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Spatial genomics enables multi-modal study 
of clonal heterogeneity in tissues

Tongtong Zhao1,2,7, Zachary D. Chiang1,2,3,7, Julia W. Morriss1,2, Lindsay M. LaFave2,4,5, 
Evan M. Murray1,2, Isabella Del Priore4,5, Kevin Meli4,5, Caleb A. Lareau1,2, Naeem M. Nadaf1, 
Jilong Li1, Andrew S. Earl1,2,3, Evan Z. Macosko1,6, Tyler Jacks1,4,5, Jason D. Buenrostro1,2,3,8 ✉ & 
Fei Chen1,2,3,8 ✉

The state and behaviour of a cell can be influenced by both genetic and environmental 
factors. In particular, tumour progression is determined by underlying genetic 
aberrations1–4 as well as the makeup of the tumour microenvironment5,6. Quantifying 
the contributions of these factors requires new technologies that can accurately 
measure the spatial location of genomic sequence together with phenotypic 
readouts. Here we developed slide-DNA-seq, a method for capturing spatially 
resolved DNA sequences from intact tissue sections. We demonstrate that this 
method accurately preserves local tumour architecture and enables the de novo 
discovery of distinct tumour clones and their copy number alterations. We then apply 
slide-DNA-seq to a mouse model of metastasis and a primary human cancer, revealing 
that clonal populations are confined to distinct spatial regions. Moreover, through 
integration with spatial transcriptomics, we uncover distinct sets of genes that are 
associated with clone-specific genetic aberrations, the local tumour 
microenvironment, or both. Together, this multi-modal spatial genomics approach 
provides a versatile platform for quantifying how cell-intrinsic and cell-extrinsic 
factors contribute to gene expression, protein abundance and other cellular 
phenotypes.

Tissue function requires precise spatial organization of cell types, 
whose states are influenced by cell-intrinsic genetic factors and extrin-
sic environmental cues. In cancer, clonal populations of tumour cells 
evolve a diverse repertoire of DNA mutations, copy number altera-
tions (CNAs), and large chromosomal rearrangements1,2, resulting 
in intra-tumour genetic heterogeneity, which is associated with an 
increased risk of drug resistance, metastasis and relapse3,4. Concomi-
tantly, surrounding normal cells that make up the tumour microenvi-
ronment communicate to form spatial neighbourhoods with distinct 
biochemical and biomechanical properties5,6 that influence cell 
migration and invasion7,8, as well as drug permeability9. Decoupling 
and quantifying these genetic aberrations and environmental cues 
within a tumour is critical to understanding cancer progression and 
improving treatments.

Current methods for delineating intratumour genetic heterogeneity 
include deep sequencing to quantify mutant allele frequencies10,11 and 
single-cell whole-genome sequencing12–14. These methods leverage 
genetic alterations that occur during the evolution of the tumour to 
reconstruct phylogenetic cell lineages10–14, but do not measure spa-
tial organization. By contrast, multi-region sequencing methods15–17 
such as laser-capture microdissection (LCM) preserve spatial con-
text, but are mostly limited to clearly observable late-stage cancers 
and require manual selection of cells, constraining throughput and 

de novo discovery. The recently developed in situ genome sequenc-
ing18 enables untargeted spatial measurements of DNA, but focuses 
on high-resolution imaging of chromosome structure, precluding 
analysis of tissue sections. It therefore remains poorly understood 
how tumour clones are organized within a tissue, and to what extent 
cancer progression is driven by clone-specific genetic aberrations or 
environmental cues, highlighting a need for new methods that can 
integrate genomic, transcriptomic and spatial measurements at scale.

Spatially resolved DNA sequencing
Slide-seq19,20 (hereafter referred to as slide-RNA-seq) is a scalable tech-
nology that uses barcoded bead arrays to capture spatially resolved 
genome-wide expression. Here we developed slide-DNA-seq, a method 
that enables spatially resolved DNA sequencing from intact tissues.

We first generate a spatially indexed array of 3-mm beads, as devel-
oped for slide-RNA-seq19,20. Each 10-μm polystyrene bead contains a 
unique DNA barcode that corresponds to a spatial location and is read 
out using sequencing by ligation chemistry19,20. We then cryosection 
tissues and transfer a single 10-μm-thick fresh-frozen section onto the 
sequenced bead array (Fig. 1a). To enable unbiased capture of DNA, the 
tissue section is treated with HCl to remove histones and transposed 
with Tn5 to create genomic fragments flanked by custom adapter 
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sequences21,22 (Supplementary Table 1). We then photocleave spatial 
barcodes from the beads, ligate them to proximal genomic fragments, 
and PCR amplify the resulting DNA sequencing library (Fig. 1b). Fol-
lowing library construction, we perform high-throughput paired-end 
sequencing and use DNA barcodes to associate each genomic fragment 
with a spatial location on the bead array. These associations enable us to 
reconstruct the spatial organization of DNA in a tissue without imaging 
the sample under a microscope. We developed optimizations for tissue 
fixation, histone removal and bridge oligonucleotide hybridization 
that collectively maximize library size, make chromatin uniformly 
accessible to Tn5 (Extended Data Fig. 1), and preserve tissue architec-
ture (Extended Data Fig. 2). Following our initial optimizations, each 

array contains 20,000 to 40,000 beads with a median 165 to 421 frag-
ments per bead (tumour tissues; Extended Data Fig. 3). Furthermore, 
we developed a proof-of-concept protocol variant that uses repeated 
Tn5 tagmentation to improve yield, resulting in a tenfold increase in 
genomic fragments (Extended Data Fig. 3, Supplementary Methods). 
Detailed metrics for all tissues analysed in this study are listed in Sup-
plementary Table 2.

To determine the spatial and genomic resolution of this approach, we 
first applied slide-DNA-seq to the mouse cerebellum, which contains 
distinct nuclei-dense (soma) and mitochondria-rich (neurites) regions 
(Fig. 1c). We reasoned that these patterns should be reflected in the 
spatial distribution of nuclear versus mitochondrial DNA fragments. 
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Fig. 1 | Slide-DNA-seq enables spatially resolved DNA sequencing.  
a, Schematic of in situ bead indexing. An array of randomly deposited beads is 
spatially indexed by in situ sequencing of DNA barcodes. Fresh-frozen tissue is 
cryosectioned onto the array. b, Schematic of slide-DNA-seq library 
construction. Genomic DNA is transposed with Tn5. Hybridization of a bridge 
oligonucleotide enables ligation of photocleaved, spatially indexed bead 
oligonucleotides to genomic fragments. BC, barcode; ME, mosaic ends; P5/P7, 
Illumina adaptor; R1, Illumina read 1; R2, Illumina read 2. c, A DAPI-stained 
cryosection of a mouse cerebellum. The red circle indicates the approximate 
region shown in d, e. d, Slide-DNA-seq of a cerebellar section with beads 
coloured by percentage of fragments aligned to mitochondrial genome. 
mtDNA, mitochondrial DNA. e, Adjacent section to the one in d, stained with 

DAPI and antibody against the mitochondrial protein TOMM20. f, Normalized 
copy number per 1-Mb genomic bin for aggregated beads from d. g, Serial 
sections from KrasG12D/+;Trp53−/− liver metastases were processed for H&E 
staining. Centre, circle indicates the region in h, i. Right, dotted lines indicate 
tumour boundary. h, Slide-DNA-seq of mouse liver section with beads coloured 
by principal component 1 scores (PC1). For visualization, scores for each bead 
are smoothed by 50 PC neighbours and 10 spatial neighbours (36 μm diameter). 
i, Adjacent section to the one in h, stained with DAPI and antibody against the 
tumour marker HMGA2. j, Normalized copy number per 1-Mb genomic bin for 
aggregated normal and tumour beads from the liver section in h. Scale bars, 
500 μm. Grey beads are shown for spatial context but are excluded from the 
analysis.
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Indeed, striations of nuclear versus mitochondrial DNA content were 
apparent from slide-DNA-seq data (Fig. 1d, Extended Data Fig. 3). We 
then used these patterns to measure our spatial resolution by perform-
ing immunofluorescence and DAPI staining on serial tissue sections of 
the same cerebellum, resulting in a lateral diffusion estimate of approxi-
mately 25 μm (Fig. 1e, Extended Data Fig. 4, Supplementary Methods). 
To measure genomic resolution, we corrected the data for sequence 
biases and normalized coverage using bulk sequencing of the same 
tissue (Extended Data Fig. 5, Supplementary Methods, Supplementary 
Discussion). Using this approach, 99.78% of non-overlapping 1-Mb 
genomic bins had a normalized copy number between 1.5 and 2.5 (Fig. 1f, 
Extended Data Fig. 6). Together, these data show that slide-DNA-seq 
can spatially localize genomic information within normal tissues.

Detecting spatial distribution of CNAs
We next applied slide-DNA-seq to measure the spatial distribution of 
copy number alterations (CNAs) in a tumour section using genetically 
engineered mouse models of lung adenocarcinoma that are known to 
harbour chromosomal amplifications and deletions23. First, we isolated 
and expanded a single tumour clone from a KrasG12D/+Trp53−/− (KP) mouse 
lung tumour24,25 and injected this clone into the tail vein of a mouse, 
giving rise to large metastases in the liver (Fig. 1g). We then collected 
multiple serial sections of liver metastases to perform slide-DNA-seq, 
along with haematoxylin and eosin (H&E) staining and immunofluores-
cence for HMGA2, a late-stage tumour marker. To characterize tumour 
heterogeneity within the tissue, we developed a slide-DNA-seq analysis 
workflow comprising two main tasks: (1) de novo identification and 
spatial localization of clonal populations, and (2) characterization of 
genomic CNAs for each clone.

First, to detect and localize tumour clones within a tissue, we 
smoothed bead data on the basis of spatial proximity (k = 50 nearest 
beads, approximately 110 μm diameter; Extended Data Fig. 3; median 
18,587 ± 5,300 fragments) and performed principal component analysis 
(PCA) to find co-associated genomic regions with variable coverage 
across the tissue. We then used these regions to assign a clonal iden-
tity to each bead on the slide-DNA-seq array by k-means clustering 
(Extended Data Fig. 7, Supplementary Methods). When we applied this 
approach to the slide-DNA-seq array from the liver metastases, principal 
component 1 (PC1, 2.89% variance explained) showed spatial patterning 
(Fig. 1h) that was visually concordant with immunofluorescence on a 
serial section against the late stage tumour marker HMGA226–28 (Fig. 1i). 
To validate whether this approach could be used to identify geneti-
cally distinct tumour clones, we performed downsampling on bulk 
sequencing of 4 tumour cell lines and found robust accuracy (99.38%) 
with as few as 1,000 fragments per sample (Extended Data Fig. 8, Sup-
plementary Methods), suggesting that this strategy is sufficient for 
slide-DNA-seq data.

The second task in the analysis workflow is to characterize the CNAs 
present in each tumour clone. To do this, we aggregated data from 
hundreds to thousands of raw beads on the basis of the cluster assign-
ments from the first task and visualized the genomic coverage of each 
cluster at 1-Mb resolution. When applied to the liver metastases array, 
the tumour-associated cluster displayed significant CNAs, includ-
ing the amplification of chromosome (chr)6 that is characteristic for 
Kras-induced lung tumours23, whereas the normal cluster showed 
comparatively uniform coverage (Fig. 1j). Further comparisons to a 
biological replicate performed on a serial section revealed visually 
concordant tissue architecture, as well as high correlation between 
tumour copy number profiles (Pearson’s r = 0.986; Extended Data 
Fig. 9). To quantify the accuracy of the copy number analysis, we used 
the diploid mouse cerebellum data to systematically evaluate coverage 
at a range of bin sizes and spatial resolutions (Extended Data Fig. 10, 
Supplementary Methods). Together, these results demonstrate that 
our slide-DNA-seq analysis workflow enables de novo discovery and 

localization of tumour regions at approximately 1-Mb genomic resolu-
tion (Supplementary Discussion).

Spatial genomics of metastatic clones
To demonstrate that our experimental and computational approach 
can distinguish between clones within a tissue, we injected multiple 
clones originating from two independently derived metastatic KP 
tumours into the tail vein of a mouse, which gave rise to large metastases 
in the liver. We then performed H&E staining and identified a region 
of the tissue that appeared to have two spatially distinct metastases 
(Fig. 2a). Immunohistochemistry on the same region of a serial sec-
tion revealed that the two varied in protein levels of tumour marker 
HMGA226, suggesting that they may originate from different metastatic 
clones (Extended Data Fig. 11a).

We then applied slide-DNA-seq to a third serial section of the same 
liver tissue. Using the PCA approach described above, we found that 
both PC1 and PC2 explained substantial variance (4.21% and 2.50%, 
respectively), allowing the beads to be assigned to 3 distinct clusters 
on the basis of their genomic profiles (Fig. 2b). One of these clusters 
was visually concordant with H&E staining of normal tissue, whereas 
the other two appeared to correspond to the different metastases. We 
developed a permutation test to spatially localize statistically signifi-
cant CNA gains or losses present in one or both of the metastases, and 
detected differential regions on chr6, chr15 and chr19 (Fig. 2c, Supple-
mentary Methods). We then tested the aggregate genomic coverage in 
selected regions for statistical significance (two-sided Wilcoxon rank 
sum test; P-values in Fig. 2d), providing further evidence that they were 
seeded by different clones. Additionally, we observed that one clone 
was probably triploid, which we confirmed independently using flow 
cytometry (Extended Data Fig. 12).

To test whether genetic differences between the two clones were 
reflected in cell state, we performed slide-RNA-seqV220 on a fourth 
serial section and collected paired single-nucleus RNA sequencing 
(snRNA-seq). Unsupervised clustering of the snRNA-seq data and spa-
tial projection29 onto slide-RNA-seq beads (Methods, Supplementary 
Table 3) revealed that the two metastases were transcriptionally distinct 
(Fig. 2e, Extended Data Fig. 11b, c); there were 3,732 genes differentially 
expressed between the two clones (Fig 2f, Supplementary Table 4; 
two-sided z-test, false discovery rate < 0.01, log2(fold change) > 1, mini-
mum of 100 transcripts). Clone A had higher expression of late-stage 
tumour markers, including Hmga2 (lung metastases), Tm4sf1 ( JAK–
STAT signalling) and Vim (cell motility), whereas the top hits for clone B 
included Aqp5 (loss of lineage identity) and epithelial-to-mesenchymal 
transition markers S100a4 and Vcan25 (Fig. 2f, g). Although both 
clones exhibited epithelial-to-mesenchymal transition and metasta-
sis expression signatures, these differentially expressed genes may 
reflect divergent paths of tumour evolution. Furthermore, we found 
differential monocyte localization (P = 0.0002; permutation test) into 
clone B, reflecting a higher degree of immune infiltration (Extended 
Data Fig. 11e, f, Supplementary Methods). Altogether, these data dem-
onstrate that paired slide-DNA-seq and slide-RNA-seq enable spatial 
characterization of genetically distinct metastatic tumour clones and 
their associated cell states.

Subclone detection in human colon cancer
We then sought to determine whether slide-DNA-seq could detect 
clonal heterogeneity de novo in a primary human tumour. We selected 
a sample from a stage IIIB colorectal tumour, because colorectal cancer 
is one of the most common causes of cancer-related deaths worldwide 
and 84% of such tumours display chromosome instability30,31. As before, 
we performed H&E staining, multiplexed immunohistochemistry 
and slide-DNA-seq on serial sections (Fig. 3a). First, we examined H&E 
staining, observing many localized aggregates of tumour cells about 
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100–500 μm in diameter. We hypothesized that each of these aggre-
gates could arise from a single clonal lineage, suggesting constraints 
on migration or, alternatively, that each aggregate could contain a 
mixture of cells from different lineages, indicating cell intermixing.

To distinguish between these two possibilities, we performed PCA 
and unsupervised clustering on the slide-DNA-seq data as described 
above, which resulted in three distinct clusters of genomic profiles 
(Fig. 3b). One of these clusters had a spatial distribution that was visu-
ally concordant with normal tissue in the H&E staining (Fig. 3b right, 
blue), but also included regions of moderate PC1 scores, suggesting a 
low abundance of cancer cells harbouring CNAs. By contrast, the other 
two clusters displayed high PC1 scores and were spatially restricted 
to distinct tumour aggregates, supporting the hypothesis that each 
aggregate originates from a single lineage. This finding is consistent 
with reports suggesting that individual colorectal tumour cells seed 
a glandular organization in which neighbouring cells share a recent 

common ancestor32,33. We validated the tumour architecture detected 
by slide-DNA-seq through co-registration of the slide-DNA-seq array, 
H&E staining and immunohistochemistry for the tumour marker MKI67 
and the immune marker CD45 (Fig. 3c).

We then set out to characterize the genetic aberrations of the identi-
fied subclones. We found several genetic aberrations, including chr8q 
amplification and loss of chr15 and chr18, that were shared across all 
tumour regions (Fig. 3d, e, Supplementary Methods), indicating that 
they arose early in tumour evolution and may have had an important 
role in tumour initiation. The chr8q amplification contains genes known 
to promote tumour progression, including the proto-oncogenes MYC 
and MYBL134, whereas deletion of chr15 results in loss of multiple genes 
required for genome stability, including TP53BP135, RAD5136 and FAN137. 
Supporting these observations, chr8q gain and chr18 loss were identi-
fied as typical early events in an evolutionary history of 60 colorec-
tal tumours10. In contrast to these shared aberrations, we observed 
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subclonal amplifications of chr1q, chr7, and chr20, which presumably 
occurred at a later stage of evolution (Fig. 3d, e). Notably, previous 
analyses of colorectal cancers classified chr7p amplification as a typi-
cally clonal (rather than subclonal) event, whereas both loss and gain of 
chr20p were identified as frequent subclonal aberrations10,38. The detec-
tion and temporal classification of these events demonstrate the utility 
of slide-DNA-seq for studying the evolution of clonal heterogeneity.

To validate these genetic aberrations, we performed single-cell 
whole-genome sequencing (scWGS) on the same colorectal tumour. 
This approach sampled cells from the entirety of the tumour (100-fold 
more material than the slide-DNA-seq tissue section), so we expected to 
potentially identify additional subclones. In line with this expectation, 
analysis of 2,274 high-coverage single-cell CNA profiles resulted in one 
normal cluster and five tumour clusters, some of which resembled the 
slide-DNA-seq CNA profiles (Fig. 3f). We then sought to project the 
high-coverage sequencing onto the slide-DNA-seq array to identify 
CNAs at enhanced resolution (Supplementary Methods). The spa-
tial regions predominantly matched two separate scWGS clusters, 

supporting the analysis using slide-DNA-seq only, but we also found a 
small region with distinct genetic aberrations that was revealed only 
with the higher coverage of the scWGS data (Fig. 3g, top, Extended Data 
Fig. 13). Having demonstrated improved spatial resolution, we then 
re-analysed the matched scWGS clusters at 100 kb genomic resolution, 
revealing a complex CNA landscape in chromosome 8 (Fig. 3g, bottom). 
Together, these analyses validate that slide-DNA-seq alone is sufficient 
for de novo discovery and localization of distinct tumour clones within 
a tissue and show that CNA characterization can be enhanced through 
integration with scWGS.

Multi-modal analysis of clonal heterogeneity
Finally, to demonstrate the unique capabilities of a multi-modal 
spatial sequencing approach, we sought to quantify how tumour 
transcriptional programs are controlled by both genetics and envi-
ronmental cues. We first performed H&E staining, slide-DNA-seq 
and slide-RNA-seqV2 on serial sections from a nearby region of the 
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colorectal tumour (Fig. 4a) and co-registered the arrays to integrate 
pathological, genomic and transcriptomic information. We then identi-
fied spatially distinct regions of tumour cells (Fig. 4b, Supplementary 
Methods) and proceeded to assign each one with a subclonal identity 
(Fig. 4c) and quantify the local tumour density (Fig. 4d, Supplementary 
Methods). Comparison with the H&E staining validated the spatial 
architecture of the subclones identified by slide-DNA-seq as well as the 
tumour density quantified by slide-RNA-seq (Extended Data Fig. 14).

Given both subclonal identity (cell-intrinsic) and tumour density 
(cell-extrinsic) measurements, we set out to deconvolve how these 
factors contribute to the transcriptional programs of the colorectal 
tumour. To this end, we used a variance-decomposition approach that, 
for each gene, calculates the percentage of gene expression variance 
explained by subclonal identity, tumour density and unexplained 
variance (Supplementary Methods). Of the 25,074 genes detected by 
slide-RNA-seq 412 genes were significantly associated with subclonal 
identity, 638 genes were associated with tumour density, and 1,098 
genes were associated with a combination of both (P < 0.05, variance 
explained > 30%, Fig. 4e, Supplementary Table 5). Genes associated with 
subclonal identity included known cancer genes located in amplified 

regions, such as PLAG1, an oncogene on chr8q39, and MCM7, a MYC 
target gene on chr7q that is involved in DNA replication initiation40 
(Fig. 4f). Notable tumour density-associated genes included LGALS341 
(also known as galectin-3), which contributes to immunosuppression 
in the tumour microenvironment, and PROM1 (also known as CD133), 
which is important for intestinal homeostasis, regeneration and tumour 
initiation42 (Fig. 4g).

As well as characterizing individual genes, we also performed gene 
set enrichment analysis to determine which molecular pathways were 
associated with subclonal identity or tumour density (Fig. 4h, Sup-
plementary Methods). This analysis showed that subclonal identity 
primarily altered the expression of genes involved in cell growth and 
proliferation, with MYC- and E2F-target genes representing the top 
hallmark gene sets for subclone 1 (Extended Data Fig. 15). By contrast, 
genes associated with high tumour density were most enriched for 
cell adhesion molecule- and cadherin-binding properties (Fig. 4i, 
Extended Data Fig. 15), including the extracellular matrix component 
gene COL3A1, actin modulator genes FLNB and CALD1, and the mecha-
notransduction regulator gene ITGB2 (also known as CD18). Notably, 
extracellular matrix stiffness and remodelling are thought to promote 
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cell proliferation and tumour progression43, which may contribute 
to high tumour cell density. Overall, these analyses demonstrate the 
utility of this multi-modal approach for decoupling and quantifying 
contributions of genetic and environmental factors to gene expression.

Discussion
This study demonstrates that slide-DNA-seq can detect clonal hetero-
geneity, characterize the copy number alterations of each clone and 
analyse their spatial distribution within a tissue. These capabilities, 
in combination with processing of serial sections for histopathology 
and slide-RNA-seq enable high-resolution multi-omic characteriza-
tion of intratumoural heterogeneity44. Additionally, integration with 
single-cell whole-genome sequencing may enable spatial characteri-
zation of complex subclonal events, such as loss of heterozygosity or 
extrachromosomal DNA amplifications45. Going forward, we anticipate 
that slide-DNA-seq will be particularly useful for large-scale efforts to 
create atlases of tumour evolution10, adding spatial information to 
studies of clonal heterogeneity. It may also drive new frontiers in clini-
cal diagnoses as a complement to standard pathology assays such as 
H&E staining, karyotyping and DNA fluorescence in situ hybridization.

Spatially resolved DNA sequencing may also enable advances in 
many fields beyond cancer genomics, including spatially resolved 
metagenomics46, evaluation of gene therapy delivery47, synthetic DNA 
data storage48 and lineage tracing in healthy tissues49. The core of this 
technology—that is, fragmenting and barcoding DNA in situ to preserve 
spatial information for next-generation sequencing—is compatible with 
other sequencing-based assays. For example, direct tagmentation of 
the DNA without HCl treatment, or converting methylated cytosines 
to dihydrouracil before amplification, would enable spatially resolved 
measurements of chromatin accessibility and DNA methylation, respec-
tively22,50. In summary, slide-DNA-seq enables new opportunities to 
chart the spatial organization of cell states in human development, 
homeostasis and disease.
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Extended Data Fig. 1 | Optimization of slide-DNA-seq protocol. a, Library 
preparation steps. b–e, Library size comparisons for live vs fixed tissue (b); 
histone extraction protocols (c, d); and varying lengths of a bridge oligo used 
to connect the barcoded bead oligo to genomic fragments e, either hybridized 
after tagmentation (left bar) or pre-loaded onto the Tn5 transposase prior to 
tagmentation (rest). All values are normalized to control condition (first 
column). f, Rate of ligation of genomic fragments to barcoded oligo either 

ordered in solution from IDT (left) or cleaved off from beads (center, right).  
g–j, Frequency of Tn5 insertions in the genome relative to the nearest 
transcription start site (TSS) for slide-DNA-seq of mouse cerebellum (g), mouse 
liver metastases (h), human colon tumor (i), and for single-cell ATAC-seq of a 
mouse brain ( j). Error bars, mean ± s.d; n, number of replicate comparisons 
(generated from 4 biological samples); dots represent values of each replicate.
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Extended Data Fig. 2 | Comparison of fixation conditions during histone extraction. Cerebellar sections are exposed to treatment as stated (with or without 
prior fixation) and stained with DAPI. Scale bars, 500 μm.



Extended Data Fig. 3 | Quantification of DNA fragments per slide-DNA-seq 
array. a, Nuclear (left) and mitochondrial (center) DNA fragments per bead 
obtained for tissues used in this study. Right, mitochondrial fraction of 
fragments. 4x, protocol variant with 4x tagmentation. Black lines on violin 
plots indicate the mean. b, slide-DNA-seq of the mouse cerebellum experiment 
in Fig. 1. Beads are colored by the number of nuclear fragments (left), 
mitochondrial DNA fragments (center), and fraction of mitochondrial DNA 
fragments (right). c, Visualization of representative convex hulls for different 

spatial bin values of k for k-nearest neighbor smoothing. Beads are colored by 
raw counts, insets show convex hulls for k = 1, 10, 25, and 50, centered on salmon 
colored beads. Hulls are generally circular except at the edge of the array.  
d, Distribution of mean fragments per 1 Mb genomic bin for different spatial 
bin values of k. The median diameter of the smoothed features is indicated in 
parentheses. e, Comparison of nuclear fragments (left) and effective diameter 
(right) per bead for different spatial bin values of k. Scale bars, 500 μm.
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Estimation of slide-DNA-seq lateral diffusion.  
a, Interpolated image showing the nuclear fraction of fragments of a 10 μm 
mouse cerebellar section processed for slide-DNA-seq. Cyan box indicates 
magnified area (right). Smaller boxes indicate regions taken for linescans in  
b and e. b, Pseudo-intensity (representing nuclear fraction of fragments) of 
linescan as indicated by red box in a. Black dots, halfmax. Full Width at Half 
Maximum (FWHM) = 57.3 μm. c, 10 μm serial section of the same mouse 
cerebellum stained with DAPI. Blue box indicates magnified area (right). 
Smaller boxes indicate regions taken for linescans in d and f. d, Linescan of 
DAPI intensity as indicated in c. Black dots, halfmax. FWHM = 16.4 μm. e, Same 

as b, but for 3 different regions as indicated by the smaller non-red boxes in a. 
For the left (green) and middle (yellow) panel, FWHM is calculated as twice the 
distance between the peak and the halfmax (marked by black dots). f, Same as 
d, but for 3 different regions as indicated by the smaller non-red boxes in b. For 
the left (green) and middle (yellow) panel, FWHM is calculated as twice the 
distance between the peak and the halfmax (marked by black dots). g, Bar 
graph of average FWHM (n=4 regions). Error bars, mean ± s.d. Upper bound for 
the diffusion measurement is half of largest FWHM (not taking into account the 
DAPI measurement). Scale bars, 500 μm (a, c), 200 μm (b, d).
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Extended Data Fig. 5 | Normalization of slide-DNA-seq sequencing biases. 
a, Top, raw sequencing reads per 1 Mb bin for mouse cerebellum slide-DNA-seq 
are plotted for GC-content, mappability, replication timing score, and Tn5 bias. 
Pearson’s r values are shown for each. Bottom, bias corrected coverage and 
correlation values after normalization. b, Same as a but for tagmentation-based 

bulk sequencing of mouse cerebellum (Methods). c, Same as a but for 
slide-DNA seq of mouse liver metastases. d, Same as b but for 
tagmentation-based bulk sequencing of mouse liver metastases. Blue points, 
bins from chrX (not included in the calculation of the fit).



Extended Data Fig. 6 | Quantification of genomic coverage in a diploid 
sample. Left (all panels), copy number profiles at 1 Mb genomic resolution of 
the mouse cerebellum for the sequencing modality and processing indicated. 
For this diploid sample, each copy number distribution is normalized to a 
median of 2. Right (all panels), histogram of the number of bins per copy 
number. a, Raw coverage profile of slide-DNA-seq. b, Coverage profile of 

slide-DNA-seq normalized by GC-content and mappability. c, Coverage profile 
for bulk tagmentation-based sequencing. d, Coverage profile of bulk 
sequencing normalized by GC-content and mappability. e, Coverage profile of 
slide-DNA-seq normalized by the GC-content and mappability divided by bulk 
sequencing normalized by GC-content and mappability.
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Extended Data Fig. 7 | slide-DNA-seq clonal analysis workflow. a, Principal 
components calculated from smoothed slide-DNA-seq beads, ordered by the 
percentage of variance explained for the mouse liver metastases array shown 
in Fig. 1. b, Weights per 1 Mb genomic bin for principal components 1 and 2. Red 
points indicate bins from chromosomes with an odd number, blue from 
chromosomes with an even number (and chrX). c, slide-DNA-seq array for the 

mouse liver metastases array shown in Fig. 1 with points colored by raw PC 1 
scores (top left), smoothed PC 1 scores (top right), raw PC 2 scores (bottom 
left), smoothed PC 2 scores (bottom right). d, Calinski-Harabasz criterion 
values used to select the optimal value of k for k-means clustering. e, slide- 
DNA-seq array colored by cluster assignment using the value of k selected in d. 
f–j, Same as a–e, but for the mouse liver metastases array shown in Fig. 2.



Extended Data Fig. 8 | Accuracy of clonal assignment via downsampling of 
bulk tumor cell lines. a, Raw copy number profiles for four tumor cell lines 
profiled using tagmentation-based bulk sequencing. b, Representative 10,000 
fragments samples of the cell lines shown in a. c, Clonal assignment accuracy 

for 10,000 fragment samples (n=5,000 samples of each cell line) using the 
analysis workflow shown in Extended Data Fig. 7. d, Same as c but for 1,000 
fragment samples.
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Extended Data Fig. 9 | Reproducibility of slide-DNA-seq across serial 
sections. a, Immunofluorescence (IF) against tumor marker HMGA2 (top) and 
two slide-DNA-seq replicates (center, bottom) were performed on two serial 
sections of a mouse liver metastasis. Beads colored by PC1 scores (left) and 

cluster assignment (right) show similar spatial architecture between 
replicates. Scale bars, 500 μm. b, Aggregate copy number profiles of normal 
and tumor beads show high correlation (Pearson’s r = 0.986 and 0.992) between 
the two replicates.



Extended Data Fig. 10 | Quantification of genomic coverage by bin size and 
number of beads. Each column represents normalized copy number profiles 
aggregated across the number of slide-DNA-seq beads indicated (10,000; 

1,000; or 100), while each row indicates the genomic bin size (10 Mb, 5 Mb, 2.5 
Mb, 1 Mb, and 500 kb) for the mouse cerebellum array.
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Extended Data Fig. 11 | Integrated slide-RNA-seq and single-nucleus 
RNA-seq analysis of clones. a, H&E stain (left), IHC against tumor marker 
HMGA2 (center), and Hmga2 expression from slide-RNA-seq (right) of three 
serial sections of mouse liver metastases. b, UMAP of unsupervised clustering 
of single nucleus RNA-seq performed on nuclei from mouse liver metastasis 
sample. c, Dot plot showing the expression of marker genes used to annotate 
clusters in b. d, Spatial projection of cell types from b onto the slide-RNA-seq 

array, colored in the same fashion. Black lines indicate spatial tumor clusters.  
e, Differential localization of cell types between clone A, clone B and normal 
regions. Heatmap shows signed (positive, enrichment; negative, depletion) 
log10(p-value) from permutation testing (two-sided, not adjusted for multiple 
comparisons). f, Spatial plot of monocyte localization on the array, which is 
significantly enriched for clone B. Black lines indicate spatial tumor clusters. 
VSMC, vascular smooth muscle cell; LSEC, liver sinusoidal endothelial cells.



Extended Data Fig. 12 | Validation of ploidy and copy number of metastatic 
clones. a, Assignment of beads to normal tissue, clone A, and clone B based on 
k-means clustering. b–d, Histogram of DNA content of single cells measured by 
propidium iodide (PI) fluorescence intensity through flow cytometry. (b) bone 
marrow cells (normal control); (c) clone A; (d) clone B. Diploid G1 (2N) and G2 

(4N) gates are determined on bone marrow histogram and applied to clones  
A and B, revealing that the clone A genome is triploid; and the clone B genome is 
diploid with some amplifications (e.g. of chr. 15 and 19, see Fig. 2d).  
e, Aggregate copy number profiles of beads assigned to clone A. f, Aggregate 
copy number profiles of beads assigned to clone B.
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Extended Data Fig. 13 | Spatial projection of single-cell whole-genome 
sequencing (scWGS) clusters. a, Genomic copy number profiles for 2,274 
single cells obtained using scWGS, with cluster annotations colored. b, Top left: 
projection of scWGS clusters onto slide-DNA-seq. All other: three genomic 
regions of differential CNA profiles between the three projected clusters, 
shown are spatial heatmaps of signed p-value differences from the average 

profile (two-sided permutation test, not adjusted for multiple comparisons).  
c, Normalized copy number profiles for the three scWGS clusters, and the 
corresponding spatial clusters. Vertical lines denote variable regions from b. 
Single-cell cluster 2 (blue) shows complex CNA patterns that obscure cluster 
ploidy, nevertheless, copy number values are normalized to 2 for easy 
comparison to other clusters.



Extended Data Fig. 14 | Tumor morphology of primary human colon cancer 
sample. a, H&E stain of normal colon (left) and colon tumor (right) tissue from 
the same patient. Scale bars, 200 μm. b, Serial sections processed for H&E stain 
(left), slide-DNA-seq (center), and slide-RNA-seq (right). Scale bars, 500 μm. 
Yellow and black boxes indicate magnified areas in c, d, respectively.  
c, Magnified views of H&E stain, slide-DNA-seq and slide-RNA-seq 

reconstructions show concordant spatial tissue architecture across three 
modalities; scale bar, 200 μm. d, Magnified view of H&E stain of three regions 
that are assigned low, medium, and high tumor density by slide-RNA-seq 
transcriptomic analysis (b, right). Arrows indicate regions of high tumor 
density identified through H&E stain. Scale bar, 100 μm.
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Extended Data Fig. 15 | Biological pathways explained by subclone or 
tumor density. a, Subclone-associated pathways identified through gene set 
enrichment analysis. b, Hallmark E2F target genes (n=200) plotted according 
to percent variance explained by clonal identity (x-axis) and tumor density 
(y-axis). Included genes colored by normalized density on the scatter plot, all 
other genes are shown in grey. c, Expression of highly subclone-associated E2F 
target genes (n=11, listed in a), plotted for spatial tumor regions of the 
slide-RNA-seq array from Fig. 4. d, MYC target genes (n=200) plotted according 
to percent variance explained by clonal identity (x-axis) and tumor density 
(y-axis). Included genes are colored by normalized density on the scatter plot, 
MYC is colored red, all other genes are shown in grey. e, Expression of highly 
subclone-associated MYC target genes (n=16, listed in a), plotted for spatial 
tumor regions (left). Box plot showing normalized MYC target gene expression 

by subclone assignment; each point represents a spatial tumor cluster (right). 
Red line, mean, red box, 95% confidence interval for mean, blue box, standard 
deviation. f, MYC expression plotted for spatial tumor regions (left). Scatter 
plot showing normalized MYC expression by tumor cell density; each point 
represents a spatial tumor cluster (right). g, Subclone-associated pathways 
identified through gene set enrichment analysis. h, Cell adhesion molecule 
binding genes (n=514) plotted according to percent variance explained by 
clonal identity (x-axis) and tumor density (y-axis). Included genes are colored 
by normalized density on the scatter plot, all other genes are shown in grey 
(reproduced from Fig. 4i). i, Expression of highly density-associated cell 
adhesion molecule binding genes (n=14, listed in g), plotted for spatial tumor 
regions. Scale bars, 500 μm.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
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AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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Give P values as exact values whenever suitable.
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Software and code
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Data collection For the sequence alignment pipeline, fastp version 0.21.0, bowtie2 version 2.3.4.1, samtools version 1.7, and UMI-tools  0.5.5 were used. 
 
Code for the in situ bead indexing is available from https://github.com/broadchenf/Slideseq. 

Data analysis Code for the in situ bead indexing is available from https://github.com/broadchenf/Slideseq. Code for all analyses are available from https://
github.com/buenrostrolab/slide_dna_seq_analysis and archived at https://doi.org/10.5281/zenodo.5553305. 
 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Raw sequencing data is available from the Sequence Read Archive (SRA) at accession PRJNA768453. Spatial barcode locations and counts matrices are available 
from the Broad Institute Single Cell Portal (https://singlecell.broadinstitute.org/single_cell/study/SCP1278).  
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GC-content tracks for hg19 and mm10 were downloaded from the UC Santa Cruz Genome Browser. k36 mappability tracks for both genomes were downloaded 
from https://bismap.hoffmanlab.org/. Replication timing data was downloaded from GEO accession GSM923451 for hg19 and GSE137764 for mm10. Tn5 insertion 
bias tracks for both genomes were generated using the bias command from pyatac (https://nucleoatac.readthedocs.io/en/latest/pyatac/). Gene sets were 
downloaded from the Molecular Signatures Database Collections (MSigDB, http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp).
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was performed. Samples sizes were chosen primarily based on experiment length, sample availablity, and 
sequencing costs. These sample sizes are sufficient because each sample serves as a proof-of-concept for the new technology.

Data exclusions No data was excluded.

Replication All replication attempts were successful. For slide-DNA-seq experiments, we performed 3 biological replicates of the mouse cerebellum, 4 
biological replicates of the mouse liver metastases, and 4 biological replicates of the human colon cancer. The slide-RNA-seq and single-cell 
whole genome sequencing experiments were performed independently because the development of these technologies is not the primary 
focus of the paper. 

Randomization Randomization was not applicable because the focus of this paper is the development of a new genomic technology and did not involve 
allocating samples/organisms/participants into experimental groups.

Blinding Blinding was not applicable because because the focus of this paper is the development of a new genomic technology and did not involve 
group allocation, and by extension, blinding.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used TOMM20 (EPR15581-540), Abcam ab186735; HMGA2 (D1A7), Cell signaling 8179S; Ki67 (polyclonal), Abcam ab15580; CD45 

(polyclonal), Abcam ab10558; Alexa Fluor 488 goat anti-rabbit IgG (H+L), Life Technologies A11034; Opal Polymer anti-rabbit HRP, 
Opal 520 and Opal 570, Akoya Biosciences SKU NEL810001KT

Validation TOMM20: validated according to manufacturer's website for Flow Cytometry 1/90, ICC/IF 1/250, WB 1/1000-1/10000 detecting a 
band of approximately 16 kDa (predicted molecular weight: 16 kDa), IHC-P 1/50 - 1/100 Perform heat mediated antigen retrieval with 
Tris/EDTA buffer pH 9.0 before commencing with IHC staining protocol, IHC-Fr 1/50 Heat mediated antigen retrieval using sodium 
citrate buffer (10mM citrate pH 6.0 + 0.05% Tween-20); HMGA2: validation data on manufacturer's website for WB, IHC and IF; Ki67: 
according to manufacturer's website knockout-validated, IHC-P Use a concentration of 0.1 - 5 μg/ml. Perform heat mediated antigen 
retrieval before commencing with IHC staining protocol, ICC Use a concentration of 0.5 - 1 μg/ml. If fixing cells in 4% PFA (20 min, 
room temp), it is recommended to permeabilized cells with 0.1% Triton-X for 5 min. Positive Control: HeLa and HAP1 cells; CD45: 
validated according to manufacturer's website for Flow Cyt Use 1μg for 10^6 cells, WB 1/500. Detects a band of approximately 190 
kDa (predicted molecular weight: 147 kDa), IHC-P Use a concentration of 0.5 - 5 μg/ml. Perform heat mediated antigen retrieval 
before commencing with IHC staining protocol.
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Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) Cell lines derived were from KP primary tumors 1183T3 and 860T3 (LaFave et al., 2020).

Authentication Cell lines were authenticated by genotyping for specified alleles.

Mycoplasma contamination All cell lines tested negative for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals B6129SF1/J (Jackson lab, stock 101043) mice, male, 8-10 weeks. Facilities are AAALAC accredited animal facilities and under the 
supervision of the Division of Comparative Medicine at MIT. Animals are housed on hardwood bedding with a light dark cycle of 
12/12. Room temp is 70 +/-2 with a humidity range of 30-70%

Wild animals This study did not involve wild animals.

Field-collected samples No field-collected samples were used.

Ethics oversight All animal experiments described in this study were approved by the Massachusetts Institute of Technology Institutional Animal Care 
and Use Committee (IACUC) (institutional animal welfare assurance no. A-3125-01). 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants
Policy information about studies involving human research participants

Population characteristics This is a commercially-available sample from a 67 year old male.

Recruitment The sample was obtained from a commercial source.

Ethics oversight This was determined to be non-human subject research by Broad IBC.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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