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Deep learning-based enhancement of epigenomics
data with AtacWorks
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Jason D. Buenrostro 2✉

ATAC-seq is a widely-applied assay used to measure genome-wide chromatin accessibility;

however, its ability to detect active regulatory regions can depend on the depth of sequencing

coverage and the signal-to-noise ratio. Here we introduce AtacWorks, a deep learning toolkit

to denoise sequencing coverage and identify regulatory peaks at base-pair resolution from

low cell count, low-coverage, or low-quality ATAC-seq data. Models trained by AtacWorks

can detect peaks from cell types not seen in the training data, and are generalizable across

diverse sample preparations and experimental platforms. We demonstrate that AtacWorks

enhances the sensitivity of single-cell experiments by producing results on par with those of

conventional methods using ~10 times as many cells, and further show that this framework

can be adapted to enable cross-modality inference of protein-DNA interactions. Finally, we

establish that AtacWorks can enable new biological discoveries by identifying active reg-

ulatory regions associated with lineage priming in rare subpopulations of hematopoietic

stem cells.
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W ithin a single cell, the eukaryotic genome is hier-
archically organized to form a gradient of chromatin
accessibility ranging from compact, repressive hetero-

chromatin to nucleosome-free regions associated with increased
gene expression. Assay for Transposase-Accessible Chromatin
using Sequencing (ATAC-seq) leverages the Tn5 transposase to
directly measure chromatin accessibility as a proxy for the relative
activity of DNA regulatory regions across the genome1. ATAC-seq
has been applied to identify the effects of transcription factors on
chromatin, construct cellular regulatory networks, and localize
epigenetic changes underlying diverse development and disease-
associated transitions2–4. Recently, the development of single-cell
ATAC-seq methods have made it possible to measure accessible
chromatin in individual cells, enabling epigenomic analysis of rare
cell types within heterogeneous tissues5.

The ability to measure biologically-meaningful changes in
accessible chromatin using ATAC-seq depends on both the
signal-to-noise ratio and the depth of sequencing coverage.
Technical parameters such as the overall quality of cells or tissues,
the nuclei extraction method6, or over-digestion of chromatin can
result in attenuated measurements of accessibility. Importantly,
these issues are exacerbated in single-cell experiments, where
primary tissues may vary in quality and key cell types may be
exceedingly rare.

Deep learning represents a potential tool to address these
limitations, as it has been successfully used for problems such as
denoising speech7 and image restoration8,9. An earlier study
demonstrated that simple convolutional neural networks can be
used to denoise and call peaks from ChIP-seq data, but was
optimized for broad peak calling of histone modifications10.
Another recent study applied deep learning to predict chromatin
accessibility in a rare pancreatic islet cell type11, highlighting the
need for a robust and generalizable method for the analysis of
sparse ATAC-seq data.

Here, we introduce AtacWorks (https://github.com/clara-
parabricks/AtacWorks)12, a deep learning-based toolkit that
takes as input a low-coverage or low-quality ATAC-seq signal,
and denoises it to produce a higher-resolution or higher-quality
signal. AtacWorks trains a model to accurately predict both
chromatin accessibility at base-pair resolution (a coverage track),
and the genomic locations of accessible regulatory regions (peak
calls). We apply AtacWorks to subsampled low-coverage bulk
ATAC-seq and show that AtacWorks improves the resolution of
the chromatin accessibility signal and the identification of reg-
ulatory elements. Further, AtacWorks is able to denoise signal
from cell types not present in the training set, demonstrating that
our deep learning models learn generalizable features of chro-
matin accessibility. We use the same framework to denoise
aggregated single-cell ATAC-seq from a small number of cells,
and also to improve the signal-to-noise ratio in an ATAC-seq
dataset with low signal-to-noise. We further show that Atac-
Works can be adapted for cross-modality prediction of tran-
scription factor footprints and ChIP-seq peaks from low-input
ATAC-seq. Finally, we apply AtacWorks to single-cell ATAC-seq
of hematopoietic stem cells (HSCs) to identify regulatory ele-
ments associated with rare lineage-primed subpopulations.

Results
A deep learning framework for denoising low-coverage data.
AtacWorks trains a deep neural network to learn a mapping
between noisy, low-coverage or low-quality ATAC-seq data and
matching high-coverage or high-quality ATAC-seq data from the
same cell type. Given a noisy ATAC-seq signal track as input, a
trained model performs two tasks: denoising at base-pair reso-
lution (predicting an improved signal track) and peak calling

(predicting the genomic location of accessible regulatory ele-
ments). Once this mapping is learned, it is saved as a model that
can be applied to denoise and call peaks from similar low-
coverage or low-quality datasets at any given region in the
genome.

The network makes predictions for each base in the genome
based on coverage values from a surrounding region spanning
several kilobases (6 kb for the models presented here), but does not
consider the DNA sequence itself, allowing it to generalize across
cell types. AtacWorks uses the ResNet (residual neural network)
architecture, which has been applied extensively for natural image
classification and localization13. Our architecture consists of
multiple stacked residual blocks, each composed of three convolu-
tional layers and a skip connection that bypasses intermediate layers
(Fig. 1a). These skip connections allow propagation of the input
through the layers of the network to avoid vanishing gradients13,
enabling deeper and more accurate models to be trained. The model
is trained using a multi-part loss function combining Mean Squared
Error (MSE), 1 - Pearson Correlation, and Binary Cross-Entropy
(BCE) losses (see Methods).

We used AtacWorks to train deep learning models with bulk
ATAC-seq data from FACS-isolated human blood-derived cell
types2. To do this, we obtained ATAC-seq datasets from four cell
types (B cells, natural killer (NK) cells, CD4+ and CD8+ T cells)
and sampled each to a depth of 50 million reads (25 million read
pairs) to produce standardized clean (high-coverage) data. Peaks for
each clean dataset were identified using MACS214 (see Methods)
which is the standard peak caller for ATAC-seq data, despite not
being developed specifically for that purpose. We then subsampled
each clean dataset to multiple lower sequencing depths ranging
from 0.2 million to 20 million reads (Supplementary Fig. 1). For
each depth, we trained a model to take as input the low-coverage
ATAC-seq signal and reconstruct both the clean ATAC-seq signal
and peak calls.

To assess the generalizability of our method, we tested the
performance of these models on ATAC-seq data from erythro-
blasts2, which were not included in the training set. We first
subsampled reads from erythroblasts to the same depths as the
training data. For each sequencing depth, we then applied the
trained model to the corresponding subsampled dataset to obtain
a predicted high-coverage signal track and peak calls (Fig. 1b). By
examining the resulting denoised tracks, we confirmed that
AtacWorks identifies cell-type-specific peaks that were not
present in the training data, including a region adjacent to
erythroblast marker gene GYPA2 (Fig. 1c). This suggests that our
models are learning generalizable features of chromatin accessi-
bility rather than cell-type specific patterns.

To quantitatively evaluate the denoised high-coverage signal
tracks produced by AtacWorks, we compared them to a clean (50
million read) erythroblast signal. At all sequencing depths, the
Pearson correlation, Spearman correlation, and MSE between the
denoised and clean signal tracks were substantially greater than
that between the noisy and clean signal, both within and outside
accessible chromatin peaks (Fig. 1d, Supplementary Table 1,
Supplementary Fig. 2). We further found that our method
outperforms smoothing using linear regression based on these
metrics (Supplementary Table 2). Next, we evaluated the peaks
identified by AtacWorks from each sequencing depth, and found
that both the Area Under the Precision-Recall Curve (AUPRC)
and Area Under the Receiver-Operator Characteristic (AUROC)
of peaks were superior to MACS2 called peaks from the same
subsampled data (Fig. 1e, Supplementary Table 1, Supplementary
Fig. 2). For this analysis, AtacWorks produced output data of
quality equivalent to (on average) 2.6× the number of reads in the
input data based on Pearson correlation, and 4.2× based on
AUPRC (Supplementary Table 1).
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To show that the models are not simply learning features
specific to the training set, we calculated performance metrics on
chromosome 10, which was previously held-out from training,
and obtained highly similar results to those computed on the
whole genome (Figs. 1d and 1e, Supplementary Table 1). We also
evaluated model performance specifically on differential peaks
present in only either the training or test set, and found that

AtacWorks improves both the signal track accuracy and peak
calling in these regions (Supplementary Table 1). Further, we
found that the results were highly robust to different subsets of
the training data used (Supplementary Table 3).

Since ATAC-seq is commonly applied to tissues containing a
mixture of cell types, we sought to test whether our models could
be applied to data of this nature. We found that a model trained
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on FACS-isolated cell types from human blood was able to
denoise subsampled low-coverage ATAC-seq data from a mixture
of human cell types derived from the intestinal Peyer’s Patch by
the ENCODE consortium15,16 (Supplementary Fig. 3, Supple-
mentary Table 4). This suggests that our models are robust to
data from mixtures of cell types, as well as varied experimental
preparation of cells and tissues. However, we note that a model
trained on three different ENCODE datasets produces better
results on this task (Supplementary Table 4), suggesting that
results may be improved when the training and test data are
obtained from the same experimental protocol.

Another present challenge in adapting ATAC-seq to novel
biological contexts is developing experimental protocols that
optimize enrichment of open chromatin. To help address this
issue, we applied AtacWorks to improve signal quality in ATAC-
seq datasets with low signal-to-noise ratio. We trained a model to
learn a mapping between paired high and low-quality ATAC-seq
datasets from FACS-isolated human monocytes2 (Supplementary
Table 5, Methods). Both datasets had similar sequencing depth
(~20 million reads); however, one had a higher signal-to-noise
ratio estimated using the global enrichment of signal surrounding
transcription start sites (TSSs). We then applied this trained
model to denoise low-quality bulk ATAC-seq data of similar
depth from erythroid cells. AtacWorks improved the enrichment
at TSSs (Supplementary Fig. 4a), producing a signal track and
peak calls more similar to those obtained from higher-quality
data (Supplementary Fig. 4b, Supplementary Table 6).

Finally, we compared our method to a recent study11 that also
reported the use of a deep learning model that could perform
either ATAC-seq denoising or peak calling. We implemented the
U-Net model architecture reported in this study, and found that
the ResNet architecture used in AtacWorks outperforms this
model in denoising, peak calling, and runtime (Supplementary
Note 1, Supplementary Table 7).

AtacWorks enhances single-cell data from low numbers of
cells. To demonstrate our method is also adaptable to broad use
cases of ATAC-seq, we applied AtacWorks to denoise data from a
high-throughput single-cell ATAC-seq experiment. We first
obtained droplet single-cell ATAC-seq (dscATAC-seq) data from
bead-isolated human blood cells and aggregated single-cell
chromatin accessibility profiles by cell type17. We selected two
cell types (B cells and monocytes) from the dataset, and produced
clean ATAC-seq signal tracks and peak calls by aggregating data
over 2400 cells (~50 million reads) of each type. We then gen-
erated noisy ATAC-seq signals by randomly subsampling subsets
of cells of each type, and trained AtacWorks models on the paired
clean and noisy datasets (Fig. 2a). We randomly sampled 1 cell
(~20,000 reads), 5 cells (~0.1 million reads), 10 cells (~0.2 million
reads) or 50 cells (~1 million reads) for the low-coverage training

datasets. The resulting trained models improved signal track
accuracy and peak calling from aggregated NK cells sequenced
using the same protocol (Fig. 2b, Supplementary Table 8, Sup-
plementary Table 9). Notably, AtacWorks improved the AUPRC
of peak calls from 50 NK cells from 0.2048 to 0.7008, a result that
MACS2 requires over 400 cells to obtain (Fig. 2b, Supplementary
Table 8). Though we observed improved signal quality and peak
calls for any number of cells, the results on 1 and 5 cell samples
may be too noisy for downstream biological analysis, possibly due
to single-cell heterogeneity not captured by the aggregate data
used for training.

We then tested whether these models trained on dscATAC
data from human blood could generalize to less-similar cell types.
To do this, we obtained single-cell data from a mouse brain using
the same dscATAC protocol17. We then applied the models
trained on human blood to data aggregated from mouse
pyramidal and oscillatory neurons. For both types of neurons,
we observed that AtacWorks improved the signal track and peak
calls, both overall and within cell-type specific peaks (Fig. 2c, d,
Supplementary Data 1). This result demonstrates that AtacWorks
is broadly applicable across both cell types and species.

Finally, because the previous experiment was limited to
dscATAC data, we sought to investigate the generalizability of
AtacWorks models to data from different single-cell platforms.
To this end, we applied one of the previously-described
AtacWorks models trained on dscATAC-seq data to human
CD4+ T cells sequenced using a combinatorial indexing approach
(dsciATAC-seq17), and observed improvements in both the signal
track and peak calls (Supplementary Table 10). We also applied a
similar model trained on dscATAC-seq data from human blood
to macrophages from mouse primary lung tumors sequenced
using the sciATAC-seq protocol18. Once again, we observed that
the model trained on human dscATAC-seq data improved both
signal track accuracy and peak calls (Supplementary Table 11).
However, we note that a model trained on sciATAC-seq data
from B cells and monocytes returned slightly better results on
most metrics when applied to the same sciATAC-seq dataset
from macrophages (Supplementary Table 11). Collectively, these
results support AtacWorks as a highly generalizable tool to study
single-cell ATAC-seq data.

AtacWorks enables cross-modality predictions. Seeing that
AtacWorks accurately predicts denoised coverage at base-pair
resolution, we sought to extend it for transcription factor
footprinting1,19. Footprinting leverages the fact that transcription
factors vary in how they bind to DNA, which allows binding
events to be identified via a characteristic Tn5 insertion signature.
Traditionally, footprinting requires over 100 million reads19,
prohibiting its widespread use. To test the feasibility of performing
footprinting from low-input ATAC-seq, we obtained high-

Fig. 1 A deep learning approach to denoise ATAC-seq data. a Schematic of the ResNet architecture. The zoomed-in region displays a residual block
composed of 1-dimensional convolutional layers (green squares), nonlinear ReLU activation functions (purple squares), and a skip connection. b Schematic
showing how to train and validate AtacWorks on subsampled bulk ATAC-seq data. Clean high-coverage bulk ATAC-seq data is subsampled to create noisy
data. Matched pairs of clean and noisy data are used to train AtacWorks models, which are then applied to denoise and call peaks from subsampled noisy
data derived from a different cell type. c ATAC-seq signal tracks near the erythroblast marker gene GYPA, for four cell types used to train an AtacWorks
model (gray), high-coverage erythroblast data (50 million reads; black), and erythroblast data subsampled to 0.2 million reads before (blue) and after
(green) denoising with AtacWorks. Red bars below the zoomed-in tracks show peak calls by MACS2 (for the 50M and 0.2M read tracks) and
AtacWorks (for the denoised track). d Pearson correlation between a clean ATAC-seq signal track (50 million reads) and subsampled data for
erythroblasts, before (blue) and after (green) denoising with AtacWorks. Solid lines show correlation over the genome; dotted lines show correlation over
chromosome 10. e AUPRC for MACS2 (blue) and AtacWorks (green) showing their peak calling performance on subsampled data, using peaks called by
MACS2 subcommands on the clean (50 million reads) signal track as ground truth. Solid lines show AUPRC over the genome; dotted lines show AUPRC
over chromosome 10. AUPRC: Area Under the Precision-Recall Curve. AUROC: Area Under the Receiver Operating Characteristic. MSE: Mean Squared
Error. ReLU: Rectified Linear Unit. Source data are provided as a Source Data file.
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coverage (100 million reads) ATAC-seq data from FACS-sorted
human blood cell types (multipotent progenitor cells, CD8+

T cells, NK cells)2 and reduced track smoothing to preserve
transcription factor-specific patterns of Tn5 insertions (see
Methods). We then downsampled these tracks to lower sequen-
cing depths and trained a model for each depth, which we tested
on data from similarly-processed HSCs. We evaluated the per-
formance of these models on a set of 200 bp genomic regions
spanning binding motifs for genome architectural protein CTCF.
At all sequencing depths, AtacWorks improved the signal track
spanning CTCF motifs in HSCs (Supplementary Table 12),

enhancing the characteristic footprint of CTCF binding (Supple-
mentary Fig. 5).

Encouraged by these results, we reasoned we may adapt our
method to directly predict ChIP-seq peaks from low-input
ATAC-seq. Like footprinting, standard ChIP-seq protocols also
require large quantities of input material (at least 107 cells),
though this number has been reduced in certain contexts by
recent technological developments20. To demonstrate the feasi-
bility of cross-modality prediction, we trained AtacWorks models
to learn a mapping from low-coverage aggregate dscATAC-seq
signal to CTCF and H3K27ac (an active histone mark) ChIP-seq
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signal and peak calls in the same cell type. For the prediction of
CTCF ChIP-seq, we also supplied the model with the positions of
CTCF binding motifs on both strands of the genome (see
Methods). We trained models on noisy aggregate dscATAC-seq
data from small numbers of B cells, and tested them on similarly-
processed monocytes. For small numbers of cells ranging from 10
to 500, AtacWorks predicted CTCF and H3K27ac peak calls with
surprisingly high concordance to ChIP-seq data from the same
cell type (AUROC > 0.9 from 500 cells; Supplementary Fig. 6,
Supplementary Data 2).

These cross-modality predictions demonstrate the potential
for AtacWorks to generate multiple layers of information in
single cells from one of the most commonly-used epigenomic
assays, at no additional cost. It is generally experimentally
challenging to make multiple measurements from the same cells,
so this approach may be especially useful in cases where running
multiple ChIP-seq experiments is infeasible due to time,
reagents, sample availability, or biological variability. Though
the models presented here tend to perform better on active
histone marks (e.g., H3K27ac) or abundant architectural proteins
(e.g., CTCF), these specific predictions may be useful for
distinguishing active vs. poised enhancers21 or characterizing
changes in 3D genome structure across differentiation22. We
anticipate future work will extend these capabilities to enable
cross-modality inference of additional latent epigenetic states
from a single experiment.

AtacWorks enhances the resolution of single-cell studies.
Empowered by the improved resolution afforded by AtacWorks,
we sought to investigate epigenetic changes underlying differ-
entiation in rare cell subpopulations that cannot be experimen-
tally isolated, and thus cannot be analyzed using traditional
approaches. Previous single-cell studies of FACS-isolated bone
marrow mononuclear cells (BMMCs) have observed epigenetic
heterogeneity within immunophenotypically-defined cellular
populations, suggesting that hematopoietic stem and progenitor
cells lie along a continuum of differentiation states (Fig. 3a)23,24.
In particular, HSCs are thought to include rare subpopulations of
cells that are primed toward either the lymphoid or erythroid
lineage23,25,26. Though single-cell ATAC-seq enables measure-
ments of chromatin accessibility over aggregate genomic features,
such as sets of transcription factor motifs27 or the regions sur-
rounding TSSs27,28, with such granular lineage-primed states,
there is typically not enough sequencing coverage to identify
which specific regulatory regions are associated with each dif-
ferentiation trajectory.

We reasoned we could use AtacWorks to identify sets of
regulatory regions that are unique to lymphoid or erythroid-
primed HSCs. First, we performed dscATAC-seq17 on FACS-
isolated HSCs to generate 9974 single-cell chromatin accessibility
profiles (see Methods). To define lymphoid and erythroid
differentiation trajectories, we collected published dscATAC-seq
data from bead-enriched CD34+ cells and used a bulk reference-
guided approach (see Methods) to project all single-cell profiles
into a shared latent space, visualized using UMAP for
dimensionality reduction (Fig. 3b, c). This analysis localized
FACS-isolated HSCs to a region at the top of the projection. We
then confirmed that HSCs localized in this region exhibited
directional signal bias in transcription factor motif accessibility
scores for the GATA2 motif (Fig. 3d) and smoothed gene
accessibility scores for MEF2C (Fig. 3e), genes which have been
implicated as markers of erythroid and lymphoid lineage priming
respectively24,29 (see Methods).

To generate high-resolution chromatin accessibility tracks of
lineage-primed cells using our model, we selected three distant

samples of 50 similar HSCs each, representing putative populations
of long-term, lymphoid and erythroid-primed HSCs (Fig. 3b). For
each sample of 50 aggregated cells, we performed signal denoising
using AtacWorks and visualized the denoised chromatin accessi-
bility profiles near genes suggested to be indicators of lineage
priming24,29 (Fig. 3f). We observed considerable differences
between the denoised tracks that could not be readily distinguished
from the original low-coverage signal (Supplementary Fig. 7),
including potential regulatory elements seemingly present in the
lymphoid, but not the erythroid-primed cells (near MEF2C,
POU2F2) and vice-versa (near GATA1, GATA2).

To assess the significance of these chromatin accessibility
differences, we took 1000 random samples of 50 similar HSCs
each and calculated a normalized mean and standard deviation of
the coverage from the 1000 denoised tracks, allowing us to
estimate z-scores for each regulatory region we observed in our
denoised long-term HSC and lineage-primed samples (see
Methods). We identified a total of 8590 significant regulatory
regions surrounding genes associated with differential expression
in CD34+ cells (Supplementary Data 3). To validate that these
identified regulatory elements are associated with lineage-
priming, we confirmed that the lymphoid-primed elements were
more accessible in the CD34+ cells from lymphoid lineage
(Supplementary Fig. 8a), while the erythroid-primed elements
were more accessible in CD34+ cells from the erythroid lineage
(Supplementary Fig. 8b). We also observed that the most
differentially-accessible sequence motifs in these subsets of peaks
included transcription factors crucial to differentiation, including
E2F30 and MYB families31 (Supplementary Table 13). Altogether,
these results demonstrate the unique capacity of deep learning to
enhance the resolution of sparse single-cell ATAC-seq studies.

Discussion
ATAC-seq has become a widely adopted tool for high-resolution
characterization of the epigenome, providing insights into the
mechanisms underlying gene expression changes associated with
development, evolution, and disease. However, technical limita-
tions in tissue quality, assay performance, and sequencing cov-
erage constrain our ability to measure the full spectrum of
chromatin states across the genome. These limitations also per-
tain to emerging single-cell ATAC-seq technologies, as cell types
of interest are often difficult to experimentally isolate, and are
present at low frequencies in heterogeneous contexts.

Here we present AtacWorks, an easy-to-use and generalizable
toolkit to train and apply deep learning models to ATAC-seq data.
Unlike previous deep learning methods for epigenomics, AtacWorks
denoises ATAC-seq signal at base-pair resolution and simultaneously
predicts the genomic location of accessible regulatory elements. The
models we present here outperform existing approaches at both of
these tasks, and moreover, are robust across cell and tissue types,
individuals, and experimental protocols. AtacWorks is not provided
with the DNA sequence as an input, which means it is agnostic to
cell- or condition- specific correlations between chromatin accessi-
bility and sequence motifs. Instead, the model learns features based
on the shape of the coverage track, which generalize across datasets.
In addition to generalization across different cell types, we also
observed that our trained models can generalize to data from dif-
ferent species, experimental platforms, and quality levels. However,
we observed that we could obtain slightly better results (e.g., AUPRC
increase from 0.7332 to 0.7483) on a test dataset by using a model
trained on more closely matched data (Supplementary Table 11),
suggesting that there remain small benefits to matching training and
test data when possible.

We also demonstrate that AtacWorks can be adapted for cross-
modality prediction of transcription factor footprints and ChIP-

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21765-5

6 NATURE COMMUNICATIONS | (2021)12:1507 | https://doi.org/10.1038/s41467-021-21765-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


seq peaks from low-input ATAC-seq. As such, we anticipate this
framework may be broadly useful for other deep learning appli-
cations in genomics, such as DNase, MNase, ChIP-seq, and the
recently-developed method CUT&RUN20, which has comparable
high-throughput single-cell adaptations32,33

Finally, the robustness and speed of AtacWorks enable its
application to high-throughput single-cell ATAC-seq datasets of
heterogeneous tissues. We show that our method can be used on
small subsets of rare lineage-priming cells to denoise signal and
identify accessible regulatory regions at previously-unattainable
genomic resolution. Based on these advancements, we anticipate
that AtacWorks will broadly enhance the utility of epigenomic
assays, providing a powerful platform to investigate the regulatory
circuits that underlie cellular heterogeneity.

Methods
Data preprocessing. BAM files for bulk ATAC-seq were downsampled to a fixed
number of reads using SAMtools v.1.934. For paired-end sequencing data, both

reads in a read pair were retained (e.g., 100,000 read pairs were selected to obtain a
total of 200,000 sequencing reads). For CTCF footprinting experiments, down-
sampling was repeated independently five times to produce five times the amount
of training data. This was done to ensure that the model received enough training
data, as only a small fraction of the genome was used for training in these
experiments.

For single-cell ATAC-seq experiments, a number of cells of the chosen cell type
were randomly selected and all reads from those cells were extracted from the BAM
file via cell barcodes. This random sampling of cells was repeated independently
five times due to the sparsity of the input single-cell ATAC-seq data.

To identify the exact location of Tn5 insertions with base-pair resolution, each
ATAC-seq read was converted to a single genomic position corresponding to the
first base pair of the read. Previous work has demonstrated that the Tn5
transposase inserts adapters separated by 9 bp, so reads aligning to the + strand
were offset by +4 bp, while reads aligning to the - strand were offset by −5 bp1.
Each cut site location was extended by 100 bp in either direction, except for
transcription factor footprinting experiments where each cut site was extended by
5 bp in either direction. The bedtools genomecov function (v2.26.0)35 was then
used to convert the list of locations into a genome coverage track containing the
ATAC-seq signal at each genomic position.

To call peaks from clean and noisy signal tracks, MACS2 (v2.2.7) subcommands
bdgcmp and bdgpeakcall were run with the ppois parameter and a -log10(p value)
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Fig. 3 AtacWorks identifies differentially-accessible regulatory regions associated with lineage-primed hematopoietic stem cells. a A schematic of the
classical hierarchy of human hematopoietic differentiation. b A UMAP dimensionality reduction of single-cell ATAC-seq profiles from 9974 FACS-isolated
hematopoietic stem cells (HSCs). The colored points represent three 50-cell subsamples, each generated by selecting a single cell and identifying its
nearest neighbors in principal component space. c A combined UMAP dimensionality reduction of single-cell ATAC-seq profiles from HSCs shown in (b)
and 28,505 published bead-enriched CD34+ bone marrow progenitor cells17. The bead-enriched CD34+ cells are colored by the most correlated cell type
from a FACS-isolated single-cell ATAC-seq reference24. The box indicates the region containing FACS-isolated HSCs shown in (b), (d) and (e). d FACS-
isolated HSCs colored by chromVAR transcription factor motif accessibility z-scores for GATA2. These scores represent enrichment or depletion of
chromatin accessibility within peaks that contain the GATA2 motif (see Methods). e FACS-isolated HSCs colored by smoothed gene accessibility scores
for MEF2C. These scores are a weighted sum of read counts within 10 kb of the MEF2C transcription start site, averaged over each cell’s 50 nearest
neighbors (see Methods). f Aggregate chromatin accessibility signal tracks surrounding genes implicated as markers of lineage priming24,29 for all 9974
FACS-isolated HSCs and the three denoised 50-cell subsamples of HSCs shown in (b). The arrows denote select regulatory regions with significant
differences in chromatin accessibility relative to a random background. HSC: hematopoietic stem cell. MPP: Multipotent progenitor. LMPP: lymphoid-
primed multipotent progenitor. CMP: common myeloid progenitor. CLP: common lymphoid progenitor. pDC: plasmacytoid dendritic cell. GMP:
granulocyte-macrophage progenitor. MEP: megakaryocyte-erythroid progenitor. Source data are provided as a Source Data file.
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cutoff of 3. BED files with equal coverage over all chromosomes were provided as a
control input track.

Input data for AtacWorks. Deep learning models were trained using one or more
pairs of matching ATAC-seq datasets. Each pair consisted of two ATAC-seq
datasets from the same sample or cell type: a clean dataset of high sequencing
coverage or quality, and a noisy dataset of lower coverage or quality. Unless
indicated otherwise, low-coverage datasets were generated computationally by
randomly subsampling a fraction of reads or cells from the high-coverage dataset.

Models were given three inputs for each such pair of datasets:

1. a signal track representing the number of sequencing reads mapped to each
position on the genome in the noisy dataset.

2. a signal track representing the number of sequencing reads mapped to each
position on the genome in the clean dataset.

3. the genomic positions of peaks called by MACS2 on the clean dataset.

Models learned a mapping from (1) to both (2) and (3); in other words, from
the noisy signal track, they learned to predict both the clean signal track, and the
positions of peaks in the clean dataset.

Input ATAC-seq datasets were divided into training, validation and holdout
sets. The validation set consisted of data for chromosome 20 (for human data) or
chromosome 11 (for mouse data), while the holdout set consisted of data for
chromosome 10. Datasets for all other autosomes were included in the training set.
These datasets were then further divided into non-overlapping intervals of 50 kb,
unless otherwise specified (Supplementary Table 14), each representing a single
training example. Each 50 kb long interval was padded with an additional 5 kb at
either end, unless otherwise specified (Supplementary Table 14) so that the
convolutional filter had enough neighboring bases to make predictions for every
base inside the interval. Balanced training datasets with a fixed proportion of peaks
were tested; however, this feature did not improve the overall performance metrics
and was therefore not employed in genome-wide experiments.

ResNet architecture used in AtacWorks. The PyTorch neural network frame-
work36 was used to train a ResNet (residual neural network) model consisting of
multiple stacked residual blocks. Each residual block included three convolutional
layers and a skip layer to add the input to the first layer to the output of the third
layer (Fig. 1a). Unless specified otherwise (Supplementary Table 14), each con-
volutional layer used 15 convolutional filters with a kernel size of 51 and a dilation
of 8. Dilated convolutional layers were used to increase the receptive field of the
model without increasing the parameter count. This approach has been effective in
image classification tasks where a larger receptive field is desirable37. Models did
not utilize batch normalization38 for the convolutional layers, as it did not improve
accuracy on either the regression or classification tasks in our experiments.

For each position in the given interval, the model performed two tasks; a
regression or denoising task (predicting the ATAC-seq signal at each position) and
a classification or peak calling task (predicting the likelihood that each position is
part of a peak).

In order to perform both tasks, the input was passed through several residual
blocks, followed by a regression output layer that returns the predicted ATAC-seq
signal at each position in the input. The regression output was then passed through
another series of residual blocks followed by a classification output layer that
returned a prediction for whether each base in the input is part of a peak. The
rectified linear unit (ReLU) activation function was used throughout the network,
except for the classification output layer, which used a sigmoid activation function.
The sigmoid activation forced the network to return a value between 0 and 1 for
each input base, which was interpreted as the probability of that base being part of
a peak. A cutoff of 0.5 was used to call peaks from these probability values.

Other convolutional neural network architectures, including the U-Net39 were
tested, and the selected architecture was chosen based on its robust performance in
both denoising and peak calling tasks on several datasets.

Model training in AtacWorks. All deep learning models were trained using a
multi-part loss function, comprising a weighted sum of three individual loss
functions:

1. Mean squared error (MSE; for the regression output)
2. 1 - Pearson correlation coefficient (for the regression output)
3. Binary cross-entropy (for the classification output)

The relative importance of these loss functions was tuned by assigning different
weights to each (Supplementary Table 14).

Training examples were randomly shuffled at the beginning of each training
epoch and passed to the deep learning model in batches of 64 examples each, unless
otherwise specified (Supplementary Table 14). At the end of each epoch of training,
the performance of the model on the validation set was evaluated, and the model
with the best validation set performance was saved and used.

Models were trained using the Adam optimizer40 with a learning rate of 2 × 10−4

for 25 epochs.

Model evaluation in AtacWorks. The performance of the model in regression was
measured by computing Pearson correlation, Spearman correlation and MSE of the
denoised data with respect to the clean dataset. For classification (peak calling), the
model outputs the probability of belonging to a peak, for each position in the
genome. In order to obtain predicted peaks, there is a set probability threshold
above which a base is said to be a peak. Similarly, MACS2 produces a p value for
each position and the final peak calls depend on a user-defined probability
threshold. Therefore the AUPRC and Area under the Receiver Operating Char-
acteristic (AUROC) metrics were used to evaluate classification performance over
the entire range of possible thresholds.

Peak calling. In order to call peaks from the base pair-resolution probabilities
produced by AtacWorks, the macs2 bdgpeakcall command from MACS2 (v2.2.7)14

was run with a threshold of 0.5. This is the same procedure used by MACS2 to call
peaks from base pair-resolution p values.

Running AtacWorks. AtacWorks v0.3.0 was used for all experiments.
All the parameters describing the models used in this paper are given in

Supplementary Table 14. These parameters were chosen in a grid search based on
validation set performance. Deeper and larger models produced slightly better
results; however, larger models were also expensive and time-consuming to train.

AtacWorks took 2.7 min per epoch to train on one ATAC-seq dataset, and 22
min to test on a different whole genome, using 8 Tesla V100 16GB GPUs in an
NVIDIA DGX-1 server.

Paired high and low-quality ATAC-seq tracks. Paired high and low-quality
chromatin accessibility tracks were computationally generated from the same
experiment in order to minimize the impact of potential batch effects. Published
bulk ATAC-seq tracks from monocytes and erythroblasts2 were split by technical
and biological replicate, and then quantified using a TSS enrichment score. Tracks
were then visually classified as high or low enrichment, and then aggregated based
on classification and cell type to form the paired high and low-quality tracks
(Supplementary Table 5). The original study describing these datasets found that
ATAC-seq profiles were highly reproducible across both technical and biological
replicates (mean Pearson r= 0.94 and r= 0.91, respectively)2.

Application of AtacWorks to dscATAC-seq of human blood. Published
dscATAC-seq datasets from human B cells, monocytes, and NK cells were
obtained17. 2400 cells (~48 million reads) of each type were randomly selected to
generate clean high coverage signal tracks and peak calls. Then, 1 cell (~20,000
reads), 5 cells (~100,000 reads), 10 cells (~200,000 reads), or 50 cells (~1 million
reads) were randomly sampled from the 2400 cells of each type to obtain noisy
low-coverage data. For B cells and monocytes, this subsampling was repeated 5
times for 5, 10, and 50 cells, and 15 times for 1 cell in order to generate diverse
training data. For each subsampling level, the data from B cells and monocytes was
used to train a model, which was then tested on the corresponding subsampled
data from NK cells. The 1 cell denoising model was tested on 4 different randomly
chosen NK cells to obtain a more robust estimate of its performance.

Application of AtacWorks to dscATAC-seq of mouse brain. dscATAC-seq data
from the mouse brain18 was obtained, and 1800 cells (~48 million reads) each of
the EN04 and EN12 excitatory neuron types were randomly selected to generate
clean high coverage signal tracks and peak calls. Then, 4 cells (~100,000 reads), 8
cells (~200,000 reads) or 40 cells (~1 million reads) were randomly selected from
among the 1800 cells of each type, to obtain noisy low-coverage data. The Atac-
Works models trained on dscATAC-seq data from human B cells and monocytes
were then applied to denoise these noisy datasets. Models were matched to low-
coverage data based on sequencing depth; thus, the model trained on ten blood
cells was applied to eight mouse brain cells as the latter had slightly higher
sequencing depth. The denoised tracks and peak calls produced by AtacWorks
were evaluated by comparing them to the clean tracks and peak calls for the same
cell types.

Application of AtacWorks to sciATAC-seq and dsciATAC-seq. Two experi-
ments were performed to test whether AtacWorks models could generalize to
single-cell data sequenced using different platforms.

First, dsciATAC-seq data from human blood cell types was obtained17. Data
was aggregated over 20,378 CD4+ T cells to generate a clean high coverage signal
track (~43 million reads) and peak calls. 450 cells (~1 million reads) were
subsampled to obtain noisy low-coverage data. The dscATAC-seq model trained
on 50 human blood cells (described above) was applied to denoise and call peaks
from this noisy dataset. The denoised tracks and peak calls produced by
AtacWorks were evaluated by comparing them to the clean high coverage signal
track. Due to the low sequencing depth for other cell types in this dataset, it was not
possible to generate sufficiently high-coverage clean tracks for any other cell types
besides CD4+ T cells.

Second, sciATAC-seq data from a mouse lung tumor was obtained18. The
sequencing depth in this dataset was insufficient to obtain clean datasets of >40
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million reads as described in the previous examples. Instead, clean coverage tracks
and peak calls were obtained by aggregating data over 550 cells (~15 million reads)
each of B cells, monocytes and macrophages. 35 cells (~1 million reads) were
randomly sampled from among the 550 cells of each type to obtain noisy low-
coverage data. For B cells and monocytes, this subsampling was repeated five times
in order to generate diverse training data. The data from B cells and monocytes was
used to train a model, which was then tested on the subsampled data from the
macrophages.

To demonstrate the feasibility of cross-platform application, dscATAC-seq data
from human monocytes and B cells was subsampled to generate data of the same
sequencing depths as the sci-ATAC data, i.e., 700 cells (~15 million reads) were
aggregated to generate clean data, and 50 cells (~1 million reads) were aggregated
to generate noisy data. Subsampling was repeated five times to generate diverse
training data. A model was trained using this dscATAC-seq data and was applied
to the subsampled sciATAC-seq dataset of macrophages.

Adding binding motif locations for CTCF ChIP-seq prediction. The deep
learning model was modified to take additional inputs along with the noisy ATAC-
seq signal. Potential CTCF (CCCTC-binding factor) binding sites were identified
on both strands of the genome using motifmatchr (https://github.com/
GreenleafLab/motifmatchr). The top 200,000 sites were selected and expanded to
500 bp regions centered on the known binding motif. In order to predict CTCF
ChIP-seq peaks from ATAC-seq data, the model was given the positions of CTCF
binding motifs on the genome in addition to the noisy ATAC-seq coverage track.
For every position in the genome, the model received three numeric inputs: the
coverage at that position in the noisy ATAC-seq dataset, a 0 or 1 representing
whether that position was part of a CTCF binding motif on the forward strand, and
a 0 or 1 representing whether that position was part of a CTCF binding motif on
the reverse strand.

Generation of dscATAC-seq data for FACS-isolated HSCs. Cryopreserved
human BMMCs were purchased from Allcells (catalog number BM, CR, MNC, 10
M). Cells were quickly thawed in a 37 °C water bath, rinsed with culture medium
(RPMI 1640 medium supplemented with 15% FBS) and then treated with 0.2 U/μL
DNase I (Thermo Fisher Scientific) in 2 mL of culture medium at room tem-
perature for 15 min. After DNase I treatment, cells were filtered with a 40 μm cell
strainer, washed with MACS buffer (1x PBS, 2 mM EDTA and 0.5% BSA), and cell
viability and concentration were measured with trypan blue on the TC20 Auto-
mated Cell Counter (Bio-Rad). Cell viability was greater than 90% for all samples.
CD34+ cells were then bead enriched using the CD34 MicroBead Kit UltraPure
(Miltenyi Biotec, catalog number 130-100-453) following manufacturer’s instruc-
tions. The enriched population was then simultaneously stained with CD45,
Lineage cocktail, CD34, CD38, CD45RA and CD90 antibodies in MACS buffer for
20 min at 4 °C, using the following antibody dilutions: CD45 (BV711; BioLegend
#304050) - 1:100, Lineage cocktail (FITC; BioLegend #348801) - 1:25, CD34 (APC-
Cy7; BioLegend #343514) - 1:50, CD38 (PE-Cy7; BioLegend #303516) - 1:50,
CD45RA (BUV737; BD Biosciences #612846) - 1:50, CD90 (BV421; BioLegend
#328122) - 1:25. Stained cells were then washed with MACS buffer and the CD45+

Lin- CD38− CD34+ CD45RA− CD90+ fraction (HSCs) was FACS sorted using a
MoFlo Astrios EQ Cell Sorter (Beckman Coulter), using the Beckman Coulter
MoFlo Astrios EQ Cell Sorter’s Summit v62 software to collect the data. The FACS
data was analyzed using FlowJo v10.7, and the gating strategy is shown in Sup-
plementary Fig. 9.

Single-cell ATAC-seq data was then generated for the sorted HSCs using the
dscATAC-seq Whole Cell protocol as described in Lareau et al.17. For a detailed
description of tagmentation protocols and buffer formulations, refer to the SureCell
ATAC-Seq Library Prep Kit (17004620, Bio-Rad) User Guide (10000106678, Bio-
Rad). Briefly, the sorted HSCs were resuspended in Whole Cell Tagmentation Mix
containing 0.1% Tween-20, 0.01% digitonin, 1× PBS supplemented with 0.1% BSA,
ATAC Tagmentation Buffer and ATAC Tagmentation Enzyme. Cells were mixed
and agitated on a ThermoMixer (5382000023, Eppendorf) for 30 min at 37 °C.
Tagmented cells were kept on ice before being loaded onto a ddSEQ Single-Cell
Isolator (12004336, Bio-Rad). scATAC-seq libraries were prepared using the
SureCell ATAC-Seq Library Prep Kit (17004620, Bio-Rad) and SureCell ATAC-Seq
Index Kit (12009360, Bio-Rad). Bead barcoding and sample indexing were
performed in a C1000 Touch thermal cycler with a 96-Deep Well Reaction Module
(1851197, Bio-Rad); PCR conditions were as follows: 37 °C for 30 min, 85 °C for 10
min, 72 °C for 5 min, 98 °C for 30 s, eight cycles of 98 °C for 10 s, 55 °C for 30 s and
72 °C for 60 s, and a single 72 °C extension for 5 min to finish. Emulsions were
broken and products were cleaned up using Ampure XP beads (A63880, Beckman
Coulter). Barcoded amplicons were further amplified using a C1000 Touch thermal
cycler with a 96-Deep Well Reaction Module; PCR conditions were as follows: 98 °
C for 30 s, seven cycles of 98 °C for 10 s, 55 °C for 30 s and 72 °C for 60 s, and a
single 72 °C extension for 5 min to finish. PCR products were purified using
Ampure XP beads and quantified on an Agilent Bioanalyzer (G2939BA, Agilent)
using the High-Sensitivity DNA kit (5067-4626, Agilent). Libraries were loaded at
1.5 pM on a NextSeq 550 (SY-415-1002, Illumina) using the NextSeq High Output
Kit (150 cycles; 20024907, Illumina) and sequencing was performed using the
following read protocol: read 1, 118 cycles; i7 index read, 8 cycles; read 2, 40 cycles.

A custom sequencing primer (part of the SureCell ATAC-Seq Library Prep Kit) is
required for read 1.

Preprocessing of dscATAC-seq data for FACS-isolated HSCs. Per-read bead
barcodes were parsed and trimmed using UMI-tools v1.0.041. Constitutive ele-
ments of the bead barcodes were assigned to the closest known sequence allowing
for up to 1 mismatch per 6-mer or 7-mer (mean >99% parsing efficiency across
experiments). Paired-end reads were aligned to hg19 using BWA v0.7.1742 on the
Illumina BaseSpace online application. Bead-based ATAC-seq processing (BAP)17

was used to identify systematic biases (i.e., reads aligning to an inordinately large
number of barcodes) and barcode-aware deduplicate reads, as well as perform
merging of multiple bead barcode instances associated with the same cell. Barcode
merging was necessary due to the nature of the BioRad SureCell scATAC-seq
procedure used in this study, which enables multiple beads per droplet. BAP was
given an alignment (.bam) file for a given experiment with a bead barcode identifier
indicated by a SAM tag as input. Aligned reads were combined using samtools
merge (v1.9).

Bulk-guided projection of single cells. The bulk-guided UMAP projection of
single cells (Fig. 2c) was performed as described in Lareau et al.17. In brief, a
common set of peaks (k= 156,311) was used to create a vector of read counts for
each CD34+ single-cell ATAC-seq profile. Principal Component Analysis (PCA)
was run on published bulk ATAC-seq data2 to generate eigenvectors capturing
variations in regulatory element accessibility across cell types. Each single cell was
then projected in the same space as these eigenvectors by multiplying their counts
vector by the common PCA loading coefficients. The resulting projection scores
were scaled and centered prior to being visualized using UMAP. Predicted labels
for the CD34+ cells were derived by correlating their projected single-cell scores
with those of a reference set of FACS-isolated PBMCs24 and assigning the label of
the closest match.

Transcription factor motif accessibility z-scores. Motif accessibility z-scores for
GATA2 (Fig. 2d) were computed using chromVAR version 1.12.027. The method
calculates enrichment or depletion in accessibility within peaks that share a
common transcription factor motif while adjusting for GC content and overall
region accessibility. The single cells were scored using a list of human transcription
factor motifs from the CIS-BP database (http://cisbp.ccbr.utoronto.ca/index.php).

Smoothed gene accessibility scores. Gene accessibility scores for MEF2C
(Fig. 2e) were computed as described in Lareau et al.17. Briefly, to obtain gene
scores for a particular gene across all cells, any sequencing reads within 10 kb of the
gene’s transcription start site were compiled and weighted using an inverse
exponential decay function. The weighted reads were then summed for each cell
and smoothed by averaging the scores from each cell’s 50 nearest neighbors in
principal component space. A list of TSSs for hg19 was obtained from the UCSC
Table Browser (https://genome.ucsc.edu/cgi-bin/hgTables).

Denoising lineage-priming HSCs with AtacWorks. Each subsample of lineage-
priming HSCs was generated by selecting a single HSC and aggregating the 50 most
similar HSCs in principal component space. The selected HSCs were chosen and
annotated based on their proximity to specific populations of labeled CD34+ cells
(Fig. 2b). After aggregation, three resulting subsamples were converted from BAM
to bigWig format as described in Data Preprocessing and denoised using a model
trained on dscATAC-seq data from B cells and monocytes. The denoised tracks
were then normalized by coverage for cross-sample comparisons.

Denoising of randomly permuted HSCs with AtacWorks. A list of differentially
expressed genes in blood cells was obtained from the Human Cell Atlas Data Portal
(https://data.humancellatlas.org) and filtered down to a set of 2303 genes relevant
to HSCs. Transcription start sites (TSSs) for each of these genes were obtained and
expanded by 100 kb in both directions to generate a set of hematopoiesis regulatory
regions comprising around 300 million bases, or 10% of the genome.

To provide a background model for the denoised lineage-primed samples,
1000 subsamples were generated by randomly selecting 1000 HSCs from the pool of
9974 and for each selected cell, aggregating the 50 most similar HSCs in principal
component space. These random samples were converted from BAM to bigWig
format as described in Data Preprocessing. The 1000 random samples were then
denoised using the same AtacWorks model used to denoise the lineage-priming
HSCs, but only in defined hematopoiesis regulatory regions, reducing the runtime
by over 90%. The denoised random samples were normalized by coverage. For each
genomic position in the hematopoiesis regulatory regions, a mean and standard
deviation of coverage was calculated across the 1000 denoised random samples.

For each subsample of lineage-primed HSCs, a z-score for each genomic
position in the hematopoiesis regulatory regions was generated based on the
normalized coverage relative to the mean and standard deviation in the 1000
denoised random samples. Regulatory peaks were called by combining all genomic
positions with an absolute z-score >2 within 200 bp of each other. The top z-scores
for each peak were converted to p values and then corrected for multiple hypothesis
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testing using the Benjamini Hochberg procedure. All peaks with a false discovery
rate <0.05 were saved in a BED file. Peaks were then filtered by a minimum
coverage value to remove low-coverage regions that would not be identified
through typical ATAC-seq analysis. BED files were converted to bigWig format for
visualization using the bedGraphtoBigWig utility (v4).

Validation of putative regulatory elements. The set of 28,505 bead-enriched
CD34+ bone marrow progenitor cells was loaded into chromVAR27 as described in
Lareau et al.17. In brief, the published BAM files were converted to a cells by peaks
matrix, where each matrix element represents the sequencing coverage. The sets of
filtered genomic regions for each subsample of lineage-primed HSCs were then
loaded as discrete annotations. The chromVAR computeDeviations function was
then used to quantify the normalized accessibility of each of these subsets in every
CD34+. The resulting accessibility z-scores were then visualized on the UMAP
projection to confirm that the identified lineage-priming elements were generally
more accessible in the corresponding differentiated cell populations. To quantify
the most differentially-accessible transcription factor motifs across these elements,
a new counts matrix was generated in chromVAR, but only from HSCs and the
identified lineage-priming peaks. The overlap between the peaks and transcription
factor motifs was found, and then the normalized accessibility of any overlapping
motifs was calculated using the computeDeviations function. Lastly, the variability
of each motif was calculated using the computeVariability function.

Data visualization. Unless otherwise specified, the WashU epigenome browser
(http://epigenomegateway.wustl.edu/browser/) was used for ATAC-seq signal track
visualization. The denoised lineage-priming HSC subsamples (Fig. 3f) were
visualized using the Integrative Genomics Viewer43.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this paper.

Data availability
Bulk ATAC-seq datasets of various blood cell types are available from GEO under
accession number “GSE74912 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE74912]”. From these datasets, B cells, NK cells, CD4+ and CD8+ T cells were
used for model training, while erythroblasts and monocytes were used for testing. For the
transcription factor footprinting model, NK cells, CD8+ T cells, and multipotent
progenitor (MPP) cells were used for training, while HSCs were used for testing. The
bulk ATAC-seq dataset for Peyer’s Patch is available from ENCODE under experiment
“ENCSR017RQC [https://www.encodeproject.org/experiments/ENCSR017RQC/]”.
The dscATAC-seq dataset of hematopoietic stem cells generated for this study is

available from GEO under accession number “GSE147113 [https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE147113]”.
Other dscATAC-seq and dsciATAC-seq datasets are available from GEO under

accession number “GSE123581 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE123581]”. From these datasets, CD4+ T cells, CD8+ T cells, and pre-B cells were
used for model training, while monocytes were used for testing. Bead-isolated CD34+ cells
were used for the combined UMAP projection. The sciATAC-seq datasets of B cells,
monocytes, and macrophages from primary lung tumor are available from GEO under
accession number “GSE145194 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE145194]”. B cells and monocytes were used for model training, while
macrophages were used for testing. The scATAC-seq dataset of FACS-isolated peripheral
blood mononuclear cells (PBMCs) is available from GEO under accession number
“GSE96772 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE96772]”. These
cells were used to infer cell type labels for CD34+ cells in the combined UMAP projection.
CTCF ChIP-seq tracks are available from ENCODE under experiments

“ENCSR000DLK [https://www.encodeproject.org/experiments/ENCSR000DLK/]”
(HSCs), “ENCSR000ATN [https://www.encodeproject.org/experiments/
ENCSR000ATN/]” (Monocytes) and “ENCSR000AUV [https://www.encodeproject.org/
experiments/ENCSR000AUV/]” (B cells). H3K27ac ChIP-seq tracks are available from
ENCODE under experiments “ENCSR000AUP [https://www.encodeproject.org/
experiments/ENCSR000AUP/]” (B cells) and “ENCSR000ASJ [https://www.
encodeproject.org/experiments/ENCSR000ASJ/]” (monocytes).
The list of human transcription factor motifs was curated from the CIS-BP database

(http://cisbp.ccbr.utoronto.ca/index.php) and is available at https://github.com/
GreenleafLab/chromVARmotifs. The list of transcription start sites for hg19 was
obtained from the UCSC Table Browser (https://genome.ucsc.edu/cgi-bin/hgTables). The
list of differentially expressed genes in blood cells was curated from the Human Cell Atlas
Data Portal (https://data.humancellatlas.org) and is available at https://github.com/
zchiang/atacworks_analysis.
All of the processed data, trained models, and output signal tracks described in this

paper are publicly available at https://atacworks-paper.s3.us-east-2.amazonaws.com.
All other relevant data supporting the key findings of this study are available within

the article and its Supplementary Information files or from the corresponding author
upon reasonable request. Source data are provided with this paper. A reporting summary
for this Article is available as a Supplementary Information file. Source data are provided
with this paper.

Code availability
AtacWorks is available at https://github.com/clara-parabricks/AtacWorks12. Custom
scripts used to batch process samples for input and identify differentially-accessible
regulatory regions in lineage-primed hematopoietic stem cells are available at https://
github.com/zchiang/atacworks_analysis44.
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