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ABSTRACT: The stereoselective synthesis of E- and Z- isomers of a C-
mannosyl crotylpinacolboronate via Ni-promoted reactions on an allylic
acetate and a diene precursor, respectively, is described. The E- and Z-
isomers reacted with 1,2-O-isopropylidene glyceraldehyde in the
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with moderate to high facial selectivity. These products were

transformed to biologically relevant C-manno-disaccharides.

arbohydrates are involved in a variety of fundamental

biological pathways and disease states.' > There is a
growing demand for tailored glycomimetics for deciphering
these mechanisms and for use as clinical agents.*”” Such
structures require challenging laboratory synthesis because of
their intrinsic complexity. In this context, we have been
developing a synthetic methodology that centers on the
reaction of glycosyl crotylating agents and aldehydes.'”'" The
modularity of this approach and the versatility of the
crotylation products make this a potentially broad-based
method for glycomimetics. Because this strategy does not
focus on construction of the glycoside (or pseudoglycoside
linkage) as in more conventional glycomimetic synthesis, it
opens up new glycomimetic space. We have previously
illustrated this methodology with glycosylstannanes. However,
these reagents have stereoselectivity limitations, and their
toxicity is an additional concern.'””"> Crotylboronate variants
may mitigate these issues.'® Herein we report the preparation
of an isomeric pair of E- and Z- C-mannosyl-glycosylcrotylbor-
onates and their use in the synthesis of stereochemically
complex glycomimetics (Scheme 1).”'7'*

Mimetics of the Manla-3Man la were selected as a test bed
because of their biological relevance. This disaccharide is a
subunit of complex glycoproteins on the surface of a number of
viral pathogens and is believed to be integral to the early stages
of virus attachment and entry into host cells."” ™' Accordingly,
analogues of 1a are of interest as probes of these mechanisms
and as therapeutics.”> ">’ Glycoside isosteres, in which the
anomeric or ring oxygen, respectively, is replaced with “CH,”,
commonly referred to as C-glycosides and carbasugars, are
particularly relevant because of their stability to enzymatic and
chemical hydrolysis and nuanced conformational character-
istics compared to their O-acetal parents.”*™>*
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Against this backdrop, we envisaged a synthesis of C-manno-
disaccharides 1b with varying stereochemistry that is based on
elaboration of crotylation products from the reaction of the E-
or Z-glycosylboronate, 4 or 6, and aldehyde 5.*° Following
stereoselectivity trends for simpler crotylboronates, these E and
Z boronates Jwere expected to favor 3,4- anti and syn products,
respectively.'* "' One or other of the individual anti or syn
diastereomers may be favored by the inherent chirality of the
substrates and/or by the presence of a chiral catalyst. In
contrast, as revealed in our earlier studies, E and Z
crotylstannanes both favor 3,4-syn products but often with
significant amounts of anti diastereomers.

The synthesis of E and Z boronates started from a central
allylic acetate 8, which was readily obtained from the reaction
of vinylmagnesium bromide with the known C-mannose
aldehyde 7 (available in three steps from methyl-a-p-manno-
pyranoside) and acetylation of the resulting alcohol (Scheme

2).*° The Ni(cod), promoted reaction of 8 with bis-

Scheme 2. Synthesis of E- and Z- C-Glycosyl
Crotylboronates
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(pinacolato) diboron delivered predominantly the E-crotylpi-
nacolboronate 9 (E:Z = 4:1).”” For the Z-boronate, 8 was first
transformed to diene 11 following the Tsuji elimination
protocol.*® Ni(cod), mediated 1,4-hydroboration on 11 with
pinacolborane delivered Z-pinacolboronate 10.>’ That the
hydroboration was highly selective for 1,4-addition was
confirmed by oxidation of the crude reaction product to the
alcohol derivative of 10 exclusively (Supporting Information).
The E-enriched and Z-crotylboronates were isolated in 75 and
90% yield after silica gel column chromatography and
determined to be 80% E and greater than 95% Z, respectively,
as judged by '"H NMR analysis. Stereochemistry was assigned
by comparison with the NMR data for simple E and Z
crotylboronates and was consistent with the stereochemistry of
the derived crotylation products (vide infra).””*® A CM
strategy was also investigated as this allows for direct access to
9 and 10 from the C-allyl precursor 7.***" However, these
reactions gave poor selectivity for the E-boronates with the E-
selective catalysts, Grubbs I and Grubbs II, and no CM
products with the Z-selective Grubbs catalyst (Supporting
Information).

The aldehyde partner for the crotylation reactions 2,3-O-
isopropylidene-L-glyceraldehyde 12 was selected for three
reasons (Scheme 3). First the documented reactions of 12
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Scheme 3. Crotylation Reactions”
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14 (34-syn) 14 (3,4-syn)
(R)-TRIP
Relative Ratio
Reaction Total
Conditions Yield (%) 13 13 14 14
9, no cat. 73 53 100 23 <2
9, 9 mol% (R)-TRIP 55 100 12 20 <2
9,9 mol% (S)-TRIP 68 19 100 26 <2
11, no cat. 74 <2 15 100 4
11, 7 mol% (R)-TRIP 66 <2 18 100 39
11, 7 mol% (S)-TRIP 58 <2 4 100 <2

“Reactions of the E- and Z- boronates were performed over 16 and 4
h respectively, with 1.5 eq 12 and 0.1 M 9 or 10, in the presence or
absence of catalyst. Product ratios were determined from "H NMR of
the unseparated mixture of crotylation products.

with smlple crotylboronates provides a benchmark for our
study.* Second, 12 is easily obtained on large scale.*® Third,
crotylation products derived from 9, 10, and 12 can be
transformed in a straightforward fashion to a variety of
biologically relevant glycomimetics."” Reactions were per-
formed in CH,Cl, at room temperature with or without a
chiral acid catalyst. In the absence of the catalyst, the Z-
boronate was noticeably more reactive than the E, with
complete consumption of boronate observed after 4 and 16 h,
respectively. The E-enriched boronate gave a 73% yield of
predominantly the 3,4-anti products 13/13’ and a minor
amount of the 3,4-syn product 14, with no observation of the
other syn isomer 14’ within the limits of "H NMR detection.
(13:13":14:14’, respective ratio 53:100:23:<2). That the ratio
of the syn isomer 14 correlated with the proportion of Z-
isomer in the starting boronate suggests that 14 originated
primarily from the Z- and not the E- isomer in the starting
crotylboronate mixture. The reaction of the Z-boronate with
12 gave a 74% yield of predominantly the 3,4-syn product 14,
minor amounts of the other syn diastereomer 14’, and the anti
product 13’ (13:13':14:14, respective ratio <2:15:100:4).
The anti vs syn bias for the E and Z boronates follows the
trend for simpler crotylboronates, which has been explained by
a Zimmerman Traxler closed transition state model."*~"°
There was no significant facial selectivity for the reaction of the
E-boronate (i.e, 13:13; 53:100), whereas, 14 was essentially
the only syn diastereomer in the reaction for the Z-boronate
(i.e 14:14’; 100:4). These results are in line with the reactions
of aldehyde 12 and simple E- and Z- crotyl pinacol boronates,
wherein the former showed essentially no facial selectivity, as is
the case for E-glycosylboronate 9, and the latter showed the
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same facial bias that was observed for Z-glycosylboronate 10.*
Thus, facial selectivity for both the simple and the more
substituted glycosyl crotylboronates appear to be controlled by
the chirality in the aldehyde (i.e., Felkin selectivity).

The crotylations were next performed in the presence of
(R)- and (S)- TRIP to evaluate whether facial selectivity can be
influenced by a chiral promoter. In agreement with the
reported stereoselectivity trends for these catalysts, the
reaction of E-boronate 9 with (R)-TRIP and (S)-TRIP,
favored 13 and 13’, respectively (ie, 13/13" = 100/12 vs
19/ 100).48_50 In contrast, the facial bias for the Z-boronate 10,
in the presence of both the (R) and (S) catalyst, was the same,
albeit much higher for the latter. These data may represent
matched/mismatched diastereoselectivity, wherein the influ-
ence of the (S) catalyst is matched to directing effects from the
substrates, and the opposite bias of the (R) catalyst is
mismatched and dominated by substrate factors.*” Taken
together these observations suggest that these TRIP catalysts
may be more effective when the intrinsic selectivity of the
substrates is low and illustrate the challenges in applying
stereochemical trends for relatively simple, achiral substrates to
highly substituted, chiral variants, particularly polyhydroxylated
frameworks with multiple, potentially ligating sites."

The stereochemistry of the crotylation products was
deduced from NMR analysis of disaccharide derivatives of
13, 13’, and 14 (vide infra). These assignments were self-
consistent with oxidation—reduction reaction sequences on
individual diastereomers (Scheme 4). Thus, 14 led to 13
exclusively, and 13’ produced a 1:5 mixture of 13’ and a
diastereomeric product that was different from 13" and 14 and
assigned as 14’

Scheme 4. Stereochemical Correlation of Crotylation
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The crotylation products were next transformed to C-2-
deoxydisaccharides via a five-step sequence of reactions
(Scheme S). Thus, the 3,4-anti diastereomer 13 was converted
to benzyl ether 15. Hydroboration-oxidation on 15, oxidation
of the derived primary alcohol to aldehyde 16, exposure of 16
to methanolic HCI, and acetylation of the resulting product
provided 17. A similar sequence of reactions on the other 3,4-
anti diastereomer 13’ led to a mixture of the anhydro sugar 18
and methyl glycosides 19a/f (Supporting Information). As for
13, performing this reaction sequence on 14 provided the
methyl pyranoside framework but as a mixture of a-glycoside
20 and its f-anomer. We speculate that the formation of the
1,6-anhydrosugar from 13’ (and not 13 and 14) may result
from stabilization of the 'C, conformation of the newly formed
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Scheme §. Transformation of Crotylation Products to 2-
Deoxy C-Disaccharides
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sugar ring because of stereochemical effects.>> The stereo-

chemistry in the newly formed sugar ring in 17, 18, and 20 was
based on the absolute configuration in the aldehyde precursor
12, vicinal Ji i coupling constants, and/or H3/HS NOEs.
For the fully oxygenated C-Manla-3Man disaccharide,
dihydroxylation of the benzyl ether derivative of 14 using
AD-mix a provided a mixture of the diol 21 and its
diastereomer in a 4:1 respective ratio (Scheme 6). Selective

Scheme 6. Synthesis of C-Mana1-3Man disaccharides

1 NaH. BnBr Mana. 0){ 1. TEMPO, NaOCI
14 _DMF, 94% T 0 CH,Clys-H,0, 67%
HO
2. AD-mix a, 60% OBn 2. Ac,O, DMAP
HO pyridine, EtOAc, 72%
21 (22a:22b = 1:3)

Js4=10.0 Hz

Jg5=10.0 Hz a5 =101 Hz 2op

oxidation of 21 using TEMPO and NaOCI afforded the
derived aldehyde, which existed as a mixture of cyclic acetal
dimers. Treatment of this mixture with methanolic HCI and
acetylation of the product afforded the anomeric acetates 22a
and 22b. The stereochemistry in these products was assigned
as described for the deoxydisaccharides (vide supra).

In summary, the stereoselective preparation of these E and Z
glycosyl crotylboronates and their application to the synthesis
of challenging C-disaccharide frameworks bodes well for wider

https://doi.org/10.1021/acs.orglett.1c03845
Org. Lett. 2022, 24, 191-195


https://pubs.acs.org/doi/suppl/10.1021/acs.orglett.1c03845/suppl_file/ol1c03845_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c03845?fig=sch4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c03845?fig=sch4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c03845?fig=sch5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c03845?fig=sch5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c03845?fig=sch6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c03845?fig=sch6&ref=pdf
pubs.acs.org/OrgLett?ref=pdf
https://doi.org/10.1021/acs.orglett.1c03845?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Organic Letters

pubs.acs.org/OrglLett

applications in complex glycomimetic synthesis. BINOL
derived phosphoric catalysts show promise for controlling
stereoselectivity in the pivotal aldehyde crotylation reactions of
these chiral, polyoxygenated “reagents”, but their broader
scope remains to be evaluated.
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