C! ACTIONS ON MANIFOLDS BY LATTICES IN LIE GROUPS

AARON BROWN, DANIJELA DAMJANOVIC, AND ZHIYUAN ZHANG

ABSTRACT. In this paper we study Zimmer’s conjecture for C! actions of lattice
subgroup of a higher-rank simple Lie group with finite center on compact mani-
folds. We show that when the rank of an uniform lattice is larger than the dimen-
sion of the manifold, then the action factors through a finite group. For lattices in
SL(n,R), the dimensional bound is sharp.

1. INTRODUCTION

Zimmer’s conjecture for actions of higher-rank lattice on compact manifolds
says that if the group is large with respect to the dimension of the manifold, then
any such action should factor through a finite group. This conjecture is motivated
by a long history of research, including the local rigidity results of Selberg [40]
and Weil [43] on linear representation theory, the global rigidity results of Mostow
[36], the superrigidity theorem of Margulis [33], and the cocycle superrigidity the-
orem of Zimmer [46]. Since its introduction, Zimmer’s conjecture has attracted
considerable interests.

For C? actions on the circle, the above conjecture is confirmed by Lifschitz, Witte
Morris [29, 44] for many non-unifrorm lattices. For C 1 actions on the circle, Burger-
Monod [8] and Ghys [19] showed similar results for many other cases, including
all lattices in higher rank simple Lie groups. For C! area preserving actions on
closed orientable surface with genus at least 2, Zimmer’s conjecture is proved by
Polterovich [38] for non-uniform lattices. His result is then generalised by Franks-
Handel in [18] to any C! action which preserves a Borel measure. For analytic
actions, Ghys [19] studied the case where the manifold is a circle; Farb-Shalen [14]
studied this conjecture under additional assumptions on the group and the mani-
fold. For a very detailed survey on other earlier results on Zimmer’s program, we
refer the readers to [16].

In recent breakthrough [2, 3], Brown-Fisher-Hurtado proved the C? version' of
Zimmer’s conjecture for all co-compact lattices * in real split simple Lie group and
SL(n,Z) using some previous progress made by Brown-Rodriguez Hertz-Wang
in [5, 6] and Lafforgue, de Laat and de la Salle in [23, 11, 12]. We refer the reader
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I Their result can be improved with a bit more work to include C!*¢-actions.

These results are generalized recently in [4] to all non-uniform lattices.
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to Fisher’s paper [15] for an excellent survey of the history and recent progress on
Zimmer’s conjecture. The purpose of the present paper is to extend the results in
[2,3, 4] to C! actions, when the rank of the acting group is sufficiently large.

Compared to the previous results, there are 2 new ideas here. First is that while
many results in Non-uniform Hyperbolic Theory fail or remain unknown in the C!
setting, some of them continue to hold under the presence of suitable continuous
splitting. In our case, we can apply a variant of Avila-Viana’s invariance principle
to an element in the kernel of all Lyapunov functionals to obtain the extra invari-
ance needed to conclude the proof. For C? action, the idea to use action by an
element in the kernel of all fiberwise exponents was originally due to Sebastian
Hurtado and appears in the Bourbaki notes of Cantat [9]. The second one is that
we use the information extracted by using strong property (T) to control the L?
norms of the derivatives for sufficiently large p. This allows us to show that C!
action is uniformly bounded under certain Holder norm. Then we use the resolu-
tion of the Hilbert-Smith conjecture for sufficiently Holder actions to conclude the
proof.

2. STATEMENT OF THE MAIN RESULTS

We first recall the statement of Zimmer’s conjecture.
For a real semisimple Lie group G with Lie algebra g, let
e 9(G) denote the minimal codimension of proper parabolic subalgebras of
9,
e d(G) denote the minimal codimension of proper subalgebras of the com-
pact real form of gc¢;
e 11(G) denote the minimal dimension of nontrivial real representations of g.

It is proved in [41] that v(G) < n(G).2
CONJECTURE 1. Let G be a connected real semisimple Lie group with finite center and
without almost-simple factors of real rank less than 2. Let T < G be a lattice, M be a
compact manifold, a : T — Diff(M) be an action.
(1) If dim(M) < v(G), then « preserves a Riemannian metric.
(2) If dim(M) < min{v(G),d(G)}, then «(T) is finite.
(3) If dim(M) < n(G) and w preserves a volume density, then « preserves a Rie-
mannian metric.
(4) If dim(M) < min{n(G),d(G)} and « preserves a volume density, then «(T) is
finite.
The main result of this paper is the following generalisation of the results in
[2, 4] to C! regularity.
THEOREM 1. Let M be a compact manifold. Let G be an almost simple real Lie group
with finite center and with real-rank at least 2, and let I < G be a lattice. Let o :
I' — Diff' (M) be a group homomorphism. Assume that T is an uniform lattice or T =
SL(n,Z), and assume either that dim M < min(rankg(G),d(G)), or that dim M <
min(rankg (G),d(G) — 1) and «(T) C Diff' (M, vol). Then « has finite image.
Compared to the main result in [2, 4] for almost-simple real Lie groups, in The-
orem 1 we have posed a different requirement on the dimension of the manifold.

3We thank Jinpeng An for this remark.
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Indeed, we can deduce from [2, Theorem 2.7] that for a group homomorphism
a : T — Diff?(M), the conclusion of Theorem 1 is true if rankg G is replaced by the
minimal resonant codimension r(G) (see [2, Definition 2.1]). We remark that under
the conditions of Theorem 1, we always have that

r(G) > rankgrG.

COROLLARY A. Let M be a compact manifold. Let T < G be a lattice. Let x : I —
Diff' (M) (resp. Diff! (M, vol)) be a group homomorphism. Assume that T is an uniform
lattice or T = SL(n,Z), and assume that one of the following is true:

(1) G=SL(n,R),dmM <n—1(resp. <n—1)andn >3;

(2) G=Sp(2n,R), dim M < n (resp. < n)andn > 2;

(3) G=S0(n,n), dimM < n (resp. < n)and n > 4;

(4) G=SO(n,n+1),dimM <n—1(resp. <n—1andn > 3.
Then « has finite image.

When « is a C? action, the conclusion of Theorem 1 is already obtained in [2, 4].
Moreover, when G = Sp(2n,R), SO(n,n) or SO(n,n + 1), the dimension bound
in Corollary A is not optimal. However, when G = SL(n,R), we have

7(G) = rankrG = n — 1.

By considering the actions of SL(n,R) by projective transformations on P(IR"),
and by the affine transformations on T", we see that Corollary A has optimal
bounds for G = SL(n,R). We note the for C* action by SL(n,Z), (n > 3) on com-
pact manifold with x(M) # 0 mod 3, the finite image property of « is proved by
Ye in [45].

The proofs of the results in this paper follow closely the strategy in [2]. We rec-
ommend the reader to have this paper close at hand as we make many references
to these works, although we also repeat some of the main arguments for reader’s
convenience. Below we first describe the general strategy of the proofs in [2, 3, 4],
and then we point out the main new ideas and modifications we make here in
order to obtain results in C! regularity.

3. REVIEW OF BFH AND OUTLINE OF THE PROOF

Step 1: Uniform subexponential growth.

We fix a finite set of symmetric generators for I', denoted by S = {;}. For any
v € T, we let £(7y) denote the word-length distance from v to the identity relative
to S. In other words, £(1y) is the smallest integer k such that y may be represented
by a product {; - - - { where {; € S foreach1 <j <k.

We first recall the following notion.

DEFINITION 1. Let & : T' — Diff' (M) be an action of T on a compact manifold M
by C! diffeomorphisms. We fix a background C® Riemannian metric on M. We
say that & has uniform subexponential growth of derivatives if for every € > 0 there is
a constant C, > 0 such that for all ¥ € T' we have

IDa(7)] < Cee™ .
It is clear that the above definition is independent of the choice of the metric on M
or the generating set S.

The main result of Step 1 is the following.
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PROPOSITION 1. Let M be a compact manifold, and let G be a connected, almost-simple
real Lie group with finite center and whose real-rank is at least 2. Let I' < G be a lattice.
Let a : T — Diff' (M) be a group homomorphism. Assume T is an uniform lattice or T =
SL(n,Z), and assume either that dim M < rankg (G), or that dim M < rankg (G) and
a(T) C Diff' (M, vol). Then a has uniform subexponential growth of derivatives.

We prove Proposition 1 following the same scheme in [2]. As in [2], we de-
fine the suspension space M* as the quotient of G x M by I'-action (g,x) —
(g7, 2(y1)x). We recall that M* is a fiber bundle over G/T with fibers modeled
on M. Moreover M" is equipped with a left G-action, denoted by &, by diffeomor-
phisms which preserves the foliation into fibers. We present the construction of
M?* and its further properties in Section 4.1.

As the G-action preserves the foliation into fibers of M*, we may consider the
restriction of D& to the subbundle EF := Ker(D7r) tangent to the fibers of M*. Let
A be the maximal split torus of G, and let i be an A-ergodic A-invariant measure
on M*. We can associate to y and the derivative A-cocycle D&|:r a set of fiberwise
Lyapunov functionals AF : Lie(A) — R, 1 < i < k by the higher-rank Oseledec’s
theorem (see, e.g., [7, Theorem 2.4]). We refer the reader to [2, Proposition 3.3]
for the definition and properties of Lyapunov functionals. The maxmal fiberwise
Lyapunov exponent for a € A with respect to an a-invariant probability measure y
is defined as

o1 -
A (a,0) = i€ [ 10g [ D&(@")| syl du(x).
By [2, Proposition 3.7], we have

PROPOSITION 2. Suppose that T is an uniform lattice or T = SL(n,Z), and « fails to
have uniform subexponential growth of derivatives. There exists an s € A and an A-
invariant Borel probability measure y on M® with AL (s, u) > 0 such that .y is the
Haar measure on G/T.

This is the only place where we have used the hypothesis that I' is an uniform
lattice or I' = SL(n,Z). In a work in progress of Brown-Fisher-Hurtado [4], they
have generalised Proposition 2 to any lattice in G. Admitting their results, all of
the results in the present paper hold for arbitrary lattices.

To complete the proof of Proposition 1, it remains to show the following.

PROPOSITION 3. Let u be an A-invariant Borel probability measure on M* such that 7t.
is the Haar measure on G/T. If either that rankr G > dim M, or that rankr G > dim M

and a(T') C Diff! (M, vol), then y is G-invariant.

Let a € G be a R-semisimple element. The unstable, resp. stable, subgroup for
a are respectively

H* == {g| lim a"ga™" =e},
H* = {g| nlirfwa”ga_” =e}.

PROPOSITION 4. Let a € A be an R-semisimple element. Suppose y is an a-invariant a-
ergodic probability measure on M* such that

(1) 7.y is the Haar measure on G /T, and

(2) all fiberwise Lyapunovv exponents of D&(a) are non-positive.
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Then y is H"-invariant.

The proof of Proposition 4 will be given in Section 4. We are ready to deduce
Proposition 3 from Proposition 4.

Proof of Proposition 3. We can assume without loss of generality that y is A-ergodic,
otherwise we may replace u by any one of its A-ergodic components. This is
because any A-ergodic component of i projects to some A-ergodic component
of m.yu; while by hypothesis 7,y is the Haar measure on G/I' which is itself
A-ergodic by Moore’s ergodicity theorem (see for instance [35] or [47, Theorem
2.2.6]). This allows us to define fiberwise Lyapunov functionals. We denote by
AY,---,AF the total collection of distinct fiberwise Lyapunov functionals. We

have that k < dim M. Moreover, notice that when «(I') C Diff!(M,vol), the
sum of all Lyapunov functionals (considered with multiplicities) is zero. Then
under the condition of the proposition, we can pick an arbitrary element a €
(N, exp(Ker(AF))) \ {e} such that

A (a,p0) = A (@ ) =0,
Then all a-ergodic components of y have vanishing fiberwise Lyapunov expo-
nents. By Proposition 4, we deduce that y is H#-invariant. By symmetry, we also

have that y is H*-invariant. As G is almost-simple, G is generated by H" and H".
Consequently, y is G-invariant. g

Proof of Proposition 1. Assume that « fails to have uniform subexponential growth
of derivatives. Then by Proposition 2, thereis a s € A and an A-invariant measure
u such that AL (s, ) > 0 and 7,y is the Haar measure on G/T. By Proposition
3, we deduce that p is G-invariant. Recall that n(G) > rankgrG where n(G) de-
notes the minimal dimension of a non-trivial real representation of the Lie algebra
of G. By Zimmer’s cocycle superrigidity theorem (we use the version by Fisher-
Margulis in [17, Theorem 1.4]. We refer the readers to [46, 47, 48] for some earlier
results), the G-action preserves a measurable metric on EF. This contradicts that
AL (s, u) > 0. Thus & must has uniform subexponential growth of derivatives. [

Step 2: Strong property (T) and averaging.

In this step, we follow [2] to construct a I'-invariant continuous distance by
using the strong property (T) of I proved by Lafforgue, de Laat and de la Salle in
[23, 11, 12]. The main result of this step is the following proposition whose proof
will be given in Section 5.

PROPOSITION 5. If w has uniform subexponential growth of derivatives, then there exists
a distance d : M x M — [0, 00) that is invariant by the T-action a. Moreover, for any
B € (0,1), the set «(T) is precompact in Hol-Homeof (M), the space of p-bi-Holder
homeomorphisms of M with respect to the background Riemannian distance.

Proposition 5 replaces [2, Theorem 2.9]. In [2], the authors study a C2-action
of T, and the induced T action on WP(S?(T*M)), the Sobolev space of all the
sections ¢ of the bundle of symmetric two forms S?(T*M) such that both ¢ and
D¢ are L? with respect to the Lebesgue measure. Then the strong property (T) and
the unifrom subexponential growth of derivatives give us the I'-invariant section
in W7 (S2(T*M)) which is continuous if p is sufficiently large. The above method
can be adapted to the case where the action is C! ¢ for any € > 0.
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In our case, & is only C!, and consequently « does not induce a I' action on
WLP(S2(T*M)). We consider instead the induced T'-action on L?(S?(T*M)), and
obtain a L? a-invariant section of S?(T*M). We use the exponential convergence
inherited from the strong property (T) and Cauchy inequality to bound the Sobolev
norms of the I'-action.

To make use of Proposition 5, we also need the solution of Hilbert-Smith con-
jecture for sufficiently Holder actions proved in [39, 31]. We recall the statement
here.

LEMMA 1. Forany B € ( dgil‘%\il, 1) the following is true: let H be a compact topological

group which admits a faithful action on M by B-Holder homeomorphisms. Then H is a Lie
group.

COROLLARY B. Let G, T, u, a be as in Theorem 1. Assume either that dim M < rankg(G),
or that dim M < rankg (G) and «(T) C Diff' (M, vol). Then « factors through a com-
pact Lie group. That is, there exist: a compact Lie group H; an injective group homo-
morphism 1 : H — Homeo(M); and a group homomorphism ¢ : T — H such that
a=10¢.

Proof. By Proposition 1, the action a« has uniform subexponential growth of deriva-
tives. We fix any g € (imM_ 1) By Proposition 5, the closure of «(T) in Hol-

dim M+1/
Homeof (M), denoted by Ky, is a compact topological subgroup of Homeo(M).
By Lemma 1, we see that Ky is a compact Lie group. O

Step 3: Margulis superrigidity with compact codomain.
After Step 1 and 2, we can apply precisely the same method as in [2] to show
the finite image property. We refer the reader to [2, Section 7] for details.

Proof of Theorem 1. The proof is essentially contained in [2, Section 7]. We repro-
duce it below for the convenience of the readers.

Let H be the compact Lie group given by Corollary B, and let: : H — Homeo(M)
and ¢ : I' = H be the associated group homomorphisms. Assume thata = 10 ¢
has infinite image. Then by Margulis’ arithmeticity theorem and superrigidity
theorem, each almost simple factor of H is a compact form of G. Since : : H —
Homeo(M) is injective, there is some x € M such that ((H)x contains a com-
pacta homeomorphic to K/C where K is a compact form of G and C is a closed
proper subgroup of K. This is impossible since by hypothesis dim(K/C) > d(G) >
dim M. O

4. PROOF OF PROPOSITION 4

4.1. Suspension space. In this subsection, we recall the suspension construction
and the induced G-action in [6, Section 2].

Let a be a ['-action on M by C! diffeomorphisms, i.e., a(gh) = a(g)a(h). We
consider the right acton by I' on G x M defined as

(&%) -7v=@ra(y (), Vyer
and the left G-action
a-(g,x)=(ag,x), VacG.

Define the quotient manifold M* := (G x M) /T. Since the left G-action commutes
with the right I'-action, the left G-action descends to a left G-action on M*, denoted
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by &. Since & is a C! action, M* is naturally equipped with a C! manifold structure.
The action & is given by C! diffeomorphisms of M*. Moreover, denote by 7 :
M® — G/T the projection induced by G x M — G, then M* is a C! fiber bundle
over G/T induced by 7t with fibers diffeomorphic to M.

With a slight abuse of notation, we use d(-, -) to denote both the right-invariant
metric on G, and the quotient metric on G/I'. We denote by v the normalised left
Haar measure on G/T.

By the construction in [3, Section 2.2] (see also [6, Section 2.1] for the details),
there exists a C! Riemannian metric (-,-) on G x M with the following properties:

(1) (-,-) is invariant under the right I'-action,

(2) foreach (g,x) € G x M, under the canonical identification of the G-orbit of
(g,x) with G, the restriction of (-, -) to the G-orbit of (g, x) coincides with
dg,

(3) There exist a Siegel fundamental set D C G for the right I'-action (see [33,
VIIL1] for the definition) containing the identity e € G, and a constant
Cy > 1 such that for any g1,¢> € D, the map (g1, x) — (g2, x) distorts the
restrictions of (-,-) to {g1} x M and {g»} x M by at most Cy.

We use (-, -)¢ to denote the restriction of (-, -) to {g} x M, and view it as a metric
on M. By item (1) above, we can equip M* with the quotient metric of (-, -).

We fix {7;}, a finite symmetric generating set for I'. Let ¢ denote the word-
length distance on I relative to {v;}. Given a fundamental domain Fp C D for the
right T-action on G, i.e,, G = FpI' and Fpy N Fp = @ for Vy € T\ {e}, the return
cocycle  : G x G/T" — T associated to Fp is defined as follows. For any g € G,
x € G/T, we set B(g, x) to be the unique element 7y € I such that g¥ € Fp+y, where
¥ is the lift of x in Fp. The following are from [3] whose proofs rely on [30].

LEMMA 2. If Fp C D is a fundamental domain for the right I'-action on G such that
e € Fp, then there is a constant C > 0 such that forany g € G, any x € G/T,

((B(g,x)) < Cd(g,e)+Cd(x,T)+C.

LEMMA 3. There is a constant C > 0 such that the following is true. For any g € G, any
x € G/T,any p € v 1(x) we have

log |D,i(g)|| < Cd(g,e) + Cd(x,T) +C.

4.2. Smooth cocycle. Let a be as in Proposition 4. In various statements about
typical points in G /T in this rest of this section, we will always refer to the Haar
measure v.

Following [26] and [34], we may find a measurable partition ¢ of G/I" with the
following properties:

(1) ¢ is subordinate to the partition of G/T into H" orbits: for a.e. x € G/T,
(a) the atom &(x) is contained in the orbit H" - x,
(b) the atom {(x) is precompact in the orbit H* - x,
(c) the atom ¢(x) contains a neighborhood of x in the orbit H" - x,
(2) ¢ is a-decreasing, i.e., a(¢) <¢.
We also require that ¢ satisfies the following additional property:
(3) There is a compact set W C H" such that for a.e. x

¢(x) CW-x.
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To build a partition ¢ satisfying (1)—(3), we first let ¢y be a partition satisfying
(1) and (2). Select a {p-measurable subset S C G/T with positive v-measure such
that the diameter of y(x) is uniformly bounded in the H" - x-orbit for all x € S. Tt
is well-known that a is ergodic with respect to the Haar measure v. Thus for a.e.
x € G/T, the following number is well-defined:

ny =inf{n € N | a" - x € S}.
We set
¢(x) = a""go(a™ - x).
Then £ still satisfies (1) and (2). Since Ad(a~!) is a contraction restricted to the
Lie algebra of H", ¢ also satisfies (3).

Since ¢ is measurable, we may apply [1, Prop 4.5] to find a measurable selection:
there is a measurable map ¢ : G/I' = G/T such that ¢ is constant on every atom
of ¢, and ¢ (x) € ¢(x) for v-a.e. x. Recall our choice of a Siegel fundamental set
D C G and fix a fundamental domain Fp C D such thate € Fp. Let ¢ : G/T — G
be the map that assigns x € G/T the unique g € Fp with ¢(x) = gT. Note that ¢
is {-measurable.

Since H" is horospherical for a, fora.e. x € G/I' themap H* — G/I',h+— h-x1is
injective. Indeed, for a p-typical x € G/T, there is a sequence {t, } >0 of positive
numbers that tends to infinity such that {a =% - x},,>0 is precompact. Then h
h - x must be injective on H" since each H"-orbit is contracted by the backward
iterates of a2, and G — G/I is a local homeomorphism. For any such x, we let
Wy be the inverse image of ¢(x) under the map H* — G/T, h — h - (x); and let
¢1(x) = Wyp(x). Notice that by definition 77(&1(x)) = ¢(x), and &1(x) N Fp # @.

As Fp is a fundamental domain contained in D, we can choose a Borel trivial-
ization associated to Fp, denoted by

LMY Fpx M
where for each x € G/I', weidentify (| ;1 (,) with a diffeomorphism i : 7 (x) —
M. Moreover, by the construction of the metric (-,-) on D x M, we may assume
that ||.x||c1 is uniformly bounded over all x € G/T.
Given a typical x € G/T, let uy € H" be such that x = uy - ¢p(x). Set gx :
1 (x) = 71 (p(x)) to be

& (y) = &(uy ) (y).
Givenx € G/T,set F, : M — M to be

@) Fely) = tyta 1) (8a 100 (@) (51 (9)))):
Let F: G/T x M — G/I' x M be the measurable map
(42) F(x,y) = (a~" - x, Fe(y))-
Using {gx}, we define a measurable map ® : M* — G/T x M as follows:
(4.3) Q(y) = (TW), ty(rn(y)&(y) W))-

Let p be the a-ergodic a-invariant measure in Proposition 4, let u* = &, .

CLAIM 1. ® is a Borel isomorphism. Moreover, for y-a.e. x € G/T, ® is a C! diffemor-
phism from 7t~ (x) to M, and we have

F-&= -a(a?).
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Proof. We set x = 71(z). Then we have

-1 1

mla™" -z)=a " -7m(z) =a" " -x.

Then
FO(z) = (07" X, 11080190y (B (071 (82(2))))

and

(a(a~1)(2) = (a7 %, y(g 1. 8a 1.4 (E(a71)(2))).
Then by definition, it suffices to show that
A1y = UxAUy 1 (x)-
By definition,
auga @ tox)=a-at x=x
We also notice that a=1 - p(x) € a=1 - &(x) C &(a~! - x). Thus
)

Pl y(x) = pla ' x).
Then

Ux Al 1 () cplatx) =upa-a - p(x) =
This completes the proof. O

Let {35} be the disintegration of u* with respect to the partition of G/T x M
into fibers. The following properties follow immediately from the above construc-
tions and observations.

PROPOSITION 6. We have

(1) for a.e. x € G/T and every x' € &(x), Fx = Fy; in particular, x +— Fy is
¢-measurable.

(2) The function x — log ||Fy Y| is in LY(G/T,v).

(3) @ is a measurable conjugacy between the dynamics of a=* on M* and of F on
G/T x M.

(4) The fiberwise Lyapunov exponents for Da with respect to y are all non-positive
if, and only if, the fiberwise Lyapunov exponents of F with respect to u* are all
non-negative.

(5) w is H"-invariant if and only if the map x — y% is -measurable.

Proof. Ttem (1) follows immediately from the construction. Item (3) is given by
Claim 1. Item (4) follows from item (3) and our hypothesis on a in Proposition 4:
all fiberwise Lyapunov exponents of D&(a) are non-positive.

To show item (2), we first notice that by (4.1) for v-a.e. x € G/I’, we have

1B e < 1&gt b1 a0 e 18(@) et o1 Lt
By Lemma 3, we have
logl|&(a)| 141y llcr < Cd(a,e) +Cd(a™ - (x),x0) +C,

log [|&(1y1.y(x) )zt (parapler - < C:uvgd(bmHCd(tP(a*l-x),xo)+C-
S

A

Note that there are 17, u; € W such that

aly(x)=alulx, platx) =uyla
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Then we have
d(a=" - p(x), x0),d(p(a™" - x), 0) < Cd(x,x0) + C’

for some C depending only on G, T, and some C" depending only on W and a.
Thus item (2) follows from the fact that

(x — d(x,x0)) € LY(G/T,v).

The “only if” part of Item (5) follows by definition. We assume that x — pu}
is {-measurable. Then for p-a.e. x, for any h € H" such that h(7t(x)) € ¢(rt(x)),
we have &(h).pz(x) = Hn(r(x)) Where {§iz}.cc/r is the disintegration of y along
the fibers. Moreover by Claim 1, we see that x +— yu} is a" ({)-measurable for any
n > 1. We can use the above argument for a"(¢) instead of ¢ (for all n > 1) to show
that p is H"-invariant. U

4.3. Avila-Viana’s invariance principle. We will use a variant of [1, Theorem B]
to conclude the proof of Proposition 4. Let us first briefly recall the setting in [1].

Let (X, B, i) be a probability space, and let f : X — X be an invertible fi-
preserving measurable transformation. Let N be a compact Riemannian mani-
fold. We set £ = X x N, and denote by P : £ — X the projection to the first
coordinate. We say that F : & — £ is a smooth cocycle over f if F is of form
E(x,9) = (f(2),F:(9)), where F; is a diffeomorphism of N for each £. We also
assume the following;:

(@4 [ og(sup DE(3) " IDldn(s) < e
’ Y

In this case, for any F-invariant probability measure 7 on £ that projects to fi
under P, the minimal Lyapunov exponent is a well-defined quantity at ri--almost
every (£,7) by the following formula:

B oo oY i L pr(oy—1(—1
A-(F%,9) = lim —log |[DE ()|

Let H : £ — £ be a map of form H(%,7) = (%, Hz(9)) where H; is a C! diffeo-

morphism of N which depends measurably on £, and satisfies that

(4.5) /[|10g(sqp IDA:() )] + [og(sup [ DH:(9) 1) 1dA(2) < co.
¥ Y

Then we call the map defined as follow
F(%,9) = (f(2), E:(9)) = HoFo H™'(%,7),

a deformation of a smooth cocycle F, and denote 1t = H,1i1. The decomposition of
& into fibers gives rise to a disintegration of 7 into a collection of conditional
measures {1¢ } . ¢ on the fibers. We emphasize that the assumption that { H¢ } ¢c x
are diffeomorphisms simplifies our argument (in [1] the authors worked under
the weaker assumption that {H;};cx are uniformly Holder homeomorphisms).
Actually in this paper we have only used the case where H = Id.

The following theorem, whose proof is deferred to Appendix A, is a variant of
[1, Theorem B].
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THEOREM 2. Let it be an E-invariant measure on & which projects down to fi. Let
By C B be a g-algebra which generates B mod 0 under f. Assume that both f and
% +— F; are By-measurable mod 0, and A_(E,%,9) > 0 for ii-almost every (%, 1), then
the disintegration £ — 1z of the measure 11 is Bo-measurable mod 0.

4.4. Completing the proof. We can now finish the proof of Proposition 4.

Proof of Proposition 4. By Proposition 6, the hypothesis of Theorem 2 is satisfied
with (X, N, By, f, ﬁ’l,f, E,H) being (G/T, M, Bg, i, v,a!,F,1d). Here Bg denotes
the o-algebra generated by the partition ¢. Then by Theorem 2, the map x — uj is
¢-measurable. Proposition 4 then follows from Proposition 6(5). g

5. PROOF OF PROPOSITION 5

Recall that we fixed a finite set of symmetric generators {v;} for I'. The word
distance £ on I' is defined in Section 4.1.

Proof of Proposition 5. We let || - ||¢ denote the background Riemannian metric g
on TM, and let Vol, denote the volume form induced by || - ||g. There is a C* Rie-
mannian metric on $?(T*M) associated to || - ||g. We denote by LP (M, Vol,, S>(T*M))
the space of L sections of the tensor bundle S?(T*M) with respect to Vol,.

Since « has uniform subexponential growth of derivatives, by the strong prop-
erty (T) of the lattice I (proved in [23, 11, 12]), we can adapt the argument in [2] to
show that there exist:*

(1) constants C;,”,O’p > 0 forevery 1 < p < oo;

(2) g € LP(M, Volg, S2(T*M)) forall 1 < p < oo, which is non-degenerate, i.e.,
||UH§ > 0 for Volg-a.e. x € M, and every non-zero v € TxM;

(3) a sequence of probability measures on I', denoted by {w; },, satisfying
supp(wn) C Byorg(e,n) C T for every n, where By,.4(e, 1) denotes the
radius n open ball in I" centered at e with respect to the word distance,

such that, setting g, = [ a(7y)*gdw,(7), then we have

(5.1) Ign —8llr < C'e™™, V1< p<oo

As a consequence, denote by Volg the measurable volume form induced by || - ||,

then the measure dVolg is absolutely continuous with respect to dVolg, and the
dVolg

density function Vol has full support.
We define Lebesgue measurable functions R R:M— R, as follows. Set

R(x)=sup  [olg, R(x)= _ inf  [joffs.

0eTM,[|v]|g=1 0ETM, [[o]g=1

It is direct to see that for dVolg-a.e. x € M,

dVOlg( ) KdimM(x) dVOlg (x)

R™ dim M )
dVolg X ! dVolg (%)

We have the following lemma.

4We obtain (1)-(3) for p € (1,00) by strong property (T), then the case for p = 1 follows from
Cauchy’s inequality.
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LEMMA 4. Forevery 1 < p < oo, there is Cp > 0 such that
- RP
[Rravoly < ¢, [ R'avolg < .

Proof. The second inequality follows immediately from the fact that g € LP (M, Volg, S*(T*M)).
It remains to prove the first inequality.
We define for every n > 1,

R, (x) = inf v Vxe M
fn( ) UETXM,HUHg:1H Hgn’ 7

and O, = {x|R(x) > 3R,(x)}.

For the convenience of the notation, we set )y = @. It is clear that U,(), is a
dVolg-conull subset of M.

By the uniform subexponential growth of derivatives, for every e > 0 there is
C/ > 0 such that

(5.2) sup(R,(x)" 1) < Cle™, Vn>1.
xeM

By (5.1) and (5.2), for every € > 0 we have
c 1
Volg () < Volg({x | [R(x) — R, (x)[ > 53 (x)})

< 2sup(R /\R x)|dVolg (x)
xeM

S zcélc‘/l//enﬁ—n(fl.

Then for each 1 < p < oo, we take ¢ = 071/ (10p), and we obtain

/R )PdVoly(x) < 2?2/ Ry (x)~PdVoly (x)

11+l\ n
< 27 sup(Ry s (x) 7)Voly(€2)
n=0 X
< 2Py ) el P nand = 0 < e,

n=0

LEMMA 5. Forevery 1 < p < oo, there exists D, > 0 such that for every y € T,

/M IDxat(7)||EdVolg(x) < D,

Proof. Take an arbitrary v € I', and set F = a(7y). We recall that F preserves g.
That is, for dVolg-a.e. x, for every v € TyM, we have ||v|[g = ||[DxF(v)||g. Hence
the measure dVolg is F-invariant.
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Notice that for dVolg-a.e. x € M,

||DxFHg = sup ||DxF(U)||g
vET M, ||v||g=1

[DxF(v)|l¢
= sup  [ID«F(0)llgm g
0ETM,|[0]g=1 #[|DF(v)|lg

IDxF(v)llg

= sup  lvllgrs =i

veToMfolg=1 - IDxF(0)llg
< R(x)R(F(x))~".

Then by Cauchy’s inequality,
1/2 1/2
[ D<ol x ( [ RGepravoly(x )) ( / R(F(x))_ZPdVolg(x)) .

Also

[ REFG) Vol () = [ R(FL) RS (ave()
< ([ mercoy rava) <Z§Zi<x>>2dvmg<x>)l/2
< (/ R<F<x>>4pdVo1g<x>>1/2 ( szjju)dwlgm)m
< ( / R(x)4pdVolg(x)>l/2 < / R™ dimM(x)dVolg(x)>l/2
72(@4?(1\/018(@ - / R(x)4p§XZi§(x)dVolg(x)
< ( / R(x)_SPdVolg(x)>l/2 ( / (Zzz (x))deolg(x)>l/2
< ( / R(x)_gpdVolg(x)>1/2 ( J RN yavol ))1/2
By Lemma 4,

| ID<F (@) Vol (x) < C3/2CSCYE, 1l

Since 1 is chosen arbitrarily, we can conclude the proof by taking D), to be the right
hand side of the last inequality. U

We fix an embedding : : M — RN for some integer N. Let 71; : RN — R be the

projection to the i-th coordinate. We have seen that for every 1 < p < oo, there
exists a constant C; > 0 such that for every 1 <i < N, forevery y €T,

/|Dx (7)) [PdVolg (x) < Cj,.
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Take p > dim M/ (1 — B). Then by Sobolev’s embedding theorem, we can see that
the set {«(7) | 7 € T} is pre-compact in Hol-Homeof (M). We know that any pre-
compact subset of Hol-Homeof (M) is equicontinuous in Homeo(M). Thus the
closure of #(I') in Homeo(M) is a compact topological group Ky, and it is direct
to verify by definition that Ky C Hol-Homeof (M). It is then direct to construct a
I'-invariant continuous distance on M by averaging. g

APPENDIX A.

We now give the proof of Theorem 2 in this appendix. We recall the construction
in [1, Section 3]. There is a Lebesgue space (X, B, ) obtained by identifying any
two points of X which are not distinguished by any element of 53; and a projection
7 : X — X such that B = 71,8y and y = 7.1. Since f is By-measurable mod 0,
there exists a B-measurable mod 0 transformation f : X — X such that 7o f =
fom Let£ = Xx Nand P : £ — X the canonical projection. Since F is By-
measurable mod 0, we may write Fy ;) = F; for some B-measurable mod 0
fiber bundle morphism F : £ — & over f. The measure m = (71 X id).1 is F-
invariant and projects down to y. Denote by {1, }cx the measure disintegration
of m corresponding to the partition of £ into the fibers. By the F-invariance of m
we deduce that for y-a.e. x € X,

-1
(A1) M) = / (Fo)umpdpd B0 (2.

Notice that, by our assumption F = Ho F o H™!; and that H; is a C! diffeomor-
phism for a typical £, we deduce that

A_(F)=A_(F).
This equality makes our argument slightly easier than that of [1].
We define | : £ — [0, o) by considering the Lebesgue decomposition of (F; 1).m F(x)
relative to m, :

(F;l)*mf(x) = J(x,-)mx + 1x.
Define

h(F,m) = / ~log Jdm.

Following the proof of [1, Theorem B], we will show that m({J = 0}) = 0 and in
addition the following is true.

PROPOSITION 7. We have
0 < h(F,m) < —dimN / min{0, A_ ()} dr.

The statement of Proposition 7 is the same as [1, Proposition 3.1], except that we
are now assuming (4.4) and (4.5) while in [1] the authors assume that log || DE¢ (7) 1|
log ||[DH;(9)|| and log | DH¢(7) 7! are all uniformly bounded, and the depen-
dence of DF; (), DH;(§) on £, are uniformly continuous. Thus we will need to
make some adjustments to the proof in [1] (see also [25]).

Under the hypothesis of Theorem 2, we can conclude by Proposition 7 that
h(F, m) vanishes. Once we know that /1(F, m) vanishes, we can apply [1, Proposi-
tion 3.2] to conclude the proof of Theorem 2. We recall the statement below.

7
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PROPOSITION 8. If h(F, m) = 0 then £ — 113 is By-measurable mod 0.

The proof of Proposition 8 is rather general and the conditions (4.4) and (4.5)
suffice. Now it suffices to give the proof of Proposition 7. The proof here follows
essentially the scheme in [25].

Proof of Proposition 7. By the same argument in [1, Section 3.2], we may assume
without loss of generality that i is ergodic for F. In this case, min(0,A_(F)) is a
constant #1-almost everywhere, and is denoted by —A < 0.

For any integer k > 0, for any (x,{) € X x N we define

o {Pfk?(x) SR k20,
X - DY -
Fricy i k<0

and

Le(x,§) = IDeFs{ [l Celx) = sup Li(x,8),  Ci(x,§) = Ce(x).

CeEN
Notice that we have
k—1
(A2) 0 < logCy(x, &) < Zlog Ci(Fi(x,&)).
=0

Given (x,{) € X x N, we denote by B((,6) the ball in N centered at ¢ of radius
6 > 0 and write
B((x,§),6) = {x} x B(¢,9).
For each integer | > 0, we write

(Bl )emp (B(E,6)
hix &) = == B )

and
Ji (x,8) = max(x,;4).

Itis clear that J; > O and J; > 1.
We fix some € > 0. Then there is f; = B1(€) > 0 so that forany set A C X x N
with m(A) < B1, we have

(A.3) /Alog Cidu < e.
Fix some integer [ > 0 such that the measurable set A; C X x N defined by
A= {(x,) | Li(x,§) < ey
satisfies m (A1) > 1 — B1/2. Then there is a subset A C Aj with
(A.4) m(A) >1— By
such that the derivatives D¢Fy are uniformly continuity in { over all x € A, and
for some 61 = d1(€,1,A) > 0, for any x € A, for any ¢ € (0,61(e)) we have
(A5) F(B(8,9)) € BE(), e 12%5).

We denote by E; the collection of ergodic component of m for F!. Since u is F-
ergodic, we deduce that E; is finite and F induces a cyclic permutation of E;.
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Moreover, for m-almost every (x,¢) we denote by m, ) the ergodic component

at (x,¢).
By [25, Prop 5], we know that

log Ji € LY(E,m).
More precisely, we have the following.

LEMMA 6. For m-a.e. (x,&), we have
]—

Jix, &) = [TI(F(x,€))

1

[uy

Il
S

Consequently, for any m' € E;, we have

(A.6) Ih(F,m) = — / log J;(x, &)dn’ (x,&).

Proof. This is clear that the first eq;mlity holds when ! = 1. For any [ > 1, we have
(Fﬁéx))*mf’(x) = (F{l)*(Fﬁé;L)l)*mfl(x)

(F)e U1 (B, )y + 1)

= T (F(8)) - T 8me+ T (F(x, @) + (B el

(I-1)

Here 1 () is the singular component of (Ff_,lH)*m f1(x) With respect to m (). By

(x)
(I-1)

definition, 77 is singular with respect to m,. Moreover, (F; !).z (x) is also singu-

(I-1)

lar with respect to m, for m-a.e x. Otherwise, we would know that 7 () is not

)

singular with respect to (Fy)«my; then by (A.1) we would know that 11}1(;)1 is not

singular with respect to 1m¢(,). A contradiction. Consequently, we see that

Ji=Ji-10oF-].

We then conclude the proof of the first equality by induction. The equality (A.6)
in the lemma is an immediate consequence of the first equality, and the fact that
m =1y !7}(F).m' forany m’ € E,. O

We choose some B = Ba(€,1) > 0 such that for m’ € E;, and for every A C
X x N with m’(A) < By, we have

(A7) /A (log J; +log J;)dm’ < e.
We define
Z={(x0) | i(x,¢) =0}, G=2"={(x,0) | i(x,¢) >0}

We fix a large constant D > 0. Given a constant § > 0, we define
G(©) = {(x8) €G|logJi(x,&d) <logli(x,§) +e V&' €(0,0)},
z(6) = {(x)|logfi(x,5;0") < —D V&' €(0,6)}.
We fix some 6, = d5(€,1) > 0 sufficiently small so that for every m’ € Ej,
(A8) ' (G\ G(%)) < Ba.
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We take an arbitrary &y € (0, min(d7,d,)). Given (x,¢) € X x N, define §;(x, &;0) =
dp and for k > 1 recursively define

e(=A=29)5 (x, &k — 1) F¥(x,&) € A,

e {[cmpkl(x,@)]hsz(x,c;k— DR

Observe that we have
o(x, & k+1) <6(x,&k) <6 Vk=>0
and by (A.5) and the definition of C we deduce that
F'(B(FS ™ (x,8),6/(x, &k +1))) € B(FY(x,8),8(x,5;k)) k> 0.
LEMMA 7. For m-a.e. (x,&), we have
li’gicgf%bgél(x,@';n) > (—A—3e)l.

Proof. By definition, we have

n—1

logél(x, @';n) = 10g50 + Z (l(—)\ — 26)1Fk1(x,§)€A — log Cl(Fkl(xr g))lel(x,g)éA)‘
k=0

Then by Pointwise Ergodic Theorem, we have

| -
hrgg}fﬁlogél(%@;n) > —()t+26)lm(x,¢)(A)—/AclogCldm(x’g).

By (A.2), (A.3) and (A.4), we obtain

IN

-1 ,
/AC log CldTﬂ(x,,:) Z /AC logCy o FldTI’I(x,g)
i=0

-1 '
< Z/ log C1d(F")smy )
i—0 /A
= l/ log Cydm < le.
AC
The equality follows from m = } Zg;é (Fi)*m(x,g) for m-a.e. (x,¢). Then

1
liminf — log é;(x,&;n) > —(A + 3e)l.

n—oo mn

O

Recall that by [25, Proposition 5], for any Borel probability measure v on N, we
have

logv(BEN) _ g

limsu v—ae.c.
r—0 P log r g
Thus we may pick a subset ()1 C X x N such that
log inf my(B(E,r
lim sup ginfieg)ca, Mx(B(E 1) < dim M

r—0 log r
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and m'(Q)) > 0 for every m’ € E;. Then for m-almost every (x,¢), there is an

infinite sequence of n such that F" (x, &) € Qj. Then for all sufficiently large n in
such sequence we have

1
Clog e (B (x,8),01(x,&m))) > logi(x, &m)(dim N +¢)

(A9) (—A —4e)(dim N +€)l.

v

On the other hand, we have
My (B (x,), 61(x, &)
= my(B (x,<5z(x g;0)))
L i (BIEUTV(x,8),601(x, 6 + 1))
I_I '”fﬂ<x> B(Fl'(x,£),01(x,8;1)))
—1 gy x)(B FG+1)I (x,8),8(x,&j+1)))

=

B (

=0 m g ) (B(F!(x,€),6/(x, 8 1))

. ;ﬁmw (FI(B(Pf’(x,C),éz(x,é;j)))>
e B0t 60)

=
—

= T1hF"(x,8),6(x,&)).

~.
(=)

Take an arbitrary m’ € E;. Then for m’-almost every (x, &) we have
. 1
hmsup;logmfnz<x)(B(F”l(x,g),él(x,é;n)))

1 n—1 " )
< limsup Y log Ji(F'(x,€),6(x, & /)
j=0
< log Jun' + [ log Jjdm
< /Z((SO) og Jidm +. og J;dm

< —Dm’(Z(ZSO))—i-l/log]*dm

The last inequality follows from Lemma 6 and the definition of Z(dp). Combine
the above inequality with (A.9) we conclude that

I([log J*dm + (A +4e)(dim N +¢€))
5 :

m'(Z()) <

Since the above holds for any & sufficiently small and for any m’ € E;, we deduce
that

By letting D tend to infinity, we conclude that m(Z) = 0, and consequently m(G) =
1.
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Now notice that for m’-almost every (x, {) we have

. 1
hmsupElogmfnl(x)(B(Fnl(x/5)151(?5/@2")))
1 n—1 " )

limsup; Y log Ji(F'(x,€),6/(x, &)
=0
1 le)dm' 1 *dm'
/G(&O)(Og]l+ €)dm +/G(§O)C og J;dm

< /log]ldm'—l-Sle.

IN

IN

The last inequality follows from (A.8), G(62) C G(ép) and (A.7). Combine the
above inequality with (A.9) and (A.6) in Lemma 6, we obtain

h(F,m) —5e < (A +4¢€)(dim N +¢).

Since € is arbitrary, we conclude the proof of Proposition 7. O
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