
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. CONTROL OPTIM. © 2021 Society for Industrial and Applied Mathematics
Vol. 59, No. 3, pp. 2301--2320

A STOCHASTIC SUBGRADIENT METHOD FOR NONSMOOTH
NONCONVEX MULTILEVEL COMPOSITION OPTIMIZATION\ast 

ANDRZEJ RUSZCZY\'NSKI\dagger 

Abstract. We propose a single time-scale stochastic subgradient method for constrained opti-
mization of a composition of several nonsmooth and nonconvex functions. The functions are assumed
to be locally Lipschitz and differentiable in a generalized sense. Only stochastic estimates of the val-
ues and generalized derivatives of the functions are used. The method is parameter-free. We prove
convergence with probability one of the method, by associating with it a system of differential in-
clusions and devising a nondifferentiable Lyapunov function for this system. For problems with
functions having Lipschitz continuous derivatives, the method finds a point satisfying an optimality
measure with error of order 1/

\surd 
N , after executing N iterations with constant stepsize.
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1. Introduction. We consider the composition optimization problem

(1.1) min
x\in X

f1

\Bigl( 
x, f2

\bigl( 
x, \cdot \cdot \cdot fM - 1

\bigl( 
x, fM (x)

\bigr) 
\cdot \cdot \cdot 

\bigr) \Bigr) 
,

where X \subset \BbbR n is convex and closed, and fm : \BbbR n \times \BbbR dm+1 \rightarrow \BbbR dm , m = 1, . . . ,M  - 1,
and fM : \BbbR n \rightarrow \BbbR dM are locally Lipschitz continuous functions, possibly neither
convex nor smooth.

The Clarke derivatives of fm(\cdot , \cdot ) are not available; instead, we postulate access to
their random estimates. Such situations occur in stochastic composition optimization,
where

(1.2) fm(x, um+1) = \BbbE 
\bigl[ 
\varphi m(x, um+1, \xi m)

\bigr] 
, m = 1, . . . ,M,

in which \xi m is a random vector, and \BbbE denotes the expected value. Two examples
illustrate the relevance of the problem.

Example 1.1 (risk-averse optimization). Given some random loss function H :
\BbbR n\times \Omega \rightarrow \BbbR , we consider the random variable Z = H(x) as an element of the Banach
space \scrZ = \scrL p(\Omega ,\scrF , P ), p \in [1,\infty ), and we evaluate its quality by the functional
\rho : \scrZ \rightarrow \BbbR , called a risk measure. This leads to the problem

(1.3) min
x\in X

F (x) = \rho [H(x)].

Particularly simple and useful is the mean--semideviation measure [33, 34], which is an
example of a coherent measure of risk [1] (see also [18, 38] and the references therein).
It has the following form:

(1.4) \rho [Z] = \BbbE [Z] + \varkappa 
\biggl( 
\BbbE 
\Bigl[ \Bigl( 

max
\bigl( 
0, Z  - \BbbE [Z]

\bigr) \Bigr) p\Bigr] \biggr) 1/p

, p \geq 1.
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2302 ANDRZEJ RUSZCZY\'NSKI

For p = 1, problem (1.3) with the risk measure (1.4) can be written in the form (1.1)
with two functions

f1(x, u2) = \BbbE 
\Bigl[ 
H(x) + \varkappa max

\bigl( 
0, H(x) - u2

\bigr) \Bigr] 
,

f2(x) = \BbbE [H(x)].

For p = 2, problem (1.3) with the risk measure (1.4) can be cast (with a minor
regularization) in the form (1.1) with three functions

f1(x, u2) = \BbbE 
\bigl[ 
H(x)

\bigr] 
+ \varkappa (\varepsilon + u2)

1/2, \varepsilon > 0,

f2(x, u3) = \BbbE 
\Bigl[ \bigl( 

max
\bigl( 
0, H(x) - u3

\bigr) \bigr) 2\Bigr] 
,

f3(x) = \BbbE [H(x)].

We added \varepsilon > 0 into the definition of f1(\cdot , \cdot ) to ensure the local Lipschitz property for
all u2 \geq 0. Frequently, H(\cdot ) is nonconvex and nondifferentiable in modern machine
learning models.

Example 1.2 (stochastic variational inequality). We have a random mapping
H : \BbbR n \times \Omega \rightarrow \BbbR n on some probability space (\Omega ,\scrF , P ) and a closed convex set X.
The problem is to find x \in X such that

(1.5)
\bigl\langle 
\BbbE [H(x)], \xi  - x

\bigr\rangle 
\leq 0 \forall \xi \in X.

The reader is referred to the recent publications [22] and [23] for a discussion of the
challenges associated with this problem and its applications to stochastic equilibria.
We may reformulate problem (1.5) as (1.1) by defining f1 : \BbbR n \times \BbbR n \rightarrow \BbbR as

(1.6) f1(x, u) = max
y\in X

\Bigl\{ 
\langle u, y  - x\rangle  - r

2
\| y  - x\| 2

\Bigr\} 
, r > 0,

and f2(x) = \BbbE [H(x)]. In this case, we have access to the gradient of f1, but the value
and the Jacobian of f2 must be estimated. We do not require H(\cdot ) to be monotone
or differentiable.

The research on stochastic subgradient methods for nonsmooth and nonconvex
functions started in the late 1970s: see Nurminski [32] for weakly convex functions and
a general methodology for studying convergence of nonmonotonic methods, Gupal
[21] for convolution smoothing (mollification) of Lipschitz functions and resulting
finite-difference methods, and Norkin [31] and [29, Chaps. 3 and 7] for unconstrained
problems with ``generalized differentiable"" functions.

Recently, by an approach via differential inclusions, Duchi and Ruan [14] studied
proximal methods for sum-composite problems with weakly convex functions, Davis et
al. [11] studied the subgradient method for locally Lipschitz Whitney \scrC 1-stratifiable
functions with constraints, and Majewski, Miasojedow, and Moulines [27] studied
several methods for subdifferentially regular Lipschitz functions.

The research on composition optimization problems started from penalty func-
tions for stochastic constraints and composite regression models in [15] and [16, Chap.
V.4]. An established approach was to use two-level stochastic recursive algorithms
with two stepsize sequences in different time scales: a slower one for updating the
main decision variable x, and a faster one for tracking the value of the inner func-
tion(s). References [39, 40] provide a detailed account of these techniques and existing

D
ow

nl
oa

de
d 

12
/3

0/
21

 to
 1

28
.6

.4
5.

20
5 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOCHASTIC MULTI-LEVEL COMPOSITION OPTIMIZATION 2303

results. In [41] these ideas were extended to multilevel problems of form (1.1), albeit
with multiple time scales and under continuous differentiability assumptions.

A central limit theorem for problem (1.2) has been established in [12]. Large
deviation bounds for the empirical optimal value were derived in [17].

The first single time-scale method for a two-level version (M = 2) of problem (1.1)
with continuously differentiable functions has been recently proposed in [20]. It has the
complexity of \scrO (1/\epsilon 2) to obtain an \varepsilon -solution of the problem, the same as methods
for one-level unconstrained stochastic optimization. However, the construction of
the method and its analysis depend on the Lipschitz continuity of the gradients of
the functions involved, and its parameters depend on the corresponding Lipschitz
constants.

To the best of our knowledge, there has been no research on stochastic subgradient
methods for composition problems of form (1.1) where the functions involved may be
neither convex nor smooth.

Our main objective is to propose a single time-scale method for solving the mul-
tiple composition problem (1.1) and to establish its convergence with probability one
on a broad class of problems, in which the functions fm(\cdot , \cdot ), m = 1, . . . ,M  - 1, are
assumed to be locally Lipschitz and admit a chain rule, while fM (\cdot ) may be only
differentiable in a generalized sense (to be defined in section 2). The class of such
functions is broader than the class of locally Lipschitz semismooth functions [28]. The
method's few parameters may be set to arbitrary positive constants. The main idea
is to lift the problem to a higher dimensional space and to devise a single time-scale
scheme for not only estimating the solution, but also the values of all functions nested
in (1.1), and the generalized gradient featuring in the optimality condition.

Our approach uses the differential equation method (see [26, 25, 24] and the
references therein). Extension to differential inclusions was proposed in [3, 4] and
further developed in, among others, in [6, 14, 11, 27]. In our analysis, we use a
specially tailored nonsmooth Lyapunov function for the method, which generalizes
the idea of [35, 36] to the composite setting.

The second contribution is the error analysis after finitely many iterations of the
method. We prove that a nonoptimality measure for problem (1.1), which corresponds
to the squared norm of a gradient in the unconstrained one-level case, decreases at
the rate 1/

\surd 
N , where N is the number of iterations of the method. This matches

the best rate estimates for general unconstrained one-level problems [19] and the
statistical estimate of [12] for plug-in estimates of composition risk functionals; it
outperforms the estimate of the method of [41].

The paper is organized as follows. In section 2, we recall the main facts on gen-
eralized differentiation and the chain rule on a path. In section 3, we describe our
stochastic subgradient method for problem (1.1). In section 4 we introduce relevant
multifunctions and prove the boundedness of the sequences generated by the method.
Section 5 contains the proof of its convergence for nonconvex and nonsmooth func-
tions. Finally, in section 6, we provide solution quality guarantees after finitely many
iterations with a constant stepsize, in the case when the functions have Lipschitz
continuous derivatives.

2. Generalized subdifferentials of composite functions. We consider prob-
lem (1.1) for locally Lipschitz continuous functions fm(\cdot ) satisfying additional condi-
tions of generalized differentiability, subdifferential regularity, or Whitney \scrC 1-strati-
fication. Recall that f : \BbbR n \rightarrow \BbbR m is locally Lipschitz if for every x0 \in \BbbR n a constant
L and an open set U containing x0 exist, such that \| f(x) - f(y)\| \leq L\| x - y\| for all
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2304 ANDRZEJ RUSZCZY\'NSKI

x, y \in U . A Clarke generalized Jacobian of f(\cdot ) at x is defined as follows [8]:

\partial f(x) = conv

\biggl\{ 
lim
y\rightarrow x

y\in \scrD (f)

f \prime (y)

\biggr\} 
,

where \scrD (f) is the set of points y at which the usual Jacobian f \prime (y) exists. To simplify
further notation, \partial f(x) of a function f : \BbbR n \rightarrow \BbbR m is always understood as a set
of m \times n matrices (also for m = 1). A locally Lipschitz function f : \BbbR n \rightarrow \BbbR is
subdifferentally regular if for any x \in \BbbR n and d \in \BbbR n the directional derivative exists
and satisfies the equation

lim
\tau \downarrow 0

f(x+ \tau d) - f(x)

\tau 
= max

g\in \partial f(x)
gd.

Whitney \scrC 1-stratification is a partition of the graph of f(\cdot ) into finitely many subsets
(strata), such that within each of them the function is continuously differentiable and
a special compatibility condition for the normals on the common parts of the closures
of the strata is satisfied (see [5] and the references therein).

We recall the following definition.

Definition 2.1 (see [30]). A function f : \BbbR n \rightarrow \BbbR is differentiable in a gener-
alized sense at a point x \in \BbbR n if an open set U \subset \BbbR n containing x and a nonempty,
convex, compact valued, and upper semicontinuous multifunction Gf : U \rightrightarrows \BbbR n exist,
such that for all y \in U and all g \in Gf (y) the following equation is true:

f(y) = f(x) + g(y  - x) + o(x, y, g)

with

lim
y\rightarrow x

sup
g\in Gf (y)

o(x, y, g)

\| y  - x\| 
= 0.

The set Gf (y) is the generalized derivative of f at y. If a function is differentiable in a
generalized sense at every x \in \BbbR n with the same generalized derivative Gf : \BbbR n \rightrightarrows \BbbR n,
we call it simply differentiable in a generalized sense. For functions with values in
\BbbR n, generalized differentiability is understood componentwise.

The class of such functions is contained in the set of locally Lipschitz functions
and contains all semismooth locally Lipschitz functions. The generalized derivative
Gf (\cdot ) is not uniquely defined in Definition 2.1, which is essential for us, but the Clarke
Jacobian \partial f(x) is an inclusion-minimal generalized derivative. The class of generalized
differentiable functions is closed with respect to composition and expectation, which
allows for easy generation of stochastic subgradients in our case. For a full exposition,
see [29, Chaps. 1 and 6].

An essential step in the analysis of stochastic recursive algorithms by the differen-
tial inclusion method is the chain rule on a path (see [10] and the references therein).
For an absolutely continuous function p : [0,\infty ) \rightarrow \BbbR n we denote by

\bullet 
p (\cdot ) its weak

derivative: a measurable function such that

p(t) = p(0) +

\int t

0

\bullet 
p (s) ds \forall t \geq 0.

Definition 2.2. A locally Lipschitz continuous function f : \BbbR n \rightarrow \BbbR m admits a
chain rule on absolutely continuous paths if

(2.1) f(p(T )) - f(p(0)) =

\int T

0

g(p(t))
\bullet 
p (t) dt
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for any absolutely continuous path p : [0,\infty ) \rightarrow \BbbR n, all selections g(\cdot ) \in \partial f(\cdot ), and
all T > 0. It admits a chain rule on continuously differentiable paths if (2.1) is true
for all continuously differentiable p : [0,\infty ) \rightarrow \BbbR n, all selections g(\cdot ) \in \partial f(\cdot ), and all
T > 0.

Formula (2.1) is true for convex functions [7] and, as recently demonstrated in [13],
for subdifferentiably regular locally Lipschitz functions and Whitney \scrC 1-stratifiable
locally Lipschitz functions. In [37] we proved that generalized differentiable functions
admit the chain rule on generalized differentiable paths.

To formulate optimality conditions for our problem, and construct and analyze
our method, we need to introduce several relevant multifunctions. For a point x \in \BbbR n

we consider the generalized Jacobians \partial fm(\cdot ), m = 1, . . . ,M  - 1, and we recursively
define the sets and vectors:
(2.2)
GM (x) = \partial fM (x), vM = fM (x);

Gm(x) = conv
\bigl\{ 
z \in \BbbR n : z = gx + guJ, (gx, gu) \in \partial fm(x, vm+1), J \in Gm+1(x)

\bigr\} 
,

vm = fm(x, vm+1), m =M  - 1, . . . , 1.

By [29, Thm. 1.6], each set Gm(x) is a generalized Jacobian of the function

(2.3) Fm(x) = fm

\Bigl( 
x, fm+1

\bigl( 
x, \cdot \cdot \cdot fM - 1

\bigl( 
x, fM (x)

\bigr) 
\cdot \cdot \cdot 

\bigr) \Bigr) 
, m = 1, . . . ,M,

at x. We also have \partial Fm(x) \subseteq Gm(x) [9]. We call a point x\ast \in X stationary for
problem (1.1) if

(2.4) 0 \in G1(x
\ast ) +NX(x\ast ).

The set of stationary points of problem (1.1) is denoted by X\ast .

3. The single time-scale method with filtering. The method generatesM+
2 random sequences: approximate solutions \{ xk\} k\geq 0 \subset \BbbR n, path-averaged generalized
subgradient estimates \{ zk\} k\geq 0 \subset \BbbR n, and path-averaged inner functions estimates
\{ ukm\} k\geq 0 \subset \BbbR dm , m = 1, . . . ,M , all defined on a certain probability space (\Omega ,\scrF , P ).
We let \scrF k to be the \sigma -algebra generated by \{ x0, . . . , xk, z0, . . . , zk, u0, . . . , uk\} with
each uj = (uj1, . . . , u

j
M ).

The method starts from x0 \in X, z0 \in \BbbR n, u0 \in \BbbR d1\times . . .\BbbR dM and uses parameters
a > 0, b > 0, and \rho > 0. At each iteration k = 0, 1, 2, . . . , we compute

(3.1) yk = argmin
y\in X

\Bigl\{ 
\langle zk, y  - xk\rangle + \rho 

2
\| y  - xk\| 2

\Bigr\} 
,

and, with an \scrF k-measurable stepsize \tau k \in 
\bigl( 
0,min(1, 1/a, 1/b)

\bigr] 
, we set

(3.2) xk+1 = xk + \tau k(y
k  - xk).

Then, we obtain statistical estimates:

\~Jk+1
m =

\bigl[ 
\~Jk+1
mx

\~Jk+1
mu

\bigr] 
of Jk+1

m =
\bigl[ 
Jk+1
mx Jk+1

mu

\bigr] 
\in \partial fm(xk+1, ukm+1), m = 1, . . . ,M  - 1;

\~Jk+1
M of Jk+1

M \in \partial fM (xk+1);

\~hk+1
m of fm(xk+1, ukm+1), m = 1, . . . ,M  - 1;

\~hk+1
M of fM (xk+1).
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2306 ANDRZEJ RUSZCZY\'NSKI

We use the stochastic subgradients \~Jk+1
m to construct a biased estimate of a subgra-

dient of the composite function:

(3.3) \~gk+1
M = \~Jk+1

M , \~gk+1
m = \~Jk+1

mx + \~Jk+1
mu \~gk+1

m+1, m =M  - 1, . . . , 1.

Finally, we update the path averages by backward recursion as follows:

zk+1 = zk + a\tau k

\Bigl( \bigl[ 
\~gk+1
1

\bigr] T  - zk
\Bigr) 
,(3.4)

uk+1
M = ukM + \~J k+1

M (xk+1  - xk) + b\tau k
\bigl( 
\~hk+1
M  - ukM

\bigr) 
,(3.5)

uk+1
m = ukm + \~J k+1

m

\biggl[ 
xk+1  - xk

uk+1
m+1  - ukm+1

\biggr] 
+ b\tau k

\bigl( 
\~hk+1
m  - ukm

\bigr) 
, m =M  - 1, . . . , 1.(3.6)

In fact, we do not need the sequence \{ uk1\} for the operation of the method, but we
include it for uniformity of notation; it will also provide an estimate of the function
value at the optimal solution.

We will analyze convergence of the algorithm (3.1)--(3.6) under the following con-
ditions:

(A1) The set X is convex and compact.
(A2) The functions fm(\cdot , \cdot ), m = 1, . . . ,M  - 1, are Lipschitz continuous and admit

the chain rule (2.1) for every path (x(\cdot ), um+1(\cdot )) with a continuously differ-
entiable x(\cdot ) and absolutely continuous um+1(\cdot ). Moreover, for every x \in X
and um+1 \in \BbbR dm+1 the u-part of the generalized Jacobian, \partial ufm(x, um+1), is
single-valued.

(A3) The function fM (\cdot ) is Lipschitz continuous and admits the chain rule (2.1) for
every continuously differentiable path x(\cdot ).

(A4) A constant C exists, such that \| g\| \leq C(1 + \| v\| ) for all g \in \partial fm(x, v), all
x \in X, and all v \in \BbbR dm+1 , m = 1, . . . ,M  - 1.

(A5) The set \{ F1(x) : x \in X\ast \} does not contain an interval of nonzero length.
(A6) \tau k \in 

\bigl( 
0,min(1, 1/a, 1/b)

\bigr] 
for all k,

\sum \infty 
k=0 \tau k = \infty ,

\sum \infty 
k=0 \BbbE [\tau 2k ] <\infty .

(A7) For all k,
(i) \~hk+1

m = fm(xk+1, ukm+1) + ek+1
m + \delta k+1

m , m = 2, . . . ,M  - 1, and
\~hk+1
M = fM (xk+1) + ek+1

M + \delta k+1
M with limk\rightarrow \infty \delta k+1

m = 0 and
\BbbE 
\bigl\{ 
ek+1
m

\bigm| \bigm| \scrF k

\bigr\} 
= 0, \BbbE 

\bigl\{ 
\| ek+1

m \| 2| \scrF k

\bigr\} 
\leq \sigma 2

e , m = 2, . . . ,M ;

(ii) \~J k+1
m = Jk+1

m + Ek+1
m +\Delta k+1

m with
Jk+1
m \in \partial fm(xk+1, ukm+1), m = 1, . . . ,M  - 1, Jk+1

M \in \partial fM (xk+1),
\BbbE 
\bigl\{ 
Ek+1

m

\bigm| \bigm| \scrF k

\bigr\} 
= 0, \BbbE 

\bigl\{ 
\| Ek+1

m \| 2| \scrF k

\bigr\} 
\leq \sigma 2

E , limk\rightarrow \infty \Delta k+1
m = 0.

(A8) For m = 2, . . . ,M - 1, the error Ek+1
mu is conditionally independent of Ek+1

\ell and

ek+1
\ell , \ell = m+ 1, . . . ,M , given \scrF k.

Remark 3.1. Assumption (A2) is satisfied if

fm(x, um+1) = \varphi m(\psi m(x), um+1), m = 1, . . . ,M  - 1,

where \varphi m(\cdot , \cdot ) is continuously differentiable, and \psi m(\cdot ) is differentiable in a generalized
sense. Indeed, by virtue of [37, Thm. 1], if a path x(t) is continuously differentiable,
the function \psi m(\cdot ) admits the chain rule on this path. This implies that the path
\psi m(x(t)) is absolutely continuous. Consequently, \varphi (\psi m(x(t)), um+1(t)) admits the
chain rule. This is true in both Examples 1.1 (p > 1) and 1.2, with a generalized
differentiable function (operator) \BbbE [H(\cdot )].
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4. Basic properties. As the calculation of generalized subgradients of a com-
position requires the knowledge of the values of the inner functions, we will also need
a more general multifunction \Gamma : \BbbR n\times \BbbR n\times \BbbR d1 \times \cdot \cdot \cdot \times \BbbR dM \rightrightarrows \BbbR n\times \BbbR d1 \times \cdot \cdot \cdot \times \BbbR dM :
(4.1)

\Gamma (x, z, u) =
\Bigl\{ 
(g, v1, . . . , vM ) : \exists Dm \in \partial fm(x, um+1), \exists DM \in \partial fM (x),

vM = DM

\bigl( 
\=y(x, z) - x

\bigr) 
+ b

\bigl( 
fM (x) - uM

\bigr) 
,

vm = Dmx

\bigl( 
\=y(x, z) - x

\bigr) 
+Dmuvm+1 + b

\bigl( 
fm(x, um+1) - um

\bigr) 
, m = 1, . . . ,M  - 1,

gM = DM , gm = Dmx +Dmugm+1, m = 1, . . . ,M  - 1, g = a(gT1  - z)
\Bigr\} 
.

Here,

\=y(x, z) = argmin
y\in X

\Bigl\{ 
\langle z, y  - x\rangle + \rho 

2
\| y  - x\| 2

\Bigr\} 
.

The multifunction \Gamma (\cdot ) is convex and compact valued, due to assumptions (A2) and
(A3).

This multifunction allows us to write the iterations of \{ ukm\} and \{ zk\} in a more
compact way and to establish the boundedness of these sequences. In our analysis we
consider the x- and u-components of \Gamma (\cdot ) separately, by writing g \in \Gamma x(x, z, u) and
vm \in \Gamma mu(x, z, u), but it is essential to keep in mind that they all derive from the
same multifunction (same Dm's).

Lemma 4.1. If conditions (A1) and (A6)--(A8) are satisfied, then for all k the
following relations are true:

(4.2) uk+1
m \in ukm + \tau k\Gamma mu(x

k+1, zk, uk) + \tau k\theta 
k+1
m + \tau k\alpha 

k+1
m ,

where, for some constant C\theta 
m,

(4.3) \BbbE 
\bigl[ 
\theta k+1
m

\bigm| \bigm| \scrF k

\bigr] 
= 0, \BbbE 

\bigl[ 
\| \theta k+1

m \| 2
\bigm| \bigm| \scrF k

\bigr] 
\leq C\theta 

m, k = 0, 1, . . .

and

(4.4) lim
k\rightarrow \infty 

\alpha k+1
m = 0 a.s.

Moreover, the sequence \{ uk\} is bounded a.s.

Proof. For m =M , formula (3.5) and assumption (A7) yield

(4.5) uk+1
M = ukM + \tau kv

k
M + \tau k\theta 

k+1
M + \tau k\alpha 

k+1
M

with

vkM = Jk+1
M

\bigl( 
\=y(xk, zk) - xk

\bigr) 
+ b

\bigl( 
fM (xk+1) - ukM

\bigr) 
,

\theta k+1
M = Ek+1

M

\bigl( 
\=y(xk, zk) - xk

\bigr) 
+ bek+1

M ,

\alpha k+1
M = \Delta k+1

M

\bigl( 
\=y(xk, zk) - xk

\bigr) 
+ b\delta k+1

M .

Due to (A1) and (A7), relations (4.2)--(4.4) are true for coordinate m =M .
To verify the boundedness of \{ ukM\} , we define the quantities

(4.6) \~ukM = ukM +

\infty \sum 
j=k

\tau j\theta 
j+1
M .
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2308 ANDRZEJ RUSZCZY\'NSKI

Owing to (A6) and (4.3), by virtue of the martingale convergence theorem, the series
in the formula above is convergent a.s., and thus \~ukM  - ukM \rightarrow 0 a.s., when k \rightarrow \infty .
We can now use (4.5) to establish the following recursive relation:
(4.7)
\~uk+1
M = (1 - b\tau k)\~ukM+\tau kJ

k+1
M

\bigl( 
\=y(xk, zk) - xk

\bigr) 
+b\tau kfM (xk+1)+\tau k\alpha 

k+1
M +b\tau k(\~u

k
M - ukM ).

By (A1), the sequences \{ Jk
M\} and \{ fM (xk)\} are bounded, and thus

lim sup
k\rightarrow \infty 

\bigm\| \bigm\| ukM\bigm\| \bigm\| = lim sup
k\rightarrow \infty 

\bigm\| \bigm\| \~ukM\bigm\| \bigm\| \leq lim sup
k\rightarrow \infty 

\bigm\| \bigm\| Jk+1
M

\bigl( 
\=y(xk, zk) - xk

\bigr) 
+ bfM (xk+1)

\bigm\| \bigm\| <\infty .

Furthermore, it follows from (4.6) and (4.7) forM that a constant Cu exists, such that
\BbbE 
\bigl[ 
\| ukm\| 2\| 

\bigr] 
\leq Cu.

We now proceed by induction. Suppose the relations (4.2)-(4.4) are true form+1,
the sequence \{ ukm+1\} is bounded a.s., and \BbbE 

\bigl[ 
\| ukm+1\| 2

\bigr] 
is bounded as well. We shall

verify these properties for m. From (3.6) for m and (4.2) for m+ 1 we obtain

uk+1
m = ukm + \tau k \~J k+1

m

\biggl[ 
\=y(xk, zk) - xk

vkm+1 + \theta k+1
m+1 + \alpha k+1

m+1

\biggr] 
+ b\tau k

\bigl( 
\~hk+1
m  - ukm

\bigr) 
.

This can be rewritten as follows:

uk+1
m = ukm + \tau kv

k
m + \tau k\theta 

k+1
M + \tau k\alpha 

k+1
M

with

vkm = Jk+1
m

\biggl[ 
\=y(xk, zk) - xk

vkm+1

\biggr] 
+ b

\bigl( 
fm(xk+1, ukm+1) - ukm

\bigr) 
,(4.8)

\theta k+1
m = Ek+1

m

\biggl[ 
\=y(xk, zk) - xk

vkm+1

\biggr] 
+
\bigl( 
Jk+1
mu + Ek+1

mu

\bigr) 
\theta k+1
m+1 + Ek+1

mu \alpha 
k+1
m+1 + bek+1

m ,(4.9)

\alpha k+1
m = Jk+1

mu \alpha 
k+1
m+1 +\Delta k+1

m

\biggl[ 
\=y(xk, zk) - xk

vkm+1 + \alpha k+1
m+1

\biggr] 
+ b\delta k+1

m .(4.10)

As the sequences \{ xk\} and \{ ukm+1\} are bounded a.s., the Jacobians Jk+1
m are bounded

as well. Moreover, by assumption (A5), \BbbE 
\bigl[ 
\| Jk+1

m \| 2
\bigr] 
is bounded for all k.

To verify (4.3)--(4.4), we only need to analyze the effect of various product terms in
the formulae above. The product Jk+1

mu v
k
m+1 in (4.8) is square integrable due to (A4).

The same is true for fm(xk+1, ukm+1). The conditional expectation \BbbE 
\bigl[ 
\theta k+1
m

\bigm| \bigm| \scrF k

\bigr] 
= 0,

thanks to assumption (A8), because \theta k+1
m+1 depends only on observations of quantities

associated with the functions f\ell (\cdot , \cdot ), \ell = m+1, . . . ,M . Furthermore, \BbbE 
\bigl[ 
\| \theta k+1

m \| 2
\bigm| \bigm| \scrF k

\bigr] 
is bounded, due to (A4), (A7), and (A8). Consequently, we can define a sequence \{ \~ukm\} 
is a way analogous to (4.6) and establish for it a recursive relation of the form (4.7),
with M replaced by m. In the same way as above, we obtain the boundedness of
\{ ukm\} with probability 1, and its square integrability. By induction, the assertion is
true for all m.

We now pass to the analysis of the sequence \{ zk\} . Carrying out (3.3) for exact
subgradients, we would obtain

(4.11) gk+1
M = Jk+1

M , gk+1
m = Jk+1

mx + Jk+1
mu g

k+1
m+1, m =M  - 1, . . . , 1.

Evidently, a
\bigl( \bigl[ 
gk+1
1

\bigr] T  - zk
\bigr) 
\in \Gamma x

\bigl( 
xk+1, zk, uk

\bigr) 
.
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Lemma 4.2. If conditions (A1) and (A6)--(A8) are satisfied, then for all k =
0, 1, . . . and all m = 1, . . . ,M ,

(4.12) \~gk+1
m = gk+1

m + \varkappa k+1
m + \beta k+1

m , m = 1, . . . ,M,

where, for some constant C\varkappa ,

(4.13) \BbbE 
\bigl[ 
\varkappa k+1
m

\bigm| \bigm| \scrF k

\bigr] 
= 0, \BbbE 

\bigl[ 
\| \varkappa k+1

m \| 2
\bigm| \bigm| \scrF k

\bigr] 
\leq C\varkappa , lim

k\rightarrow \infty 
\beta k+1
m = 0.

Proof. Formulae (4.12)--(4.13) are true form =M directly by (A7)(ii). Supposing
that they are true for m+ 1, we verify them for m. We have

(4.14) \~gk+1
m  - gk+1

m = \~Jk+1
mx  - Jk+1

mx + \~Jk+1
mu \~gk+1

m+1  - Jk+1
mu g

k+1
m+1

= \~Jk+1
mx  - Jk+1

mx +
\bigl( 
\~Jk+1
mu  - Jk+1

mu

\bigr) 
\~gk+1
m+1 + Jk+1

mu

\bigl( 
\~gk+1
m+1  - gk+1

m+1

\bigr) 
.

The first term in (4.14), \~Jk+1
mx  - Jk+1

mx , admits decomposition of the form (4.12)--(4.13)
directly by (A7)(ii). The second term, by (A7)(ii), can be represented as follows:\bigl( 

\~Jk+1
mu  - Jk+1

mu

\bigr) 
\~gk+1
m+1 =

\bigl( 
Ek+1

mu +\Delta k+1
mu

\bigr) \bigl( 
gk+1
m+1 + \varkappa k+1

m+1 + \beta k+1
m+1

\bigr) 
.

Owing to (A8),

\BbbE 
\bigl\{ 
Ek+1

mu \varkappa k+1
m+1

\bigm| \bigm| \scrF k

\bigr\} 
= 0, \BbbE 

\bigl\{ \bigm\| \bigm\| Ek+1
mu \varkappa k+1

m+1

\bigm\| \bigm\| 2 \bigm| \bigm| \scrF k

\bigr\} 
\leq C\varkappa \sigma 

2
E .

Together with the boundedness of \{ xk\} and \{ uk\} , this implies that the second term
admits decomposition of the form (4.12)--(4.13). The third term in (4.14), by (4.12),
can be represented as follows:

Jk+1
mu

\bigl( 
\~gk+1
m+1  - gk+1

m+1

\bigr) 
= Jk+1

mu

\bigl( 
\varkappa k+1
m+1 + \beta k+1

m+1

\bigr) 
.

Together with the boundedness of \{ Jk
m\} , this implies that the third term admits

decomposition of the form (4.12)--(4.13) as well. Therefore, (4.12)--(4.13) are true for
all m.

We can now establish the boundedness of the sequence \{ zk\} .
Lemma 4.3. If conditions (A1) and (A6)--(A8) are satisfied, then with probabil-

ity 1 the sequence \{ zk\} is bounded.

Proof. We proceed as in the proof of Lemma 4.1. We define the quantities

\~zk = zk + a

\infty \sum 
j=k

\tau j
\bigl[ 
\varkappa j+1
1

\bigr] T
, k = 0, 1, . . . .

Due to Lemma 4.2, by virtue of the martingale convergence theorem, the series in the
formula above is convergent a.s., and thus \~zk  - zk \rightarrow 0 a.s. when k \rightarrow \infty . We can
now use (3.4) to establish the following recursive relation:

\~zk+1 = (1 - a\tau k)\~z
k + a\tau k

\bigl[ 
gk+1
1

\bigr] T
+ a\tau k(

\bigl[ 
\beta k+1
1

\bigr] T
+ \~zk  - zk).

Therefore,
lim sup
k\rightarrow \infty 

\bigm\| \bigm\| zk\bigm\| \bigm\| = lim sup
k\rightarrow \infty 

\bigm\| \bigm\| \~zk\bigm\| \bigm\| \leq lim sup
k\rightarrow \infty 

\bigm\| \bigm\| gk1\bigm\| \bigm\| <\infty a.s.,

as claimed.
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2310 ANDRZEJ RUSZCZY\'NSKI

5. Convergence analysis. We start from a useful property of the gap function
\eta : X \times \BbbR n \rightarrow ( - \infty , 0],

(5.1) \eta (x, z) = min
y\in X

\Bigl\{ 
\langle z, y  - x\rangle + \rho 

2
\| y  - x\| 2

\Bigr\} 
.

We denote the minimizer in (5.1) by \=y(x, z). Since it is a projection of x - z/\rho on X,

(5.2) \langle z, \=y(x, z) - x\rangle + \rho \| \=y(x, z) - x\| 2 \leq 0.

Moreover, a point x\ast \in X\ast if and only if z\ast \in G1(x
\ast ) exists such that \eta (x\ast , z\ast ) = 0.

We can now state the main result of the paper.

Theorem 5.1. If the assumptions (A1)--(A8) are satisfied, then with probabil-
ity 1 every accumulation point \^x of the sequence \{ xk\} is stationary, limk\rightarrow \infty (ukm  - 
Fm(xk)) = 0 for m = 1, . . . ,M , and the sequence \{ F1(x

k)\} is convergent.

Proof. We consider a specific trajectory of the method and divide the proof into
three standard steps.

Step 1: The limiting dynamical system. We denote by pk = (xk, zk, uk), k =
0, 1, 2, . . . , a realization of the sequence generated by the algorithm. We introduce the
accumulated stepsizes tk =

\sum k - 1
j=0 \tau j , k = 0, 1, 2 . . . , and we construct the interpolated

trajectory

P0(t) = pk +
t - tk
\tau k

(pk+1  - pk), tk \leq t \leq tk+1, k = 0, 1, 2, . . . .

For an increasing sequence of positive numbers \{ sk\} diverging to \infty , we define shifted
trajectories Pk(t) = P0(t + sk). The sequence \{ pk\} is bounded by Lemmas 4.1 and
4.3.

By [27, Thm. 3.2], for any infinite set \scrK of positive integers, there exist an infinite
subset \scrK 1 \subset \scrK and an absolutely continuous function P\infty : [0,+\infty ) \rightarrow X \times \BbbR n \times \BbbR m

such that for any T > 0

lim
k\rightarrow \infty 
k\in \scrK 1

sup
t\in [0,T ]

\bigm\| \bigm\| Pk(t) - P\infty (t)
\bigm\| \bigm\| = 0,

and P\infty (\cdot ) =
\bigl( 
X\infty (\cdot ), Z\infty (\cdot ), U\infty (\cdot )

\bigr) 
is a solution of the system of differential equations

and inclusions corresponding to (3.2), (3.4) with (4.12), and (4.2):

\bullet 
x(t) = \=y

\bigl( 
x(t), z(t)

\bigr) 
 - x(t),(5.3) \bigl( \bullet 

z (t),
\bullet 
u(t)

\bigr) 
\in \Gamma (x(t), z(t), u(t)).(5.4)

Moreover, for any t \geq 0, the triple
\bigl( 
X\infty (t), Z\infty (t), U\infty (t)

\bigr) 
is an accumulation point

of the sequence \{ (xk, zk, uk)\} .
In order to analyze the equilibrium points of the system (5.3)--(5.4), we first study

the dynamics of the functions \Phi m(t) = fm(X(t), Um+1(t)), m = 1, . . . ,M  - 1, and
\Phi M (t) = fM (X(t)). In what follows, the equations and inequalities involving X(t),
Um(t), and \Phi m(t) are understood as holding for almost all t \geq 0.

It follows from (5.3) that the path X(\cdot ) is continuously differentiable. By virtue
of assumption (A3), for any JM (t) \in \partial fM (X(t)),

(5.5)
\bullet 
\Phi M (t) = JM (t)

\bullet 
X(t).
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Assumption (A2) means that for any Jm(t) \in \partial fm(X(t), Um+1(t)),

(5.6)
\bullet 
\Phi m(t) = Jm(t)

\Biggl[ \bullet 
X(t)

\bullet 
Um+1(t)

\Biggr] 
, m = 1, . . . ,M  - 1.

We need to understand the dynamics of Um(\cdot ). From (5.4) and (4.1) we deduce that

(5.7)
\bullet 
UM (t) = \^JM (t)

\bullet 
X(t) + b[\Phi M (t) - UM (t)],

with some \^JM (t) \in \partial fM (X(t)), and

\bullet 
Um(t) = \^Jm(t)

\Biggl[ \bullet 
X(t)

\bullet 
Um+1(t)

\Biggr] 
+ b[\Phi m(t) - Um(t)], m = 1, . . . ,M  - 1,

with some \^Jm(t) \in \partial fm(X(t), Um+1(t)). Therefore, using Jm(\cdot ) = \^Jm(\cdot ), for m =
1, . . . ,M , in (5.6), we obtain

(5.8)
\bullet 
Um(t) =

\bullet 
\Phi m(t) + b[\Phi m(t) - Um(t)].

We can verify by induction that the solution of (5.6)--(5.8) has the form

(5.9)
\bullet 
\Phi m(t) = \^gm(t)

\bullet 
X(t) + b

M - 1\sum 
\ell =m

\ell \prod 
q=m

\^Jqu(t)
\bigl[ 
\Phi \ell +1(t) - U\ell +1(t)

\bigr] 
, m = 1, . . . ,M,

with \^gm(t) defined by the recursive procedure:

\^gM (t) = \^JM (t), \^gm(t) = \^Jmx(t) + \^Jmu(t)\^gm+1(t), m =M  - 1, . . . , 1,

and \^Jmx and \^Jmu denoting the x-part and the u-part of \^Jm, respectively. These
observations will help us study the stability of the system.

Step 2: Descent along a path. We use the Lyapunov function
(5.10)

W (x, z, u) = af1(x, u2) - \eta (x, z) +

M - 1\sum 
m=2

\gamma m
\bigm\| \bigm\| fm(x, um+1) - um

\bigm\| \bigm\| + \gamma M
\bigm\| \bigm\| fM (x) - uM

\bigm\| \bigm\| 
with the coefficients \gamma m > 0 to be specified later. Directly from (5.9) for m = 1 we
obtain

(5.11) f1(X(T ), U2(T )) - f1(X(0), U2(0))

=

\int T

0

\^g1(t)
\bullet 
X(t) dt+ b

M - 1\sum 
\ell =1

\int T

0

\ell \prod 
q=1

\^Jqu(t)
\bigl[ 
\Phi \ell +1(t) - U\ell +1(t)

\bigr] 
dt.

We now estimate the change of \eta (X(\cdot ), Z(\cdot )) from 0 to T . Since \=y(x, z) is unique,
the function \eta (\cdot , \cdot ) is continuously differentiable. Therefore, the chain formula holds:

\eta (X(T ), Z(T )) - \eta (X(0), Z(0))

=

\int T

0

\bigl\langle 
\nabla x\eta (X(t), Z(t)),

\bullet 
X(t)

\bigr\rangle 
dt+

\int T

0

\bigl\langle 
\nabla z\eta (X(t), Z(t)),

\bullet 
Z(t)

\bigr\rangle 
dt.
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From (5.4) and (4.11), we obtain (for almost all t \geq 0)

\bullet 
Z(t) = a

\bigl( 
\^gT1 (t) - Z(t)

\bigr) 
with the same \^g1(\cdot ) as in (5.9) for m = 1 and in (5.11).

Substituting \nabla x\eta (x, z) =  - z + \rho (x - \=y(x, z)), \nabla z\eta (x, z) = \=y(x, z) - x, and using
(5.2), we obtain

\eta (X(T ), Z(T )) - \eta (X(0), Z(0))

=

\int T

0

\bigl\langle 
 - Z(t) + \rho (X(t) - \=y(X(t), Z(t))) , \=y(X(t), Z(t)) - X(t)

\bigr\rangle 
dt

+ a

\int T

0

\bigl\langle 
\=y(X(t), Z(t)) - X(t) , \^gT1 (t) - Z(t)

\bigr\rangle 
dt

\geq a

\int T

0

\bigl\langle 
\=y(X(t), Z(t)) - X(t) , \^gT1 (t) - Z(t)

\bigr\rangle 
dt

\geq a

\int T

0

\^g1(t)
\bigl( 
\=y(X(t), Z(t)) - X(t)

\bigr) 
dt+ a\rho 

\int T

0

\bigm\| \bigm\| \=y(X(t), Z(t)) - X(t)
\bigm\| \bigm\| 2 dt.

With a view at (5.3), we conclude that

(5.12) \eta (X(T ), Z(T )) - \eta (X(0), Z(0)) \geq a

\int T

0

\^g1(t)
\bullet 
X(t) dt+ a\rho 

\int T

0

\bigm\| \bigm\| \bullet 
X(t)

\bigm\| \bigm\| 2 dt.
We now estimate the increment of

\bigm\| \bigm\| \Phi m(\cdot )  - Um(\cdot )
\bigm\| \bigm\| from 0 to T . As \| \cdot \| is

convex and \Phi m(\cdot ) and Um(\cdot ) are paths, the chain rule applies as well: for any \lambda m(t) \in 
\partial \| \Phi m(t) - Um(t)\| we have

\bigm\| \bigm\| \Phi m(T ) - Um(T )
\bigm\| \bigm\|  - 

\bigm\| \bigm\| \Phi m(0) - Um(0)
\bigm\| \bigm\| =

\int T

0

\bigl\langle 
\lambda m(t),

\bullet 
\Phi m(t) - 

\bullet 
Um(t)

\bigr\rangle 
dt.

By (5.8),
\bullet 
\Phi m(t) - 

\bullet 
Um(t) = b

\bigl[ 
Um(t) - \Phi m(t)

\bigr] 
for almost all t \geq 0. Furthermore,

\lambda m(t) =
\Phi m(t) - Um(t)

\| \Phi m(t) - Um(t)\| 
if \Phi m(t) \not = Um(t).

Therefore

(5.13)
\bigm\| \bigm\| \Phi m(T ) - Um(T )

\bigm\| \bigm\|  - 
\bigm\| \bigm\| \Phi m(0) - Um(0)

\bigm\| \bigm\| =  - b
\int T

0

\bigm\| \bigm\| \Phi m(t) - Um(t)
\bigm\| \bigm\| dt.

We can now combine (5.11), (5.12), and (5.13) to estimate the change of the
Lyapunov function (5.10):

W
\bigl( 
X(T ), Z(T ), U(T )

\bigr) 
 - W

\bigl( 
X(0), Z(0), U(0)

\bigr) 
\leq ab

M - 1\sum 
m=1

\int T

0

m\prod 
q=1

\^Jqu(t)
\bigl[ 
\Phi m+1(t) - Um+1(t)

\bigr] 
dt

 - a\rho 

\int T

0

\bigm\| \bigm\| \bullet 
X(t)

\bigm\| \bigm\| 2 dt - b

M\sum 
m=2

\gamma m

\int T

0

\bigm\| \bigm\| \Phi m(t) - Um(t)
\bigm\| \bigm\| dt.
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Because the paths X(t) and U(\cdot ) are bounded a.s. and the functions fm are locally
Lipschitz, a (random) constant L exists, such that

\bigm\| \bigm\| Jmu(t)
\bigm\| \bigm\| \leq L form = 1, . . . ,M - 1.

The last estimate entails

(5.14) W
\bigl( 
X(T ), Z(T ), U(T )

\bigr) 
 - W

\bigl( 
X(0), Z(0), U(0)

\bigr) 
\leq  - a\rho 

\int T

0

\bigm\| \bigm\| \bullet 
X(t)

\bigm\| \bigm\| 2 dt - b

M\sum 
m=2

(\gamma m  - aLm - 1)

\int T

0

\| \Phi m(t) - Um(t)\| dt.

By choosing \gamma m > aLm - 1 for all m, we ensure that W (\cdot ) has the descent property to
be used in our stability analysis at Step 3. The fact that L (and thus \gamma m) may be
different for different paths is irrelevant, because our analysis is pathwise.

Step 3: Analysis of the limit points. Define the set

\scrS =
\bigl\{ 
(x, z, u) \in X\ast \times \BbbR n \times \BbbR m : \eta (x, z) = 0,

um = fm(x, um+1), m = 1, . . . ,M  - 1, uM = fM (x)
\bigr\} 
.

Suppose (\=x, \=z, \=u) is an accumulation point of the sequence \{ (xk, zk, uk)\} . If \eta (\=x, \=z) < 0
or \=um \not = fm(\=x, \=um+1), then every solution (X(t), Z(t), U(t)) of the system (5.3)--(5.4),

starting from (\=x, \=z, \=u), has \| 
\bullet 
X(0)\| > 0 or \| \Phi m(0)  - Um(0)\| > 0. Using (5.14) and

arguing as in [14, Thm. 3.20] or [27, Thm. 3.5], we obtain a contradiction. Therefore,
we must have \eta (\=x, \=z) = 0 and \=um = fm(\=x, \=um+1), m = 1, . . . ,M - 1, and \=uM = fM (\=x).
Suppose \=x \not \in X\ast . Then

(5.15) dist
\bigl( 
0, G1(\=x) +NX(\=x)

\bigr) 
> 0.

Suppose the system (5.3)--(5.4) starts from (\=x, \=z, \=u) and X(t) = \=x for all t \geq 0. From
(5.4) and (4.1), in view of the equations \=y(\=x, \=z) = \=x and \=uM = fM (\=x), we obtain
UM (t) = fM (\=x) for all t \geq 0. Proceeding by backward induction, we conclude that
Um(t) = fm(\=x, \=um+1) for all t \geq 0 and all m = 1, . . . ,M  - 1. The inclusion (5.4), in
view of (2.2), simplifies to

\bullet 
z (t) \in a

\bigl( 
G1(\=x) - z(t)

\bigr) 
.

For the convex Lyapunov function V (z) = dist
\bigl( 
z,G1(\=x)

\bigr) 
, we apply the classical chain

formula [7] on the path Z(\cdot ):

V ((Z(T )) - V (Z(0)) =

\int T

0

\bigl\langle 
\partial V (Z(t)),

\bullet 
Z(t)

\bigr\rangle 
dt.

For Z(t) /\in G1(\=x), we have

\partial V (Z(t)) =
Z(t) - ProjG1(\=x)(Z(t))

\| Z(t) - ProjG1(\=x)(Z(t))\| 

and
\bullet 
Z(t) = a(d(t) - Z(t)) with some d(t) \in G1(\=x). Therefore,\bigl\langle 

\partial V (Z(t)),
\bullet 
Z(t)

\bigr\rangle 
\leq  - a\| Z(t) - ProjG1(\=x)(Z(t))\| =  - aV (Z(t)).

It follows that

V ((Z(T )) - V (Z(0)) \leq  - a
\int T

0

V (Z(t)) dt,
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2314 ANDRZEJ RUSZCZY\'NSKI

and thus

(5.16) lim
t\rightarrow \infty 

dist
\bigl( 
Z(t), G1(\=x)

\bigr) 
= 0.

It follows from (5.15)--(5.16) that T > 0 exists, such that  - Z(T ) \not \in NX(\=x), which

yields
\bullet 
X(T ) \not = 0. Consequently, the path X(t) starting from \=x cannot be constant

(our supposition made right after (5.15) cannot be true). But if it is not constant, then

again T > 0 exists, such that
\bullet 
X(T ) \not = 0. By Step 1, the triple (X(T ), Z(T ), U(T ))

would have to be an accumulation point of the sequence \{ (xk, zk, uk)\} , a case al-
ready excluded. We conclude that every accumulation point (\=x, \=z, \=u) of the sequence
\{ (xk, zk, uk)\} is in \scrS . The convergence of the sequence

\bigl\{ 
W (xk, zk, uk)

\bigr\} 
then follows

in the same way as [14, Thm. 3.20] or [27, Thm. 3.5]. As \eta (xk, zk) \rightarrow 0, the con-
vergence of \{ f1(xk, uk2)\} follows as well. Since fm(xk)  - ukm \rightarrow 0, m = 2, . . . ,M , the
sequence \{ F1(x

k)\} is convergent as well.

Adapting the proof of Lemma 4.3, we obtain the convergence of path-averaged
stochastic subgradients.

Corollary 5.2. If the sequence \{ xk\} is convergent to a single point \=x, then every
accumulation point of \{ zk\} is an element of the generalized gradient GF1(\=x) satisfying
the optimality condition at \=x.

In fact, if we introduced path-averaging of the vectors \~gkm used in (3.3), in a way
similar to (3.4),

zk+1
m = zkm + a\tau k

\Bigl( \bigl[ 
\~gk+1
m

\bigr] T  - zkm

\Bigr) 
, m = 1, . . . ,M,

we could extend Corollary 5.2 to the convergence of each \{ zkm\} to an element of the
generalized gradient GFm

(\=x).

6. Fixed stepsize performance. Although our main interest is in nonsmooth
problems, we present here performance guarantees after finitely many steps with a con-
stant stepsize, when the functions are continuously differentiable. We make stronger
assumptions about the functions fm in problem (1.1) and about the estimation bias
in (A6):
(A9) The functions fm(\cdot , \cdot ), m = 1, . . . ,M  - 1, and fM (\cdot ) are continuously differen-

tiable with Lipschitz continuous derivatives.
(A10) A constant C\delta > 0 exists such that max

\bigl( 
\| \delta k+1

m \| , \| \Delta k+1
m \| 

\bigr) 
\leq C\delta \tau k with prob-

ability 1 for all k and m = 1, . . . ,M .
(A11) A constant L exists, such that \| Jk+1

mu \| \leq L with probability 1 for all k =
0, 1, 2 . . . .

In (A10) and (A11) we need C\delta and L to be the same for all paths, because we
need one Lyapunov function for all paths. Assumptions (A9)--(A11) imply (A2)--(A4).
We also do not need assumptions (A5) and (A6), since we are interested in finitely
many iterations.

Our reasoning is similar to the line of argument in [20, sec. 3], albeit with the
multilevel nested structure. We assume that we carry out a finite number N of
iterations with a constant stepsize \tau > 0. A similar analysis of the rate of convergence
of a closely related method has been recently provided in [2, sec. 3], under strong
assumptions about fourth moments of the errors.

In our considerations below, C is a sufficiently large deterministic constant de-
pendent on various constants featured in the problem definition, such as the Lipschitz
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constants, the variances of the errors, etc., but not dependent on the number of iter-
ations N , algorithm parameters, or the stepsize \tau .

We shall use a different Lyapunov function than (5.10), namely,
(6.1)

\scrW (x, z, u) = aF1(x) - \eta (x, z) +

M - 1\sum 
m=2

\gamma m
\bigm\| \bigm\| fm(x, um+1) - um

\bigm\| \bigm\| 2 + \gamma M
\bigm\| \bigm\| fM (x) - uM

\bigm\| \bigm\| 2.
It is a direct generalization to the multilevel case of the function used in [20]. The
reason for reverting to this function is that a smooth function is more amenable for
the fixed step analysis of the method when applied to a smooth problem.

We shall need the following condition about the function (6.1).
(A12) Constants \gamma min

m exist, for m = 2, . . . ,M , such that if all \gamma m \geq \gamma min
m , then the

function (6.1) is bounded from below on X \times \BbbR n \times \BbbR d2 \times \cdot \cdot \cdot \times \BbbR dM .
By using assumptions (A7)--(A10) and adapting to discrete time our analysis from

Step 2 of the proof of Theorem 5.1, we estimate the three terms of the difference

\BbbE 
\bigl[ 
\scrW (xk+1, zk+1, uk+1)

\bigm| \bigm| \scrF k

\bigr] 
 - \scrW (xk, zk, uk)

= a
\bigl( 
\BbbE 
\bigl[ 
F1(x

k+1)
\bigm| \bigm| \scrF k

\bigr] 
 - F1(x

k)
\bigr) 
 - 
\bigl( 
\BbbE 
\bigl[ 
\eta (xk+1, zk+1)

\bigm| \bigm| \scrF k

\bigr] 
 - \eta (xk, zk)

\bigr) 
+

M - 1\sum 
m=2

\gamma m
\bigl( 
\BbbE 
\bigl[ 
\| fm(xk+1, uk+1

m+1) - uk+1
m \| 2

\bigm| \bigm| \scrF k

\bigr] 
 - \| fm(xk, ukm+1) - ukm\| 2

\bigr) 
+ \gamma M

\bigl( 
\BbbE 
\bigl[ 
\| fM (xk+1) - uk+1

M \| 2
\bigm| \bigm| \scrF k

\bigr] 
 - \| fM (xk) - ukM\| 2

\bigr) 
.

Denote dk = yk  - xk. The decrease of the first part of the Lyapunov function can
be estimated as follows (with an adjustment of the constant C):

(6.2)

\BbbE 
\bigl[ 
F1(x

k+1)
\bigm| \bigm| \scrF k

\bigr] 
 - F1(x

k)

\leq \tau \^gk+1
1 dk + \tau \| \^gk+1

1  - \^gk1\| \| dk\| + \tau \| G1(x
k) - \^gk1\| \| dk\| + C\tau 2

\leq \tau \^gk+1
1 dk + \tau \| G1(x

k) - \^gk1\| \| dk\| + Cnew\tau 2.

Recall that for continuously differentiable functions

\^gkM = f \prime M (xk), \^gkm = f \prime mx(x
k, ukm+1) + f \prime mu(x

k, ukm+1)\^g
k
m+1, m =M  - 1, . . . , 1,

and

Gm(xk) = f \prime M (xk),

Gk
m = f \prime mx

\bigl( 
xk, Fm+1(x

k)
\bigr) 
+ f \prime mu

\bigl( 
xk, Fm+1(x

k)
\bigr) 
Gk

m+1, m =M  - 1, . . . , 1.

Let LG be an upper bound on the Lipschitz constants of all Jacobians featured in the
formulas above. Proceeding by backward induction in m, we can verify that

\bigm\| \bigm\| G1(x
k) - \^gk1

\bigm\| \bigm\| \leq 
M - 1\sum 
m=1

Lm
G

\bigm\| \bigm\| Fm+1(x
k) - ukm+1

\bigm\| \bigm\| .
Furthermore, for m = 2, . . . ,M  - 1, in a similar way we obtain\bigm\| \bigm\| Fm(xk) - ukm

\bigm\| \bigm\| \leq 
\bigm\| \bigm\| fm(xk, ukm+1) - ukm

\bigm\| \bigm\| + L
\bigm\| \bigm\| Fm+1(x

k) - ukm+1

\bigm\| \bigm\| 
\leq 

M\sum 
q=m

Lq - m
\bigm\| \bigm\| fq(xk, ukq+1) - ukq

\bigm\| \bigm\| .
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2316 ANDRZEJ RUSZCZY\'NSKI

Therefore,

\bigm\| \bigm\| G1(x
k) - \^gk1

\bigm\| \bigm\| \leq 
M\sum 

m=2

Lm
G

M\sum 
q=m

Lq - m
\bigm\| \bigm\| fq(xk, ukq+1) - ukq

\bigm\| \bigm\| 
=

M\sum 
q=2

q\sum 
m=2

Lm
GL

q - m
\bigm\| \bigm\| fq(xk, ukq+1) - ukq

\bigm\| \bigm\| .
Substitution into (6.2) yields (with Kq =

\sum q
m=2 L

m
GL

q - m)

(6.3) \BbbE 
\bigl[ 
F1(x

k+1)
\bigm| \bigm| \scrF k

\bigr] 
 - F1(x

k) \leq \tau \^gk+1
1 dk+\tau \| dk\| 

M\sum 
q=2

Kq

\bigm\| \bigm\| fq(xk, ukq+1) - ukq
\bigm\| \bigm\| +C\tau 2.

Due to (A6) and the continuous differentiability of the function \eta (\cdot , \cdot ), the change
of the second part of the Lyapunov function can be estimated as follows (the inequal-
ities are derived from (5.2), as in (5.12)):

(6.4) \BbbE 
\bigl[ 
\eta (xk+1, zk+1) - \eta (xk, zk)

\bigr] 
\geq a\tau \^gk+1

1 dk + a\rho \tau 
\bigm\| \bigm\| dk\bigm\| \bigm\| 2  - C\tau 2.

We remark here that the Lipschitz constant of the gradient of \eta has a uniform bound
for all \rho > 0, and thus we may assume that C is independent of \rho . Finally, we analyze
the decrease of the third part, associated with the ``tracking errors"" fm(xk, ukm+1) - 
ukm, for m = 1, . . . ,M and k = 0, 1, . . . , N . When m =M , the argument um+1 is not
present, but we keep uniform notation for brevity.

Lemma 6.1. A constant C exists, such that if the method carries out N iterations
with a constant stepsize \tau \in 

\bigl( 
0, 1/(4b)

\bigr) 
, then for m = 1, 2 . . . ,M ,

(6.5) \BbbE 
\bigl[ 
\| fm(xN , uNm+1) - uNm\| 2

\bigr] 
 - \| fm(x0, u0m+1) - u0m\| 2

\leq  - 1

2
b\tau 

N - 1\sum 
k=0

\BbbE 
\bigl[ 
\| fm(xk, ukm+1) - ukm\| 2

\bigr] 
+ CN\tau 2.

Proof. First, we consider the term associated with fM (\cdot ) to expose our ideas.
Expanding the square, we obtain

(6.6)
\bigm\| \bigm\| fM (xk+1) - uk+1

M

\bigm\| \bigm\| 2
=

\bigm\| \bigm\| fM (xk) - ukM
\bigm\| \bigm\| 2 + 2

\bigl\langle 
fM (xk) - ukM , fM (xk+1) - uk+1

M  - fM (xk) + ukM
\bigr\rangle 

+
\bigm\| \bigm\| fM (xk+1) - uk+1

M  - fM (xk) + ukM
\bigm\| \bigm\| 2.

Due to assumption (A9),

fM (xk+1) - fM (xk) = \tau Jk+1
M dk + rk+1

M

with \BbbE 
\bigl[ 
\| rk+1

M \| 
\bigm| \bigm| \scrF k

\bigr] 
\leq C\tau 2. By (3.5),

uk+1
M  - ukM = \tau \~J k+1dk + b\tau 

\bigl( 
\~hk+1
M  - ukM

\bigr) 
= \tau Jk+1dk + \tau Ek+1

M dk + \tau \Delta k+1
M dk + b\tau (fM (xk+1) - uk) + b\tau ek+1

M + b\tau \delta k+1
M .
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Therefore

fM (xk+1) - fM (xk) - uk+1
M + ukM

=  - b\tau (fM (xk+1) - ukM ) - \tau Ek+1
M dk  - \tau \Delta k+1dk  - b\tau ek+1

h  - b\tau \delta k+1
h + rk+1

M

=  - b\tau (fM (xk) - ukM ) - \tau Ek+1
M dk  - b\tau ek+1

h + rk+1,

where \| rk+1\| \leq C\tau 2. Then

\BbbE 
\bigl[ \bigm\| \bigm\| fM (xk+1) - fM (xk) - uk+1

M + ukM
\bigm\| \bigm\| 2 \bigm| \bigm| \scrF k

\bigr] 
\leq 2b\tau 2

\bigm\| \bigm\| fM (xk) - ukM
\bigm\| \bigm\| 2 + 2C\tau 2.

We can now substitute the last two expressions into the scalar product in (6.6) and
take the conditional expectation of both sides with respect to \scrF k:

\BbbE 
\bigl[ 
\| fM (xk+1) - uk+1

M \| 2
\bigm| \bigm| \scrF k

\bigr] 
\leq (1 - b\tau + 2b2\tau 2)\| fM (xk) - ukM\| 2 + C\tau 2.

Adding these inequalities for k = 0, 1, . . . , N  - 1 and taking the expected value of
both sides, we get

\BbbE 
\bigl[ 
\| fM (xN ) - uNM\| 2

\bigr] 
 - \| fM (x0) - u0M\| 2 \leq  - b\tau (1 - 2b\tau )

N\sum 
k=0

\BbbE 
\bigl[ 
\| fM (xk) - ukM\| 2

\bigr] 
+CN\tau 2.

With \tau < 1/(4b), we obtain (6.5) for m =M .
For 1 \leq m < M the analysis follows the same steps. The expansion (6.6) is

similar:\bigm\| \bigm\| fm(xk+1, uk+1
m+1) - uk+1

M

\bigm\| \bigm\| 2 =
\bigm\| \bigm\| fm(xk, ukm+1) - ukm

\bigm\| \bigm\| 2
+ 2

\bigl\langle 
fm(xk, ukm+1) - ukm, fm(xk+1, uk+1

m+1) - uk+1
m  - fm(xk, ukm+1) + ukm

\bigr\rangle 
+
\bigm\| \bigm\| fm(xk+1, uk+1

m+1) - uk+1
m  - fm(xk, ukm+1) + ukm

\bigm\| \bigm\| 2.
The only difference is the presence of the arguments ukm+1 and uk+1

m+1. Due to assump-
tion (A9),

fm(xk+1, uk+1
m+1) - fm(xk, ukm+1) = \tau Jk+1

mx d
k + Jk+1

mu (uk+1
m+1  - ukm+1) + rk+1

m .

The additional term, Jk+1
mu (uk+1

m+1 - ukm+1), is compensated (with stochastic errors) by
the corresponding term in the update of um by (3.6):

uk+1
m  - ukm = \tau \~J k+1

mx dk + \~J k+1
mu (uk+1

m+1  - ukm+1) + b\tau 
\bigl( 
\~hk+1
m  - ukm

\bigr) 
.

The remaining steps are identical and lead to the estimate (6.5) for m < M .

Integrating (6.3), (6.4), and (6.5), we obtain the following inequality (we write
\Phi k
m for fm(xk, ukm+1) and \Phi 

k
M for fM (xk)):

\BbbE 
\bigl[ 
\scrW (xk+1, zk+1, uk+1)

\bigm| \bigm| \scrF k

\bigr] 
 - \scrW (xk, zk, uk) \leq  - a\rho \tau \| dk\| 2

+ a\tau \| dk\| 
M\sum 

m=2

Km

\bigm\| \bigm\| \Phi k
m  - ukm

\bigm\| \bigm\|  - 1

2
b\tau 

M\sum 
m=2

\gamma m\| \Phi k
m  - ukm\| 2 + C\tau 2

\leq  - \tau 
M\sum 

m=2

\biggl( 
a\rho 

M  - 1
\| dk\| 2  - aKm\| dk\| \| \Phi k

m  - ukm\| + b\gamma m
2

\| \Phi k
m  - ukm\| 2

\biggr) 
+ C\tau 2,
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where C is a constant independent of \tau and \gamma m. If

\gamma m >
aK2

m(M  - 1)

2b\rho 
, m = 2, . . . ,M,

then the quadratic forms in the parentheses are positive definite. Then \delta > 0 exists,
such that

\BbbE 
\bigl[ 
\scrW (xk+1, zk+1, uk+1)

\bigm| \bigm| \scrF k

\bigr] 
 - \scrW (xk, zk, uk) \leq  - \delta \tau \| dk\| 2 - \delta \tau 

M\sum 
m=2

\| \Phi k
m - ukm\| 2+C\tau 2.

Taking the expected value of both sides and summing for k from 0 to N  - 1, we get

\BbbE 
\bigl[ 
\scrW (xN , zN , uN )

\bigr] 
 - \scrW (x0, z0, u0)

\leq \BbbE 
\biggl[ 
 - \delta \tau 

N - 1\sum 
k=0

\| yk  - xk\| 2  - \delta \tau 
M\sum 

m=2

N - 1\sum 
k=0

\| \Phi k
m  - ukm\| 2

\biggr] 
+ CN\tau 2.

Let \scrW min be the minimum value of \scrW (\cdot , \cdot , \cdot ), existing by virtue of (A12). Dividing
the last inequality by \tau \delta N and simplifying, we obtain

1

N

N - 1\sum 
k=0

\BbbE 
\biggl[ 
\| yk - xk\| 2+

M\sum 
m=2

\| fm(xk, ukm+1) - ukm\| 2
\biggr] 
\leq 1

\tau \delta N

\bigl( 
\scrW (x0, z0, u0) - \scrW min

\bigr) 
+
C\tau 

\delta 
.

With \tau \sim N - 1/2,

1

N

N - 1\sum 
k=0

\BbbE 
\biggl[ 
\| yk  - xk\| 2 +

M\sum 
m=2

\| fm(xk, ukm+1) - ukm\| 2
\biggr] 
\leq Const\surd 

N
.

Therefore, at a random iterationR, drawn from the uniform distribution in \{ 0, 1, . . . , N - 
1\} , independently from other random quantities in the method, we have

(6.7) \BbbE 
\biggl[ 
\| yR  - xR\| 2 +

M\sum 
m=2

\| fm(xR, uRm+1) - uRm\| 2
\biggr] 
\leq Const\surd 

N
.

No conditions on the method's parameters are required for this result, as opposed to
our earlier analysis of the two-level case in [20]. This improvement is due to the linear
correction terms in (3.5)--(3.6), which account for the movement of x.

It also follows from (6.5) that we can write an estimate similar to (6.7) for each
individual tracking error. For each m = 1, . . . ,M ,

(6.8) \BbbE 
\bigl[ 
\| fm(xR, uRm+1) - uRm\| 2

\bigr] 
\leq 2

b
\surd 
N

\| fm(x0, u0m+1) - u0m\| 2 + C\surd 
N
.

If we consider the quantities on the left-hand side of (6.7) and (6.8) as measures
of nonoptimality and tracking errors of the triple (xR, zR, uR), we can deduce that
\scrO (1/\varepsilon 2) iterations are needed to achieve an error of size \varepsilon . The reference [20, sec.
2] provides a thorough discussion of similar optimality measures used for constrained
stochastic optimization.
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