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Abstract

Motivation: Recent technological advances produce a wealth of high-dimensional descriptions of biological proc-
esses, yet extracting meaningful insight and mechanistic understanding from these data remains challenging. For
example, in developmental biology, the dynamics of differentiation can now be mapped quantitatively using single-
cell RNA sequencing, yet it is difficult to infer molecular regulators of developmental transitions. Here, we show that
discovering informative features in the data is crucial for statistical analysis as well as making experimental
predictions.

Results: We identify features based on their ability to discriminate between clusters of the data points. We define a
class of problems in which linear separability of clusters is hidden in a low-dimensional space. We propose an un-
supervised method to identify the subset of features that define a low-dimensional subspace in which clustering can
be conducted. This is achieved by averaging over discriminators trained on an ensemble of proposed cluster config-
urations. We then apply our method to single-cell RNA-seq data from mouse gastrulation, and identify 27 key tran-
scription factors (out of 409 total), 18 of which are known to define cell states through their expression levels. In this
inferred subspace, we find clear signatures of known cell types that eluded classification prior to discovery of the

correct low-dimensional subspace.

Availability and implementation: https://github.com/smelton/SMD.

Contact: smelton@g.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent technological advances have resulted in a wealth of
high-dimensional data in biology, medicine and the social sciences.
In unsupervised contexts where the data are unlabeled, finding use-
ful representations is a key step toward visualization, clustering and
building mechanistic models. Finding features which capture the
informative structure in the data has been hard, however, both be-
cause of unavoidably low data density in high dimensions (the ‘curse
of dimensionality’; Donoho, 2000) and because of the possibility
that a small but unknown fraction of the measured features define
the relevant structure (e.g. cluster identity) while the remaining fea-
tures are uninformative (Chang, 1983; Witten and Tibshirani,
2010).

Identifying informative features has long been of interest in the
statistical literature. When the data are labeled, allowing for a super-
vised analysis, there are successful techniques for extracting import-
ant features using high-dimensional regressions. When there is no

labeled training data, unsupervised discovery of features is difficult.
Standard feature extraction methods such as PCA are effective in
reducing dimensionality, yet do not necessarily capture the relevant
variation (Chang, 1983; and see Supplementary Fig. S1). Other
methods (Witten and Tibshirani, 2010; Xu et al., 2005) attempt to
co-optimize a cost function depending on both cluster assignments
and feature weights, which is computationally difficult and tied to
specific clustering algorithms (see section on existing methods).
Feature extraction guided by clustering has also been effective as a
preprocessing step for regression tasks. In Coates and Ng (2012),
classification and regression is done with data represented in the
basis of centroids found with K-means. In Ngiam et al. (2011), fea-
tures are constructed such that representations of data points are
sparse, but no explicit discrimination is encoded between clusters
beyond a sparsity constraint. We consider here an example where
clusters are distinguished from each other by sparse features, but
overall representations of each data point is not necessarily sparse in
this new basis. We show here that optimal features are discovered

©The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 202


https://github.com/smelton/SMD
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa690#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa690#supplementary-data
https://academic.oup.com/

Sparse features

203

by their ability to separate pairs of clusters, and we find them by
averaging over proposed clustering configurations.

Using gene expression data to understand processes in develop-
mental biology highlights this challenge. In a developing embryo,
multipotent cells make a sequence of decisions between different cell
fates, eventually giving rise to all the differentiated cell types of the
organism. The goal is both to determine the physiological and mo-
lecular features that define the diversity of cell states, and to uncover
the molecular mechanisms that govern the generation of these states.
Decades of challenging experimental work in developmental biology
suggests that a small fractions of genes control specific cell fate deci-
sions (Gilbert, 2016; Graf and Enver, 2009; Takahashi and
Yamanaka, 2006). Recent experimental techniques measure tens of
thousands of features—gene expression levels—from individual cells
obtained from an embryo over the course of development, produc-
ing high-dimensional datasets (Briggs et al., 2018; Farrell et al.,
2018). Clustering these data to extract cell states and identifying the
small fractions of key genes that govern the generation of cellular di-
versity during development has been difficult (Furchtgott et al.,
2017; Kiselev et al., 2019). However, mapping cellular diversity
back to specific molecular elements is a crucial step toward under-
standing how gene expression dynamics lead to the development of
an embryo.

Here, we show that as the fraction of relevant features decreases,
existing clustering and dimensionality reduction techniques fail to
discover the identity of relevant features. We show that when the
linear separability of clusters is restricted to a subspace, the identity
of the subspace can be found without knowing the correct clusters
by averaging over discriminators trained on an ensemble of pro-
posed clustering configurations. We then apply it to previously pub-
lished single-cell RNA-seq data from the early developing mouse
embryo (Pijuan-Sala ez al., 2019), and discover a subspace of genes
in which a greater diversity of cell types can be inferred. Further, the
relevant subspace of genes that we discover not only cluster the data
but are known from the experimental literature to be instrumental
in the generation of the different cell types that arise at this stage.
This approach provides unsupervised sparse feature detection to fur-
ther mechanistic understanding and can be broadly applied in un-
supervised data analysis.

2 Approach

2.1 Uninformative data dimensions corrupt data

analysis

To understand how the decreasing fraction of relevant features
affects data analysis, consider data from K™ classes in a space V
with dim(V) = D features. Assume that V can be partitioned into
two subspaces. First, an informative subspace V; of dimension Dy, in
which the K™ clusters are separable. And second, an uninformative
subspace V,, with dimension D, = D — D; in which the K™ clus-
ters are not separable. An example of such a distribution is shown
inFigure 1 with two clusters, D, =1 and D,, = 2.

The correlation between the distances computed in the full space
V with that in the relevant subspace V scales as /Ds/D (see
Supplemental Text). When the fraction of relevant features is small,
or equivalently D/D; > 1, correlations between samples become
dominated by noise. In this regime, without the correct identifica-
tion of V, unsupervised analysis of the data is difficult, and typical
dimensionality reduction techniques (PCA, ICA, UMAP, etc.) fail.
We demonstrate this by constructing a Gaussian mixture model
with 7 true clusters which are linearly separable in a subspace V;
with dimension D; = 21, and drawn from the same distribution
(thus not linearly separable) in the remaining D — D, dimensions.
As the ratio D/D; increases, the separability of the clusters in vari-
ous projections decreases (Supplementary Fig. S1).

In many cases, identifying the ‘true’ V; may be challenging.
However, eliminating a fraction of the uninformative features and
moving to a regime of smaller D/D; could allow for more accurate
analysis using classical methods. We next outline a method to

91€V5

Fig. 1. Gaussian data with unit variance shown along three axes. The marginal dis-
tribution of — e; contains signature of distinct clusters, with a bimodal marginal
distribution where each mode corresponds to a cluster. Here, the clusters are linear-
ly separable along the e; axis. The marginal distributions of — e, and — e3 are uni-
modal, and do not linearly separate groups of data points. Here, we designate — ¢
as part of V; as it contains multimodal signal, and e;,e3 € V,, do not. The three axes
shown here represent a subspace of a D > 3-dimensional distribution

weight dimensions to construct an estimate of V; and to reduce
D/D..

2.2 Minimally informative features: the limit of pairwise

informative subspaces separating clusters

To develop a framework to identify the relevant features, consider
data X = {¥1,..,%n} where samples ¥, are represented in the meas-
urement basis {€4,...,&p}. Assume that the data is structured such
that each data point is a member of one of K" clusters,
C={Ct,..,Cgme}. Let VI be the subspace of V in which the data
points belonging to the pair of clusters C;, C,,, are linearly separable.
Let 0},, be unit vector normal to the max-margin hyperplane sepa-
rating clusters C; and C,,,. In the space orthogonally complement to
VI the two clusters are not linearly separable. One can similarly
define K™¢(K™¢ —1)/2 such subspaces {V"} and associated
hyperplanes {0},,}, one for each pair of clusters in C. We define a
weight for each dimension g = {g1,...,84,..-,&p} by its compo-
nent on the {0}, }s:

ga{0m}) = > 01 - 2l o))
I#m

Knowing the cluster configuration C would allow us to directly
compute g by finding max-margin classifiers and using Equation 1.
Conversely, knowing g§ would allow for better inference of the clus-
ter configuration because restriction to a subspace in which gz > 0
would move to a regime of smaller D/D;. Existing work has focused
on finding C and g simultaneously, through either generative models
or optimizing a joint cost function. Such methods either rely on con-
text specific forward models, or tend to have problems with conver-
gence on real datasets [see Witten and Tibshirani (2010) and section
on existing methods].

We focus here on estimating § when C is unknown. We consider
the limit in which the dimensions of each V¥ D" take on the
smallest possible value of 1, which maximizes the ratio D/D" for
all [, m. Further, this limit resides in the regime of large D/D; where
conventional methods fail. We further consider the limit where the
intersection between any pair of the subspaces in {V/} is null. In
this limit, the marginal distribution of all of the data in any one of
the V/ can be appear unimodal due to a dominance of data points
from the K™ —2 clusters for which this subspace is irrelevant,
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Fig. 2. For K clusters with multimodal subspaces V" with I,m € {1,..., K}, we consider the limit as each V" has minimal dimension (=1) and are non-intersecting. (A) shows

a Gaussian example of a collection of one-dimensional pairwise informative subspaces, which are uninformative for clusters # I, m. Here, e, is multimodal in the blue and
green clusters, but not red, e, is multimodal in the red and blue clusters, but not green, and e is multimodal in the red and green clusters, but not blue. (B) Despite containing
multimodal signature, non-intersecting pairwise informative subspaces V" can corrupt marginal distributions to hide separability (top). Same data with points colored by clus-
ter, where separation of means is denoted by A, and the variance of distributions in their informative dimensions is given by a. (bottom). (C) shows dimensions that are unin-

formative for all clusters

despite data in the clusters C;, C,, showing a bimodal signature in
this subspace. Hence, finding the identity of the informative subspa-
ces by distinguishing moments of the marginal distribution is not
possible as D/D; grows or data density decreases, even in the case
of normally distributed data (Fig. 2). In this limit, the values of g,

. . ) ) . Ktrue
corresponding to informative dimensions are 1/( 2 ), and O for

uninformative dimensions. Our reason for studying this limit of
pairwise separability is that an algorithm that can find the inform-
ative subspaces of V in these limits should be able to do so in instan-
ces where in the dimensions of {V/} are larger than one and
intersecting.

We generate data such that the mean of the marginal distribu-
tions of clusters C; and C,, along a specific €; whose span defines
{V"} are separated by A, and the sample variance of each cluster’s
marginal distribution is 6. The marginal distribution of cluster C; in
all other dimensions, i.e. &; & UaVsl“, is unimodal with zero mean

rue

and unit variance. Therefore, in all, there are D; = (Kt2 )
Ktrue(K'™e — 1)/2 dimensions (one dimension for each pair of clus-
ters) in each of which a pair of clusters are linearly separable, while
the other K¢ — 2 clusters are not, and D, = D — D dimensions
where all clusters are drawn from the same unimodal distribution.
Normalizing each feature to have unit variance leaves one free par-
ameter, S = A/a, which controls the pairwise separability of clusters
within their informative subspace (Fig. 2B). Indeed, computing pair-
wise distances between data points generated from 7 clusters and
D/D; = 40 does not reveal cluster identity (Fig. 3A).

3 Materials and methods

3.1 Identifying a sparse set of pairwise informative
features

We develop an approach to estimate the weight vector g knowing
neither the identity of points belonging to each cluster nor the total
number of clusters. To estimate g, we propose to average estimates
of g over an ensemble of clustering configurations. Specifically, we
sample an ensemble of possible clustering geometries, C*, from each
of which a collection of max-margin classifiers {(fm} are computed
to compute g using Equation 1:

() = ga{0},1)P(C"X) 2)
CP

where P(C?|X) is the probability of a clustering configuration given
the data. This sum can be approximated numerically through a sam-
pling procedure, where cluster proposals are sampled according to
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Fig. 3. Gaussian data were generated in which 1400 data points from 7 clusters are
pairwise distinguishable in only one feature, and 840 features contain no informa-
tion as to cluster identity (thus D/D; = 40). (A) Computing pairwise distances be-
tween points and constructing a dendrogram does not resolve the existence of
clusters. (B) Ensemble of 1000 proposal clusters is constructed using K-means, with
K, ~ Unif(3, 14), and max-margin classifiers are constructed for each pair of cluster
per proposal. Each feature is scored according to how frequently it separates two
proposed clusters. A histogram of the scores of each feature is shown. Features in
the informative subspace (V), have substantially higher scores than those in the un-
informative subspace (V,,). (C) A dendrogram computed in the space weighted by
feature scores reveals the existence of seven clusters
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P(CIX) ~ D P(CIX,K")P(KP) 3)

Kr

where K” is the number of clusters, and P(KP?) is our prior over the
number of proposal clusters.

Consider one such proposed clustering configuration with K”
clusters, denoted by C” = {C},..,Ch,} where each Cf indexes the
data points that belong to the Ith proposed cluster. For this proposed

. . . K? .
clustering configuration, we compute a set of ( classifiers that

5 )
separate each pair of clusters. Based on the assumption that g is
sparse, or equivalently that the true {V; } are low dimensional, we
impose an L1-regularized max-margin classifier to compute {glm}
from the data X and the proposed cluster configuration C* as in the
study by Zhu et al. (2003):

@fm = argmjn[z [1—(0- X,
icCl
+ [+ (8- %)), + 4161,
ieCh,

where [-], indicates the positive component, and 2 is a sparsity par-
ameter. We set /4 such that the expected number of non-zero compo-
nents in each 0’;”1 is 1. Specifically, we sample T -cluster
configurations by clustering on random subsets of the data, and
average the weights of max-margin classifiers over this ensemble:

(84) = %Z (Z U éd>, )

¢ \l<m

This procedure can be carried out explicitly as follows:

X € RP*N (N instances in D dimensions).

Fort<T:
1. Pick #gubsample points from XX
2. Sample Kj, ~ Unif(2, Kipax)
3. € « Cluster X* into K,, clusters
4. Forl <me{0,.,K,}:
—p ) - - -
0, = argmin Y " [1—(0-%)], + > [1+(0-%)], + 4|6]],
0 iecr iec,
1 ‘m
5. Ford<D:
0
g — 8+ Y [0, 2d
I#m
6. Returng

For a graphical representation of this algorithm, and a plain
word description (see Supplementary Material). A python imple-
mentation is available at github.com/smelton/SMD.

While computing pairwise distances in the full-space V lacks
structure (Fig. 3A), this algorithm produces substantially higher
weights for the informative features on simulated data (Fig. 3B).
Comparisons of pairwise distances in the reduced subspace found by
the algorithm reveal richer structure and the presence of seven dis-
tinct clusters (Fig. 3C). The algorithm reliably discovers the correct
set of informative features while using both K-means and
Hierarchical clustering to construct the proposal clusters, and for a
range of the prior over K, (Supplementary Fig. S2).

3.2 Scaling of inferred weights with dimensionality and

data density

In the challenging regime of large D/Dj, this algorithm can robustly
identify key features in the data. In particular, as D increases, there
is a scaling of the algorithms performance as a function of D/Dj, as
well as a dependence on the number of data points N. First, we sam-
ple a variety of proposal clusters C”, each with K” clusters drawn

from a prior P(K). Using counting arguments (see Supplemental

Text), we can estimate the frequency of proposed 6, aligning with
informative with a bimodal signature and uninformative features
without. This ratio of the average weights of informative dimensions
to the average of the uninformative dimensions, (g4)4cv, /(€d)agv.»
scales as \/LD— The scaling, however, also depends on data density.
Specifically, consider the length scale separating two neighboring
data points in the full-space V scales as N~'/P. In the relevant sub-
space V., this length scale translates to a volume of N~Ps/P which
must be compared to the characteristic volumes in this subspace that
reflect the multimodal structure of the data. If the identities of the
true clusters in V, are known, one can ask what the errors are in
clustering in the full space V instead of in V, by computing the en-
tropy, S of the composition of inferred clusters based on the true
cluster identities of data points. This entropy has to be a function of
the ratio of the characteristic volumes in D, to N~2/P, Or equiva-
lently, the entropy of the clusters should be a monotonically increas-

. . D L . . .
ing function F(DS log(N))’ denoting increasing errors in clustering.

The form of the function F depends on the true data distribution and
the clustering method. Therefore, our expectation for the ratio of
counts for the informative dimensions and counts for the uninforma-
tive dimensions should scale like

G~ (s

(8adagv, VDs \Dslog(N)

We numerically generated Gaussian distributed data for D/D; €
[2,50], N € [102, 104} using Kwe = 7, Dy = 21 and ran 2000 itera-
tions of the algorithm with P(K?) ~ Unif(3,N/20) and found close
agreement for the range of parameters (Fig. 4A, B).
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Fig. 4. (A) We numerically generated Gaussian distributed data for D/D; €
[2,50], N € [10%,10%] using Ky = 7, D, = 21, and ran 2000 iterations of the algo-
rithm with P(K?) ~ Unif(3, N/20) and the proposal clusters inferred by standard K-
means. (B) We find that by scaling by D/D; Log N, we see a consistent trend across
number data points and the ratio of counts on informative dimensions to unin-
formative dimensions matches the predicted % scaling. For larger values of
D/D; Log N, the points collapse onto one trend line for various values of N
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3.3 Significance and sources of error

To estimate the significance of g, frequencies produced by the algo-
rithm, we constructed a null models to estimate g, in the absence of
signal. First, each column of the data matrix is shuffled to produce a
null distribution XX°. This leaves marginal distributions of each di-

mension unchanged. Next, each feature can be scored based on the
null  distribution, {g%}, and statistics p° = (g}), and o¢° =

(gfj)2 — (g?) can be computed from these scores. We then can

compute a Z-score for each dimension as g";“x. Motivated by the
work of Tibshirani ez al. (2001) and Candés et al. (2018), more pre-
cise estimates could be obtained by generating synthetic marginals
without multimodality, which is an area for future work.

Correlations in the uninformative subspace can lead to erroneous
counts in the correlated axes. This is caused by correlations in unin-
formative dimensions biasing the proposal clusters to be differential-
ly localized in these axes. Despite these false positives, the false-
negative rate remains low, resulting in minimal degradation of the
ROC curve (see Supplementary Fig. S3A). In practice, eliminating
any number of uninformative dimensions is effective in restricting
analysis to a smaller regime of D/D;. Thus, even in the presence of
false positives, removing uninformative dimensions before conven-
tional analysis can increase the accuracy of clustering or dimension-
ality reduction techniques.

A free parameter in the synthetic data is S = A/o, the ratio of
mean separation to variance of distributions in the informative sub-
space, which controls the separability of clusters. As S decreases, we
see degradation in the AUROC for our algorithm, but the identifica-
tion of key dimensions is still possible even as the mean separation
approaches the noise level in the distributions (see Supplementary
Fig. S3B, inset).

4 Results

4.1 Application to single cell RNA-sequencing from

early mouse development

A central challenge in developmental biology is the characterization
of cell types that arise during the course of development, and an
understanding of the genes which define and control the identity of
cells as they transition between states. Starting at fertilization, em-
bryonic cells undergo rapid proliferation and growth (Baldock,
2015; Gilbert, 2016). In a mouse, these cells form the epiblast, a
cup-shaped tissue surrounded by extraembryonic cells by E6, or
6 days after fertilization. Only the cells of the epiblast will go on to
give rise to all the cells of the mouse. These cells are pluripotent,
meaning they have the developmental potential to become any cell
type in the adult mouse body (Rossant and Tam, 2017). At E6,
proximal and distal subpopulations of both the epiblast and sur-
round extraembryonic cell types begin secreting signaling proteins
(Rivera-Pérez and Hadjantonakis, 2015), which when detected by
nearby cells, can increase or decrease the expression of transcription
factors—proteins that modulate gene expression, and can thus
change the overall expression profile of a cell. Signaling factors dir-
ect genetic programs within cells to restrict their lineage potential
and undergo transcriptional as well as physical changes. Posterior—
proximal epiblast cells migrate toward outside of the embryo form-
ing a population called the primitive streak, in a process called gas-
trulation which takes place between E6.5 and E8. This time frame is
notably marked by the emergence of three populations of specified
progenitors known as the germ layers (Tam and Behringer, 1997):
endoderm cells, which later differentiate into the gastrointestinal
tract and connected organs, mesoderm cells, which have the poten-
tial to form internal organs such as the muscoskeletal system, the
heart, and hematopoietic system, and ectoderm cells, which later
form the skin and nervous system. The mesoderm can be subdivided
into the intermediate mesoderm, paraxial mesoderm and lateral
plate mesoderm, which each have further restricted lineage poten-
tial. Identifying the key transcription factors that define and control
the genetic programs that lead to these distinct subpopulations will

allow for experimental interrogation and a greater understanding of
the gene regulatory networks which control development.

Recent advances in single-cell RNA-sequencing technology allow
for simultaneous measurement of tens of thousands of genes (Briggs
et al., 2018; Farrell et al., 2018) during multiple time points during
development. These technological advances promise to provide in-
sight into the identity and dynamics of key genes that guide the de-
velopmental process, yet even clustering cells into types of distinct
developmental potential, and identifying the genes responsible for
the diversity has been difficult (Griin ez al., 2015; Weinreb et al.,
2018). Existing methods typically find signal in correlations between
large numbers of genes with large coefficients of variation to deter-
mine a cell’s states. However, experimental evidence suggests that
perturbations of a small number of transcription factors are suffi-
cient to alter a cell’s developmental state and trajectory (Gilbert,
2016; Graf and Enver, 2009; Takahashi and Yamanaka, 2006).
Further, recent work suggests that a small set of four to five key
transcription factors is sufficient to encode each lineage decision
(Furchtgott et al., 2017; Petkova et al., 2019). We therefore believe
that signature of structure in these data resides in a low-dimensional
subspace. While many existing methods rely on hand-picking known
transcription factors responsible for developmental transitions
(Pijuan-Sala et al., 2019), we attempt to discover a low-dimensional
subspace of gene expression which encodes multimodal expression
patterns indicating the existence of distinct cell states.

In the study by Pijuan-Sala et al. (2019), single cells are collected
from a mouse embryo between E6.5 and E8.5, encompassing the en-
tirety of gastrulation, and profiled with RNA sequencing to quantify
RNA transcriptional abundance. We considered 48 692 cells from
E6.5 to E7.75 which had more than 10 000 reads mapped to them.
We then subsampled reads such that each cell had 10 000 reads.
Individual genes were removed from analysis if they had a mean
value of less than 0.05, or a standard deviation of less than 0.05
(based onGriin et al., 2015; Weinreb et al., 2018). We restricted our
analysis to transcription factors because, as regulators of other
genes, variation in transcription factor expression is a strong indica-
tion of biological diversity between cells, or cell types. We normal-
ized the 409 transcription factors with expression above these
thresholds to have unit variance. A cell—cell correlation analysis, fol-
lowed by hierarchical clustering fails to capture the fine grained di-
versity of cell types that is known to exist at this time point
(Fig. SA).

We attempted to discover a low-dimensional subspace in which
signatures of cell-type diversity could be inferred using the algorithm
outlined in the previous section. We sampled 3000 clustering config-
urations based on hierarchical (ward) clustering of 5000 subsampled
cells, with K, ~ Unif(20, 75), chosen to cover a range around the 37
clusters found by Pijuan-Sala et al. (2019). We find 27 transcription
factors with a z-score z, > 1, 18 of which have known have previ-
ously identified essential functions in the regulation of differenti-
ation during gastrulation (Table 1).

Our hypothesis is that the variation in the 27 discovered tran-
scription factors provides a subspace V, in which multimodal signa-
tures allow the identification of cell types. However, single-cell
measurements of individual genes are known to be subject to a var-
iety of sources of technical noise (Griin and van Oudenaarden,
2015). To decrease reliance on individual measurements, we take
each of the 27 transcription factors with high scores, and extend the
subspace to include 5 genes (potentially not transcription factors)
that have the highest correlation with each of the 27 discovered
transcription factors, resulting in an expanded subspace of 83 genes
in which to cluster the data (full list in Supplementary Material).
The cell—cell covariance matrix in this subspace (Fig. 5B), reveals
distinct cell types and subtypes, and a heat map of the expression
levels of these 83 genes shows differential expression between sub-
types of cells.

We hierarchically clustered the cells into 35 cell types based on
expression of these 83 genes. The corresponding identity of these
cell types was determined using the expression pattern of all genes
(Table 2, Fig. 5C), and identify extraembryonic populations (C5-9,
C18-20), epiblast populations (C27-34), primitive streak
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Fig. 5. (A) Single-cell RNA-seq data from the study by Pijuan-Sala et al. (2019) does not immediately segregate into cell types. Analysis for (A)—~(C) was conducted on all
48 692 cells from E6.5 to E7.75 with at least 10 000 mapped reads, however, only 4000 randomly selected cells are shown for visualization purposes. Here, we show the cell-
cell correlation matrix where each row/column corresponds to a single cell, organized by hierarchical clustering, and the correlation in computed in the 409-dimensional space
of expressed transcription factors. (B) Inference of 27 transcription factors with pairwise multimodal signature provides a subspace in which to recompute cell—cell correla-
tions, revealing population structure in comparison to (A). (C) Inferred transcription factors include known regulators of development and lineage transitions, allowing identi-
fication of previously hidden cell types and subpopulations. Here, we show normalized expression of inferred transcriptions and correlated genes (columns) versus single cells
(rows) which were clustered hierarchically in this subspace. Differential expression of small numbers of genes distinguishes cell types, such as differential expression of Nanog

in C27-C34

populations (C14-17, C23-25), mesoderm subtypes (C2-4, C12,
C13, C16, C17, C22), endoderm (C21) and primitive erythrocyte
(C1). For example, we find a subpopulation of epiblast cells that
have upregulated Nanog (as well as other early markers of the
primitive streak), suggesting that these cells are positioned on the
posterior-proximal end of the epiblast cup (Mulas et al., 2018). The
large primitive streak population, which extends along the proximal
side of the embryo, contains subtypes distinguished by Gsc (Lewis
et al., 2007) and Mesp1 (Arnold and Robertson, 2009), which give
rise to distinct fates. We find a distinct population of anterior

visceral endoderm cells, marked by Otx2 and Hhex, which define
the population responsible for the anterior-posterior body axis
(Perea-Gomez et al., 2001). This population, which is distinguished
from other Foxa2-expressing subpopulations of the visceral endo-
derm, is crucial for proper development.

Most importantly, in extracting the relevant features from the
data, our algorithm identifies known and validated transcription
factors that are crucial to the developmental processes happening in
this time frame. Further, by eliminating extraneous measurements,
we are able to identify clear differential expression patterns between
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Table 1. Transcription factors with Z-score greater than 1 based on 3000 cluster proposals

Gene name 2 Associated cell type Citation

Creb3l13 34.20

Tfeb 13.37

Rhox6 10.15

ElfS 9.45 Extraembryonic ectoderm Latos et al. (2015)

Gatal 8.77 Primitive erythrocyte Baron (2013)

Pou5fl 8.38 Epiblast, primitive streak Mulas et al. (2018)

Sox17 5.61 Endoderm Viotti et al. (2014)

NrOb1 5.58

Hoxb1 4.54 Mesoderm Carapuco et al. (2005)

Foxf1l 3.36 Lateral plate mesoderm Mabhlapuu et al. (2001)

Gata2 3.27 Extraembryonic mesoderm Silver and Palis (1997)

Prdmé6 3.12

Bcllla 2.99

Foxa2 2.70 Anterior visceral endoderm, anter- Perea-Gomez et al. (2001) and
ior primitive streak Arnold et al. (2008)

Gsc 2.67 Anterior primitive streak Lewis et al. (2007)

Hand1 2.57 Posterior mesoderm, lateral plate Riley et al. (1998)
mesoderm

Ascl2 2.52 Ectoplacental cone Simmons and Cross (2005)

Mesp1 2.46 Posterior primitive streak Arnold and Robertson (2009)

Hoxal 2.44 Mesoderm Carapuco et al. (2005)

Nanog 2.24 Epiblast Mulas et al. (2018)

Zfp42 2.14 Extraembryonic ectoderm Pelton et al. (2002)

Cdx1 2.12 Paraxial mesoderm van den Akker et al. (2002)

Runx1 1.82

Hoxb2 1.73 Mesoderm Carapucgo et al. (2005)

1d2 1.51 Extraembryonic ectoderm Jen et al. (1997)

Tbx3 1.31

Pitx2 1.20

Note: For each transcription factor, we list the associated cell type from early mouse gastrulation.

subtypes of cells which were indistinguishable through previous
methods. In particular, identification of primitive streak subpopula-
tions provides novel insight into a central developmental process,
and we identify key genes that would allow for experimental inter-
rogation of the spatial organization of the subtypes and their
dynamics.

4.2 Comparison to existing methods

To benchmark our approach’s performance, we compared it against
existing methods on two classes of distributions (Table 3). In the
first class, relevant dimensions are globally separable, i.e. each rele-
vant dimension is informative for every cluster. Such a distribution
is shown in Figure 1, where ¢, is globally informative and e, and e;
are uninformative. We generated data with similar structure, with
D, = 1 relevant dimension (like e; in Fig. 1) and D,, = 29 irrelevant
dimensions (distributed like e, and e3), resulting in a ratio
D/D; = 30. Each distribution had N=1000 data points, and the
ratio between variance and mean separation in the informative di-
mension A/ =7. In the second class of distributions, data were
generated such that clusters were pairwise separable, as described in
Section 2.2, with K,,,,. = 7 true clusters, N = 1400, D, = 21. Similar
to the first class, we set A/o = 7 and D/D; = 30.

Next, we compared the method against existing feature selection
methods. For each class of distribution, we asked if existing methods
could discover weights that identified the informative dimensions,
and measured this success by calculating the AUROC for a range of
algorithmic parameters over five instances of each distribution.
Traditional approaches to feature selection have relied on correl-
ation analysis (e.g. principal component analysis, or PCA), which
are not suited for discovering sparse representations. This has been
addressed through Sparse PCA (Witten et al., 2009; Zou et al.,
2006), which adds an L1 penalty to the typical matrix completion

form of PCA. Sparse PCA has two free parameters: the number of
components considered (K) and a sparsity parameter (). We tested
a range of both of these parameters, and found that Sparse PCA is
sensitive to parameter choice, but can identify features of import-
ance only when such importance is reflected in the correlation struc-
ture (as is the case with the pairwise separable features). However,
Sparse PCA does not optimize for any notion of separability, so
when there is no signature in the correlation structure (as is the case
with the globally separable distribution class).

Another class of methods attempts to optimize different meas-
ures of feature importance with respect to a clustering configuration.
Spectral feature selection (Zhao and Liu, 2007), does so by con-
structing a graph representation of the data, yet fails to identify the
key features in either class of distributions tested (Table 3). In Li
et al. (2008), features are discovered based on ability to define indi-
vidual clusters, but this method cannot resolve distinct clusters in ei-
ther setting in the large D/D; limit (Table 3). The identification of a
small subset of informative features can also be formulated as a
Bayesian inference problem, where a log likelihood function is maxi-
mized over the hidden parameters via an expectation maximization
scheme (Dempster et al., 1977). Model-based clustering has been
explored in depth in McLachlan and Peel (2000) and Fraley and
Raftery (2002), and adapted to feature selection by the inclusion of
a lasso term on the separation of the first moments in Pan and Shen
(2007), Wang and Zhu (2008) and Xie et al. (2008). These methods
all rely on accurate forward models of the data. Advantages and
drawbacks of these are discussed in Witten and Tibshirani (2010),
which provides a more general framework. We tested two methods
proposed in Witten and Tibshirani (2010) (Table 3), in which a fea-
ture weight vector @ € RP is introduced and learned by amending a
clustering cost function with a L1 penalty on the feature weights.
Each of these algorithms requires a parameter for the number of
clusters (K), and a sparsity parameter (o). We tested this alteration
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Table 2. Clusters (or cell types) discovered in the reduced subspace and their associated markers

Cluster ID Label Markers
0 Unclustered
1 Primitive erythrocyte progenitor Hba-x (Leder et al., 1992), Hbb-bh1 (Kingsley et al., 2006), Gatal (Baron, 2013),
(Baron, 2013) Lmo2 (Palis, 2014)
2 Mesoderm Car3, Spag5, Hoxb1 (Carapuco et al., 2005), Cnksr3, Smad4, Zfp280d, Vim (Saykali
et al., 2019), Ifitm1
3,4 Lateral plate mesoderm Foxfl (Mahlapuu et al., 2001), Hand1 (Riley et al., 1998)
5 Anterior visceral endoderm Sox17, Foxa2 (Perea-Gomez et al., 2001), Cer1 (Torres-Padilla et al., 2007), Frat2,
Lhx1 (Costello et al., 2015), Hhex (Norris et al., 2002), Gata6, Ovol2, Otx2 (Perea-
Gomez et al., 2001), Sfrp1 (Pfister et al., 2007)
6,7 Extraembryonic mesoderm Fgf3 (Niswander and Martin, 1992), Lmo2 (Palis, 2014), Gata2 (Silver and
Palis, 1997), Bmp4 (Fujiwara et al., 2001)
8,9 Visceral endoderm 1 Rhox3$ (Lin et al., 1994), Emb (Shimono and Behringer, 1999), Afp (Kwon et al., 2006)
10,11 Neuromesodermal progenitor Sox2, T (Koch et al., 2017)
12,13 Paraxial mesoderm/presomitic mesoderm Hoxal, Hoxb1 (Carapugo et al., 2005), Cdx1, Cdx2 (van den Akker et al., 2002)
14 Posterior primitive streak Mesp1 (Arnold and Robertson, 2009), Snail (Smith ez al., 1992), Lhx1 (Costello
et al., 2015; Shawlot et al., 1999), Smad1 (Tremblay et al., 2001)
15 Anterior primitive streak, organizer-like cells Foxa2 (Arnold et al., 2008), Gsc (Lewis et al., 2007), Eomes (Arnold et al., 2008)
16,17 Posterior primitive streak derived mesoderm, Msx2 (Catron et al., 1996), Snail (Smith ez al., 1992), Foxf1l (Mahlapuu et al., 2001),
lateral plate mesoderm progenitors Hand1 (Riley et al., 1998), Gata4 (Simon et al., 2018)
18,19 Extraembryonic ectoderm Cdx2 (Beck et al., 1995), RhoxS5 (Lin et al., 1994),1d2 (Jen et al., 1997), GjbS
(Frankenberg et al., 2007), Tfap2c (Latos et al., 2015), Zfp42(aka Rex1) (Pelton
et al.,2002), EIfS (Latos et al., 2015), Gjb3 (Frankenberg et al., 2007), Ets2
(Donnison et al., 2015)
20 Ectoplacental cone Plac1 (Donnison et al., 2015), Ascl2 (Simmons and Cross, 2005)
21 Definitive endoderm Sox17 (Viotti et al., 2014), Foxa2 (Burtscher and Lickert, 2009), Apela (Hassan
etal.,2010)
22 Mesendo progenitor, primitive streak Tcf15 (Chal et al., 2018), Cer1, Hhex (Thomas et al., 1998)
23 Posterior primitive streak, cardiac mesoderm Mesp1 (Arnold and Robertson, 2009), Gata4 (Simon et al., 2018), Lhx1 (Shawlot
progenitors etal., 1999), Smad1 (Tremblay et al., 2001)
24,25 Primitive streak T, Mixl1, Eomes, Fgf8, Wnt3
26 KIf10, Gpbp1l1, Hmg20a, Rbm15b, Celf2
27-28 Posterior-proximal epiblast Nanog (Mulas et al., 2018), Sox2 (Avilion, 2003), Pou5f1 (Mulas et al., 2018), Otx2
(Kurokawa et al., 2004)
29-34 Epiblast Sox2 (Avilion, 2003), Pou5f1 (Mulas et al., 2018), Otx2 (Kurokawa et al., 2004)

to K-means, and hierarchical clustering, and found that while the K-
means variant successfully discovered the informative features in the
case of pairwise separable distributions, it failed to reliably find
sparse representations for globally separable features, and was sensi-
tive to the input parameters. The hierarchical clustering variant had
limited success on these classes of distributions, and in situations
with a large number of data points N, the hierarchical clustering ap-
proach requires the construction of a N2 x D matrix, which is com-
putationally difficult. Sparse K-means/Hierarchical clustering,
LFSBSS, Sparse PCA or any model-based selection procedure rely on
knowing the number of clusters, which is an input to each algo-
rithm, and is difficult to infer (Sun et al., 2012). Our method side-
steps this obstacle by integrating over a prior distribution of this
parameter.

Finally, we applied our proposed method (labeled SMD for
Sparse Manifold Decomposition) to both classes of distributions,
using both K-means and hierarchical (ward) clustering to construct
the ensemble of cluster proposals, and found that the relevant fea-
tures were discovered reliably using both clustering algorithms and
for a range in the bounds of the prior over cluster numbers
(Table 3). Our approach has a number of general advantages. First,
it does not make assumptions about the number of clusters, the
types of generating distributions or the relative sizes of the different
clusters. Second, by integrating over an ensemble of proposal cluster
configurations constructed on subsets of the data, the algorithm is
computationally efficient in regimes of large N (does not suffer from
the N? scaling of sparse hierarchical clustering). Third, by building
on existing clustering methods to construct proposals, our method
can be generally applied over any clustering procedure to discover
relevant features.

Finally, we attempted to apply a variation of the method
described by Witten and Tibshirani (2010) to the single-cell data dis-
cussed in Section 4.1, using a similar alternating optimization pro-
cedure. We iterated, starting with weights g; for all i, (i) finding
clusters according to hierarchical (ward) clustering with K= 50 with
distances weighted by g, (ii) finding weights for each feature accord-
ing to 2. We iterated until convergence in 10 separate trials on the
mouse data, and found poor agreement of results between trials (see
Supplementary Fig. S4).

Gene expression data analysis has been an active area of research
involving multiple approaches. A successful approach has been
biclustering techniques (Henriques et al., 2015; Xie et al., 2019).
These approaches have been demonstrated to capture modules of
genes that covary over distinct biological samples (Henriques et al.,
2017; Zhang et al., 2017). These approaches, however, focus on
finding defining expression patterns involving correlated classes of
genes, which could potentially miss more subtle diversity caused by
just a small number of genes. To demonstrate this, we ran BicPAMS
(Henriques et al., 2017) and QUBIC (Zhang et al., 2017) on the two
aforementioned synthetic datasets in which signal is restricted to a
subspace of dimension D; < D, and neither of which were able to
identify the known cluster assignments (see Supplementary
Material). This is likely due to the lack of global correlation struc-
ture associated with the signal, and is thus related to the failure of
PCA (see Supplementary Fig. S1). A potential solution would be to
impose a sparsity constraint on the discovered features, an adapta-
tion that is conceptually discussed by Witten and Tibshirani (2010).
Biclustering techniques continue to be an important resource in
understanding diversity in cellular expression datasets, and are com-
plementary to our approach.


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa690#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa690#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa690#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa690#supplementary-data
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Table 3. AUROCS for various methods for selecting features

Algorithm Parameters Distributions
K o Globally separable Pairwise separable
Sparse PCA (Zou et al., 2006) Kirue /2 1 0.38 = 0.21 0.97 = 0.03
5.75 0.59 = 0.21 0.93+0
10.5 0.48+ ~ 1071° 0.93+0
15.25 0.5+0 0.65 = 0.08
20 0.5*0 0.59 +£0.01
Kirue 1 0.47 = 0.29 1.0=0
5.78 0.56 = 0.21 > 0.99+ ~ 107
10.5 0.47x0 1.0+0
15.25 0.48 = 0.01 0.78 = 0.07
20 0.5+0 0.63 = 0.02
2K rue 1 0.52 = 0.32 1.0=0
5.75 0.43+0 >0.99= ~ 1073
10.5 0.43*0 1.0=0
15.25 0.47 = 0.01 0.80 = 0.7
20 0.5+0 0.64 = 0.01
Sparse K-means (Witten and Kirue /2 1 0.80 = 0.40 1.0+ ~ 10716
Tibshirani, 2010) 5.75 0.84 = 0.32 1.0=0
10.5 0.87 =0.18 1.0=0
15.25 0.86 = 0.23 1.0=0
20 0.80 = 0.40 1.0=0
Kirue 1 0.96 = 0.08 1.0=0
578 0.88 = 0.24 1.0+ ~ 1071
10.5 0.80 = 0.40 1.0=0
15.25 0.94 = 0.12 1.0=0
20 1.0+ ~1071¢ 1.0£0
2K rue 1 0.91 = 0.18 1.0+0
5.75 0.85 = 0.30 1.0=0
10.5 1.0+~ 1071 1.0£0
15.25 0.84 = 0.32 1.0+ ~ 10716
20 0.83 = 0.34 1.0=0
Sparse hierarchical clustering (Witten N/A 1 0=x0 0.54 = 0.03
and Tibshirani, 2010) 5.75 0*0 0.57 £ 0.04
10.5 0+0 0.59 = 0.02
15.25 0+0 0.56 = 0.03
20 0*0 0.59 = 0.02
LFSBSS (Li et al., 2008) Kirue /2 N/A 0.5+0 0.5+0
Kirge 0.5+0 0.5+0
2K rue 0.5+0 0.5+0
Spectral selection (Zhao and Liu, 2007) N/A N/A 0.5+0 0.5+0
SMD (hierarchical proposal clusters) Unif(2, Kirye) N/A 1.0+ ~ 10715 1.0+0
Unif(2, 2Kyree) 1.0 + 0.02 1.0+ ~ 10716
Unif(2, 4Kue) 1.0+ ~ 1071 1.0+ ~ 1071
SMD (K-means proposal clusters) Unif(2, Kirye) N/A 0.91+0.14 1.0+0
Unif(2, 2Kirye) 0.94 = 0.05 1.0+0
Unif(2, 4Kue) 1.0+ ~ 1071 1.0+0

Note: Here, we generate two classes of distributions: globally separable, where one dimension separates two clusters, and other dimensions are uninformative,

and pairwise separable, where each dimension separates only a pair of clusters, and the rest are uninformative. In both cases, the ratio of informative to unin-

formative dimensions is D/Ds = 30. For each class of distributions, we generated 5 instances of the class, and used the algorithm in the left column to infer

weights for each dimension. Some of the algorithms have input parameters, which are given in columns K (the number of clusters, or in the case of Sparse PCA,

the number of components) and o (a sparsity parameter). From these weights, we calculated the AUROC score, and report the average, and standard deviation

over the five trials.

5 Conclusion

Identifying subspaces which define classes and states from high-
dimensional data is an emerging problem in scientific data analysis
where an increasing number of measurements push the limits of con-
ventional statistical methods. Techniques such as PCA and ICA pro-
vide invaluable insight in data analysis, but can miss multimodal
features, particularly in high-dimensional settings. These methods

which have reduced success in the D/D; > 1 regime can be supple-
mented by our technique by finding a lower-dimensional subspace
in which further analysis can be conducted. Crucially, eliminating
any informative dimensions decreases the D/D; ratio, moving to a
regime in which conventional methods are more effective. By reduc-
ing the dimensionality of the data, it is possible to artificially in-
crease data density, and mitigate associated problems that are
prevalent in high-dimensional inference. Further, as our algorithm
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can be a wrapper over any clustering algorithm to construct the pro-
posal clusters, it has varied applicability in settings where K-means
or other specific clustering algorithms are unsuccessful.

Biological data from neural recordings, behavioral studies or
gene expression are increasingly high dimensional. Identifying the
underlying constituents of the system that define distinct states is
crucial in each setting. In contexts such as transcriptional analysis in
developmental biology, finding the key genes that define cell states
is a central problem that bridges the gap between high-throughput
measurements and mechanistic experimental follow ups.
Identification of transcription factors with multimodal expression
that define cellular states allows for the study of dynamics of state
transitions and spatial patterning of the embryo. Our method redis-
covers known factors in well-studied developmental processes and
predicts several gene candidates for further study. Identifying defin-
ing features in high-dimensional data is a crucial step in understand-
ing and experimentally perturbing systems in a range of biological
domains.
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