performed on a serial section revealed visually
concordant tissue architecture, as well as high correlation between
tumour copy number profiles (Pearson’s r = 0.986; Extended Data
Fig.9). To quantify the accuracy of the copy number analysis, we used
the diploid mouse cerebellum datato systematically evaluate coverage
atarange of bin sizes and spatial resolutions (Extended Data Fig. 10,
Supplementary Methods). Together, these results demonstrate that
our slide-DNA-seq analysis workflow enables de novo discovery and

localization of tumour regions at approximately 1-Mb genomic resolu-
tion (Supplementary Discussion).

Spatial genomics of metastatic clones

To demonstrate that our experimental and computational approach
can distinguish between clones within a tissue, we injected multiple
clones originating from two independently derived metastatic KP
tumoursinto thetail vein of amouse, which gaverise to large metastases
in the liver. We then performed H&E staining and identified a region
of the tissue that appeared to have two spatially distinct metastases
(Fig. 2a). Immunohistochemistry on the same region of a serial sec-
tion revealed that the two varied in protein levels of tumour marker
HMGA2%, suggesting that they may originate from different metastatic
clones (Extended Data Fig. 11a).

We then applied slide-DNA-seq to a third serial section of the same
liver tissue. Using the PCA approach described above, we found that
both PC1and PC2 explained substantial variance (4.21% and 2.50%,
respectively), allowing the beads to be assigned to 3 distinct clusters
on the basis of their genomic profiles (Fig. 2b). One of these clusters
was visually concordant with H&E staining of normal tissue, whereas
the other two appeared to correspond to the different metastases. We
developed a permutation test to spatially localize statistically signifi-
cant CNA gains or losses present in one or both of the metastases, and
detected differential regions on chré, chr15and chrl9 (Fig. 2c, Supple-
mentary Methods). We then tested the aggregate genomic coverage in
selected regions for statistical significance (two-sided Wilcoxon rank
sumtest; P-valuesinFig.2d), providing further evidence that they were
seeded by different clones. Additionally, we observed that one clone
was probably triploid, which we confirmed independently using flow
cytometry (Extended Data Fig. 12).

To test whether genetic differences between the two clones were
reflected in cell state, we performed slide-RNA-seqV2* on a fourth
serial section and collected paired single-nucleus RNA sequencing
(snRNA-seq). Unsupervised clustering of the snRNA-seq dataand spa-
tial projection® onto slide-RNA-seq beads (Methods, Supplementary
Table 3) revealed that the two metastases were transcriptionally distinct
(Fig.2e, Extended DataFig.11b, c); there were 3,732 genes differentially
expressed between the two clones (Fig 2f, Supplementary Table 4;
two-sided z-test, false discovery rate < 0.01, log,(fold change) > 1, mini-
mum of 100 transcripts). Clone A had higher expression of late-stage
tumour markers, including Hmga2 (lung metastases), Tm4sf1 (JAK-
STAT signalling) and Vim (cell motility), whereas the top hits for clone B
included Agps5 (loss of lineage identity) and epithelial-to-mesenchymal
transition markers S100a4 and Vcan® (Fig. 2f, g). Although both
clones exhibited epithelial-to-mesenchymal transition and metasta-
sis expression signatures, these differentially expressed genes may
reflect divergent paths of tumour evolution. Furthermore, we found
differential monocyte localization (P=0.0002; permutation test) into
clone B, reflecting a higher degree of immune infiltration (Extended
DataFig.1le,f, Supplementary Methods). Altogether, these datadem-
onstrate that paired slide-DNA-seq and slide-RNA-seq enable spatial
characterization of genetically distinct metastatic tumour clones and
their associated cell states.

Subclone detection in human colon cancer

We then sought to determine whether slide-DNA-seq could detect
clonal heterogeneity de novoinaprimary human tumour. We selected
asample fromastagellIB colorectal tumour, because colorectal cancer
is one of the most common causes of cancer-related deaths worldwide
and 84% of such tumours display chromosome instability*>*, As before,
we performed H&E staining, multiplexed immunohistochemistry
andslide-DNA-seq on serial sections (Fig. 3a). First, we examined H&E
staining, observing many localized aggregates of tumour cells about
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Fig.2|Pairedslide-DNA-seq and slide-RNA-seq characterize the genetics
and transcriptomes of distinct metastatic clones. a-g, Serial sections from
Kras®*Trp53" liver metastases were processed for H&E staining (centre,
circleindicates analysed region; right, dotted lines indicate tumour
boundaries), immunohistochemistry (Extended DataFig.5), slide-DNA-seq
(b-d) andslide-RNA-seq (e-g).b, PC1 (left) and PC2 (middle) of slide-DNA-seq
genomic coverage. Beads clustered using k-means (k=3) and annotated as
normal, clone A or clone B (right). ¢, Genomicregion enrichment signed
P-values for chromosomes 6 (126-150 Mb),15and 19 (two-sided permutation
test, not adjusted for multiple comparisons). Amplifications, red; deletions,
blue.d, Genomic coverage profiles of aggregate normal (blue), clone A (green),

100-500 pm in diameter. We hypothesized that each of these aggre-
gates could arise from a single clonal lineage, suggesting constraints
on migration or, alternatively, that each aggregate could contain a
mixture of cells from different lineages, indicating cell intermixing.
To distinguish between these two possibilities, we performed PCA
and unsupervised clustering on the slide-DNA-seq data as described
above, which resulted in three distinct clusters of genomic profiles
(Fig.3b).One of these clusters had a spatial distribution that was visu-
ally concordant with normal tissue in the H&E staining (Fig. 3b right,
blue), butalsoincluded regions of moderate PC1scores, suggesting a
low abundance of cancer cells harbouring CNAs. By contrast, the other
two clusters displayed high PC1 scores and were spatially restricted
to distinct tumour aggregates, supporting the hypothesis that each
aggregate originates from a single lineage. This finding is consistent
with reports suggesting that individual colorectal tumour cells seed
aglandular organization in which neighbouring cells share arecent
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common ancestor®>*, We validated the tumour architecture detected
by slide-DNA-seq through co-registration of the slide-DNA-seq array,
H&E staining and immunohistochemistry for the tumour marker MKI67
and the immune marker CD45 (Fig. 3¢).

Wethenset outto characterize the genetic aberrations of the identi-
fied subclones. We found several genetic aberrations, including chr8q
amplification and loss of chr15 and chr18, that were shared across all
tumour regions (Fig. 3d, e, Supplementary Methods), indicating that
they arose early in tumour evolution and may have had animportant
roleintumourinitiation. The chr8qamplification contains genes known
to promote tumour progression, including the proto-oncogenes MYC
and MYBLI**, whereas deletion of chrl5 results in loss of multiple genes
required for genome stability, including TPS3BP1*, RADSI*® and FANI®.
Supporting these observations, chr8qgainand chrl8 loss were identi-
fied as typical early events in an evolutionary history of 60 colorec-
tal tumours™. In contrast to these shared aberrations, we observed
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Fig.3|Denovoidentification of spatial tumour clonesin primary human
colorectal cancer. a-g, Serial sections of primary human colorectal tumour
were processed for H&E staining (right, c), slide-DNA-seq (b-e), and
multiplexed immunohistochemistry (c)—scWGS was performed on the same
sample (f,g). b, PC1 (left) and PC2 (middle) of slide-DNA-seq genomic coverage.
Beads clustered using k-means (k=3) and annotated as normal, subclone1or
subclone 2 (right). ¢, Magnified view of boxed regionsin a, b. Right, serial
sectionstained with antibodies against MKI167, CD45 and DAPI. d, Genomic
region enrichmentsigned P-values for chromosomes 8q,15and 20 (two-sided

subclonal amplifications of chrlq, chr7,and chr20, which presumably
occurred at a later stage of evolution (Fig. 3d, e). Notably, previous
analyses of colorectal cancers classified chr7p amplification as a typi-
cally clonal (rather than subclonal) event, whereas both loss and gain of
chr20p wereidentified as frequent subclonal aberrations'®*®, The detec-
tionand temporal classification of these events demonstrate the utility
of slide-DNA-seq for studying the evolution of clonal heterogeneity.
To validate these genetic aberrations, we performed single-cell
whole-genome sequencing (scWGS) on the same colorectal tumour.
Thisapproach sampled cells from the entirety of the tumour (100-fold
more material than the slide-DNA-seq tissue section), so we expected to
potentially identify additional subclones. Inline with this expectation,
analysis of 2,274 high-coverage single-cell CNA profiles resulted in one
normal cluster and five tumour clusters, some of which resembled the
slide-DNA-seq CNA profiles (Fig. 3f). We then sought to project the
high-coverage sequencing onto the slide-DNA-seq array to identify
CNAs at enhanced resolution (Supplementary Methods). The spa-
tial regions predominantly matched two separate scWGS clusters,

Chr8 genomic position (100 kb)

permutation test, not adjusted for multiple comparisons). e, Copy number
profiles for 293 high-coverage slide-DNA-seq beads. f, Copy number profiles
for 2,274 single cells profiled viascWGS. Profiles within each cluster are
ordered by the PClscoreine,f.g, Matched single-cell clusters projected onto
slide-DNA-seqarray (top). Genomic coverage of chromosome 8 at 100 kb
resolution for single-cell clusters 2 and 6 (bottom). Scale bars, 500 pm.
Amplifications, red; deletions, blue (d-f). Grey beads are shown for spatial
context butare excluded from the analysis.

supporting the analysis using slide-DNA-seq only, but we also found a
small region with distinct genetic aberrations that was revealed only
withthe higher coverage of the scWGS data (Fig. 3g, top, Extended Data
Fig.13). Having demonstrated improved spatial resolution, we then
re-analysed the matched scWGS clusters at 100 kb genomicresolution,
revealingacomplex CNA landscape inchromosome 8 (Fig. 3g, bottom).
Together, these analyses validate that slide-DNA-seq alone is sufficient
for de novo discovery and localization of distinct tumour clones within
atissue and show that CNA characterization canbe enhanced through
integration with scWGS.

Multi-modal analysis of clonal heterogeneity

Finally, to demonstrate the unique capabilities of a multi-modal
spatial sequencing approach, we sought to quantify how tumour
transcriptional programs are controlled by both genetics and envi-
ronmental cues. We first performed H&E staining, slide-DNA-seq
and slide-RNA-seqV2 on serial sections from a nearby region of the
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b.e, Genesplotted by percentage of variance explained by subclone (x-axis)

colorectal tumour (Fig. 4a) and co-registered the arrays to integrate
pathological, genomic and transcriptomicinformation. We thenidenti-
fied spatially distinct regions of tumour cells (Fig. 4b, Supplementary
Methods) and proceeded to assign each one with asubclonal identity
(Fig.4c) and quantify the local tumour density (Fig. 4d, Supplementary
Methods). Comparison with the H&E staining validated the spatial
architecture of the subclonesidentified by slide-DNA-seq as well as the
tumour density quantified by slide-RNA-seq (Extended Data Fig. 14).
Given both subclonal identity (cell-intrinsic) and tumour density
(cell-extrinsic) measurements, we set out to deconvolve how these
factors contribute to the transcriptional programs of the colorectal
tumour. To this end, we used a variance-decomposition approach that,
for each gene, calculates the percentage of gene expression variance
explained by subclonal identity, tumour density and unexplained
variance (Supplementary Methods). Of the 25,074 genes detected by
slide-RNA-seq 412 genes were significantly associated with subclonal
identity, 638 genes were associated with tumour density, and 1,098
genes were associated with a combination of both (P < 0.05, variance
explained >30%, Fig. 4e, Supplementary Table 5). Genes associated with
subclonalidentity included known cancer genes located in amplified
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and/or tumour density (y-axis), coloured by plot density (n=2,148; stepwise
regression, P<0.05).f, Top subclone-associated genes, with expression
plotted for spatial tumour regions. g, Same as fbut for top tumour
density-associated genes. h, Selected gene sets significantly associated with
either subclone or tumour density. i, Celladhesion molecule-binding genes
(n=544) plotted by percent variance explained by subclone (x-axis) and
tumour density (y-axis), coloured by plot density. All other genes fromeare
showningrey.Scalebars, 500 um. Grey beads shown for spatial context but
excluded fromanalysis.

regions, such as PLAGI, an oncogene on chr8q*°, and MCM7, aMYC
target gene on chr7q that is involved in DNA replication initiation*°
(Fig. 4f). Notable tumour density-associated genes included LGALS3*
(alsoknown as galectin-3), which contributes toimmunosuppression
in the tumour microenvironment, and PROM1 (also known as CD133),
whichisimportant forintestinal homeostasis, regeneration and tumour
initiation*? (Fig. 4g).

Aswell as characterizing individual genes, we also performed gene
set enrichmentanalysis to determine which molecular pathways were
associated with subclonal identity or tumour density (Fig. 4h, Sup-
plementary Methods). This analysis showed that subclonal identity
primarily altered the expression of genes involved in cell growth and
proliferation, with MYC- and E2F-target genes representing the top
hallmark gene sets for subclone 1 (Extended DataFig. 15). By contrast,
genes associated with high tumour density were most enriched for
cell adhesion molecule- and cadherin-binding properties (Fig. 4i,
Extended DataFig.15), including the extracellular matrix component
gene COL3A1, actinmodulator genes FLNB and CALDI1, and the mecha-
notransduction regulator gene /TGB2 (also known as CD18). Notably,
extracellular matrix stiffness and remodelling are thought to promote



cell proliferation and tumour progression*?, which may contribute
to high tumour cell density. Overall, these analyses demonstrate the
utility of this multi-modal approach for decoupling and quantifying
contributions of genetic and environmental factors to gene expression.

Discussion

This study demonstrates that slide-DNA-seq can detect clonal hetero-
geneity, characterize the copy number alterations of each clone and
analyse their spatial distribution within a tissue. These capabilities,
in combination with processing of serial sections for histopathology
and slide-RNA-seq enable high-resolution multi-omic characteriza-
tion of intratumoural heterogeneity**. Additionally, integration with
single-cell whole-genome sequencing may enable spatial characteri-
zation of complex subclonal events, such as loss of heterozygosity or
extrachromosomal DNA amplifications®. Going forward, we anticipate
that slide-DNA-seq will be particularly useful for large-scale efforts to
create atlases of tumour evolution'®, adding spatial information to
studies of clonal heterogeneity. It may also drive new frontiersin clini-
cal diagnoses as a complement to standard pathology assays such as
H&E staining, karyotyping and DNA fluorescence in situ hybridization.

Spatially resolved DNA sequencing may also enable advances in
many fields beyond cancer genomics, including spatially resolved
metagenomics*®, evaluation of gene therapy delivery®, synthetic DNA
data storage*® and lineage tracing in healthy tissues*. The core of this
technology—thatis, fragmenting and barcoding DNA in situ to preserve
spatialinformation for next-generation sequencing—is compatible with
other sequencing-based assays. For example, direct tagmentation of
the DNA without HCI treatment, or converting methylated cytosines
todihydrouracil before amplification, would enable spatially resolved
measurements of chromatinaccessibility and DNA methylation, respec-
tively?>*°. In summary, slide-DNA-seq enables new opportunities to
chart the spatial organization of cell states in human development,
homeostasis and disease.
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Extended DataFig.2| Comparison of fixation conditions during histone extraction. Cerebellar sections are exposed to treatment as stated (with or without
prior fixation) and stained with DAPI. Scale bars, 500 um.
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Extended DataFig.4 | Estimation of slide-DNA-seq lateral diffusion. asb, but for3 different regions asindicated by the smaller non-red boxesina.

a, Interpolated image showing the nuclear fraction of fragments of a10 pm For theleft (green) and middle (yellow) panel, FWHM s calculated as twice the
mouse cerebellar section processed for slide-DNA-seq. Cyan box indicates distancebetween the peak and the halfmax (marked by black dots). f, Same as
magnified area (right). Smaller boxes indicate regions taken for linescansin d, but for3 different regions asindicated by the smaller non-red boxesinb. For
bande.b, Pseudo-intensity (representing nuclear fraction of fragments) of theleft (green) and middle (yellow) panel, FWHM s calculated as twice the
linescanasindicated by red boxina.Black dots, halfmax. Full Width at Half distance between the peak and the halfmax (marked by black dots). g, Bar
Maximum (FWHM) =57.3 pm. ¢, 10 um serial section of the same mouse graph ofaverage FWHM (n=4 regions). Error bars, mean +s.d. Upper bound for
cerebellumstained with DAPI. Blue box indicates magnified area (right). the diffusion measurement is half of largest FWHM (not taking into account the
Smaller boxesindicateregions takenforlinescansindandf.d, Linescan of DAPImeasurement).Scalebars, 500 pm (a, ¢),200 um (b, d).

DAPIlintensity asindicated in c. Black dots, halfmax. FWHM =16.4 um. e, Same
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Extended DataFig. 5| Normalization of slide-DNA-seq sequencing biases.
a, Top, raw sequencing reads per 1Mb bin for mouse cerebellum slide-DNA-seq
are plotted for GC-content, mappability, replication timing score, and Tn5 bias.
Pearson’srvalues are shown for each. Bottom, bias corrected coverage and
correlationvalues after normalization. b, Same as abut for tagmentation-based

bulk sequencing of mouse cerebellum (Methods). ¢, Same asabut for
slide-DNA seq of mouse liver metastases. d, Same as bbut for
tagmentation-based bulk sequencing of mouse liver metastases. Blue points,
bins from chrX (notincluded in the calculation of the fit).
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Extended DataFig. 6 | Quantification ofgenomic coverageinadiploid
sample. Left (all panels), copy number profiles at1Mb genomic resolution of

the mouse cerebellum for the sequencing modality and processing indicated.

For this diploid sample, each copy number distributionis normalizedtoa
median of 2. Right (all panels), histogram of the number of bins per copy
number. a, Raw coverage profile of slide-DNA-seq. b, Coverage profile of
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for bulk tagmentation-based sequencing.d, Coverage profile of bulk
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Extended DataFig.14 | Tumor morphology of primary human colon cancer
sample. a, H&E stain of normal colon (left) and colon tumor (right) tissue from
the same patient.Scalebars,200 pm.b, Serial sections processed for H&E stain
(left), slide-DNA-seq (center), and slide-RNA-seq (right). Scale bars, 500 pm.
Yellow and black boxes indicate magnified areasinc, d, respectively.

¢, Magnified views of H&E stain, slide-DNA-seq and slide-RNA-seq

reconstructions show concordant spatial tissue architecture across three
modalities; scale bar,200 pm. d, Magnified view of H&E stain of three regions
that areassigned low, medium, and high tumor density by slide-RNA-seq
transcriptomicanalysis (b, right). Arrows indicate regions of high tumor
density identified through H&E stain. Scale bar, 100 um.



Article

@  Subclone-associated pathways

b variance decomposition of €

Gene set FDR Enriched genes E2F targets
MYC targets (V1) | 3.0E-13 | cBX3,cCONAZ.CCT3, 100%,
FBL,HDGF,HNRNPU,
ILF2,MCM4,MCM?,
NAP1L1,PSMBS,
PTGES3,RAN,RRM1, > HMGB2
SLC25A3,USP1 P
o s
E2F targets 1.1E-07 | ANP32E,HMGB2, o sodfem 7
LMNB1,LYAR,MCM4, te g’
MCM?7,NAA38,NAP1L1, gone
RAN, TOP2A,USP1 1 LYAR
Oxidative 1.1E-07 | COX6B1,COX7C,
phosphorylation HSPA9,LDHB,NDUFB1,
NDUFB2,NDUFB?, 100%
SLC25A3,TIMM13,
UQCRH,UQCRQ | 1
Plot density
e MYC targets
. S 30
(subclone-associated) =
3
o
x
< %
®
<) °
)
o
>-
=
el
[0}
N
© (e}
£
o
Z 20 ; 5
—_— Subclone

9 Density-associated pathways

acting on RNA

Gene set FDR Enriched genes

Cell adhesion 1.7E-06 | AHNAK,CALD1,CHD11,

molecule binding CDH17,COL3A1,
EPCAM,EVPL,FLNB,
HDLBP,ITGB2,LASP1,
PICALM,PTPN1,THY

Cadherin binding | 4.5E-06 | AHNAK,CALD1,CDH11,
CDH17,EPCAM,EVPL,
FLNB,HDLBRLASP1,
PICALM,PTPN1

Catalytic activity | 1.7E-05 | CMTR1,DBR1,DDX17,

DDX42,DDX51,FARSB,

MEPCE,POLR2K,
POP1,PRIM1,PRTH2

Variance decomposition of
cell adhesion molecule binding

100%4

FLNB

(XS
. -o.-?_

100%

d variance decomposition of
MYC and MYC targets

100%T

E2F targets
(subclone-associated)

1010 o0 ol 1
Percentile Plot density
f myc gene expression )
(density-associated) -
S 00,
@ )
9} ® Q. 800
E— 1.5 ) o) @
o 86
%-) ° (e]e}
= o 0
3 1
N °
]
£
2
0.5 Q
0.5 0.6 0.7 0.8 0.9

N

100% Y

oI

Plot d

Extended DataFig.15|Biological pathways explained by subclone or
tumor density. a, Subclone-associated pathways identified through gene set
enrichmentanalysis. b, Hallmark E2F target genes (n=200) plotted according
to percent variance explained by clonalidentity (x-axis) and tumor density
(y-axis). Included genes colored by normalized density on the scatter plot, all
othergenesareshowningrey. c, Expression of highly subclone-associated E2F
target genes (n=11, listed ina), plotted for spatial tumor regions of the
slide-RNA-seqarray from Fig.4.d, MYC target genes (n=200) plotted according
to percentvariance explained by clonalidentity (x-axis) and tumor density
(y-axis). Included genes are colored by normalized density on the scatter plot,
MYCiscoloredred, all other genes areshowningrey. e, Expression of highly
subclone-associated MYC target genes (n=16, listed in a), plotted for spatial
tumor regions (left). Box plot showing normalized MYC target gene expression
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deviation.f,MYC expression plotted for spatial tumor regions (left). Scatter
plot showing normalized MYC expression by tumor cell density; each point
represents aspatial tumor cluster (right). g, Subclone-associated pathways
identified through gene set enrichmentanalysis. h, Celladhesion molecule
binding genes (n=514) plotted according to percent variance explained by
clonalidentity (x-axis) and tumor density (y-axis). Included genes are colored
by normalized density on the scatter plot, all other genes are showningrey
(reproduced from Fig. 4i). i, Expression of highly density-associated cell
adhesion molecule binding genes (n=14, listed in g), plotted for spatial tumor
regions. Scale bars, 500 um.
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GC-content tracks for hg19 and mm10 were downloaded from the UC Santa Cruz Genome Browser. k36 mappability tracks for both genomes were downloaded
from https://bismap.hoffmanlab.org/. Replication timing data was downloaded from GEO accession GSM923451 for hg19 and GSE137764 for mm10. Tn5 insertion
bias tracks for both genomes were generated using the bias command from pyatac (https://nucleoatac.readthedocs.io/en/latest/pyatac/). Gene sets were
downloaded from the Molecular Signatures Database Collections (MSigDB, http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp).

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[X] Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was performed. Samples sizes were chosen primarily based on experiment length, sample availablity, and
sequencing costs. These sample sizes are sufficient because each sample serves as a proof-of-concept for the new technology.

Data exclusions  No data was excluded.

Replication All replication attempts were successful. For slide-DNA-seq experiments, we performed 3 biological replicates of the mouse cerebellum, 4
biological replicates of the mouse liver metastases, and 4 biological replicates of the human colon cancer. The slide-RNA-seq and single-cell
whole genome sequencing experiments were performed independently because the development of these technologies is not the primary
focus of the paper.

Randomization  Randomization was not applicable because the focus of this paper is the development of a new genomic technology and did not involve
allocating samples/organisms/participants into experimental groups.

Blinding Blinding was not applicable because because the focus of this paper is the development of a new genomic technology and did not involve
group allocation, and by extension, blinding.
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies X[ ] chip-seq
Eukaryotic cell lines |Z| |:| Flow cytometry
Palaeontology and archaeology & |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data
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Antibodies

Antibodies used TOMM20 (EPR15581-540), Abcam ab186735; HMGA2 (D1A7), Cell signaling 8179S; Ki67 (polyclonal), Abcam ab15580; CD45
(polyclonal), Abcam ab10558; Alexa Fluor 488 goat anti-rabbit IgG (H+L), Life Technologies A11034; Opal Polymer anti-rabbit HRP,
Opal 520 and Opal 570, Akoya Biosciences SKU NEL810001KT

Validation TOMM20: validated according to manufacturer's website for Flow Cytometry 1/90, ICC/IF 1/250, WB 1/1000-1/10000 detecting a
band of approximately 16 kDa (predicted molecular weight: 16 kDa), IHC-P 1/50 - 1/100 Perform heat mediated antigen retrieval with
Tris/EDTA buffer pH 9.0 before commencing with IHC staining protocol, IHC-Fr 1/50 Heat mediated antigen retrieval using sodium
citrate buffer (10mM citrate pH 6.0 + 0.05% Tween-20); HMGA2: validation data on manufacturer's website for WB, IHC and IF; Ki67:
according to manufacturer's website knockout-validated, IHC-P Use a concentration of 0.1 - 5 ug/ml. Perform heat mediated antigen
retrieval before commencing with IHC staining protocol, ICC Use a concentration of 0.5 - 1 ug/ml. If fixing cells in 4% PFA (20 min,
room temp), it is recommended to permeabilized cells with 0.1% Triton-X for 5 min. Positive Control: HeLa and HAP1 cells; CD45:
validated according to manufacturer's website for Flow Cyt Use 1ug for 1076 cells, WB 1/500. Detects a band of approximately 190
kDa (predicted molecular weight: 147 kDa), IHC-P Use a concentration of 0.5 - 5 pg/ml. Perform heat mediated antigen retrieval
before commencing with IHC staining protocol.
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Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) Cell lines derived were from KP primary tumors 118373 and 860T3 (LaFave et al., 2020).
Authentication Cell lines were authenticated by genotyping for specified alleles.
Mycoplasma contamination All cell lines tested negative for mycoplasma contamination.

Commonly misidentified lines  no commonly misidentified cell lines were used.
(See ICLAC register)

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research
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Laboratory animals B6129SF1/J (Jackson lab, stock 101043) mice, male, 8-10 weeks. Facilities are AAALAC accredited animal facilities and under the
supervision of the Division of Comparative Medicine at MIT. Animals are housed on hardwood bedding with a light dark cycle of
12/12. Room temp is 70 +/-2 with a humidity range of 30-70%

Wild animals This study did not involve wild animals.

Field-collected samples  No field-collected samples were used.

Ethics oversight All animal experiments described in this study were approved by the Massachusetts Institute of Technology Institutional Animal Care
and Use Committee (IACUC) (institutional animal welfare assurance no. A-3125-01).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics This is a commercially-available sample from a 67 year old male.
Recruitment The sample was obtained from a commercial source.
Ethics oversight This was determined to be non-human subject research by Broad IBC.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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