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Abstract: Proteins from Sulfolobus solfataricus (S. solfataricus), an extremophile, are active even at
high temperatures. The single-stranded DNA (ssDNA) binding protein of S. solfataricus (SsoSSB) is
overexpressed to protect ssDNA during DNA metabolism. Although SsoSSB has the potential to
be applied in various areas, its structural and ssDNA binding properties at high temperatures
have not been studied. We present the solution structure, backbone dynamics, and ssDNA
binding properties of SsoSSB at 50 °C. The overall structure is consistent with the structures
previously studied at room temperature. However, the loop between the first two 8 sheets, which
is flexible and is expected to undergo conformational change upon ssDNA binding, shows a
difference from the ssDNA bound structure. The ssDNA binding ability was maintained at high
temperature, but different interactions were observed depending on the temperature. Backbone
dynamics at high temperature showed that the rigidity of the structured region was well
maintained. The investigation of an N-terminal deletion mutant revealed that it is important for
maintaining thermostability, structure, and ssDNA binding ability. The structural and dynamic
properties of SsoSSB observed at high temperature can provide information on the behavior of
proteins in thermophiles at the molecular level and guide the development of new experimental
techniques.

Keywords: thermophile; thermostability; high temperature; OB-fold; single-stranded binding;
NMR; backbone relaxation; solution structure; chemical shift perturbation; Sulfolobus solfataricus

1. Introduction

Sulfolobus is one of the well-known hyperthermophilic archaebacterial genera [1].
Unlike mesophilic eukaryotes and bacteria, which are sensitive to external conditions,
Sulfolobus can survive at extremely low pH or high temperature [1-5]. Su%{olobus
solfataricus (S. solfataricus) is adapted to high temperature via lipid composition changes
[6], protection of its DNA with DNA binding proteins [7], and expression of a unique
DNA topoisomerase [8]. Because they have the ability to survive in such harsh
conditions, proteins from S. solfataricus are widely used in biological experiments and
industrial applications that require low pH or high-temperature conditions [5].
Glyceraldehyde phosphate dehydrogenase, carboxypeptidase, alanine: glyoxylate
transaminase, y-lactamase, and other enzymes of S. solfataricus have been applied as
industrial biocatalysts [9].

Single-stranded DNA (ssDNA) binding proteins (SSBs) of S. solfataricus are also
used in biotechnological applications under Earsh conditions. SSBs are proteins that
bind to ssDNA non-sequence specifically. During the DNA replication or repair process,
they prevent ssDNAs released by a helicase from returning to double-stranded DNAs
(dsDNAs), and thereby increase the DNA polymerase activity. Thus, SSBs are essential
for all living organisms to preserve their genomes [10,11]. At high temperatures,
dsDNAs substantially melt into ssDNAs, and ssDNAs are much more vulnerable to
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damage than dsDNAs [12]. Therefore, hyperthermophilic archaebacterial species,
including S. solfataricus, that inhabit extremely hot environments, overexpress SSBs to
protect single-stranded nucleic acids from severe conditions and retain their genes [13].
S. solfataricus SSB (SsoSSB) consists of 148 amino acids. The unbound structure
determined using X-ray crystallography (PDB ID: 1071 [14]) and the ssDNA bound
structure determined at 25 °C using nuclear magnetic resonance (NMR) spectroscopy
(PDB ID: 2MNA [15]) showed that the protein has a well-conserved
oligonucleotide / oligosaccharide binding fold (OB-fold) domain. OB-folds consist of a
well-conserved { barrel structure with five  strands capped by one a helix and an
ssDNA binding pocket composed of L;, and Lss loops [16,17f Human replication protein
A (hRPA) [18], Escherichia coli SSB [19], and human mitochondrial SSB [20] are examples
of SSBs that can bind to ssDNA strongly. Unlike other well-characterized SSBs, in which
two aromatic residues are conserved and are important for ssDNA binding, SsoSSB has
an extra aromatic residue (Figure 1), which increases the binding affinity for ssDNA by
forming an additional m-7t stacking interaction with ssDNA [13-15]. Although the
structural properties of SsoSSB have been reported at room temperature, it remains
unclear which structural and dynamic features are important for its iigh thermostability
and ssDNA binding properties at the optimal survival temperature (55 to 88 °C [1-5]).
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Figure 1. Sequence alignment of SsoSSB with SSBs from various bacteria: hyperthermophilic
Thermotoga maritima (TmaSSB) and Pseudothermotoga thermarum (PthSSB); thermophilic Thermus
aquaticus (TaqSSB), and Pseudoalteromonas translucida (PtrSSB); mesophilic Escherichia coli (EcoSSB).
Conserved residues are indicated with an asterisk. Aromatic residues participating in base-
stacking upon DNA binding are colored red. The secondary structure of SsoSSB from UniProt [21]
and a previous study [14] are depicted above the sequence.

Here, we determined the structure of SsoSSB at high temperature (50 °C) using
NMR spectroscopy. SsoSSB was shown to maintain a we%l—conserved OB-fold structure
even at this high temperature, and its thermostability was measured using differential
scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy. The ssDNA
binding activity and backbone dynamics of the protein were also investigated at high
temperature using NMR spectroscopy. The spin relaxation experiments revealed that the
protein surprisingly retained a highly rigid structure even at high temperature.
Moreover, the protein was still able to interact with ssDNA at elevated temperatures. To
determine the role of the N-terminal region in the thermostability and DNA binding of
the protein, we analyzed the properties of an N-terminal deletion mutant using DSC, CD
spectroscopy, isothermal titration calorimetry (ITC), and NMR. Our findings provide
important understanding of thermophilic SsoSSB near its physiological conditions and
fundamental insights into its potential for biotechnological applications in high-
temperature conditions.

2. Results
2.1. Thermostability of SsoSSB

SSBs have highly conserved seguences ranging from mesophiles to
hyperthermophiles (Figure 1). Unlike other SSBs, SsoSSB has a unique N-terminal region
containing an additional helix H1. All the individual secondary structure elements other
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than H1 and 5 combine to form the well-conserved OB-fold structure. Compared with
the canonical OB-fold structures, SsoSSB showed unique secondary structures (H1, f1’,
and p5) [14]. In addition to the highly conserved aromatic residues, W56 and W75,
SsoSSB possesses an additional F79, which contributes to the increase in binding affinity
for ssDNA by forming an additional base-stacking interaction [14].

To compare the thermostability of SsoSSB with other thermophilic SSBs, we
performed DSC. From the DSC data, the melting temperature (T, otp SsoSSB;_114 was
measured at 84.16 °C (Figure 2a), which is lower than that of the hyperthermophilic
TmaSSB (109.3 °C) [22]. CD spectroscopy was performed at 20 °C to confirm the
secondary structure of the protein (Figure Sla). There is a negative peak at 215 nm,
which comes from [|3 strands [23], and a positive peak at 228 nm, which indicates B-1I
type p-rich protein [24], [25]. We also monitored structural changes over the temperature
range of 20 to 80 °C using CD. Molar ellipticity at 228 nm was plotted at intervals of 2 °C
(Figure S1b). As the temperature increased from 20 to 80 °C, the molar ellipticity at 228
nm decreased by about 452,000 deg cm? dmol™. This suggests that the secondary
structure became destabilized but not completely denatured [23-27]. When the
temperature reached 80 °C, the sample was cooled to 20 °C to confirm whether SsoSSB -
14 refolded after heating (Figure 2b). Our result showed that the CD spectrum was fully
recovered, which implies that denaturation of the protein is reversible. This is consistent
with the previous studies showing that the protein was not fully denatured, even at high
Eempe]ratures, using 'H-®N heteronuclear single-quantum coherence (HSQC) spectra

15,28].

A 84.1‘6°C

=

800

35

— 20°C

— 30°C

30 — 40°C

N 50°C

= 60°C
~ 254 S

g g 70°C

M < — 80°C

T 20+ 4 re-20°C
5} g
E o
= 151 P
= o
- =)
Y 0 =
(==}
5
0
T T T T T 1 -600 T T T
50 60 70 80 % 100 110 220 230 240 250
Temperature (°C) Wavelength (nm)

Flgure 2. Thermostability of Ss0SSBy_j1s. (A) Melting temperature (Ty,) of SsoSSB;_11, measured by
differential scanning calorimetry. (B) Circular dichroism spectroscopy was used to investigate the
effect of temperature on the secondary structure of Ss0SSB_11.

2.2. Solution Structure of SsoSSBy_114 at High Temperature

We previously reported the backbone and sidechain atom chemical shift
assignments of the protein at 50 °C (BMRB 50523) and presented 2D 'H-"N HSQC
spectra with the assignment [28]. To obtain high temperature distance constraints,
nuclear Overhauser effects (NOEs) were observed from “N- and *C-edited-NOESY-
HSQC experiments performed at 50 °C. The AUDANA algorithm [29] generated
distance and torsion angle constraints using the protein sequence, chemical shift
assignments, and NOESY data as inputs. TALOS-N [30] and Xplor-NIH [31] operations
were automated by AUDANA for torsion angle constraints and structure calculations,
respectively.

We obtained 893 distance constraints from the NOESY data and 193 angle
constraints from TALOS-N. In the previous study of the NMR structure at room
temperature, 2294 intramolecular constraints were used for protein structure calculation
[15]. It is known from previous studies that fewer constraints are measured at higher
temperatures [32], [33] because of various factors, including the partial denaturation of
secondary structures and the reduced sensitivity at elevated temperatures. It was also
found that there were relatively small numbers of medium-range constraints (85, 9.9% of
total distance restraints) because the protein is mainly composed of p strands with a
small amount of 3, helical structure. For the structure calculation at room temperature, a
similar proportion of medium-range restraints (8.5% of total distance restraints) was
used [15]. The number of NOE constraints for each residue is shown in Figure S2.

The solution structure of the protein was calculated with Xplor-NIH in the
PONDEROSA-C/S software package [34], starting from 100 random structures. The
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structural statistics are shown in Table 1. The 20 lowest energy models (Figure 3) were
calculated with no violations and root-mean-square deviations (RMSDs) of 0.974 A
(backbone atoms) and 1.751 A (heavy atoms). Ramachandran plot analysis from
PROCHECK [35] revealed that all dihedral angles were within the allowed regions. The
protein retained its secondary and tertiary structure at high temperature, containing five
p strands and one 3y, helix (Figures 4a and S3). Unstructured regions, especially the L,
loop, residues 98-103, and the C-terminal region, were relatively not converged one

another. The structure was deposited in the Protein Data Bank (PDB ID: ZWCG).

Table 1. Statistics of the solution structure of SsoSSBi_i14 at 50 °C. The 20 lowest energy structures

were calculated using NMR restraints.

Restraints ! Value
Total NMR Constraints 1086
Distance Constraints
Intra Residue (li-j| = 0) 259
Sequential Residue (li| =1) 225
Medium Range (1 < li—j| <5) 85
Long Range (li—j| >5) 291
Hydrogen Bond 33
Dihedral Angle Constraints
0 96
v 97
Pairwise RMSD (A)?
Backbone Atoms * 0.974 £ 0.044
Heavy Atoms ® 1.751 £ 0.054
Ramachandran Plot Summary from PROCHECK (%) *
Most Favored Regions 94.9
Additionally Allowed Regions 3.9
Generously Allowed Regions 1.2
Disallowed Regions 0.0
wwPDB NMR Structure Validation *
Clashscore 8
Ramachandran Outliers 2.0%
Sidechain Outliers 1.0%
Average Number of Violations Per Conformer °
Distance Violations (>0.5 A) 0
Angle Violations (>5°) 0
Repulsive Violations 0

! The solution structure of SsoSSB1_11; was calculated using );plor—NIH in PONDEROSA-C/S [36]. 2

The final 20 lowest energy structures were evaluated using

rotein Structure Validation Software

(PSVS) [35]. * Among ordered residues: E3-597, 5104-T113. * wwPDB (7WCG) validation results
[37]. > Xplor-NIH pseudo-potential energy and every violation of the 20 best structures were

analyzed using POKY-Analyzer [38].
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Figure 3. (A) The averaged 20 lowest energy solution structures of SsoSSBi_j1s. (B) Ensemble of the
20 lowest energy solution structures of SsoSSBi_j1.. The 34 helix is indicated in red, and  strands
are shown in blue.

Figure 4. SsoSSB structures by (A) NMR at high temperature (PDB ID: 7WCG; indicated with red),
(B% X-ray crystallography (PDB ID: 1071 [14]; indicated with orange), and (C) NMR at room
temperature in complex with ssDNA (PDB ID: 2MNA [15]; indicated with blue). (D) Magnified
view of the Ly, loop in each of the 3 structures. The zoomed area is indicated by a dotted square in
each figure (A-C).

It was already known that (3 strands (1, 4, and ?5 are broken by residues 26, 72~
73, and 89, respectively, which differs from the general OB-fold domain [14]. Secondary
structure prediction from the previous study suggested that SsoSSB1_;14 consists of nine 3
strands and three 3,y helices [28]. The previous X-ray crystal structure (PDB ID: 107I)
consisted of five  strands and three 3;, helices, and the DNA-bound NMR structure at
room temperature (25 °C) consisted of five  strands and two 3y helixes (Figures 4b,c
and S3). Most 8 strands were conserved in all structures. There were no 34 helices near
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the N- and C-termini in our calculated structure, leaving only the internal H2 helix. {8
strand 5 was found only in the NMR structures and not in the X-ray structure. It is
expected that these differences are partly due to the differences in the structure
calculation methods of NMR and X-ray crystallography. The RMSD in the crystal
structure (PDB ID: 107I) was calculated as 1.406 A, and that in the solution structure at
room temperature bound to ssDNA (PDB ID: 2MNA) was 1.954 A.

Structural alignment of the three SsoSSB structures revealed that the Ly, loop in the
high-temperature structure of SsoSSB highly deviates from the other two SsoSSB
structures. Significant structure fluctuations in L;, were also observed in the 20 ensemble
structures (Figure 3b), implying that this loop region is highly flexible. This feature is
consistent with the previous findings that L, was shown to be flexible from the
asymmetric unit superimposition of the X-ray crystal structure [14] and the previous
NMR study at room temperature [15‘]& The position of K33 a-carbon differed by 1.622 +
0.985 A (7WCG) and 0.507 + 0.190 A (2MNA), respectively. The Ly, loop, one of the
regions forming the DNA binding pocket and that plays an important role in DNA
binding of the OB-fold [14,16,17], is less converged at 7WCG than 2MNA. The position
of the K33 a-carbon differed by 472 + 1.61 A (107I) and 3.88 + 1.50 A (2MNA),
respectively. The position of the K33 a-carbon of lowest energy differed by 4.6 A (1071)
and 3.4 A (2MNA), respectively (Figure 4d). L, of the crystal structure was bound to a
sulfate ion, whereas Ly, of the room temperature NMR structure was bound to ssDNA.
The high temperature structure confirmed that L, became more flexible and
straightened because of the absence of its binding partner, ssDNA.

2.3. 55055B1114—~DNA Interaction at High Temperature by NMR CSP Analysis

The Gamsjaeger group demonstrated that SsoSSB1_1, binds to ssDNA at both room
temperature and high temperature [15]. To obtain detailed DNA binding surfaces at the
atomic level, we performed chemical shift perturbation (CSP) experiments with ssDNA
at 25 °C and 50 °C (Figure 5). The average (standard deviation) CSP during ssDNA
titration at 25 °C was 0.0763 (0.0928) ppm, and that at 50 °C was 0.0591 (0.0745) ppm. At
25 °C, residues V15, V19, Q31, T32, 139, W56 (sidechain atoms), F79, and Q84 were
perturbed more than 1 standard deviation from the average, and residues 130, R37, 540,
T54, W75 (sidechain atoms), and N86 were perturbed more than 2 standard deviations
from the average. At 50 °C, residues V15, N34, R37, and 139 were perturbed more than 1
standard deviation from the average, and residues 130, Q31, T32, S40, T54, W75
(sidechain atoms), and F79 were perturbed more than 2 standard deviations from the
average. Thus, the ssDNA binding sites and ssDNA binding interactions are similar at
25 °C and 50 °C. At the higher temperature, the perturbation of residues R37, Q84, and
N86 was reduced, suggesting that the charged and polar interaction with ssDNA
decreases at high temperature, and the hydrophobic interaction mainly remains. In the
study from Kerr et al. [14], 130, W56, W75, and F79 were shown by alanine substitution
to be important for ssDNA binding at 50 °C. Among these point mutants, the ssDNA
binding affinity of W56A was reduced the most, but in our experiments, the sidechain of
W56 did not interact with ssDNA at 50 °C (Figure 5b,d). It can be inferred from this that
W56 indirectly affects the protein’s ssDNA binding at 50 °C.
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Figure 5. DNA binding site of SsoSSBi . (A,B) Chemical shifts of *N-labeled SsoSSBi.u at a
concentration of 500 uM were perturbed upon ssDNA titration. Average CSP values (Ad..) for
each residue of Ss0SSB;_j14 with 1 mM ssDNA at (A) 25 °C and (B) 50 °C are shown. Trp sidechain
CSPs are indicated with hatched bars. The secondary structure from UniProt is shown at the top of
each graph. (C,D) The solution structure of SsoSSB;_i14 (PDB ID: 7ZWCG) was colored based on CSP
data at (C) 25 °C and (D) 50 °C. Color coding is the same as in panels A and B. Sidechains are
displayed for residues with the largest CSPs.

2.4. Backbone Dynamics of Ss0SSBi_114 at High Temperature and Room Temperature

To understand how the protein’s backbone dynamics change with temperature,
spin-lattice relaxation (R;), spin-spin relaxation  (R,), and 1%—l-“N heteronuclear
Overhauser effect (hetNOE) experiments were performed at 25 °C and 50 °C. The
average R; at 25 °C was 1.078 + 0.067 Hz. Most residues had R, values within 2 standard
deviations of the average. At 50 °C, the average R; value (1.928 + 0.141 Hz) was higher
than that at 25 °C, and we found more deviations. This implies that the overall motion
increases at 50 °C. Residues N34, G35, and V36 in loop L1,; residues 597 and E98 located
in the loop between B5 and H3; residue N110 at the C-terminus had R; values >2
standard deviations below the average (Figure 6a). Those regions have no secondary
structural elements in 7WCG (Figure S3). In the X-ray crystal structure [14], L, and the
region containing residues 94-100 were also found to be flexible. It is characteristic that
the lower R, values were observed in a flexible region at 50 °C, unlike at 25 °C. Figure 6b
shows the measured R, values of each residue at 25 °C and 50 °C. At 25 °C, the average
R, value was 17.66 + 2.42 Hz. Residues in loop L;, and the C-terminal region showed
reduced R, values, which indicate fast ps-ns dynamics [39]. At 50 °C, the average R,
decreased significantly to 6.862 + 0.797 Hz. This also suggests that the protein becomes
more flexible at 50 °C. Residues that had reduced R; values at 50 °C also showed
reduced R, values. From the R; and R, data, it was confirmed that the residues that
experience fast dynamics were more prominent at 50 °C, and the overall motion of the
protein was faster at a higher temperature. From Figure 6¢, we can observe higher R,/R;
values at 25 °C than 50 °C. The average tumbling time (t.) values calculated from R,/R;
were 12.657 ns and 5.012 ns at 25 °C and 50 °C, respectively [40], [41], indicating that the
protein tumbles twice as fast at high temperature as it does at room temperature.
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Figure 6. SsoSSBy_;1; backbone dynamics. Per residue (A) spin-lattice relaxation (R;), (B) spin-spin
re%axation (Ry), (C) Ry/R, ratios, and (D) hetNOE values at 25 °C and 50 °C are shown. Errors of
the measurement are indicated by black and red lines. In panels A-C, average values of each
parameter are indicated with a black (25 °C) or red (50 °C) line. Residues that differed from the
average by more than 2 standard deviations are labeled. In panel (D), the hetNOE value 0.6 is
indicated with a black line. Residues with values lower than 0.6 are labeled in black (25 °C) or red
(50 °C). The secondary structure from UniProt is shown at the top of the graph.

From the hetNOE data (Figure 6d), residues T32, N34, G35, and V36 located in L;
residues 597 and D99 in the loop between 5 and H3; N110 at the C-terminus had
hetNOE values lower than 0.6 at 25 °C. Residues T32, N34, G35, E98, D99, N110, and
A114 had hetNOE values lower than 0.6 at 50 °C. Thus, these regions are unstructured
and more flexible, consistent with previous studies [14,15] and our R;, R, relaxation
experiments. The average hetNOE values were 0.780 and 0.766 at 25 °C and 50 °C,
respectively, showing that the overall rigidity of the protein is maintained at 50 °C.
Unlike the R; and R, values, the hetNOE values did not show a significant difference by
temperature. Because the hetNOE value reflects the motion witl%in the protein rather
than the global motion of the protein within its chemical environment, this suggests that
the internal motion of the protein is not changed much at increased temperatures [42].

2.5. Thermostability and ssDNA Binding Property of S55055B15-114

It was already known that the helix between (33 and (34 in the OB-fold family is well
conserved and makes a significant contribution to structural stabilization [17]. However,
studies on the importance of the helix near the N-terminus are lacking. Because the N-
terminal region of SsoSSB is not conserved among bacterial SSBs (Figure 1) and TmaSSB
lacking this region has higher T., [22], we hypothesized the N-terminal region of SsoSSB
is not crucial for the structural stabilization. The structure of SsoSSB (PDB ID: 7WCG)
and TmaSSB (PDB ID: 1Z9F [43]) ss shown in the Supplementary Materials (Figure S4).
To investigate the role of the N-terminal region, an N-terminal deletion mutant
(Ss0SSB12-114) was prepared. DSC was used to measure the T,, value of SsoSSBi,_114 as
53.12 °C (Figure 7a). This was ~30 °C lower than the T,, value of SsoSSBi14 and in a
similar range to the mesophilic SSB, hRPA (70A subunit; 56.69 °C, Figure S5). CD
spectroscopy was performed at 20 °C to confirm the secondary structure of the protein
(Figure Sla). The overall pattern was very similar to SsoSSBi.114, except that lower molar
ellipticities were observed at 215 nm and 228 nm. The molar ellipticity was not fully
recovered after heating and cooling (Figure 7b). Unlike the SsoSSB;_;14, molar ellipticity
at 228 nm also changed significantly between 50 °C and 60 °C (Figure S1b). This is
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consistent with the DSC data. Together, these findings imply that SsoSSBi,.114 entirely
loses thermostability. To monitor the structural changes that occur upon deletion of the
N-terminal helix, we performed an 'H-"N HSQC experiment on SsoSSBi 14 at 25 °C
(Figure S6a). The NMR spectra showed that the structure was not disordered, but when
comparing the "H-"N HSQCs of SsoSSB;_114 and SsoSSB1,-114, we observed that more than
half of the peaks shifted due to the N-terminal deletion (Figure S6b).
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Figure 7. Thermostability of SsoSSBi,.11s. (A) Melting temperature of SsoSSBi,.114 measured by
differential scanning calorimetry. (B) Circular dichroism spectroscopy was used to investigate the
effect of temperature on the secondary structure of Ss0SSBi2-114.

A DNA titration was performed to see if SsoSSBi, 14 could still interact with
ssDNA. There were some chemical shift changes observed due to the added ssDNA
(Figure S6c¢). ITC experiments were also performed to measure the binding affinity. The
dissociation constant (K4) and stoichiometry (n) of SsoSSBi_i1 in the presence of dA(15)
were 1.75 pM and 1.009 (Figure S7a), respectively, but we did not observe enough heat
from the interaction of SsoSSBi,.114 and dA(15) to determine thermodynamic parameters
(Figure S7b). Taken together, the deletion of the N-terminal 11 amino acids from SsoSSB
dramatically affected its thermostability, structure, and DNA binding capability.

3. Discussion

In this study, we investigated the solution structure, DNA binding properties, and
dynamic properties of the thermophilic SsoSSB at high temperature (50 °C). While the
protein contains a well-conserved OB-fold domain and its structural aspects were
already studied at room temperature [14,15], the structural and dynamic origins of
thermophilicity were still not clearly understood. In this study, we collected NMR data
to analyze the structure and backbone dynamics at 50 °C. We believe that this approach
provides unique information to understand this thermophilic protein.

It is usually considered that a sufficient number of NOE (i.e., 10-20 NOEs per
residue) are required for the reliable protein NMR structure calculation [44]. However, a
recent study showed that the restraints per residue do not guarantee the accuracy of the
structure. At the same time, Ramachandran analysis could be considered the accuracy
indicator of the NMR structures [45]. While we used a relatively low number of NOE on
average, we could collect a substantial number of long-range NOE using AUDANA
algorithms for the structure calculation. The structural statistics (Table 1) showed that
our structure is acceptable and reflects the protein’s nature.

Overall, our solution structure was similar to the previously described structures,
while local differences in Ly, were revealed (Figure 8a—c). It is assumed that these
differences were caused by the conformational change upon ssDNA binding, and that
the flexibility of the region could contribute to the differences. Similar conformational
differences were observed in hRPA70A, a eukaryotic OB-fold protein. The X-ray crystal
structure of the apo form of hRPA70A (PDB ID: 1FGU [46]) and the ssDNA bound form
of hRPA70A (PDB ID: 1JMC [47]) showed that the L;, gets closer to the DNA and has a
‘closed’ conformation in the presence of ssDNA (Figure 8d—f). In the apo versus the
DNA-bound form, the a carbon of 5215, located at the top of Ly, shifts by 6.8 A (Figure
8f), which is larger than the equivalent difference in SsoSSB (3.4 A). In this regard, we
suggest that our solution structure at high temperature represents the apo form of
SsoSSB under near physiological conditions.
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Figure 8. Protein structures of OB-fold proteins apo form and ssDNA bound form. NMR structure
of SsoSSB (A) apo form (PDB ID: 7WCG; indicated with red) and (B) with ssDNA (PDB ID: 2MNA
[15]; indicated with blue). (C) Zoom of the structure overlapping of (A) and (B). X-ray structure of
hRPA70A (D) apo form (PDB ID: 1FGU [46]; indicated with yellow-orange) and (E) with ssDNA
(PDB ID: 1JMC [47]; indicated with lime). (F) Zoom of the structure overlapping of (D) and (E).
Aromatic residues which interact with ssDNA show with sidechain stick structure. The zoomed
areas are indicated by a dotted square in each figure.

The aromatic residues involved in the stacking interaction with the DNA are shown
in Figure 8ab. Even though W56 is well conserved in bacterial SSBs (Figure 1), the
structure showed that it contributes less than the other two residues (W75 and F79). This
structure is consistent with our CSP analyses (Figure 5). Furthermore, we observed
subtle differences in the DNA binding interface depending on the temperature. More
electrostatic interactions were involved at room temperature, while hydrophobic
interactions were more crucial at high temperature. This suggests that the nonspecific
DNA binding of SsoSSB is mediated by an optimal combination of noncovalent
interactions depending on the environment.

Because protein backbone dynamics are not usually assessed at a high temperature,
it is not easy to compare our data with others. At or near room temperature, regions
with ps-ns dynamics usually have higher R; (reduced T;) and lower R, (elevated T,)
values [40]. At 50 °C, we observed that the average R; increased and R, decreased
compared to the values at 25 °C (Figure 6a,b). This could reflect the general physical
phenomena of proteins: the overall motion increases with elevated temperature. This
interpretation is consistent with the rotational correlation time at 50 °C, being shorter
than that at 25 °C. Unlike at 25 °C, the per residue R, value at 50 °C showed that the
flexible regions such as the L, loop and the C-terminus have lower R; value than
average (Figure 6a). This might be related to the shortened rotational correlation time at
50 °C. One of the possible explanations is that the R; of the flexible region decreases in
the same way as R, under conditions where t. is faster than the value expected from the
protein’s molecular weight [48]. Remarkably, the per residue hetNOE values were
similar at both temperatures. Our data clearly showed that the overall protein folding
was well maintained even at 50 °C, consistent with our DSC and CD data.

Previous studies found that electrostatic and hydrophobic interactions play an
essential role in the thermal stabilization of thermophilic proteins [49-53]." We
discovered that the N-terminus (residues 1 to 11) of SsoSSB is important for maintaining
thermostability, even though it is located at the terminus of the protein and is not
conserved across bacterial SSBs. An N-terminal deletion caused T, to decrease ~30 °C.
The absence of the N-terminus resulted in partial destabilization of the protein (Figure
7b), affecting thermostability (Figure 7a) and DNA binding interaction (Figure S7b).
These large disruptions led us to speculate that the N-terminus might contribute to the
stability of the protein by acting as the lid of the B-barrel of the OB-fold. Since the
binding affinity to ssDNA was so significantly reduced due to the absence of the N-
terminal sequence (Figure S7b), which does not directly interact with ssDNA, it is
reasonable to propose that the presence of the N-terminus is essential for maintaining
the tertiary structure. From point mutation studies of the Thermotoga maritima acyl
carrier protein [49], the T,, decreases significantly by removing particular noncovalent
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interactions, while the mutant had a similar structure. Our study showed a different way
to modulate the thermostability of these proteins, namely by truncating a region that is
not included in the core structure. Further studies of the deletion mutant and other point
mutants are required to reveal the complete origins of the thermostability of SsoSSB.

Based on our current understanding of the important residues and regions for
thermostability, it is expected that it will be possible to make proteins with improved
thermostability. For decades, efforts to improve protein stability and thermostability b
protein engineering have continued. Introducing new disulfide bonds [54,55],
optimizing metal chelation sites [56], and amino acid substitutions [57,58] have been
thoroughly researched. However, improving thermal stability requires a lot of time and
money. Recently, several computational studies [59,60] have been used to overcome
these difficulties in biological research. In addition, deep learning and machine learning
techniques have been employed to improve protein stability and thermostability [60-62].
Our study provides detailed information on the structure and ssDNA interactions of
SsoSSB at high temperature. This information can provide fundamental insights into
SSoSSB'’s industrial applications, such as increasing polymerase chain reaction efficiency
[63], detecting viral nucleic acid [64], and potentially increasing the stability of mRNA
vaccines [65].

4. Materials and Methods
4.1. Protein Expression and Purification

5s0SSBy114 and SsoSSBi; 114 were cloned into a pET C-terminal TEV His6 clonin,

vector with BioBrick polycistronic restriction sites (9Bc) and transformed into BL21(DE3
cells. We cultivated cells for more than 12 h in 10 mL LB medium (25 g/L) with
ampicillin (0.3 mM, final concentration) at 37 °C. Into 1 L of LB medium containing
ampicillin, 15 mL of overnight cultured cells was poured. Cells were grown at 37 °C
until the optical density at 600 nm reached 0.5-0.6, and then isopropyl (B-D-1-
thiogalactopyranoside was added to a final concentration of 0.5 mM. Cells were
incubated for an additional 14-18 h at 18 °C. Cells were centrifuged for 15 min at 7500
rpm at 4 °C. For separating endogenous nucleic acids from protein, we used a high salt
binding buffer (50 mM NaH,PO,, 2 M NaCl, pH 8.0) and a high salt wash buffer (50 mM
NaH,PO,, 2 M NaC(l, 40 mM imidazole, pH 8.0). Cells were resuspended and sonicated
in the high salt binding buffer. The sample was centrifuged for 15 min at 13,000 rpm, 4
°C, and the supernatant put into an Ni-NTA column (Cytiva, Marlborough, MA, USA).
The high salt wash buffer and an elution buffer (50 mM NaH,PO,, 300 mM NaCl, 300
mM imidazole pH 8.0) were used sequentially to purify the proteins. The proteins were
further purified by gel filtration chromatography using a Hi-Load 16/600 75 pg column
(Cytiva, Marlborough, MA, USA) with buffer A (100 mM NaCl, 20 mM 2-(N-
morpholino)ethanesulfonic acid (pH 6.5). For expression of ’N- and *C-labeled protein,
cells were grown in M9 minimum media that included ®NH,Cl and "*C-D-Glucose
(Cambridge Isotope Laboratories, Inc., Tewksbury, MA, USA) as nitrogen and carbon
sources. The composition of M9 minimum media was 870 mL of distilled water, 1 g of
’NH,Cl, 100 mL of M9 10X salt, 20 mL of 10% glucose (**C-labeled) solution, 2 mL of 1 M
MgSQO, solution, 0.3 mL of 1 M CaCl, solution, 0.33 mL of vitamin solution, and 10 mL of
trace metal solution.

4.2. NMR Experiments

The ®™N- and "C-labeled SsoSSB,..;; sample was dissolved to a final protein
concentration of 0.5-1.2 mM with 10% D,O in buffer A. A Bruker 900 MHz NMR
spectrometer equipped with a cryogenic triple-resonance probe at the Korea Basic
Science Institute (Ochang, Korea), Bruker AVANCE Neo 600 MHz spectrometers at
GIST Central Research Facilities with a cryogenic triple-resonance probe (Gwangju,
Korea), and an Agilent DD2 700 MHz NMR spectrometer at Gyeongsang National
University (Jinju, Korea) were used to collect NMR spectra. Backbone and sidechain
assignments were performed in previous studies [28,66]. ®N- and ®C-edited NOESY-
HSQC were collected at 50 °C with 150 ms and 300 ms mixing times for structure
calculation. In CSP experiments, ssDNA composed of 15 adenines (dA(15)) was added at
molar ratios ranging from 0:1 to 2:1 to "N-labeled SsoSSBi_114. Average CSP values (Aéavg)
were calculated using the following equation

ASN |2 2
=4[ — 1
AS,, \/( = 88 ) +(ASH) 1)



Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 12 of 15

4.3. Solution Structure Calculation

The 3D structure of SsoSSBi.i1s at 50 °C was calculated using Xplore-NIH-based
computations in the PONDEROSA-C/S package [35], and NOE assignments were
performed using NMRFAM-Sparky [37]. Following that, the 20 lowest energy structures
were determined. PONDEROSA-Analyzer software [67] was used to assess and refine
all angle and distance violations of the best 20 constructions. PSVS [36] was used to
analyze the final 20 lowest energy structures. PyMOL (http:/ / www.pymol.org, accesed
on 11 March 2022) was used to create the protein structural diagrams and align the
protein structures. The NOE constraints and final coordinates were deposited in the
RCSB PDB under the accession number 7ZWCG (BMRB ID: 50523).

4.4. NMR Backbone Relaxation Experiment

R, and R, of ®N, and 'H-'N hetNOE data, were recorded on the Bruker AVANCE
Neo 600 MHz spectrometers at GIST Central Research Facilities with cryogenic triple-
resonance probes (Gwangju, Korea). Pseudo-3D NMR spectra were collected with
relaxation delalys of 20, 60, 100, 200, 400, 600, 800, 1000, 1200, and 1600 ms at 25 °C and
50 °C for the "N R; measurements, and with relaxation delays of 16.96, 33.92, 67.84,
101.76, 135.68, 203.52, 271.36, 339.2, 407.04, and 547.72 ms at 25 °C and 50 °C for the N
R, measurements. POKY was used to extract the relaxation rate constants by fitting the
decay of peak height as a function of the relaxation delay to a single exponential
function [38]. For the hetNOE measurement, interleaved 2D "H-""N HSQC spectra were
acquired with and without an initial proton saturation of 2.5 s at 25 °C and 50 °C.
hetNOE values were obtained from the ratios of peak heights between pairs of spectra,
calculated with a POKY script [38]. For more accurate analysis, overlapping peaks were
excluded from the data. The rotational correlation time (t.) was calculated by this
equation [39,40]

(L (e R
W= 6% 77 @

where vy is the resonance frequency of N in Hz.

4.5. Differential Scanning Calorimetry

The T..s of Ss0SSBi_115, Ss0SSB1,115, and hRPA70A were measured by DSC using a
NanoDSC system (TA instruments, New Castle, DE, USA). The protein samples were
prepared at concentrations of 5 mg/mL in buffer A. The thermograms were recorded as
the temperature was increased at a rate of 1 °C /min from 50 °C to 110 °C (SsoSSB1-114) or
20 °C to 80 °C (SsoSSBi».112 and hRPA70A). The pressure was kept constant at 3 atm to
prevent evaporation of the solvent. Individual component peaks were resolved from the
complex profiles after polynomial baseline correction, and the two-state scaled curve
ﬁttin)gs were performed by the NanoAnalyze software (TA Instrument, New Castle, DE,
USA).

4.6. Circular Dichroism Spectroscopy

The secondary structure of SsoSSB at various temperatures was assessed by far-UV
CD experiments using a J-815 spectropolarimeter (Jasco, Tokyo, Japan). It was measured
under two different conditions. A 100 uM protein sample was dissolved in buffer B (20
mM NaHPO,, pH 6.5) and placed in a cuvette with a 0.2 mm path length. CD spectra
were measured from 190 to 250 nm at 0.5 nm intervals at 20 °C. A 50 uM protein sample
was dissolved in buffer A and placed in a cuvette with a 1 mm path length. CD spectra
were measured from 210 to 250 nm at 0.5 nm intervals. The temperature was increased
from 20 to 80 °C in 2 °C increments. After heating, the temperatures were decreased
from 80 °C to 20 °C in 5 °C decrements. Every measurement was performed after
waiting for 1 min between temperature changes. Temperature-dependent ellipticity
changes at 228 nm were observed to monitor the heat denaturation of the protein. 6 was
calculated as described in previous papers [23,25-27].

4.7. Isothermal Titration Calorimetry

ITC experiments were carried out in buffer A with a Nano-ITC SV instrument (TA
Instruments, New Castle, DE, USA). Twenty-four aliquots of 10 uL of 500 uM dA(15)
were titrated at 25 °C into 50 uM of SsoSSBy_j14 and SsoSSB»-11s. The stirring speed was
300 rpm, and the interval between titrations was 250 s. The dissociation constant (Kg)
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and stoichiometry (n) were calculated by fitting to the independent model in the
NanoAnalyze software (TA Instruments, New Castle, DE, USA).

Supplementary Materials: The following supporting information can be downloaded at:
www.mdpi.com/xxx/sl, Figure S1: Results of CD spectroscopy. (A) 6 value at 190 to 250 nm from
CD spectroscopy of SsoSSBi_114 and SsoSSBi,.14 at 20 °C. (B) Molar ellipticity at 228 nm of SsoSSB;.-
114 and SsoSSB1114 from 20 to 80 °C., Figure S2: Number of distance constraints used for structure
calculation. The number of short-range (intramolecular and sequential residue) constraints
(white), mid-range constraints (cyan), and long-range constraints (red) are marked. The secondary
structure from UniProt showed the top of the grap%‘l., Figure S3: Secondary structure comparison
among the high-temperature NMR structure (PDB ID: 7WCG), the X-ray crystal structure (PDB ID:
1071), and the room temperature NMR structure in complex with ssDNA (PDB ID: 2MNA).
Aromatic residues that are related to DNA binding are indicated in red., Figure S4: (A) The lowest
energy structure of SsoSSBi1s (PDB ID: 7WCG; the N-terminal part (residue number 1-11) is
shown in magenta). (B) The crystal structure of TmaSSB (PDB ID: 1Z9F)., Figure S5: T, of
hRPA70A measured by DSC., Figure S6: (A) 'H-"N HSQC of SsoSSBi,11s. (B) Overlay of 'H-*N
HSQC spectra of SsoSSB;_114 (blue) and SsoSSBi,-114 (red). (C) Overlay of 'H-"N HSQC spectra of
Ss0SSBi,-114 with ssDNA dA(15) (green), SsoSSBi_i14 (blue), and SsoSSBi,.114 (red). Experiments were
performed at 25 °C., Figure S7: Thermodynamic analysis by isothermal titration calorimetry.
ssDNA was added to (A) SsoSSBi1, and (B) SsoSSBi-11s. The fitted curve represents a 1 to 1
binding model with the given Ky and n.
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Abbreviations

csp chemical shift perturbation

CD circular dichroism

DSC differential scanning calorimetry

dA(15) single-stranded DNA composed of 15 adenines

dsDNA double-stranded DNA

hetNOE heteronuclear Overhauser Effect

HSQC heteronuclear single-quantum coherence

ITC isothermal titration calorimetry

NMR nuclear magnetic resonance

NOE nuclear Overhauser effect

OB-fold gligon.ucleotide/ oligosaccharide binding fold
omain

PDB protein data bank

RMSD root-mean-square deviation

R; spin-lattice relaxation

R, spin-spin relaxation

SSB single-stranded DNA binding protein

ssDNA single-stranded DNA

Sso Sulfolobus solfataricus

T melting temperature
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