
C1 ACTIONS ON MANIFOLDS BY LATTICES IN LIE GROUPS

AARON BROWN, DANIJELA DAMJANOVIĆ, AND ZHIYUAN ZHANG

ABSTRACT. In this paper we study Zimmer’s conjecture for C1 actions of lattice
subgroup of a higher-rank simple Lie group with finite center on compact mani-
folds. We show that when the rank of an uniform lattice is larger than the dimen-
sion of the manifold, then the action factors through a finite group. For lattices in
SL(n,R), the dimensional bound is sharp.

1. INTRODUCTION

Zimmer’s conjecture for actions of higher-rank lattice on compact manifolds
says that if the group is large with respect to the dimension of the manifold, then
any such action should factor through a finite group. This conjecture is motivated
by a long history of research, including the local rigidity results of Selberg [40]
and Weil [43] on linear representation theory, the global rigidity results of Mostow
[36], the superrigidity theorem of Margulis [33], and the cocycle superrigidity the-
orem of Zimmer [46]. Since its introduction, Zimmer’s conjecture has attracted
considerable interests.

For C0 actions on the circle, the above conjecture is confirmed by Lifschitz, Witte
Morris [29, 44] for many non-unifrorm lattices. For C1 actions on the circle, Burger-
Monod [8] and Ghys [19] showed similar results for many other cases, including
all lattices in higher rank simple Lie groups. For C1 area preserving actions on
closed orientable surface with genus at least 2, Zimmer’s conjecture is proved by
Polterovich [38] for non-uniform lattices. His result is then generalised by Franks-
Handel in [18] to any C1 action which preserves a Borel measure. For analytic
actions, Ghys [19] studied the case where the manifold is a circle; Farb-Shalen [14]
studied this conjecture under additional assumptions on the group and the mani-
fold. For a very detailed survey on other earlier results on Zimmer’s program, we
refer the readers to [16].

In recent breakthrough [2, 3], Brown-Fisher-Hurtado proved the C2 version1 of
Zimmer’s conjecture for all co-compact lattices 2 in real split simple Lie group and
SL(n,Z) using some previous progress made by Brown-Rodriguez Hertz-Wang
in [5, 6] and Lafforgue, de Laat and de la Salle in [23, 11, 12]. We refer the reader
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to Fisher’s paper [15] for an excellent survey of the history and recent progress on
Zimmer’s conjecture. The purpose of the present paper is to extend the results in
[2, 3, 4] to C1 actions, when the rank of the acting group is sufficiently large.

Compared to the previous results, there are 2 new ideas here. First is that while
many results in Non-uniform Hyperbolic Theory fail or remain unknown in the C1

setting, some of them continue to hold under the presence of suitable continuous
splitting. In our case, we can apply a variant of Avila-Viana’s invariance principle
to an element in the kernel of all Lyapunov functionals to obtain the extra invari-
ance needed to conclude the proof. For C2 action, the idea to use action by an
element in the kernel of all fiberwise exponents was originally due to Sebastian
Hurtado and appears in the Bourbaki notes of Cantat [9]. The second one is that
we use the information extracted by using strong property (T) to control the Lp

norms of the derivatives for sufficiently large p. This allows us to show that C1

action is uniformly bounded under certain Hölder norm. Then we use the resolu-
tion of the Hilbert-Smith conjecture for sufficiently Hölder actions to conclude the
proof.

2. STATEMENT OF THE MAIN RESULTS

We first recall the statement of Zimmer’s conjecture.
For a real semisimple Lie group G with Lie algebra g, let
• v(G) denote the minimal codimension of proper parabolic subalgebras of

g;
• d(G) denote the minimal codimension of proper subalgebras of the com-

pact real form of gC;
• n(G) denote the minimal dimension of nontrivial real representations of g.

It is proved in [41] that v(G) < n(G).3

CONJECTURE 1. Let G be a connected real semisimple Lie group with finite center and
without almost-simple factors of real rank less than 2. Let Γ < G be a lattice, M be a
compact manifold, α : Γ→ Diff(M) be an action.

(1) If dim(M) < v(G), then α preserves a Riemannian metric.
(2) If dim(M) < min{v(G), d(G)}, then α(Γ) is finite.
(3) If dim(M) < n(G) and α preserves a volume density, then α preserves a Rie-

mannian metric.
(4) If dim(M) < min{n(G), d(G)} and α preserves a volume density, then α(Γ) is

finite.

The main result of this paper is the following generalisation of the results in
[2, 4] to C1 regularity.

THEOREM 1. Let M be a compact manifold. Let G be an almost simple real Lie group
with finite center and with real-rank at least 2, and let Γ < G be a lattice. Let α :
Γ → Diff1(M) be a group homomorphism. Assume that Γ is an uniform lattice or Γ =
SL(n,Z), and assume either that dim M < min(rankR(G), d(G)), or that dim M ≤
min(rankR(G), d(G)− 1) and α(Γ) ⊂ Diff1(M, vol). Then α has finite image.

Compared to the main result in [2, 4] for almost-simple real Lie groups, in The-
orem 1 we have posed a different requirement on the dimension of the manifold.

3We thank Jinpeng An for this remark.
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Indeed, we can deduce from [2, Theorem 2.7] that for a group homomorphism
α : Γ→ Diff2(M), the conclusion of Theorem 1 is true if rankRG is replaced by the
minimal resonant codimension r(G) (see [2, Definition 2.1]). We remark that under
the conditions of Theorem 1, we always have that

r(G) ≥ rankRG.

COROLLARY A. Let M be a compact manifold. Let Γ < G be a lattice. Let α : Γ →
Diff1(M) (resp. Diff1(M, vol)) be a group homomorphism. Assume that Γ is an uniform
lattice or Γ = SL(n,Z), and assume that one of the following is true:

(1) G = SL(n,R), dim M < n− 1 (resp. ≤ n− 1) and n ≥ 3;
(2) G = Sp(2n,R), dim M < n (resp. ≤ n) and n ≥ 2;
(3) G = SO(n, n), dim M < n (resp. ≤ n) and n ≥ 4;
(4) G = SO(n, n + 1), dim M < n− 1 (resp. ≤ n− 1) and n ≥ 3.

Then α has finite image.

When α is a C2 action, the conclusion of Theorem 1 is already obtained in [2, 4].
Moreover, when G = Sp(2n,R), SO(n, n) or SO(n, n + 1), the dimension bound
in Corollary A is not optimal. However, when G = SL(n,R), we have

r(G) = rankRG = n− 1.

By considering the actions of SL(n,R) by projective transformations on P(Rn),
and by the affine transformations on Tn, we see that Corollary A has optimal
bounds for G = SL(n,R). We note the for C0 action by SL(n,Z), (n ≥ 3) on com-
pact manifold with χ(M) 6= 0 mod 3, the finite image property of α is proved by
Ye in [45].

The proofs of the results in this paper follow closely the strategy in [2]. We rec-
ommend the reader to have this paper close at hand as we make many references
to these works, although we also repeat some of the main arguments for reader’s
convenience. Below we first describe the general strategy of the proofs in [2, 3, 4],
and then we point out the main new ideas and modifications we make here in
order to obtain results in C1 regularity.

3. REVIEW OF BFH AND OUTLINE OF THE PROOF

Step 1: Uniform subexponential growth.
We fix a finite set of symmetric generators for Γ, denoted by S = {γi}. For any

γ ∈ Γ, we let `(γ) denote the word-length distance from γ to the identity relative
to S. In other words, `(γ) is the smallest integer k such that γ may be represented
by a product ζ1 · · · ζk where ζ j ∈ S for each 1 ≤ j ≤ k.

We first recall the following notion.

DEFINITION 1. Let α : Γ → Diff1(M) be an action of Γ on a compact manifold M
by C1 diffeomorphisms. We fix a background C∞ Riemannian metric on M. We
say that α has uniform subexponential growth of derivatives if for every ε > 0 there is
a constant Cε > 0 such that for all γ ∈ Γ we have

‖Dα(γ)‖ ≤ Cεeε`(γ).

It is clear that the above definition is independent of the choice of the metric on M
or the generating set S.

The main result of Step 1 is the following.



4 AARON BROWN, DANIJELA DAMJANOVIĆ, AND ZHIYUAN ZHANG

PROPOSITION 1. Let M be a compact manifold, and let G be a connected, almost-simple
real Lie group with finite center and whose real-rank is at least 2. Let Γ < G be a lattice.
Let α : Γ→ Diff1(M) be a group homomorphism. Assume Γ is an uniform lattice or Γ =
SL(n,Z), and assume either that dim M < rankR(G), or that dim M ≤ rankR(G) and
α(Γ) ⊂ Diff1(M, vol). Then α has uniform subexponential growth of derivatives.

We prove Proposition 1 following the same scheme in [2]. As in [2], we de-
fine the suspension space Mα as the quotient of G × M by Γ-action (g, x) 7→
(gγ, α(γ−1)x). We recall that Mα is a fiber bundle over G/Γ with fibers modeled
on M. Moreover Mα is equipped with a left G-action, denoted by α̃, by diffeomor-
phisms which preserves the foliation into fibers. We present the construction of
Mα and its further properties in Section 4.1.

As the G-action preserves the foliation into fibers of Mα, we may consider the
restriction of Dα̃ to the subbundle EF := Ker(Dπ) tangent to the fibers of Mα. Let
A be the maximal split torus of G, and let µ be an A-ergodic A-invariant measure
on Mα. We can associate to µ and the derivative A-cocycle Dα̃|EF a set of fiberwise
Lyapunov functionals λF

i : Lie(A) → R, 1 ≤ i ≤ k by the higher-rank Oseledec’s
theorem (see, e.g., [7, Theorem 2.4]). We refer the reader to [2, Proposition 3.3]
for the definition and properties of Lyapunov functionals. The maxmal fiberwise
Lyapunov exponent for a ∈ A with respect to an a-invariant probability measure µ
is defined as

λF
+(a, µ) = inf

n→∞

1
n

∫
log ‖Dα̃(an)|EF(x)‖dµ(x).

By [2, Proposition 3.7], we have

PROPOSITION 2. Suppose that Γ is an uniform lattice or Γ = SL(n,Z), and α fails to
have uniform subexponential growth of derivatives. There exists an s ∈ A and an A-
invariant Borel probability measure µ on Mα with λF

+(s, µ) > 0 such that π∗µ is the
Haar measure on G/Γ.

This is the only place where we have used the hypothesis that Γ is an uniform
lattice or Γ = SL(n,Z). In a work in progress of Brown-Fisher-Hurtado [4], they
have generalised Proposition 2 to any lattice in G. Admitting their results, all of
the results in the present paper hold for arbitrary lattices.

To complete the proof of Proposition 1, it remains to show the following.

PROPOSITION 3. Let µ be an A-invariant Borel probability measure on Mα such that π∗µ
is the Haar measure on G/Γ. If either that rankRG > dim M, or that rankRG ≥ dim M
and α(Γ) ⊂ Diff1(M, vol), then µ is G-invariant.

Let a ∈ G be a R-semisimple element. The unstable, resp. stable, subgroup for
a are respectively

Hu := {g | lim
n→−∞

anga−n = e},

Hs := {g | lim
n→+∞

anga−n = e}.

PROPOSITION 4. Let a ∈ A be anR-semisimple element. Suppose µ is an a-invariant a-
ergodic probability measure on Mα such that

(1) π∗µ is the Haar measure on G/Γ, and
(2) all fiberwise Lyapunovv exponents of Dα̃(a) are non-positive.
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Then µ is Hu-invariant.

The proof of Proposition 4 will be given in Section 4. We are ready to deduce
Proposition 3 from Proposition 4.

Proof of Proposition 3. We can assume without loss of generality that µ is A-ergodic,
otherwise we may replace µ by any one of its A-ergodic components. This is
because any A-ergodic component of µ projects to some A-ergodic component
of π∗µ; while by hypothesis π∗µ is the Haar measure on G/Γ which is itself
A-ergodic by Moore’s ergodicity theorem (see for instance [35] or [47, Theorem
2.2.6]). This allows us to define fiberwise Lyapunov functionals. We denote by
λF

1 , · · · , λF
k the total collection of distinct fiberwise Lyapunov functionals. We

have that k ≤ dim M. Moreover, notice that when α(Γ) ⊂ Diff1(M, vol), the
sum of all Lyapunov functionals (considered with multiplicities) is zero. Then
under the condition of the proposition, we can pick an arbitrary element a ∈
(∩k

i=1 exp(Ker(λF
i ))) \ {e} such that

λF
+(a, µ) = λF

+(a−1, µ) = 0.

Then all a-ergodic components of µ have vanishing fiberwise Lyapunov expo-
nents. By Proposition 4, we deduce that µ is Hu-invariant. By symmetry, we also
have that µ is Hs-invariant. As G is almost-simple, G is generated by Hu and Hs.
Consequently, µ is G-invariant. �

Proof of Proposition 1. Assume that α fails to have uniform subexponential growth
of derivatives. Then by Proposition 2, there is a s ∈ A and an A-invariant measure
µ such that λF

+(s, µ) > 0 and π∗µ is the Haar measure on G/Γ. By Proposition
3, we deduce that µ is G-invariant. Recall that n(G) > rankRG where n(G) de-
notes the minimal dimension of a non-trivial real representation of the Lie algebra
of G. By Zimmer’s cocycle superrigidity theorem (we use the version by Fisher-
Margulis in [17, Theorem 1.4]. We refer the readers to [46, 47, 48] for some earlier
results), the G-action preserves a measurable metric on EF. This contradicts that
λF
+(s, µ) > 0. Thus α must has uniform subexponential growth of derivatives. �

Step 2: Strong property (T) and averaging.
In this step, we follow [2] to construct a Γ-invariant continuous distance by

using the strong property (T) of Γ proved by Lafforgue, de Laat and de la Salle in
[23, 11, 12]. The main result of this step is the following proposition whose proof
will be given in Section 5.

PROPOSITION 5. If α has uniform subexponential growth of derivatives, then there exists
a distance d : M × M → [0, ∞) that is invariant by the Γ-action α. Moreover, for any
β ∈ (0, 1), the set α(Γ) is precompact in Hol-Homeoβ(M), the space of β-bi-Hölder
homeomorphisms of M with respect to the background Riemannian distance.

Proposition 5 replaces [2, Theorem 2.9]. In [2], the authors study a C2-action
of Γ, and the induced Γ action on W1,p(S2(T∗M)), the Sobolev space of all the
sections ϕ of the bundle of symmetric two forms S2(T∗M) such that both ϕ and
Dϕ are Lp with respect to the Lebesgue measure. Then the strong property (T) and
the unifrom subexponential growth of derivatives give us the Γ-invariant section
in W1,p(S2(T∗M)) which is continuous if p is sufficiently large. The above method
can be adapted to the case where the action is C1+ε for any ε > 0.
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In our case, α is only C1, and consequently α does not induce a Γ action on
W1,p(S2(T∗M)). We consider instead the induced Γ-action on Lp(S2(T∗M)), and
obtain a Lp α-invariant section of S2(T∗M). We use the exponential convergence
inherited from the strong property (T) and Cauchy inequality to bound the Sobolev
norms of the Γ-action.

To make use of Proposition 5, we also need the solution of Hilbert-Smith con-
jecture for sufficiently Hölder actions proved in [39, 31]. We recall the statement
here.

LEMMA 1. For any β ∈ ( dim M
dim M+1 , 1) the following is true: let H be a compact topological

group which admits a faithful action on M by β-Hölder homeomorphisms. Then H is a Lie
group.

COROLLARY B. Let G, Γ, µ, α be as in Theorem 1. Assume either that dim M < rankR(G),
or that dim M ≤ rankR(G) and α(Γ) ⊂ Diff1(M, vol). Then α factors through a com-
pact Lie group. That is, there exist: a compact Lie group H; an injective group homo-
morphism ι : H → Homeo(M); and a group homomorphism φ : Γ → H such that
α = ι ◦ φ.

Proof. By Proposition 1, the action α has uniform subexponential growth of deriva-
tives. We fix any β ∈ ( dim M

dim M+1 , 1). By Proposition 5, the closure of α(Γ) in Hol-
Homeoβ(M), denoted by K0, is a compact topological subgroup of Homeo(M).
By Lemma 1, we see that K0 is a compact Lie group. �

Step 3: Margulis superrigidity with compact codomain.
After Step 1 and 2, we can apply precisely the same method as in [2] to show

the finite image property. We refer the reader to [2, Section 7] for details.

Proof of Theorem 1. The proof is essentially contained in [2, Section 7]. We repro-
duce it below for the convenience of the readers.

Let H be the compact Lie group given by Corollary B, and let ι : H → Homeo(M)
and φ : Γ → H be the associated group homomorphisms. Assume that α = ι ◦ φ
has infinite image. Then by Margulis’ arithmeticity theorem and superrigidity
theorem, each almost simple factor of H is a compact form of G. Since ι : H →
Homeo(M) is injective, there is some x ∈ M such that ι(H)x contains a com-
pacta homeomorphic to K/C where K is a compact form of G and C is a closed
proper subgroup of K. This is impossible since by hypothesis dim(K/C) ≥ d(G) >
dim M. �

4. PROOF OF PROPOSITION 4

4.1. Suspension space. In this subsection, we recall the suspension construction
and the induced G-action in [6, Section 2].

Let α be a Γ-action on M by C1 diffeomorphisms, i.e., α(gh) = α(g)α(h). We
consider the right acton by Γ on G×M defined as

(g, x) · γ = (gγ, α(γ−1)(x)), ∀γ ∈ Γ

and the left G-action

a · (g, x) = (ag, x), ∀a ∈ G.

Define the quotient manifold Mα := (G×M)/Γ. Since the left G-action commutes
with the right Γ-action, the left G-action descends to a left G-action on Mα, denoted
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by α̃. Since α is a C1 action, Mα is naturally equipped with a C1 manifold structure.
The action α̃ is given by C1 diffeomorphisms of Mα. Moreover, denote by π :
Mα → G/Γ the projection induced by G ×M → G, then Mα is a C1 fiber bundle
over G/Γ induced by π with fibers diffeomorphic to M.

With a slight abuse of notation, we use d(·, ·) to denote both the right-invariant
metric on G, and the quotient metric on G/Γ. We denote by ν the normalised left
Haar measure on G/Γ.

By the construction in [3, Section 2.2] (see also [6, Section 2.1] for the details),
there exists a C1 Riemannian metric 〈·, ·〉 on G×M with the following properties:

(1) 〈·, ·〉 is invariant under the right Γ-action,
(2) for each (g, x) ∈ G×M, under the canonical identification of the G-orbit of

(g, x) with G, the restriction of 〈·, ·〉 to the G-orbit of (g, x) coincides with
dG,

(3) There exist a Siegel fundamental set D ⊂ G for the right Γ-action (see [33,
VIII.1] for the definition) containing the identity e ∈ G, and a constant
C1 > 1 such that for any g1, g2 ∈ D, the map (g1, x) 7→ (g2, x) distorts the
restrictions of 〈·, ·〉 to {g1} ×M and {g2} ×M by at most C1.

We use 〈·, ·〉g to denote the restriction of 〈·, ·〉 to {g} ×M, and view it as a metric
on M. By item (1) above, we can equip Mα with the quotient metric of 〈·, ·〉.

We fix {γi}, a finite symmetric generating set for Γ. Let ` denote the word-
length distance on Γ relative to {γi}. Given a fundamental domain FD ⊂ D for the
right Γ-action on G, i.e., G = FDΓ and FDγ ∩ FD = ∅ for ∀γ ∈ Γ \ {e}, the return
cocycle β : G × G/Γ → Γ associated to FD is defined as follows. For any g ∈ G,
x ∈ G/Γ, we set β(g, x) to be the unique element γ ∈ Γ such that gx̃ ∈ FDγ, where
x̃ is the lift of x in FD. The following are from [3] whose proofs rely on [30].

LEMMA 2. If FD ⊂ D is a fundamental domain for the right Γ-action on G such that
e ∈ FD, then there is a constant C > 0 such that for any g ∈ G, any x ∈ G/Γ,

`(β(g, x)) < Cd(g, e) + Cd(x, Γ) + C.

LEMMA 3. There is a constant C > 0 such that the following is true. For any g ∈ G, any
x ∈ G/Γ, any p ∈ π−1(x) we have

log ‖Dpα̃(g)‖ < Cd(g, e) + Cd(x, Γ) + C.

4.2. Smooth cocycle. Let a be as in Proposition 4. In various statements about
typical points in G/Γ in this rest of this section, we will always refer to the Haar
measure ν.

Following [26] and [34], we may find a measurable partition ξ of G/Γ with the
following properties:

(1) ξ is subordinate to the partition of G/Γ into Hu orbits: for a.e. x ∈ G/Γ,
(a) the atom ξ(x) is contained in the orbit Hu · x,
(b) the atom ξ(x) is precompact in the orbit Hu · x,
(c) the atom ξ(x) contains a neighborhood of x in the orbit Hu · x,

(2) ξ is a-decreasing, i.e., a(ξ) ≤ ξ.
We also require that ξ satisfies the following additional property:

(3) There is a compact set W ⊂ Hu such that for a.e. x

ξ(x) ⊂W · x.
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To build a partition ξ satisfying (1)–(3), we first let ξ0 be a partition satisfying
(1) and (2). Select a ξ0-measurable subset S ⊂ G/Γ with positive ν-measure such
that the diameter of ξ0(x) is uniformly bounded in the Hu · x-orbit for all x ∈ S. It
is well-known that a is ergodic with respect to the Haar measure ν. Thus for a.e.
x ∈ G/Γ, the following number is well-defined:

nx = inf{n ∈N | an · x ∈ S}.
We set

ξ(x) = a−nx ξ0(anx · x).
Then ξ still satisfies (1) and (2). Since Ad(a−1) is a contraction restricted to the
Lie algebra of Hu, ξ also satisfies (3).

Since ξ is measurable, we may apply [1, Prop 4.5] to find a measurable selection:
there is a measurable map ψ : G/Γ → G/Γ such that ψ is constant on every atom
of ξ, and ψ(x) ∈ ξ(x) for ν-a.e. x. Recall our choice of a Siegel fundamental set
D ⊂ G and fix a fundamental domain FD ⊂ D such that e ∈ FD. Let ψ̄ : G/Γ→ G
be the map that assigns x ∈ G/Γ the unique g ∈ FD with ψ(x) = gΓ. Note that ψ̄
is ξ-measurable.

Since Hu is horospherical for a, for a.e. x ∈ G/Γ the map Hu → G/Γ, h 7→ h · x is
injective. Indeed, for a µ-typical x ∈ G/Γ, there is a sequence {tm}m≥0 of positive
numbers that tends to infinity such that {a−tm · x}m≥0 is precompact. Then h 7→
h · x must be injective on Hu since each Hu-orbit is contracted by the backward
iterates of a, and G → G/Γ is a local homeomorphism. For any such x, we let
Wx be the inverse image of ξ(x) under the map Hu → G/Γ, h 7→ h · ψ(x); and let
ξ1(x) = Wxψ̄(x). Notice that by definition π(ξ1(x)) = ξ(x), and ξ1(x) ∩ FD 6= ∅.

As FD is a fundamental domain contained in D, we can choose a Borel trivial-
ization associated to FD, denoted by

ι : Mα → FD ×M

where for each x ∈ G/Γ, we identify ι|π−1(x) with a diffeomorphism ιx : π−1(x)→
M. Moreover, by the construction of the metric 〈·, ·〉 on D × M, we may assume
that ‖ιx‖C1 is uniformly bounded over all x ∈ G/Γ.

Given a typical x ∈ G/Γ, let ux ∈ Hu be such that x = ux · ψ(x). Set gx :
π−1(x)→ π−1(ψ(x)) to be

gx(y) = α̃(u−1
x )(y).

Given x ∈ G/Γ, set Fx : M→ M to be

Fx(y) = ιψ(a−1·x)(ga−1·ψ(x)(α̃(a−1)(ι−1
ψ(x)(y)))).(4.1)

Let F : G/Γ×M→ G/Γ×M be the measurable map

F(x, y) = (a−1 · x, Fx(y)).(4.2)

Using {gx}, we define a measurable map Φ : Mα → G/Γ×M as follows:

Φ(y) = (π(y), ιψ(π(y))gπ(y)(y)).(4.3)

Let µ be the a-ergodic a-invariant measure in Proposition 4, let µ∗ = Φ∗µ.

CLAIM 1. Φ is a Borel isomorphism. Moreover, for µ-a.e. x ∈ G/Γ, Φ is a C1 diffemor-
phism from π−1(x) to M, and we have

F ·Φ = Φ · α̃(a−1).
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Proof. We set x = π(z). Then we have

π(a−1 · z) = a−1 · π(z) = a−1 · x.

Then

FΦ(z) = (a−1 · x, ιψ(a−1·x)ga−1·ψ(x)(α̃(a−1)(gx(z))))

and

Φ(α̃(a−1)(z)) = (a−1 · x, ιψ(a−1·x)ga−1·x(α̃(a−1)(z))).

Then by definition, it suffices to show that

aua−1·x = uxaua−1·ψ(x).

By definition,

aua−1·x · ψ(a−1 · x) = a · a−1 · x = x.

We also notice that a−1 · ψ(x) ∈ a−1 · ξ(x) ⊂ ξ(a−1 · x). Thus

ψ(a−1 · ψ(x)) = ψ(a−1 · x).
Then

uxaua−1·ψ(x) · ψ(a−1 · x) = uxa · a−1 · ψ(x) = x.

This completes the proof. �

Let {µ∗x} be the disintegration of µ∗ with respect to the partition of G/Γ × M
into fibers. The following properties follow immediately from the above construc-
tions and observations.

PROPOSITION 6. We have
(1) for a.e. x ∈ G/Γ and every x′ ∈ ξ(x), Fx = Fx′ ; in particular, x 7→ Fx is

ξ-measurable.
(2) The function x 7→ log ‖F−1

x ‖C1 is in L1(G/Γ, ν).
(3) Φ is a measurable conjugacy between the dynamics of a−1 on Mα and of F on

G/Γ×M.
(4) The fiberwise Lyapunov exponents for Da with respect to µ are all non-positive

if, and only if, the fiberwise Lyapunov exponents of F with respect to µ∗ are all
non-negative.

(5) µ is Hu-invariant if and only if the map x 7→ µ∗x is ξ-measurable.

Proof. Item (1) follows immediately from the construction. Item (3) is given by
Claim 1. Item (4) follows from item (3) and our hypothesis on a in Proposition 4:
all fiberwise Lyapunov exponents of Dα̃(a) are non-positive.

To show item (2), we first notice that by (4.1) for ν-a.e. x ∈ G/Γ, we have

‖F−1
x ‖C1 ≤ ‖α̃(uα−1·ψ(x))|π−1(ψ(a−1·x))‖C1‖α̃(a)|π−1(a−1·ψ(x))‖C1 .

By Lemma 3, we have

log ‖α̃(a)|π−1(a−1·ψ(x))‖C1 ≤ Cd(a, e) + Cd(a−1 · ψ(x), x0) + C,

log ‖α̃(uα−1·ψ(x))|π−1(ψ(a−1·x))‖C1 ≤ C sup
b∈W

d(b, e) + Cd(ψ(a−1 · x), x0) + C.

Note that there are u1, u2 ∈W such that

a−1 · ψ(x) = a−1u−1
1 x, ψ(a−1 · x) = u−1

2 a−1x.
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Then we have

d(a−1 · ψ(x), x0), d(ψ(a−1 · x), x0) ≤ Cd(x, x0) + C′

for some C depending only on G, Γ, and some C′ depending only on W and a.
Thus item (2) follows from the fact that

(x 7→ d(x, x0)) ∈ L1(G/Γ, ν).

The “only if” part of Item (5) follows by definition. We assume that x 7→ µ∗x
is ξ-measurable. Then for µ-a.e. x, for any h ∈ Hu such that h(π(x)) ∈ ξ(π(x)),
we have α̃(h)∗µπ(x) = µh(π(x)) where {µz}z∈G/Γ is the disintegration of µ along
the fibers. Moreover by Claim 1, we see that x 7→ µ∗x is an(ξ)-measurable for any
n ≥ 1. We can use the above argument for an(ξ) instead of ξ (for all n ≥ 1) to show
that µ is Hu-invariant. �

4.3. Avila-Viana’s invariance principle. We will use a variant of [1, Theorem B]
to conclude the proof of Proposition 4. Let us first briefly recall the setting in [1].

Let (X̂, B̂, µ̂) be a probability space, and let f̂ : X̂ → X̂ be an invertible µ̂-
preserving measurable transformation. Let N be a compact Riemannian mani-
fold. We set Ê = X̂ × N, and denote by P̂ : Ê → X̂ the projection to the first
coordinate. We say that F̂ : Ê → Ê is a smooth cocycle over f̂ if F̂ is of form
F̂(x̂, ŷ) = ( f̂ (x̂), F̂x̂(ŷ)), where F̂x̂ is a diffeomorphism of N for each x̂. We also
assume the following:∫

| log(sup
ŷ
‖DF̂x̂(ŷ)−1‖)|dµ̂(x̂) < ∞.(4.4)

In this case, for any F̂-invariant probability measure m̂ on Ê that projects to µ̂

under P̂, the minimal Lyapunov exponent is a well-defined quantity at m̂-almost
every (x̂, ŷ) by the following formula:

λ−(F̂, x̂, ŷ) = lim
n→∞

1
n

log ‖DF̂n
x̂ (ŷ)

−1‖−1.

Let H : Ê → Ê be a map of form H(x̂, ŷ) = (x̂, Hx̂(ŷ)) where Hx̂ is a C1 diffeo-
morphism of N which depends measurably on x̂, and satisfies that∫

[| log(sup
ŷ
‖DĤx̂(ŷ)−1‖)|+ | log(sup

ŷ
‖DĤx̂(ŷ)‖)|]dµ̂(x̂) < ∞.(4.5)

Then we call the map defined as follow

F̃(x̂, ŷ) = ( f̂ (x̂), F̃x̂(ŷ)) = H ◦ F̂ ◦ H−1(x̂, ŷ),

a deformation of a smooth cocycle F̂, and denote m̃ = H∗m̂. The decomposition of
Ê into fibers gives rise to a disintegration of m̃ into a collection of conditional
measures {m̃x̂}x̂∈X̂ on the fibers. We emphasize that the assumption that {Hx̂}x̂∈X
are diffeomorphisms simplifies our argument (in [1] the authors worked under
the weaker assumption that {Hx̂}x̂∈X are uniformly Holder homeomorphisms).
Actually in this paper we have only used the case where H = Id.

The following theorem, whose proof is deferred to Appendix A, is a variant of
[1, Theorem B].
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THEOREM 2. Let m̂ be an F̂-invariant measure on Ê which projects down to µ̂. Let
B0 ⊂ B̂ be a σ-algebra which generates B̂ mod 0 under f̂ . Assume that both f̂ and
x̂ 7→ F̃x̂ are B0-measurable mod 0, and λ−(F̂, x̂, ŷ) ≥ 0 for m̂-almost every (x̂, ŷ), then
the disintegration x̂ 7→ m̃x̂ of the measure m̂ is B0-measurable mod 0.

4.4. Completing the proof. We can now finish the proof of Proposition 4.

Proof of Proposition 4. By Proposition 6, the hypothesis of Theorem 2 is satisfied
with (X̂, N,B0, µ̂, m̂, f̂ , F̂, Ĥ) being (G/Γ, M,Bξ , µ, ν, a−1, F, Id). Here Bξ denotes
the σ-algebra generated by the partition ξ. Then by Theorem 2, the map x 7→ µ∗x is
ξ-measurable. Proposition 4 then follows from Proposition 6(5). �

5. PROOF OF PROPOSITION 5

Recall that we fixed a finite set of symmetric generators {γi} for Γ. The word
distance ` on Γ is defined in Section 4.1.

Proof of Proposition 5. We let ‖ · ‖g denote the background Riemannian metric g
on TM, and let Volg denote the volume form induced by ‖ · ‖g. There is a C∞ Rie-
mannian metric on S2(T∗M) associated to ‖ · ‖g. We denote by Lp(M, Volg, S2(T∗M))

the space of Lp sections of the tensor bundle S2(T∗M) with respect to Volg.
Since α has uniform subexponential growth of derivatives, by the strong prop-

erty (T) of the lattice Γ (proved in [23, 11, 12]), we can adapt the argument in [2] to
show that there exist:4

(1) constants C′′′p , σp > 0 for every 1 ≤ p < ∞;
(2) g ∈ Lp(M, Volg, S2(T∗M)) for all 1 ≤ p < ∞, which is non-degenerate, i.e.,
‖v‖g > 0 for Volg-a.e. x ∈ M, and every non-zero v ∈ Tx M;

(3) a sequence of probability measures on Γ, denoted by {ωn}n, satisfying
supp(ωn) ⊂ Bword(e, n) ⊂ Γ for every n, where Bword(e, n) denotes the
radius n open ball in Γ centered at e with respect to the word distance,

such that, setting gn =
∫

α(γ)∗gdωn(γ), then we have

‖gn − g‖Lp < C′′′p e−nσp , ∀1 ≤ p < ∞.(5.1)

As a consequence, denote by Volg the measurable volume form induced by ‖ · ‖g,
then the measure dVolg is absolutely continuous with respect to dVolg, and the

density function
dVolg
dVolg

has full support.

We define Lebesgue measurable functions R, R : M→ R+ as follows. Set

R(x) = sup
v∈Tx M,‖v‖g=1

‖v‖g, R(x) = inf
v∈Tx M,‖v‖g=1

‖v‖g.

It is direct to see that for dVolg-a.e. x ∈ M,

dVolg

dVolg
(x) < Rdim M

(x),
dVolg

dVolg
(x) < R−dim M(x).

We have the following lemma.

4We obtain (1)–(3) for p ∈ (1, ∞) by strong property (T), then the case for p = 1 follows from
Cauchy’s inequality.
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LEMMA 4. For every 1 ≤ p < ∞, there is Cp > 0 such that∫
R−pdVolg < Cp,

∫
RpdVolg < Cp.

Proof. The second inequality follows immediately from the fact that g ∈ Lp(M, Volg, S2(T∗M)).
It remains to prove the first inequality.

We define for every n ≥ 1,

Rn(x) = inf
v∈Tx M,‖v‖g=1

‖v‖gn , ∀x ∈ M,

and Ωn = {x | R(x) ≥ 1
2

Rn(x)}.

For the convenience of the notation, we set Ω0 = ∅. It is clear that ∪nΩn is a
dVolg-conull subset of M.

By the uniform subexponential growth of derivatives, for every ε > 0 there is
C′′ε > 0 such that

sup
x∈M

(Rn(x)−1) < C′′ε enε, ∀n ≥ 1.(5.2)

By (5.1) and (5.2), for every ε > 0 we have

Volg(Ωc
n) ≤ Volg({x | |R(x)− Rn(x)| > 1

2
Rn(x)})

≤ 2 sup
x∈M

(Rn(x)−1)
∫
|R(x)− Rn(x)|dVolg(x)

≤ 2C′′ε C′′′1 enε−nσ1 .

Then for each 1 ≤ p < ∞, we take ε = σ1/(10p), and we obtain

∫
R(x)−pdVolg(x) ≤ 2p

∞

∑
n=0

∫
Ωn+1\Ωn

Rn+1(x)−pdVolg(x)

≤ 2p
∞

∑
n=0

sup
x
(Rn+1(x)−p)Volg(Ωc

n)

≤ 2p+1(C′′ε )
p+1C′′′1

∞

∑
n=0

e(n+1)pε−n(σ1−ε) := Cp < ∞.

�

LEMMA 5. For every 1 ≤ p < ∞, there exists Dp > 0 such that for every γ ∈ Γ,∫
M
‖Dxα(γ)‖p

gdVolg(x) ≤ Dp.

Proof. Take an arbitrary γ ∈ Γ, and set F = α(γ). We recall that F preserves g.
That is, for dVolg-a.e. x, for every v ∈ Tx M, we have ‖v‖g = ‖DxF(v)‖g. Hence
the measure dVolg is F-invariant.
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Notice that for dVolg-a.e. x ∈ M,

‖DxF‖g = sup
v∈Tx M,‖v‖g=1

‖DxF(v)‖g

= sup
v∈Tx M,‖v‖g=1

‖DxF(v)‖g
‖DxF(v)‖g

‖DxF(v)‖g

= sup
v∈Tx M,‖v‖g=1

‖v‖g
‖DxF(v)‖g

‖DxF(v)‖g

≤ R(x)R(F(x))−1.

Then by Cauchy’s inequality,∫
‖DxF‖p

gdVolg(x) ≤
(∫

R(x)2pdVolg(x)
)1/2 (∫

R(F(x))−2pdVolg(x)
)1/2

.

Also∫
R(F(x))−2pdVolg(x) =

∫
R(F(x))−2p dVolg

dVolg
(x)dVolg(x)

≤
(∫

R(F(x))−4pdVolg(x)
)1/2 (∫

(
dVolg

dVolg
(x))2dVolg(x)

)1/2

≤
(∫

R(F(x))−4pdVolg(x)
)1/2 (∫ dVolg

dVolg
(x)dVolg(x)

)1/2

≤
(∫

R(x)−4pdVolg(x)
)1/2 (∫

R−dim M(x)dVolg(x)
)1/2

and∫
R(x)−4pdVolg(x) =

∫
R(x)−4p dVolg

dVolg
(x)dVolg(x)

≤
(∫

R(x)−8pdVolg(x)
)1/2 (∫

(
dVolg

dVolg
(x))2dVolg(x)

)1/2

≤
(∫

R(x)−8pdVolg(x)
)1/2 (∫

R2 dim M
(x)dVolg(x)

)1/2
.

By Lemma 4, ∫
‖DxF(v)‖p

gdVolg(x) ≤ C1/2
2p C1/8

8p C1/8
2 dim MC1/4

dim M.

Since γ is chosen arbitrarily, we can conclude the proof by taking Dp to be the right
hand side of the last inequality. �

We fix an embedding ι : M → RN for some integer N. Let πi : RN → R be the
projection to the i-th coordinate. We have seen that for every 1 ≤ p < ∞, there
exists a constant C′p > 0 such that for every 1 ≤ i ≤ N, for every γ ∈ Γ,∫

|Dx(πiια(γ))|pdVolg(x) < C′p.
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Take p > dim M/(1− β). Then by Sobolev’s embedding theorem, we can see that
the set {α(γ) | γ ∈ Γ} is pre-compact in Hol-Homeoβ(M). We know that any pre-
compact subset of Hol-Homeoβ(M) is equicontinuous in Homeo(M). Thus the
closure of α(Γ) in Homeo(M) is a compact topological group K0, and it is direct
to verify by definition that K0 ⊂ Hol-Homeoβ(M). It is then direct to construct a
Γ-invariant continuous distance on M by averaging. �

APPENDIX A.

We now give the proof of Theorem 2 in this appendix. We recall the construction
in [1, Section 3]. There is a Lebesgue space (X,B, µ) obtained by identifying any
two points of X̂ which are not distinguished by any element of B; and a projection
π : X̂ → X such that B = π∗B0 and µ = π∗µ̂. Since f̂ is B0-measurable mod 0,
there exists a B-measurable mod 0 transformation f : X → X such that π ◦ f̂ =
f ◦ π. Let E = X × N and P : E → X the canonical projection. Since F̃ is B0-
measurable mod 0, we may write Fπ(x̂) = F̃x̂ for some B-measurable mod 0
fiber bundle morphism F : E → E over f . The measure m = (π × id)∗m̂ is F-
invariant and projects down to µ. Denote by {mx}x∈X the measure disintegration
of m corresponding to the partition of E into the fibers. By the F-invariance of m
we deduce that for µ-a.e. x ∈ X,

m f (x) =
∫
(Fx′)∗mx′dµ

f−1(B0)
x (x′).(A.1)

Notice that, by our assumption F̃ = H ◦ F̂ ◦ H−1; and that Hx̂ is a C1 diffeomor-
phism for a typical x̂, we deduce that

λ−(F̃) = λ−(F̂).

This equality makes our argument slightly easier than that of [1].
We define J : E → [0, ∞) by considering the Lebesgue decomposition of (F−1

x )∗m f (x)
relative to mx :

(F−1
x )∗m f (x) = J(x, ·)mx + ηx.

Define

h(F, m) =
∫
− log Jdm.

Following the proof of [1, Theorem B], we will show that m({J = 0}) = 0 and in
addition the following is true.

PROPOSITION 7. We have

0 ≤ h(F, m) ≤ −dim N
∫

min{0, λ−(F̂)}dm̂.

The statement of Proposition 7 is the same as [1, Proposition 3.1], except that we
are now assuming (4.4) and (4.5) while in [1] the authors assume that log ‖DF̂x̂(ŷ)−1‖,
log ‖DĤx̂(ŷ)‖ and log ‖DĤx̂(ŷ)−1‖ are all uniformly bounded, and the depen-
dence of DF̂x̂(ŷ), DĤx̂(ŷ) on x̂, ŷ are uniformly continuous. Thus we will need to
make some adjustments to the proof in [1] (see also [25]).

Under the hypothesis of Theorem 2, we can conclude by Proposition 7 that
h(F, m) vanishes. Once we know that h(F, m) vanishes, we can apply [1, Proposi-
tion 3.2] to conclude the proof of Theorem 2. We recall the statement below.
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PROPOSITION 8. If h(F, m) = 0 then x̂ 7→ m̂x̂ is B0-measurable mod 0.

The proof of Proposition 8 is rather general and the conditions (4.4) and (4.5)
suffice. Now it suffices to give the proof of Proposition 7. The proof here follows
essentially the scheme in [25].

Proof of Proposition 7. By the same argument in [1, Section 3.2], we may assume
without loss of generality that m̂ is ergodic for F̂. In this case, min(0, λ−(F̂)) is a
constant m̂-almost everywhere, and is denoted by −λ ≤ 0.

For any integer k > 0, for any (x, ξ) ∈ X× N we define

Fk
x =

{
Ff k−1(x) · · · Fx k ≥ 0,
F−1

f−k(x) · · · F
−1
f−1(x) k < 0,

and

Lk(x, ξ) = ‖Dξ F−k
f k(x)‖, Ck(x) = sup

ξ∈N
Lk(x, ξ), C̃k(x, ξ) = Ck(x).

Notice that we have

0 ≤ log C̃k(x, ξ) ≤
k−1

∑
i=0

log C̃1(Fi(x, ξ)).(A.2)

Given (x, ξ) ∈ X× N, we denote by B(ξ, δ) the ball in N centered at ξ of radius
δ > 0 and write

B((x, ξ), δ) = {x} × B(ξ, δ).

For each integer l ≥ 0, we write

Jl(x, ξ; δ) =
(F−l

f l(x))∗m f l(x)(B(ξ, δ))

mx(B(ξ, δ))

and

J∗l (x, ξ) = max
δ>0

Jl(x, ξ; δ).

It is clear that Jl ≥ 0 and J∗l ≥ 1.
We fix some ε > 0. Then there is β1 = β1(ε) > 0 so that for any set A ⊂ X × N

with m(A) < β1, we have ∫
A

log C̃1dµ < ε.(A.3)

Fix some integer l > 0 such that the measurable set Λ1 ⊂ X× N defined by

Λ1 = {(x, ξ) | Ll(x, ξ) ≤ e(λ+ε)l}
satisfies m(Λ1) > 1− β1/2. Then there is a subset Λ ⊂ Λ1 with

m(Λ) > 1− β1(A.4)

such that the derivatives Dξ Fx are uniformly continuity in ξ over all x ∈ Λ, and
for some δ1 = δ1(ε, l, Λ) > 0, for any x ∈ Λ, for any δ ∈ (0, δ1(ε)) we have

F−l
x (B(ξ, δ)) ⊂ B(F−l

x (ξ), e(λ+2ε)lδ).(A.5)

We denote by El the collection of ergodic component of m for Fl . Since µ is F-
ergodic, we deduce that El is finite and F induces a cyclic permutation of El .
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Moreover, for m-almost every (x, ξ) we denote by m(x,ξ) the ergodic component
at (x, ξ).

By [25, Prop 5], we know that

log J∗l ∈ L1(E , m).

More precisely, we have the following.

LEMMA 6. For m-a.e. (x, ξ), we have

Jl(x, ξ) =
l−1

∏
i=0

J(Fi(x, ξ)).

Consequently, for any m′ ∈ El , we have

lh(F, m) = −
∫

log Jl(x, ξ)dm′(x, ξ).(A.6)

Proof. This is clear that the first equality holds when l = 1. For any l > 1, we have

(F−l
f l(x))∗m f l(x) = (F−1

x )∗(F−l+1
f l(x) )∗m f l(x)

= (F−1
x )∗(Jl−1(F(x, ξ))m f (x) + η

(l−1)
f (x) )

= Jl−1(F(x, ξ)) · J(x, ξ)mx + Jl−1(F(x, ξ))ηx + (F−1
x )∗η

(l−1)
f (x) .

Here η
(l−1)
f (x) is the singular component of (F−l+1

f l(x) )∗m f l(x) with respect to m f (x). By

definition, ηx is singular with respect to mx. Moreover, (F−1
x )∗η

(l−1)
f (x) is also singu-

lar with respect to mx for m-a.e x. Otherwise, we would know that η
(l−1)
f (x) is not

singular with respect to (Fx)∗mx; then by (A.1) we would know that η
(l−1)
f (x) is not

singular with respect to m f (x). A contradiction. Consequently, we see that

Jl = Jl−1 ◦ F · J.

We then conclude the proof of the first equality by induction. The equality (A.6)
in the lemma is an immediate consequence of the first equality, and the fact that
m = 1

l ∑l−1
i=0(Fi)∗m′ for any m′ ∈ El . �

We choose some β2 = β2(ε, l) > 0 such that for m′ ∈ El , and for every A ⊂
X× N with m′(A) < β2, we have∫

A
(log J∗l + log Jl)dm′ < ε.(A.7)

We define

Z = {(x, ξ) | Jl(x, ξ) = 0}, G = Zc = {(x, ξ) | Jl(x, ξ) > 0}.
We fix a large constant D > 0. Given a constant δ > 0, we define

G(δ) = {(x, ξ) ∈ G | log Jl(x, ξ; δ′) ≤ log Jl(x, ξ) + ε ∀δ′ ∈ (0, δ)},
Z(δ) = {(x, ξ) | log Jl(x, ξ; δ′) ≤ −D ∀δ′ ∈ (0, δ)}.

We fix some δ2 = δ2(ε, l) > 0 sufficiently small so that for every m′ ∈ El ,

m′(G \ G(δ2)) < β2.(A.8)
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We take an arbitrary δ0 ∈ (0, min(δ1, δ2)). Given (x, ξ) ∈ X×N, define δl(x, ξ; 0) =
δ0 and for k ≥ 1 recursively define

δl(x, ξ; k) =

{
e(−λ−2ε)lδl(x, ξ; k− 1) Fkl(x, ξ) ∈ Λ,
[C̃l(Fkl(x, ξ))]−1δl(x, ξ; k− 1) Fkl(x, ξ) /∈ Λ.

Observe that we have

δl(x, ξ; k + 1) ≤ δl(x, ξ; k) ≤ δ0 ∀k ≥ 0

and by (A.5) and the definition of C̃ we deduce that

F−l(B(F(k+1)l(x, ξ), δl(x, ξ; k + 1))) ⊂ B(Fkl(x, ξ), δl(x, ξ; k)) k ≥ 0.

LEMMA 7. For m-a.e. (x, ξ), we have

lim inf
n→∞

1
n

log δl(x, ξ; n) ≥ (−λ− 3ε)l.

Proof. By definition, we have

log δl(x, ξ; n) = log δ0 +
n−1

∑
k=0

(l(−λ− 2ε)1Fkl(x,ξ)∈Λ − log C̃l(Fkl(x, ξ))1Fkl(x,ξ)/∈Λ).

Then by Pointwise Ergodic Theorem, we have

lim inf
n→∞

1
n

log δl(x, ξ; n) ≥ −(λ + 2ε)lm(x,ξ)(Λ)−
∫

Λc
log C̃ldm(x,ξ).

By (A.2), (A.3) and (A.4), we obtain∫
Λc

log C̃ldm(x,ξ) ≤
l−1

∑
i=0

∫
Λc

log C̃1 ◦ Fidm(x,ξ)

≤
l−1

∑
i=0

∫
Λc

log C̃1d(Fi)∗m(x,ξ)

= l
∫

Λc
log C̃1dm ≤ lε.

The equality follows from m = 1
l ∑l−1

i=0(Fi)∗m(x,ξ) for m-a.e. (x, ξ). Then

lim inf
n→∞

1
n

log δl(x, ξ; n) ≥ −(λ + 3ε)l.

�

Recall that by [25, Proposition 5], for any Borel probability measure ν on N, we
have

lim sup
r→0

log ν(B(ξ, r))
log r

≤ dim N, ν− a.e. ξ.

Thus we may pick a subset Ω1 ⊂ X× N such that

lim sup
r→0

log inf(x,ξ)∈Ω1
mx(B(ξ, r))

log r
≤ dim M
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and m′(Ω1) > 0 for every m′ ∈ El . Then for m-almost every (x, ξ), there is an
infinite sequence of n such that Fnl(x, ξ) ∈ Ω1. Then for all sufficiently large n in
such sequence we have

1
n

log m f nl(x)(B(Fnl(x, ξ), δl(x, ξ; n))) ≥ 1
n

log δl(x, ξ; n)(dim N + ε)

≥ (−λ− 4ε)(dim N + ε)l.(A.9)

On the other hand, we have

m f nl(x)(B(Fnl(x, ξ), δl(x, ξ; n)))

= mx(B(x, δl(x, ξ; 0)))

·
n−1

∏
j=0

m f (j+1)l(x)(B(F(j+1)l(x, ξ), δl(x, ξ; j + 1)))

m f jl(x)(B(Fjl(x, ξ), δl(x, ξ; j)))

≤
n−1

∏
j=0

m f (j+1)l(x)(B(F(j+1)l(x, ξ), δl(x, ξ; j + 1)))

m f jl(x)(B(Fjl(x, ξ), δl(x, ξ; j)))

≤
n−1

∏
j=0

m f (j+1)l(x)(Fl(B(Fjl(x, ξ), δl(x, ξ; j))))

m f jl(x)(B(Fjl(x, ξ), δl(x, ξ; j)))

=
n−1

∏
j=0

Jl(Fjl(x, ξ), δl(x, ξ; j)).

Take an arbitrary m′ ∈ El . Then for m′-almost every (x, ξ) we have

lim sup
1
n

log m f nl(x)(B(Fnl(x, ξ), δl(x, ξ; n)))

≤ lim sup
1
n

n−1

∑
j=0

log Jl(Fjl(x, ξ), δl(x, ξ; j))

≤
∫

Z(δ0)
log Jldm′ +

∫
log J∗l dm′

≤ −Dm′(Z(δ0)) + l
∫

log J∗dm

The last inequality follows from Lemma 6 and the definition of Z(δ0). Combine
the above inequality with (A.9) we conclude that

m′(Z(δ0)) ≤
l(
∫

log J∗dm + (λ + 4ε)(dim N + ε))

D
.

Since the above holds for any δ0 sufficiently small and for any m′ ∈ El , we deduce
that

m(Z) ≤ lim sup
δ0→0

m(Z(δ0)) ≤
l(
∫

log J∗dm + (λ + 4ε)(dim N + ε))

D
.

By letting D tend to infinity, we conclude that m(Z) = 0, and consequently m(G) =
1.
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Now notice that for m′-almost every (x, ξ) we have

lim sup
1
n

log m f nl(x)(B(Fnl(x, ξ), δl(x, ξ; n)))

≤ lim sup
1
n

n−1

∑
j=0

log Jl(Fjl(x, ξ), δl(x, ξ; j))

≤
∫

G(δ0)
(log Jl + lε)dm′ +

∫
G(δ0)c

log J∗l dm′

≤
∫

log Jldm′ + 5lε.

The last inequality follows from (A.8), G(δ2) ⊂ G(δ0) and (A.7). Combine the
above inequality with (A.9) and (A.6) in Lemma 6, we obtain

h(F, m)− 5ε ≤ (λ + 4ε)(dim N + ε).

Since ε is arbitrary, we conclude the proof of Proposition 7. �
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