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Abstract

Atomistic simulations can provide valuable, experimentally-verifiable insights into protein

folding mechanisms, but existing ab initio simulation methods are restricted to only the

smallest proteins due to severe computational speed limits. The folding of larger proteins

has been studied using native-centric potential functions, but such models omit the poten-

tially crucial role of non-native interactions. Here, we present an algorithm, entitled

DBFOLD, which can predict folding pathways for a wide range of proteins while accounting

for the effects of non-native contacts. In addition, DBFOLD can predict the relative rates of

different transitions within a protein’s folding pathway. To accomplish this, rather than

directly simulating folding, our method combines equilibrium Monte-Carlo simulations,

which deploy enhanced sampling, with unfolding simulations at high temperatures. We

show that under certain conditions, trajectories from these two types of simulations can be

jointly analyzed to compute unknown folding rates from detailed balance. This requires infer-

ring free energies from the equilibrium simulations, and extrapolating transition rates from

the unfolding simulations to lower, physiologically-reasonable temperatures at which the

native state is marginally stable. As a proof of principle, we show that our method can

accurately predict folding pathways and Monte-Carlo rates for the well-characterized Strep-

tococcal protein G. We then show that our method significantly reduces the amount of com-

putation time required to compute the folding pathways of large, misfolding-prone proteins

that lie beyond the reach of existing direct simulation. Our algorithm, which is available

online, can generate detailed atomistic models of protein folding mechanisms while shed-

ding light on the role of non-native intermediates which may crucially affect organismal fit-

ness and are frequently implicated in disease.

Author summary

Many proteins must adopt a specific structure in order to function. Computational

simulations have been used to shed light on the mechanisms of protein folding, but
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unfortunately, realistic simulations can typically only be run for small proteins, due to

severe limits in computational speed. Here, we present a method to solve this problem,

whereby instead of directly simulating folding from an unfolded state, we run simulations

that allow for computation of equilibrium folding free energies, alongside high tempera-

ture simulations to compute unfolding rates. From these quantities, folding rates can be

computed using detailed balance. Importantly, our method can account for the effects of

nonnative contacts which transiently form during folding and must be broken prior to

adoption of the native state. Such contacts, which are often excluded from simple models

of folding, may crucially affect real protein folding pathways and are often observed in

folding intermediates implicated in disease.

Introduction

Many proteins suffer from very slow or inefficient folding from a denatured state owing to a

tendency to misfold into non-native intermediates. Such intermediates can be detrimental in
vivo, where they may be degraded, form toxic oligomers, or aggregate, potentially leading to

loss of fitness and/or disease [1–7]. Organisms deploy various cellular mechanisms to mitigate

protein misfolding including chaperones [4, 8–10] and co-translational folding on the ribo-

some [5, 11–17], which may be enhanced by slowly translating codons located at nascent chain

lengths that show optimal folding properties [15–17]. Despite the fact that non-native folding

intermediates exert widespread and significant consequences, we have yet to develop a detailed

atomstic understanding of how they slow folding, and how cellular mechanisms reduce their

formation and detrimental effects. All-atom simulation methods such as Molecular Dynamics

(MD) and Monte-Carlo (MC) simulations have the potential to generate detailed models of

folding, but unfortunately their use has thus far been restricted to small proteins which typi-

cally engage in few nonnatives interactions (< � 100 amino acids), due to severe limits in

computational speed [18]. The folding of larger proteins, which comprise the majority of the

proteome, can be simulated using native-centric Go models [18–20], but such models lack

non-native interactions which may crucially affect real folding pathways.

To address these difficulties, various enhanced sampling techniques have been developed

that allow the folding of complex proteins to be investigated without requiring ab initio simu-

lation. For instance, replica exchange or parallel-tempering [21] whereby multiple simulations

are run in parallel under different conditions and information is periodically exchanged

between cores, can assist a protein in sampling folding intermediates that are separated from

the initial structure (often the equilibrated native state) by large kinetic barriers. Such simula-

tions can then be analyzed using methods such as WHAM [22] or MBAR [23] to infer the free

energies of intermediates. However, the implementation of replica exchange comes at the

expense of realistic state transition kinetics, and replica exchange is unlikely to promote sam-

pling saddle points in the free energy landscape, thus hindering barrier-height computation,

Biasing techniques such as umbrella sampling [24, 25] and Metadynamics [26] can improve

sampling along saddle points, but they are only useful if proper order parameters or collective

variables along which slow transitions occur are known in advance, which is not the case for

most proteins. Other sampling techniques such as transition-path sampling [27, 28] and for-

ward flux sampling [29] are more tolerant of uncertainty in the order parameter(s), but these

are extremely computationally expensive to implement for large proteins with multiple

intermediates.
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Here, we develop a computational method that allows for the prediction of realistic folding

intermediates and transition rates for a wide range of proteins without resorting to direct ab
initio simulation nor computationally expensive sampling methods (Fig 1). In essence, our

method combines enhanced sampling techniques, specifically replica exchange and umbrella

biasing, with high temperature unfolding simulations, Under certain conditions described in

the next section, unfolding rates from these latter simulations can be extrapolated to physio-

logically-reasonable temperatures at which the native state is stable, and combined with inter-

mediate free energies inferred from the former simulations to compute unknown folding rates

from detailed balance. In what follows, we develop theory to elucidate the conditions under

which our method can be applied. As a proof of principle, we then apply this technique to

investigate the folding pathways, including the role of nonnative states, for the well-character-

ized Streptococcal protein G. We show that we can accurately predict transition rates between

protein G folding intermediates, which for this small protein, can be verified via direct folding

simulation. Finally, we discuss how this method can be applied to larger, more complex pro-

teins whose folding pathways have not been well studied. Our implementation of this algo-

rithm, DBFOLD, includes both the latest version of MCPU–an all-atom Monte-Carlo

simulation platform that we use in this work–as well as a user-friendly Python package that

analyzes simulations to compute folding rates using the techniques described here. In its

Fig 1. Schematic overview of method for computing folding rates. 1. All-atom replica-exchange simulations with

umbrella sampling are run at a wide range of temperatures spanning physiologically-reasonable ones. 2. A folding

landscape is defined by identifying coarse-grained intermediates, which may be significantly stabilized by non-native

contacts (see text), and the relative free energies of these intermediates are computed based on simulations in previous

step. 3. High-temperature unfolding simulations are run without replica exchange nor umbrella biasing. 4. Sequential rates

of unfolding between progressively-less folded intermediates are computed from unfolding simulations. 5. These unfolding

rates are extrapolated down to physiological temperatures using the Arrhenius equation. 6. Unknown folding rates are

computed from unfolding rates (obtained in step 5) and state free energies (obtained in step 2) using the principle of

detailed balance. For details regarding these steps, see the main text and Materials and methods.

https://doi.org/10.1371/journal.pcbi.1008323.g001
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current implementation, DBFOLD computes rates in Monte-Carlo (MC) units. This allows for

meaningful comparison of the relative rates of different steps in a given protein’s folding path-

way. Additionally, MC folding rates can be meaningfully compared across truncated forms of

a given protein in order to elucidate how vectorial synthesis affects co-translational folding

[17].

Results

Developing a coarse-grained folding landscape

In order to apply this technique, we must first coarse-grain a protein’s folding landscape into a

set of meaningful intermediates. It is crucial that this be done carefully such that detailed bal-

ance can be used to compute folding rates between the resulting intermediates–this may not

be the case, for instance, if intermediates are defined in such a way that transitions are non-

Markovian. To proceed, we deploy an approach similar to the one described in [20], where we

generate a native contact map for an equilibrated protein and identify islands of contiguous

native contacts, referred to as substructures (See Fig 2A for examples, and Materials and meth-

ods for details). We expect that during each on-pathway transition in the folding/unfolding

process, one such substructure forms/breaks cooperatively, and that these transitions are

accompanied by a high free energy barrier [20]. This is justified because making the first set of

contacts in a substructure typically entails the formation of a loop, which carries a large entro-

pic loss that is not compensated by an enthalpic benefit until subsequent contacts within the

substructure form. We next define a topological configuration as a possible subset of native sub-

structures that can be formed during the folding process. In Fig 2B, we show sample structures

of E. Coli DHFR assigned to various topological configurations, for example abcdefg (all native

substructures formed), cd (only substructures c and d formed), and ; (no substructures

formed).

In the simple case where only native contacts can form during folding, then we expect that

transitions between topological configurations will show Markovian dwell-time distributions,

owing to the high free energy barriers associated with the transitions. The resulting network of

topological configurations thus resembles a Markov state model [30] in which states are

defined according to structural similarity, rather than based on kinetic data. But in reality, a

protein may also form nonnative contacts at any stage in the folding process which may

impede the formation of additional native substructure(s), and must be broken before produc-

tive folding can proceed. We define a coarse state Si ¼ fsni g as the collection of all microstates

containing nonnative contacts that are topologically consistent with a given topological config-

uration, indexed by i, as well as microstates with topological configuration i that lack nonna-

tive contacts. The presence of nonnative microstates may lead to non-Markovian behavior for

transitions between Si and some other coarse state Sj with topological configuration indexed

by j (which differs from the one indexed by i by the formation/breaking of one substructure),

owing to complex internal dynamics involving these microstates. Nonetheless, it turns out

that, so long as certain conditions are satisfied, then detailed balance can still be used to com-

pute unknown transition rates between coarse states. Two such non-mutually exclusive condi-

tions are briefly described below, and detailed in the S1 Text section “Details on conditions for

applicability of method”.

Conditions when detailed balance can be used to compute folding rates

Condition I: Let us assume that all microstates sni 2 Si, including those with nonnative con-

tacts, equilibrate rapidly with each other relative to the fastest timescale of transition to any
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other coarse state Sj. This assumption is often valid as nonnative contacts are frequently

shorter in range than native substructures and are thus expected to form rapidly relative to

native substructures. This condition results in a separation of timescales such that Si shows

approximately Markovian behavior at timescales significantly greater than the internal equilib-

rium time (Fig 2C). Letting H(i, j) denote the Hamming distance between two topological con-

figurations (i.e. the number of substructures by which they differ), then the probability Pt(Si)
of occupying Si as a function of time will approximately satisfy the master equation:

d
dt

PtðSiÞ ¼
X

j

dHði;jÞ;1 kj!iPtðSjÞ �
X

j

dHði;jÞ;1 ki!j

 !

PtðSiÞ ð1Þ

Fig 2. Coarse-graining the folding landscape. Examples of native contact maps alongside native structures with highlighted substructures (islands of

continuous native contacts, see main text and Materials and methods) for the E. Coliproteins MarR (left) and DHFR (right). Substructures are labeled

alphabetically. Native contacts not assigned to a substructure are shown in gray on the contact maps. We note that, for brevity and ease of visualization,

we omit contacts involving residues less than 8 amino acids apart in sequence (and thus intra-helical contacts are excluded). (B) Sample topological

configurations, alongside representative simulation snapshots for DHFR are shown. A snapshot is assigned to a given topological configuration if it

contains a certain subset of folded native substructures (indicated by the labels above, see Materials and methods for details regarding the assignment

process), and configuration ; includes snapshots with no folded native substructures. (C-D) Schematic illustrations of conditions I (C) and II (D) under

which a detailed-balance like relationship can be used to compute folding rates between topological configurations given equilibrium probabilities

(from enhanced sampling) and unfolding rates (from high-temperature simulations). Circles represent microstates consistent with a given coarse-state,

which may contain nonnative contacts, while double-arrows represent transitions. For details on these conditions, see the main text.

https://doi.org/10.1371/journal.pcbi.1008323.g002
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Where δH(i, j),1, the Kronecker delta function, has value 1 if i and j differ by exaclty one sub-

structure and 0 otherwise, while ki!j and kj!i refer to the rates of transition from Si to Sj and

vice versa, respectively. These rates are generally temperature-dependent as discussed later,

but the temperature-dependence is omitted from the notation for brevity. Importantly, these

transition rates satisfy detailed balance. That is, letting Peq(Si) and Peq(Sj) denote the equilib-

rium Boltzmann probabilities and GSi
and GSj

the free energies of states Si and Sj, respectively,

we have:

ki!j

kj!i
¼

PeqðSjÞ
PeqðSiÞ

¼ eðGSi�GSj Þ=kBT ð2Þ

Fortunately, free energy differences between pairs of coarse states Si and Sj can be accurately

inferred from simulations with enhanced sampling so long as these coarse states are suffi-

ciently sampled at equilibrium such that statistical uncertainties are low. Furthermore, if we

assume without loss of generality that topological configuration j is more folded (i.e. contains

one more formed substructure) than i, then we can, under certain reasonable conditions,

extrapolate the unfolding rate kj!i from simulations run at high temperature (See subsection

Requirements for Extrapolation below). Thus, using Eq (2), we can solve for the unknown

folding rate ki!j.

We further note that the folding landscape can be further coarse-grained by grouping

together sets of coarse states into a cluster Ck, so long as the slowest timescale of exchange

between states within Ck is significantly faster than the fastest timescale of exchange between

Ck and any other cluster Cl. If so, then these clusters will themselves behave as Markovian

states whose occupancy probabilities satisfy Eqs (1) and (2). Such clustering may be desirable

so as to reduce the number of parameters in the model, as explored for protein G below.

Condition II. In case condition I is not satisfied for a coarse state Si, then the dwell-time

distribution associated with the transition to any other coarse state Sj will show multi-expo-

nential behavior, and thus we cannot meaningfully define a single rate ki!j for the transition.

Nonetheless, it turns out a detailed-balance like relationship can still be used to compute the

mean first passage time (MFPT) to state Sj so long as certain conditions are satisfied. Namely,

we consider a subset Shi � Si, termed a hub state, which contains the only microstates belong-

ing to Si from which transitions to Sj can occur (Fig 2D). We require that 1.) All sni 2 Shi equili-

brate with one another rapidly relative to transitions to Sj, such that the hub itself satisfies

condition I and shows Markovian behavior, and 2.) Upon first reaching Si, the system must

start in the hub with probability 1. Under these conditions, we can compute the MFPT to

reach Sj, conditioned on the facts that the protein has just transitioned into Si (and thus, by

construction, currently resides within Shi ) and does not first reach any other coarse state Sk. By

considering a modified version of the master equation and computing the inverse of this mean

first passage time <τ>i!j (S1 Text), we obtain:

1

< t>i!j
¼

PeqðSjÞ
PeqðSiÞ

1

< t>j!i
¼

eðGSi �GSj Þ=kBT

< t>j!i

ð3Þ

Where we have assumed that the reverse transition from Sj into Si also satisfies either condition

I or II. We thus find that, even though the Si to Sj transition does not show Markovian behav-

ior, the inverse MFPTs nonetheless satisfies a relationship akin to Eq (2). Thus, so long as we

can extrapolate the reverse unfolding timescale <τ>j!i from high temperatures (justifiable

under conditions described below), then we can use Eq (3) to compute the folding the MFPT

as a characteristic timescale for the folding transition between coarse states Si and Sj. As in the
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previous section, we can cluster Si with any other coarse states with which it rapidly exchanges,

so long as these coarse states satisfy either conditions I or II. If so, then the resulting cluster’s

hub state retains the properties above and thus the cluster still satisfies condition II. Finally we

note that whereas condition I applies to a coarse state/cluster as a whole, condition II is specific

to a transition, and may not apply to an entire state/cluster. For example, suppose the subset of

microstates via which Si can transition to Sj does not fully overlap with the subset that permits

transition to Sk. If we further suppose that only the subset that allows transition to Sj rapidly

equilibrates internally, then the Si to Sj transition will satisfy condition II, but the Si to Sk transi-

tion will not.

Requirements for extrapolation. Under certain conditions, unfolding rates obtained

from high temperature simulations can be extrapolated using a an appropriate model. In this

work, we use the Arrhenius equation, given by

kj!iðTÞ ¼ k0
j!ie

�DEz

j!i=kBT ð4Þ

Where kj!i(T) is the transition rates from clusters Cj to Ci as in the previous section (with the

temperature dependence now explicitly considered), k0
j!i is an intrinsic, temperature-indepen-

dent rate constant and ΔEj!i is the activation energy for this transition. The Arrhenius equa-

tion is used here because, in Monte-Carlo simulations, intrinsic rates of molecular motion

(and by extension, k0
j!i) do not depend on temperature. However, in molecular dynamics sim-

ulations, alternative models such as the the Eyring equation may be more appropriate in cer-

tain contexts. But in either case, certain requirements must be satisfied for these equations to

be valid. For concreteness, let us assume that a transition from clusters Cj to Ci involves the dis-

ruption of some native substructure s. Then we require that:

1. The breaking of s must involve crossing a single large barrier, which is generally expected

for substructure disruption as discussed earlier.

2. The position of the saddle in the free energy landscape for the breaking of s must not

change over our temperature range of interest. Typically, this saddle will occur when only

one or a few contacts belonging to s are formed. At this point, most of the enthalpy that

stabilizes s will have been lost, but the entropy associated with disrupting s will not yet

have been gained, as the residual contacts will severely restrict the conformational free-

dom of residues involved in this substructure. However, the precise position at which this

saddle occurs may change over a large temperature range.

Moreover, in some cases unfolding of s will be preceded by the breaking of some set of non-

native contacts n which are observed with high probability in cluster Cj, but not in cluster Ci.

This may occur, for instance, if n and substructure s are energetically coupled. If so, then we

additionally require that

3. Cluster Cj must satisfy conditions I or II. In case condition II, but not I is satisfied, we

cannot define a single unfolding rate, and we instead extrapolate the inverse mean-first

passage time (MFPT) to unfolding. If condition I is satisfied, then this inverse MFPT is

equivalent to the unfolding rate. Thus for generality we deal with with the inverse MFPT

throughout rest of this text

4. In case Cj is composed of multiple nonnative microstates snj (all of which contain nonna-

tive contacts that must be broken), then one such microstate smj � must show a signifi-

cantly greater probability of equilibrium occupancy than the others at all temperatures of

interest. The presence of multiple minima with comparable but non-identical equilibrium
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probabilities will produce nonlinearities in the dependence of log(kj!i) on inverse tem-

perature (See SI section with heading “Justification of Arrhenius kinetics”) as different

minima may be favored at different temperatures.

We further note that, when utilizing this method in practice, we assume that the protein

will fold via the opposite sequence of substructures as that through which it unfolds at high

temperatures, as we can only obtain mean-first passage times (MFPTs) to folding for transi-

tions for which we have extrapolated the reverse unfolding MFPT. This is generally true

because a protein will transition in both directions via whichever sequence of topological con-

figurations involves the lowest rate-limiting barrier, but this optimal sequence may change

over a wide temperature range.

Computing equilibrium folding properties for protein G

As a proof of principle, we now apply our method on Streptocaccal Protein G, a model protein

whose folding has been extensively studied using both computational and experimental meth-

ods [20, 31–38]. We begin by running equilibrium simulations with replica exchange and

umbrella sampling using native contacts as the reaction coordinate along which we bias [39]

(See Materials and methods). These simulations were run for a total of 1.2 billion Monte-Carlo

(MC) steps, at which point convergence was reached (see Materials and methods and S1 Fig).

This calculation required *1 week of computation time on a cluster of 125 AMD Opteron

6376 CPUs. To compute equilibrium folding properties, we construct a coarse-grained folding

landscape as described in the previous section and in Materials and methods (see Fig 3A).

From the equilibrated protein G contact map, we identify the following substructures (which

correspond precisely to those identified in [20]): Substructure a corresponds to the N-terminal

beta hairpin, substructure b is the central helix, substructure c is the C-terminal beta hairpin,

and substructure d is the parallel beta interface between the N and C-terminal hairpins. We

then use the MBAR method ([23], see Materials and methods) to infer the potential of mean

force (PMF) as a function of the fraction of native contacts, which allows us to compute a ther-

mally-averaged melting curve (Fig 3B). This curve shows a cooperative transition, correspond-

ing to the full denaturation of the protein, at the melting temperature T = TM. To understand

this transition in greater structural detail, we infer PMFs for each topological coarse state (Fig

3C) As expected, below TM, the fully folded configuration (abcd) is lower in free energy than

all others (Fig 3C, left), but as temperature is raised near the melting temperature, the folded

state’s free energy becomes comparable to that of less-folded configurations b and bc (Fig 3C,

middle) while, well above the melting temperature, the fully unfolded state ; is favored (Fig

3C, right). We further note that at the lowest simulated temperature (T � 0.45 TM), only about

75% of native contacts are formed, owing to entropy. At temperatures below this, the fraction

is expected to approach 1 as internal degrees of freedom become frozen. The beginnings of

this gradual freezing transition are already apparent around T � 0.45 TM.

Computing unfolding rates for protein G

To compute rates of transition between states, we run unfolding simulations at a range of high

temperatures above TM. By extrapolating unfolding times to physiological temperatures, we

can then compute folding times using detailed balance provided our coarse states satisfy condi-

tions I or II (detailed in the previous section), which we verify later. As discussed previously,

we expect that the unfolding pathways will correspond to the reverse of the folding pathways.

We find that the protein unfolds via one of two parallel pathways (Fig 4A) in which either sub-

structure d or a can unfold first, followed by the other, and finally c unfolds last. We now
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attempt to simplify our model of folding by clustering together topological configurations that

exchange rapidly (See Materials and methods). We find that the central helix (substructure b)

folds and unfolds very rapidly compared to the timescale with which the beta-sheet substruc-

tures (a, c, and d) form/break. Thus, we construct kinetic clusters, which we refer to as a(b)cd,

a(b)c, (b)cd, (b)c, and b/;, in which every observed combination of beta substructures occurs

alongside helix b in either its folded or unfolded state. So long as these clusters satisfy the

requirements for extrapolation in the previous section, we expect to be able to extrapolate

unfolding rates for each transition between clusters to low temperatures, and compute the

reverse folding rates. Indeed, we find that the inverse mean-first passage times (MFPTs) for

each unfolding step as a function of inverse temperature are well fit by the Arrhenius equation

Fig 3. Equilibrium folding properties for protein G. (A) Equilibrated structure and contact map for protein G with each substructure highlighted. (B)

Thermally-averaged equilibrium fraction of native contacts vs temperature for protein G. (C) Protein G potentials of mean force (PMFs) for each

sampled coarse state, defined as a collection of microscopic configurations consistent with a given topological configuration (i.e. in which some subset

of native substructures is formed). Each dot represents one such coarse state, whose topological configuration is indicated by its adjacent label. Coarse

states are plotted at an x-value corresponding the number of formed substructures in their respective topological configuration, and are connected via

dashed lines if their configurations differ by one substructure. Example simulation snapshots assigned to various topological configurations are shown

below the plots.

https://doi.org/10.1371/journal.pcbi.1008323.g003
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(Fig 4B). This suggests that unfolding times can be appropriately extrapolated down to physio-

logically-relevant temperatures. We note that all clusters show clear single-exponential survival

probability curves as a function of MC step, with the exception of (b)cd whose survival appears

to show multi-exponential decay (Fig 4C and S3 Fig). This is because, as we show later, this lat-

ter cluster does not satisfy condition I. However, the (b)cd ! (b)c unfolding transition none-

theless satisfies condition II, under which extrapolation of the unfolding MFPT is still possible

as explained in the previous section. This is further supported by the fact this transition shows

a reasonable Arrhenius fit (Fig 4B). Finally we note that a small amount of flux (<10% of tra-

jectories) is observed to unfold through an alternative pathway whereby the N-terminus

unfolds last, but these trajectories are excluded from Arrhenius fitting due to insufficient

statistics.

Fig 4. Predicted unfolding pathways and extrapolating unfolding rates for protein G. (A) Schematic for two predicted folding pathways, assumed to

be the reverse of the observed dominant unfolding pathways. Topological configurations assigned to each cluster (with double arrows indicating that

states are in fast exchange), are indicated along with sample snapshots. (B) Arrhenius plots show log of inverse MFPT to unfolding as a function of

inverse temperature (normalized by the melting temperature TM) for transitions associated with unfolding pathway 1 (left) and pathway 2 (right).

Substructure b is shown in parentheses in the cluster labels, indicating that each cluster contains two topological configurations: one in which b is

formed, and one in which b is broken (as in panel (A)).(C) Survival probability as a function of Monte-Carlo (MC) time for each cluster (dots)

alongside exponential fits (solid lines) during unfolding simulations at a temperature T = 1.08 Tm where Tm denotes the melting temperature.

Analogous plots at the other temperatures are shown in S3 Fig.

https://doi.org/10.1371/journal.pcbi.1008323.g004
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Characterizing off-pathway nonnative states

Next, we characterize the off-pathway nonnative states the protein can adopt at each stage in

the folding process. To this end, we generate nonnative contact maps for snapshots assigned to

each cluster at physiologically-reasonable temperatures, then group these maps based on simi-

larity to identify recurrent nonnative states (Fig 5A and S4 Fig, see also Materials and meth-

ods). We find that when the protein is fully unfolded (cluster ;/b), it can form nonnative

contacts, but these do impede the formation of the C-terminal beta hairipin, which is the first

productive folding step (S4 Fig). In contrast, once that hairpin is formed (cluster (b)c), two

recurrent nonnative states are observed, both of which contain contacts that must be broken

prior to subsequent folding steps (Fig 5A, left). Namely, the N-terminal beta strand (residues

Fig 5. Nonnative contacts that interfere with native protein G folding. (A) Contact maps from equilibrium simulations are shown. Shades of red are

used to indicate frequency with which nonnative contacts occur in simulation snapshots assigned to the cluster indicated above the respective map,

drawn from a range of physiologically-reasonable temperatures around T � 0.85 TM, while gray contacts indicate formed native substructures. For

cluster (b)c, the contact maps subdivide into two nonnative states, whereas one predominant state is observed for other configurations (See Materials

and methods). Sample simulation snapshots assigned to each cluster are shown below the respective contact maps, with nonnative contacts indicated in

red. (B) Refolding simulations at T � 0.85 TM were run, initialized from snapshots assigned to the topological configurations shown above each panel

but drawn from high temperatures such that almost no nonnative contacts are initially present. We plot, as a function of MC step, the probability of

forming at least one nonnative substructure observed in replica simulations (as in panel A) and of forming native substructure a (blue) or d (purple)

within these refolding simulations.

https://doi.org/10.1371/journal.pcbi.1008323.g005
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5-10) forms nonnative contacts with the C-terminal hairipin by docking with either residues

40–50 (nonnative state 1) or 55–60 (nonnative state 2) in an anti-parallel, rather than parallel

orientation, as in the native state. Starting from nonnative state 2, the protein can proceed fold-

ing along pathway 1 via closure of the N-terminal beta hairpin. But at this point (cluster a(b)c),
the N and C termini are still docked in an anti-parallel orientation (Fig 5A, middle), and must

separate prior to re-docking in a native parallel orientation (as in the fully-folded cluster a(b)

cd). In contrast, neither of the nonnative states observed in cluster (b)c are compatible with

folding via pathway 2, which requires that the incorrectly-paired termini separate and re-dock

correctly prior to the N-terminal hairpin’s closure. If this occurs, then the protein enters state

(b)cd, at which point a different set of nonnative contacts may form, whereby the N-terminal

strand incorrectly pairs with the central helix (residues *35–40, Fig 5A right). But these non-

native contacts are less stable, and observed only *50% of the time in equilibrium

simulations.

Determining validity of conditions I and II

For those clusters which show nonnative contacts that interfere with folding, we must deter-

mine whether conditions I or II applies. If so, then we expect to be able to accurately predict

folding times using our method. To determine whether nonnative contacts observed in equi-

librium simulations form quickly relative to the timescale of transition between clusters (i.e.

condition I is satisfied), we run refolding simulations starting from snapshots assigned to each

intermediate with no nonnative contacts initially present (Fig 5B, see also Materials and meth-

ods). We find that condition I indeed holds for cluster (b)c (Fig 5B, left). But on the other

hand, in the case of cluster a(b)c, the observed nonnatives form much more slowly than native

substructure d, which is the next (and final) folding step (Fig 5B, middle). Thus this cluster vio-

lates condition I. Moreover, these nonnative contacts seem to rapidly preform while the pro-

tein is still in the previous cluster (b)c (Fig 5A). Thus, this cluster also violates condition II,

which requires that the system start in the hub state from which productive transitions to the

next cluster, a(b)cd can occur. Given that both conditions are violated, we cannot accurately

predict the a(b)c to a(b)cd transition time when simulations are initialized from a fully

unfolded ensemble (S5A Fig). However, if we instead initialize simulations from a(b)c snap-

shots in which no nonnatives are present, we artificially ensure that this cluster satisfies condi-

tion II, and can now accurately predict the folding time (S5B Fig). Finally we consider cluster

(b)cd. Although the nonnative contacts observed in this cluster form slowly (Fig 5B, right), in

violation of condition I, we note that these nonnatives are absent in previous folding steps.

Thus, during ab initio folding trajectories, the protein starts in the (b)cd cluster’s hub, indicat-

ing that condition II applies.

Computing and verifying folding rates for protein G

We now test whether our method can correctly predict folding times for transitions involving

clusters which satisfy conditions I or II. To accomplish this, we incorporate our inferred clus-

ter free energies and extrapolated unfolding rates into the detailed-balance relationship (Eq

(3)) to compute the inverse mean-first passage time (MFPT) for each folding transition (Fig

6). This quantity is equivalent to the exponential folding rate (Eq (2))for clusters that satisfy

condition I. We then compare these predictions with observed transition times obtained from

serial refolding simulations (See Materials and methods). We find that, for all transitions

which satisfy condition I or II, the predicted and observed inverse MFPTs closely agree at

physiological temperatures. Where discrepancies are observed, they are typically smaller than

an order of magnitude and may result from 1.) Transient misclassification events, which
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artificially skew the observed inverse MFPT towards higher values. These are observed particu-

larly often for the (b)c ! (b)cd transition. 2.) Error in inferring folding rates from refolding

trajectories for rare folding events whose inverse MFPT is much less than 10−9 MC steps. 3.)

Imperfect convergence of equilibrium simulations, which may bias our free energy estima-

tions. This latter issue particularly affects the calculation of the ;/b − >b(c) (C-terminal hair-

pin) folding rate at temperatures below T � 0.9 TM, as the unfolded cluster ;/b is highly

unstable at these temperatures and is thus rarely populated, leading to significant error.

Despite this uncertainty, we nevertheless observe qualitatively clear anti-Arrhenius behavior

with temperature for this transition, which has been previously described theoretically and

experimentally for the folding of a simple hairpin without interference from non-native con-

tacts [40–42]. For all other transitions, we observe that as temperature is decreased below the

melting temperature, folding rates decrease owing to increased stabilization of non-native con-

tacts. In the case of the (b)cd ! a(b)cd transition, this decrease is more modest, owing to the

fact that nonnative traps stabilizing cluster (b)cd are relatively shallow (Fig 5A, right).

In order to approximately track how the populations of different intermediates evolve with

time according to our model, we incorporate our extrapolated unfolding and predicted folding

rates into the master equation (Eq (1), and numerically solve for the probabilities of occupying

the various observed clusters, Pt(Ci), as a function of time, assuming the system starts in the

cluster containing the fully unfolded state ;/b (Fig 6E). We omit transitions between a(b)c and

Fig 6. DBFOLD can accurately predict protein G folding transition times. (A)-(D) Predicted (markers with errorbars connected by lines), alongside

observed inverse mean-first passage times for folding from serial refolding simulations (disconnected round markers), are shown as a function of

simulation temperature for transitions between clusters ;/b and (b)c, (b)c and a(b)c, (b)c and (b)cd, and (b)cd and a(b)cd, respectively. Error bars

represent the standard deviation of bootstrapped error distributions (see Materials and methods). X symbols on x-axis indicate that no folding

transition was observed at that temperature. (E) Solution to master equation (Eq (1)) for probability of occupying each cluster as a function of time at a

simulation temperature of T = 0.91 TM.

https://doi.org/10.1371/journal.pcbi.1008323.g006
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a(b)cd because our method is not able to accurately predict this MFPT, which satisfies neither

conditions I nor II. But this transition is never observed in our serial folding simulations, sug-

gesting it is likely very slow compared to all other transitions (S5 Fig). We note that, although

we are able to predict inverse MFPTs from (b)cd to a(b)cd (due to condition II being satisfied),

this transition will technically show multi-exponential behavior, which we neglect when we

treat it as a singe-exponential process in the master equation. Solving the equation, we observe

that following rapid folding of the C-terminal beta hairpin (cluster (b)c), the majority of the

flux rapidly proceeds into pathway 1, entering cluster a(b)c. But this pathway represents a trap,

owing to the extremely slow (approximated as 0) rate of transition from a(b)c to the fully

folded state. Thus, any flux that enters this pathway must backtrack to (b)c before folding can

proceed through the productive pathway 2. This requires the separation of the N and C-termi-

nal beta strands, which tend to pair up in a nonnative, anti-parallel registration in clusters (b)c
and a(b)c. Once equilibrium is reached (around 4�1010 MC steps), roughly 95% of the popula-

tion is fully folded at this simulation temperature of T = 0.91 TM, although qualitatively similar

behavior is observed at other temperatures (S6 Fig).

We further note that we have coarse-grained out the folding of the central helix (substruc-

ture b) through our clustering method, so as to reduce the complexity of our model and

improve fitting quality for unfolding rates. Thus, although we know that helical contacts are

capable of dynamically forming and breaking at each stage in the folding process, we cannot

quantify the fraction of the time the helix will be folded at each step using this coarse descrip-

tion involving clusters. However, from our PMF at T = 0.91 TM (Fig 3C), we observe that for

every cluster beginning with (b)c, the state with the helix formed (ex. bc) is thermodynamically

favored over its counterpart with the helix disrupted (e.g. c). This suggests the helix will typi-

cally fold early in the folding process, roughly contemporaneously with the folding of substruc-

ture c, consistent with previous work [32]

Application of DBFOLD to proteins with complex folding pathways

In the previous sections, we have verified that DBFOLD can accurately predict folding path-

ways and Monte-Carlo rates for protein G, a small protein for which these predictions can

readily be verified via direct folding simulation. But for larger, more complex proteins,

DBFOLD can compute folding pathways at a significantly reduced computational cost relative

to direct simulation, which would require unreasonably long simulation times. We quantify

this computational speedup for various proteins simulated here and in reference [17] by tally-

ing the total time that was required to run equilibrium simulations to convergence, and to col-

lect sufficient high-temperature unfolding statistics to allow for extrapolation prior to use of

DBFOLD (Fig 7, rightmost column). These times range from 2 to 5 � 109 MC sweeps, which

corresponds to wall times on the order of 10 CPU days on a 4x AMD Opteron 6376 2.3 GHz

processor. For each protein, we compared this time to the the average time required for a

direct simulation to undergo the rate-limiting folding step in the context of the MCPU poten-

tial and moveset (Fig 7, second column to right). These times, which were estimated directly

from the predicted rates obtained from DBFOLD, range from 106 MC sweeps for the HEMK

N-terminal domain (*12 hours of wall time) to *1017 MC sweeps for MarR (*2 million

years of wall time). We note that this *11 order-of-magnitude range in predicted folding

times is comparable to the experimentally measured range from sub-microseconds to thou-

sands of seconds [40].

From these values, we see that DBFOLD significantly reduces the computational costs

required to compute folding properties for the proteins MarR, FabG, and CMK–the latter two

of which are larger than 200 AAs in size. In contrast, for the 159 AA protein DHFR, the cost to
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use DBFOLD is comparable to the direct simulation cost, whereas for the sub-100 AA HEMK

N-terminal domain and protein G, DBFOLD is significantly less efficient than direct folding

simulation. This is because these later two proteins’ fast folding rates are readily accessible to

direct simulation. Indeed in reference [17], we confirm that HEMK NTD folding events are

observable within the timescale of a short unfolding/refolding trajectory, as is the case here for

protein G. Interestingly, we note that the three proteins for which DBFOLD confers a substan-

tial computational advantage are the same ones that were predicted in reference [17] to benefit

from co-translational folding. Namely, these proteins were found to fold very slowly due to

nonnative contacts involving C-terminal residues, which can be circumvented by commencing

folding at intermediate chain lengths. Thus we observe that DBFOLD particularly facilitates

these computations for proteins which undergo slow folding due to deep nonnative traps.

Fig 7. DBFOLD can compute folding pathways for complex proteins at significantly reduced computational cost relative to direct folding

simulation. For each protein, we report the average time in Monte Carlo sweeps (Monte Carlo steps divided by protein size), as predicted by DBFOLD,

that would be required for the protein to undergo the rate-limiting folding step within a single direct folding simulation in the MCPU potential at the

indicated temperature, normalized by the respective protein’s melting temperature TM (fourth column). This is compared with the total duration of

simulations (time per processor multiplied by number of processors) that were run prior to using the DBFOLD algorithm, including both the time for

equilibrium simluations to reach convergence and the total duration of high-temperature unfolding simulations. Simulations for Protein G were run in

this work (Figs 3–6) while simulations for the other indicated proteins were run in reference [17]. We note that for MarR, simulations were run for the

monomeric species, which is relatively unstable in the absence of a dimerization partner, hence a lower simulation temperature was used.

https://doi.org/10.1371/journal.pcbi.1008323.g007
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Discussion

Summary

We have developed a novel computational method, DBFOLD, that allows for the prediction of

protein folding pathways and relative rates of different transitions while accounting for the

effects of off-pathway non-native contacts. Rather than directly simulating folding, we show

that one can use a combination of equilibrium simulations with enhanced sampling and

unfolding simulations to compute folding rates using the principle of detailed balance. Our

method builds on previous studies that made use of high-temperature unfolding simulations

to shed light on protein folding pathways [43, 44]. However, these simulations by themselves

cannot be used to obtain rates of folding, nor can they elucidate the role of nonnative contacts,

which may stabilize folding intermediates at physiologically-relevant temperatures but be

absent at high temperatures at which unfolding simulations are run.

Our work overcomes this limitation by making use of replica-exchange simulations to

model intermediate states under physiological conditions. We note, however, that our

approach for simulating kinetically-complex proteins differs from previous efforts to extract

kinetic information from replica-exchange simulations [45–48]. While these previous meth-

ods can accurately compute transition rates for small proteins that rapidly transition between

conformers, larger proteins rarely undergo such transitions within simulation timescales in

the absence of a biasing potential. Although methods have been developed to obtain rates

from biased simulations such as our equilibrium simulations [49], these techniques require

knowledge of a functional form for how bias affects transition rates, which may not be

known for complex systems. Our method is the first, to our knowledge, which combines

biased replica-exchange simulations with high-temperature unfolding simulations to over-

come the difficulty in accurately computing transition rates for large proteins. Moreover,

while we have chosen to bias our equilibrium simulations along one specific order parame-

ter–namely native contacts–our method does not require us to have chosen an optimal order

parameter along which slow transitions occur, as is the case with Metadynamics-based meth-

ods [50, 51]. Rather, the purpose of our biasing potential is to promote sampling of distinct

minima along the folding landscape, and not necessarily the transition saddle points. The

free energy barriers associated with these transitions are instead obtained via extrapolation

from high-temperature unfolding simulations. Thus, we expect that biasing along alternative

order parameters, such as root-mean squared deviation (RMSD) and, radius of gyration

(RG), will yield similar results, and believe it would be interesting to compare their efficiencies

in future work.

Validation on protein G

To validate our method, we demonstrate that it can be used to predict folding pathways and

Monte-Carlo rates for the well-studied Streptococcal protein G. We find that, for all folding

transitions which satisfy certain requirements, the predicted rates agree closely with observed

rates, which for this relatively small protein, can be directly computed via ab initio simulation.

Moreover, these predicted rates paint a picture of complex folding kinetics involving multiple

intermediates and off-pathway nonnative states (Fig 6E), consistent with experimental find-

ings that the protein cannot be described as a simple two or three-state folder [36]. Our model

further reproduces a number of atomistic-level findings regarding protein G’s folding path-

way. For example, we observe that the C-terminal hairpin is the first structural element to fold,

consistent with a number of previous experimental and computational works [20, 31, 32]. Fur-

thermore we find that pathway 2, in which the N and C-termini dock together immediately
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after the C-terminal hairpin forms, represents the dominant pathway through which produc-

tive folding occurs. This is consistent with previous work using a native-centric potential [20].

Use of method to investigate folding of complex proteins

In addition to cross-validating DBFOLD’s predictions against direct folding simulations of the

fast-folding protein G, we have shown that this method significantly reduces the computa-

tional effort required to predict folding pathways and Monte-Carlo rates for larger proteins

whose folding is significantly slowed by nonnative contacts. The effects of nonnative contacts

may have been significantly underestimated by previous computational studies of protein fold-

ing, many of which rely on native-centric (Gö) potentials. These simplified potentials allow

complete folding trajectories to be simulated in a reasonable amount of computation time, and

may provide a valid description of folding pathways for proteins that are minimally frustrated

[52]. However, many proteins, especially larger ones, may suffer from significant nonnative

trapping, and their folding thus cannot be accurately described using native-centric potential

functions. In contrast to many existing techniques, DBFOLD can generate detailed atomistic

predictions of nonnative states and account for their effect on folding times. Thus, the method

may be used to shed light on myriad cellular processes where these states play a crucial role

including co-translational folding [17], the role of chaperones, and non-native oligomerization

or aggregation.

A number of considerations may be relevant when DBFOLD is applied to larger proteins.

On the one hand, for large proteins, we expect that nonnative contacts will often form rapidly

compared to native contacts, owing to the plethora of nonnative states that are possible along-

side the fact that nonnative contacts are often short-range [53, 54]. Thus, transitions between

coarse states–each of which consists of all nonnative microstates consistent with a given native

topology–are likely to show Markovian behavior (condition I), thus ensuring that detailed bal-

ance can accurately be used to infer folding rates between coarse states. But on the other hand,

one difficulty with larger proteins may involve extrapolation of unfolding rates, particularly if

these proteins are highly kinetically stable and unfold in multiple steps. Under these condi-

tions, unfolding may not occur within a reasonable simulation timescale unless the tempera-

ture is increased significantly above the melting temperature. At such high temperatures, the

native protein is far from equilibrium and experiences strong unfolding forces that may pre-

vent it from equilibrating at intermediate states. Potential indications of this issue may include

non-Arrhenius behavior for transitions beyond the first unfolding event, as well as significant

structural differences between intermediates of a given topological configuration that are

observed in unfolding simulations and those that are observed in replica simulations at the

same temperature. If such indicators are observed, then it may be possible to obtain a better

estimate for intermediate unfolding rates by initializing these simulations from the respective

intermediates observed in replica simulations, which have equilibrated within their respective

free energy basins. This approach was used for the proteins FabG and CMK in reference [17].

A second consideration with running unfolding simulations at temperatures significantly

higher than the melting temperature is that the protein may unfold via different sets of topo-

logical intermediates at high temperatures than at physiological temperatures. This may hinder

the computation and extrapolation of unfolding rates involving physiologically-relevant inter-

mediates. A likely indicator of this is the observation that low-free energy intermediates seen

in PMF plots below the melting temperature (e.g. Fig 2C, left) do not correspond to the inter-

mediates via which the protein unfolds at high temperature. This issue may likewise be

resolved by initializing unfolding simulations from intermediates that are observed at physio-

logically-relevant temperatures.
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A final consideration for larger proteins is that equilibrium simulations must typically be

run for longer in order to achieve convergence. We have observed that we can achieve reason-

able convergence for proteins as large as *300 amino acids within a few weeks of computation

time. We suspect that this may represent an approximate upper bound on the size of proteins

that can be simulated to convergence within a reasonable timeframe using MCPU, but we

have yet to explore this issue systematically.

Use of DBFOLD to generate experimentally-testable predictions

The atomistic description of folding provided by DBFOLD can be used to generate novel

experimentally-testable predictions, including the role of nonnative contacts. In the case of

protein G, we observe that the N-terminal beta strand (residues 5–10) frequently docks with

the C-terminal hairpin in a non-native, anti-parallel fashion early during folding (Fig 4A).

These nonnative contacts persist for a significant amount of time, sometimes causing the pro-

tein to enter the non-productive pathway 1 whereby both hairpins close while misaligned.

This leads to an off-pathway kinetic trap. Although previous work has also identified nonna-

tive states involving these hairpins docked in an anti-parallel orientation [38], our work pro-

vides a quantitative estimate of the effect of these nonnative contacts on folding kinetics.

Namely, our finding that a significant fraction of the population adopts long-lived states in

which the hairpins misalign in an antiparallel fashion (Fig 6E) suggests these nonnative con-

tacts should be observable by FRET. Our method can also be applied to predict how sequences

changes affect a protein’s folding pathway. For instance, previous work suggests that in protein

G’s close structure homolog, protein L, residues in the N-terminal hairpin show the highest ϕ-

values [55]. This is in contrast to protein G, where the highest ϕ-values are found in the C-ter-

minal residues [31]. Potentially consistent with this, we find that DBFOLD predicts folding

intermediates involving the N-terminal hairpin to be *5–10 kBT more stable in protein L

than in protein G at physiological temperatures (S11 Fig). But a more quantitative comparison

with experimental ϕ-values would require computation of folding stabilities and transition

state barriers for all the relevant mutants within our potential, either using our method or less

costly, approximate methods [20]. Our current simulations also predict that the ratio of the N-

to-C terminal hairpin folding rates is higher for protein L than for protein G (S12 Fig),

although the simulations do not predict a complete shift in the folding flux towards the N-ter-

minal pathway. But this incomplete shift does not necessarily contradict experimental ϕ-val-

ues, which sometimes fail to unambiguously predict the structure of the transition state

ensemble. For instance, studies using ψ-value analysis paint a different picture whereby all

four beta strands are formed in the transition states for both homologs [38].

In addition to proteins G and L, we expect that DBFOLD may accurately predict sequence

effects on the folding of proteins for which the potential has successfully predicted mutational

changes before. These include E. Coli DHFR [56] and human γD-crystallin [57]. Finally, our

method has been previously applied to generate atomistic-level predictions of how complex,

misfolding-prone proteins may begin folding co-translationally [17]. These predictions can be

readily tested by purifying and biophysically characterizing protein fragments of different

lengths.

When DBFOLD is used alongside Monte-Carlo simulation algorithms such as MCPU, it

can predict relative rates of different folding transitions for a given protein, but not absolute

rates in measurable units, as the predicted rates are all in Monte-Carlo units. Knowledge of

these relative rates is nevertheless useful–for instance, it allows for rate-limiting folding step(s)

to be identified. Likewise, kinetic models can be generated that predict the relative populations

of different folding intermediates over time (e.g. Fig 6E), even if the absolute timescale over
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which this evolution occurs is not known. In order to convert Monte-Carlo rates to experi-

mentally-measurable units, it will be necessary to benchmark the MC simulations against

experimentally measured folding times. Alternatively, DBFOLD could in principle be utilized

with molecular dynamics (MD) simulations, which have the obvious advantage of predicting

folding rates in absolute, measurable units. We expect the method to work well with MD so

long as the requirements presented here are satisfied. In particular, it will be important to ver-

ify that unfolding rates can still be well-fit to the Arrhenius equation. The presence of explicit

solvent may introduce a temperature-dependence to the unfolding-rate prefactors and activa-

tion energies, in which case an alternative model should be used for rate extrapolation [58].

However, it is worth noting that the small simulation timesteps used in MD render these simu-

lations much slower to run than MC simulations. Even with the use of replica exchange and

enhanced sampling, the timescales required to achieve convergence in MD simulations may

significantly exceed accessible computation times, particularly for large proteins [24, 59, 60].

Materials and methods

Atomistic Monte-Carlo simulations

In principle, our method can be applied in conjunction with any protein molecular dynamics

or Monte Carlo simulation software so long as detailed balance is obeyed. Here, we utilize an

atomistic Monte Carlo (MC) simulation package, MCPU, described in previous works [17,

61–63]. This package, whose latest version is available online as part of DBFOLD, uses a

knowledge-based potential to rapidly compute energies while accounting for both native and

non-native interactions. We model all backbone and sidechain atoms with the exception of

hydrogen, and assign to each configuration an energy contains terms accounting for contacts

between atoms, hydrogen bonding, relative orientation of aromatic residues, as well as local

backbone and side chain torsion angle strain. Our MC moveset allows for both sidechain and

backbone rotations, as well as “local moves” which modify the dihedral angles of only three

consecutive residues while keeping the rest of the backbone intact. In order to ensure detailed

balance is satisfied, a proposed move from a configuration with atomic coordinates xn to one

with coordinates xm is accepted with probability given by the Metropolis-Hastings Criterion:

Pn!m ¼ min 1;
JðxmÞ

JðxnÞ
expf�ðEðxmÞ � EðxnÞÞ=kBTg

� �

ð5Þ

Where E(xn) and E(xm) are the energies of the respective configurations while J(xn) and J(xm)

are Jacobian determinants that account for changes in the size of phase space owing to local

moves–for details see [64, 65]

To compute a protein’s thermodynamic properties, we deploy enhanced sampling tech-

niques in order to aid convergence to equilibrium. First, for each trajectory, we add to the

energy function a harmonic biasing term that encourages the simulation to explore configura-

tions with a number of native contacts in the vicinity of some setpoint S. Namely, a configura-

tion with unmodified energy E(xn)0 (computed as described above) and number of native

contacts N(xn) will be assigned a modified energy given by

EðxnÞ ¼ EðxnÞ
0

þ
1

2
kbiasðNðxnÞ � SÞ

2 ð6Þ

Equilibrium simulations are run at a range of temperatures and setpoints as described

below. To further aid convergence, we implement replica exchange in which pairs of simula-

tions with adjacent setpoints or temperatures periodically attempt to swap configurations.

Suppose the two trajectories that attempt an exchange have setpoints S and S0 and
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temperatures T and T0, respectively. If these two trajectories initially populate configurations

xn and xm with (unmodified) energies E(xn)0 and E(xm)0, and numbers of native contacts N
(xn) and N(xm) respectively, the probability that the exchange is accepted is given by

Pðxn $ xmj ðT; SÞ; ðT 0; S0ÞÞ ¼ min
�

1; exp
�

1

T0
�

1

T

� �

EðxmÞ
0

� EðxnÞ
0

� �

�kbiasððNðxmÞ � SÞ
2

� ðNðxnÞ � SÞ
2

þ ðNðxnÞ � S0Þ
2

� ðNðxmÞ � S0Þ
2
Þ

�� ð7Þ

In our simulations, we implement exchanges every 500,000 MC steps, at which 75 pairs of

cores with adjacent setpoints or temperatures are randomly chosen to attempt an exchange.

All simulations except refolding simulations are initialized from a relaxed structure, which

is generated from a starting crystal structure (PDB ID 1igd for protein G) by first running a

simulated annealing protocol whereby the protein is subjected to gradually decreasing temper-

atures from T = 0.45 to T = 0.1, and allowed to equilbrate for 2 million MC steps at each tem-

perature without umbrella biasing. Next we run an initial set of replica exchange simulations

starting from the annealed structure in the previous steps, with multiple umbrella setpoints

and temperatures as low as T = 0.2. Together, these two steps increase the likelihood that the

protein will undergo small conformational changes needed to reach the energy minimum in

this potential. The lowest energy structure after the second step is defined as the equilibrated

native structure, which is used to initialize the subsequent simulations:

1. Equilibrium simulations are run using a grid of setpoints ranging from 0 to the total num-

ber of native contacts (42 for protein G) rounded to the nearest ten in increments of

ΔS = 10, and simulation temperatures typically ranging from from T = 0.4 to T = 1 in incre-

ments of ΔT = 0.025 in simulation temperature units. The number of native contacts is

computed by counting the number of alpha carbon (CA) pairs whose distance within the

equilibrated native structure is less than some cutoff (typically 6 Angstroms for predomi-

nantly beta-sheet proteins such as protein G and 8 Angstroms for helical proteins such as

MarR in which residues often interact via their side-chains, thus resulting in larger CA dis-

tances) and whose separation in sequence is at least 8 residues (to include only tertiary con-

tacts). A value of kbias = 0.02 is used in simulation energy units. Simulations are run until

convergence is reached, as assessed using the methods described in the next subsection.

2. High temperature unfolding simulations that implement neither umbrella biasing (i.e. with

kbias = 0) nor replica exchange are run at a range of temperatures above the melting temper-

ature for 100 million MC steps.

We additionally run refolding simulations, which are initialized from various structural

intermediates, as described in the main text. These simulations again deploy neither umbrella

bias nor replica exchange.

Assessing convergence

To assess the convergence of our equilibrium simulations, we compute the simulation energy,

averaged over a sliding window, as a function of MC step for each umbrella at various temper-

atures (S2A–S2C Fig). For protein G, we find that by 1 billion Monte Carlo steps, these average

energies stop changing, suggesting convergence. This is further supported by examining a

more global metric of convergence–namely for each trajectory with setpoint s, we compute the

deviation between s and the number of native contacts at each MC step. We then compute the

root-mean-square of this deviation, averaged over all trajectories with setpoint s across all
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temperatures and over a sliding window of 50 million MC steps. (S2D Fig). Based on these

metrics, we compute equilibrium properties using the last 150 million MC steps, but our

results do not significantly change if we slightly vary the MC steps used (S2E and S2H Fig)–an

additional indicator of convergence.

Substructure analysis

To identify native substructures for a given protein, we produce a contact map of the equili-

brated native structure by identifying alpha-carbon (CA) pairs that are separated by at least 8

amino acids (for MarR and DHFR) or 3 amino acids (for protein G) in primary sequence and

whose spatial separation is within some distance cutoff dc. We set dc = 6.5 angstroms for the

predominantly beta proteins DHFR and protein G, and dc = 7.8 for the predominantly helical

protein MarR. We then define substructures as islands of native contacts comprised of at least

c contacts (c = 7 for MarR and protein G, while c = 12 for DHFR) which can be entirely tra-

versed via hops of Manhattan distance no greater than h (h = 3 for MarR while h = 5 for

DHFR and protein G) within the contact map. Values for dc, c, and h are adjusted for each pro-

tein so as to ensure all major structural units are included, while excluding substructures with

few contacts which are expected to rapidly form/break, thus avoiding overfitting.

To determine whether substructure s is folded within a snapshot, we compute the average

spatial distance hdi between every pair of CAs that form contacts assigned to s. We then com-

pute that same average distance in the equilibrated native file hd0i. So long as hdi � fhd0i for

some factor f, then the substructure is deemed formed. For predominantly beta sheet proteins

such as protein G, we set f = 1.7, but larger values are used for helical proteins where contacts

may involve side chains (and thus larger distances between CAs). We show in S8 Fig that our

results for protein G are robust over a reasonable range of values for f. We can now assign a

snapshot to a topological configuration labeled by the substructures that are formed within

that snapshot. We note that in some cases, this algorithm may declare a substructure as formed

even if the registration between the interacting residues is slightly shifted or, in the case of beta

sheet substructures, if the two strands interact with nearly the correct registration but using a

non-native set of hydrogen bond donors/acceptors within the backbone. But we do not expect

this to be a serious limitation as such slightly-nonnative conformations are expected to rapidly

exchange with the substructure’s native conformer.

Computation of thermodynamic properties from equilibrium simulations

From our equilibrium simulations with enhanced sampling, we can compute relative free

energies, and thus equilibrium probabilities of different states using MBAR [23], a statistically

optimized method for computing free energies under a desired set of conditions (for example,

a specific temperature and no bias). MBAR takes advantage of data sampled at all conditions

(i.e. trajectories at all temperatures and biases) to compute equilibrium probability PT
eqðXÞ of

observing some observable value X at temperature T (in the absence of umbrella biasing). X
may correspond, for instance, to some topological configuration or some number/fraction of

native contacts. Given these equilibrium probabilities, we can define a dimensionless potential

of mean force (PMF) at temperature T as a function of X as:

FT
i ðXÞ ¼ � log ðPT

eqðXÞÞ ð8Þ

In Fig 4C, we show PMF values for each coarse state computed from the equilibrium proba-

bilities as above. From these probabilities, we can also compute the ensemble average of X over
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all observed values, Xi, as

hXi ¼
X

i

XiP
T
eqðXiÞÞ ð9Þ

Fig 4B shows the mean number of native contacts as a function of temperature, computed

in this way.

Computing and extrapolating unfolding rates

To obtain transition rates from high temperature unfolding simulations, we first assign all

observed snapshots to their respective topological configurations. For the larger proteins simu-

lated in reference [17], we applied an additional filtering step to eliminate configurations that

are rarely observed, thereby reducing the number of total configurations and parameters in

the model. Namely, any snapshot assigned to a topological configuration that encompasses

less than some fraction s (typically s = 1%) of all unfolding simulation snapshots is reassigned

to either the configuration that came before or after it in the trajectory, depending on which it

is most topologically similar to. In the main text, this step was not applied for protein G, where

the total number of configurations occupied was small. However, we show in S9 Fig that apply-

ing this step does not appreciably change the final folding MFPT predictions. Next, we attempt

to reduce instances in which snapshots are misassigned to the wrong topological configuration

by training a Hidden Markov Model (HMM) on data from all temperatures using an emission

matrix that assumes a 90% probability that a topological configuration is classified correctly,

and a 10% probability of incorrect classification, uniformly distributed over all observed incor-

rect states. Varying this misassignment probability, m, does not significantly change results

(S10 Fig). This HMM is then used to fit the maximum-likelihood sequence of configurations

for each trajectory. Finally, we further reduce the number of parameters via an additional clus-

tering step that groups configurations in fast exchange. To this end we compute a “kinetic dis-

tance” Ti;j
K between every pair of observed configurations i and j, defined as the average time to

transition between them in either direction, given that the system is in one of the two states.

We then define two configurations as adjacent if their kinetic distance is less than some thresh-

old, and define clusters as connected components of the resulting adjacency matrix. The value

of the adjacency threshold TA, set to 100 million MC steps for protein G, is chosen to lie

between any highly separated timescales that are observed, such that configurations within a

cluster exchange much faster than configurations in different clusters (S7 Fig). This criterion

ensures that clusters obey the criteria outlined in Conditions I and II in the main text.

Having assigned trajectory snapshots into clusters, we now estimate the survival probability,

PS(Cj, t, T) for cluster Cj, namely the probability that a trajectory which transitioned into clus-

ter Cj from some other cluster at t = 0 will not yet have made any excursions out of Cj after

time t has elapsed at temperature T (as in Fig 5C). We can likewise estimate conditional proba-

bility, given that the protein is initially in cluster Cj at temperature T, of transitioning to some

other cluster Ci during the inter-snapshot time interval Δt (which is typically 500,000 MC

steps)

PðCijCj;T; DtÞ ¼
ZT
Cj!Ci

ZT
Cj

ð10Þ

Where ZT
Cj!Ci

is the total number of observed transitions between clusters Cj and Ci at tempera-

ture T, and ZT
Cj

is the total number of snapshots at temperature T assigned to cluster Cj. We
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then convert this to a rate

kj!iðTÞ ¼
1

Dt
log

1

1 �
P

l6¼jPðCljCj;T; DtÞ

 !
PðCijCj;T; DtÞ

P
l6¼jPðCljCj;T; DtÞ

ð11Þ

This assumes a continuous-time Markov process, but in case the transition from Ci to Cj is

non-Markovian (e.g. if condition II is satisfied, but not condition I), then this equation none-

theless provides a good approximation to the inverse mean-first passage time to transition, so

long as ∑l6¼j P(Cl|Cj, T, Δt) is small–i.e. transitions during a single MC step are unlikely. For

every pair of clusters Cj and Ci, we compute kj!i(T) at all temperatures at which transitions are

observed, and the dependence on inverse temperature is fit to the Arrhenius equation (Eq (4)).

To obtain an error distribution on the extrapolated unfolding rates due to finite sampling, we

perform a bootstrap analysis whereby, at each temperature, N trajectories (where N is the orig-

inal total number of trajectories at that temperature) from the original set are randomly sam-

pled with replacement. The log unfolding rates for these resampled trajectories are again fit to

the Arrhenius equation, and re-extrapolated to lower temperatures using the resulting parame-

ters. This process is repeated 1000 times. We note that in the main text (Fig 3), all unfolding

temperatures are included in Arrhenius plots, but during folding rate computation, for each

transition we only perform Arrhenius analysis with temperatures that show five or more tran-

sition events. Applying this threshold does not significantly change results for protein G, but is

a recommended practice in general to reduce noise.

Identifying nonnative states

We generate nonnative contact maps for each cluster by pooling all snapshots from equilib-

rium simulations assigned to topological configurations within that cluster. Nonnative con-

tacts are defined as contacts whose Manhattan distance on the contact map is at least 2 from

any contact present in the equilibrated native contact map (so as to exclude native contacts

that have been slightly register-shifted), with the exception of cluster (b)c where only native

contacts are excluded. We then subdivide these contact maps as in reference [17]–briefly, we

identify the connected components of the adjacency matrix between different snapshots’ non-

native contact maps, where two maps are defined as adjacent if their hamming distance is less

than 10. For cluster (b)c, two structurally-distinct classes of nonnative states were identified

using this method, whereas only one such class was identified for all other clusters. For each

class of nonnative states, we then compute averaged nonnative contact maps among all snap-

shots assigned to that class (Fig 5). We then identify nonnative substructures among all nonna-

tive contacts that are present at least 10% of the time within a given nonnative class using the

methods described in the subsection Substructure analysis with values of c = 7, dc = 6.5 Ang-

stroms, and h = 3. For each cluster Ci, we then run refolding simulations, initialized from

snapshots assigned to Ci with no more than 2 nonnative contacts, drawn from equilibrium

simulations at T � 1.14 Tm, and compute the probability, as a function of MC step, that the

protein forms at least one nonnative substructure obtain from the nonnative contact maps

generated as above for cluster Ci or the probability that the protein has transitioned to a subse-

quent cluster in the folding pathway (Fig 4B).

Computing predicted and observed folding rates

To compute the predicted folding rate kTi!j between clusters Ci and Cj at temperature T, we

incorporate equilibrium probabilities of occupying the respective clusters, as well as the

unfolding rate kTj!i (computed and extrapolated as per the previous section) into Eq (2)). We

PLOS COMPUTATIONAL BIOLOGY Validation of DBFOLD

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008323 November 16, 2020 23 / 32

https://doi.org/10.1371/journal.pcbi.1008323


obtain

kTi!j ¼

P
l1Sl2Cj

PT
eqðSlÞ

P
l0 1Sl0 2Ci

PT
eqðSl0 Þ

kj!i ð12Þ

Where the sum is over all observed coarse states, 1Sl2Cj
has value 1 if coarse state Sl is assigned

to cluster Cj and 0 otherwise, and PT
eqðSlÞ is the equilibrium probability of occupying coarse

state Sl computed as per the subsection “Computation of thermodynamic properties from

equilibrium simulations” (and likewise for cluster Ci). As discussed previously, this rate corre-

sponds to an inverse mean-first passage time for transitions that do not show Markovian

behavior. We obtain an error distribution on this folding rate by incorporating the value of

kj!i obtained from each bootstrap iteration, as described in the subsection Computing and

extrapolating unfolding rates, into the above equation. Error bars in plots of kTi!j as a function

of temperature represent the standard deviation of this bootstrapped distribution, omitting

any bootstrap iterations in which the respective unfolding transition kj!i does not occur. We

note that error bars appear symmetric on a log scale because the boostrap analysis is performed

entirely in log space. We further note that this error does not account for uncertainty in the

PMF calculation.

In order to directly compute refolding rates, we run a set of refolding simulations in which

protein G is initialized from snapshots assigned the fully unfolded configuration ; at high tem-

peratures (under the restriction that no more than two nonnative contacts are initially pres-

ent). At each of five physiolgoically-reasonable temperatures, 120 refolding trajectories are

run, starting from snapshots drawn randomly (with replacement) from among those which

satisfy the required criteria. These trajectories are run for 100 million MC steps, at which point

snapshots that successfully transitioned into cluster (b)c are used to initialize 120 new simula-

tions. This process is repeated serially for each step in the two pathways shown in Fig 5. To

compute observed folding rates from these forward folding simulations, we use the HMM

method described in the subsection Computing and extrapolating unfolding rates to reduce

the frequency with which simulation snapshots are misassigned to the wrong topological con-

figuration. We then assign each snapshot to whichever cluster contains the topological config-

uration to which that snapshot was assigned (where clusters are determined from the

unfolding simulations). Finally, Eqs (10) and (11) are used to compute the observed folding

rate from cluster Ci to Cj at each temperature at which folding simulations are run. As with the

predicted folding rates, a bootstrap analysis, in which N refolding trajectories at each tempera-

ture are resampled 1000 times with replacement, is used to obtain an error distribution on

these observed refolding rates.

Supporting information

S1 Text. Details on conditions for applicability of method, justification of Arrhenius kinet-

ics.

(PDF)

S1 Fig. Schematic for model of transition between coarse states. Si and Sj represent coarse

states, each of which is composed of the set of all microstates with topological configuration i
or j, respectively. Si can transition to Sj if the two differ by the formation/breaking of one sub-

structre. Shi � Si represents the subset of microstates within Si from which transitions to states

in Sj are possible (i.e. the hub state). All other microstates sni 2 Si cannot transition to Sj owing

to nonnative contacts that interfere with folding/unfolding of the required native substructure.

Transitions between states are indicated by double arrows and rates denoted by the variable λ.
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For further details, see S1 Text.

(TIF)

S2 Fig. Assessing convergence. (A)-(C) Energy is plotted as a function of Monte Carlo step,

averaged over a sliding window of 50 million Monte Carlo steps, at three temperatures shown

above plots, where TM is the melting temperature. At each temperature, trajectories for each

umbrella setpoint are shown (see legend in left-most panel). At around 1 billion MC steps,

these sliding-window averaged energies cease changing substantially, indicative of conver-

gence. (D) For each setpoint, we compute the root-mean-squared deviation between the num-

ber of native contacts and the respective setpoint value averaged over all temperatures and

over a sliding window of 50 million MC steps. This quantity is plotted as a function of MC

step, with different colors corresponding to setpoints as in panel (A). This RMSD stops varying

after about 1 billion MC steps, indicating convergence. (E)-(G) Potentials of mean force

(PMF) as a function of topological configuration are plotted at a simulation temperature of

T = 0.91 TM (as in main text Fig 3C), but we now vary the window of simulation timesteps that

is used to compute the PMFs, namely we use either steps 900 million through 1.05 billion (E),

975 million through 1.125 billion (F), or 1.05 billion through 1.2 billion (G). Quantitative simi-

larity between these PMFs indicates that thermodynamic quantities are well converged. (H)

Thermally averaged fraction of native contacts as a function of simulation temperature (as in

main text Fig 3B) using the same MC timestep windows as in panels (E) -(G) (see legend).

These curves are nearly superimposable, indicating that thermodynamic quantities are well

converged.

(TIF)

S3 Fig. Dwell-time distributions for clusters at different temperatures. (A)-(E) Survival

probability as a function of Monte Carlo time for each cluster (dots) alongside exponential fits

(solid lines) during unfolding simulations, as in main text Fig 3C, at simulation temperatures

indicated above the respective panels. Panel (C) shows data at a simulation temperature of 1.08

TM, as in the main text. We note that survival curves for a cluster C at temperature T can only

be meaningfully computed over a MC time interval t ¼ ttraj � maxiðt0
i Þ, where τtraj = 108 MC

steps is the total duration of each trajectory, t0
i is the first MC timestep at which trajectory i (at

temperature T) samples cluster C, and thus maxiðt0
i Þ is the latest MC timepoint at which any

trajectory at temperature T reaches cluster C for the first time. For all clusters except abcd (at

which all trajectories are initialized), τ is shorter than the total simulation trajectory, hence

these clusters’ survival curves are truncated. Most curves show good fits to a single-exponential

decay. The fits for cluster (b)cd are worse because the (b)cd to (b)c transition satisfies condition

II, but not condition I, implying multi-exponential kinetics. We note that these exponential

fits are merely used to assess whether clusters satisfy condition I, and not to infer transition

rates–these rates are instead inferred using Eqs (10) and (11) in the main text.

(TIF)

S4 Fig. Nonnative contacts in ;/b cluster do not impede subsequent folding step. Average

nonnative contact map (as in main text Fig 5A) for snapshots assigned to cluster ;/b at temper-

atures around T � 0.85 TM, alongside an example of such a snapshot with nonnative contacts

highlighted. Residues that participate in substructure c, the first to form in the folding pathway,

are outlined in gray. The predominant nonnative contacts do not impede the impede the for-

mation of substructure c–this is further evidenced by the fact that these same nonnative con-

tacts are observed in cluster (b)c (See Fig 4A).

(TIF)

PLOS COMPUTATIONAL BIOLOGY Validation of DBFOLD

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008323 November 16, 2020 25 / 32

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008323.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008323.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008323.s005
https://doi.org/10.1371/journal.pcbi.1008323


S5 Fig. DBFOLD fails to accurately predict rates of transitions that satisfy neither condi-

tions I nor II. (A) Predicted inverse mean-first passage times (MFPTs) to folding (markers

with errorbars connected by lines), alongside observed inverse MFPTs from serial refolding

simulations (disconnected round markers), are shown as a function of simulation temperature

for the transition from clusters a(b)c to a(b)cd (analogous to main text Fig 6). Although the

algorithm predicts inverse folding times of approximately 10−8 MC steps−1 (implying that

roughly one folding transition should occur per simulation trajectory) at physiologically-rea-

sonable temperatures, in reality no transitions are observed at all at any temperature (as indi-

cated by X’s near the x-axis), implying that the true folding rate is likely less than 10−10 MC

steps−1. This significant discrepancy occurs because, in the context of serial refolding simula-

tions, neither condition I nor II is satisfied for the a(b)c to a(b)cd transition. (B) Same as (A),

but markers now show observed a(b)c to a(b)cd inverse mean first passage times within simu-

lations that are initialized from a(b)c snapshots drawn from temperatures above the melting

temperature with no more than two nonnative contacts. This setup artificially ensures that

Condition II holds for this transition. In contrast to panel (A), all observed transition rates

now lie within a factor of two of the predicted rates, indicating significantly improved predic-

tions.

(TIF)

S6 Fig. DBFOLD predicts similar folding kinetics for protein G over a range of reasonable

temperatures. (A)—(E) As in main text Fig 6E, we solve the master equation, which incorpo-

rates folding and unfolding rates between clusters computed as described in the main text, for

the probability of occupying different clusters as a function of time at five different physiologi-

cally reasonable temperatures indicated above the respective panels. Panel (C) shows the solu-

tion at T = 0.91 TM as in the main text. All temperatures show qualitatively similar kinetics,

although quantitative details slightly differ between temperatures. In particular, at lower tem-

peratures, relaxation dynamics are slower due to increased stability of nonnative contacts

(note the different x-scale in panel (A)), but the fully folded state is also more stable, leading to

a higher final equilibrium population of cluster a(b)cd.

(TIF)

S7 Fig. Exchange times between topological configurations show a significant separation

of timescales. The kinetic distance Ti;j
K –namely the average time to transition between topolog-

ical configurations i and j in either direction at any temperature conditioned on the fact that

the system is in one of the two states –is shown between every pair of topological configura-

tions observed in unfolding simulations. Values written out inside the heatmap are in units of

millions of MC steps. This provides a metric for the speed at which topological configurations

exchange with each other. We note a significant separation between the fastest timescales of

exchange (less than 10 million MC steps) and all slower timescales (greater than 150 million

MC steps). Thus, a kinetic threshold of TA = 100�106 MC steps (see main text Methods section)

produces meaningful kinetic clusters.

(TIF)

S8 Fig. DBFOLD predictions are robust to choice of f value within a reasonable range. (A)-

(D) Predicted folding rate as a function of simulation temperature for each transition that sat-

isfies either condition I or II (as in main text Fig 6) for different values of f, which refers to the

maximum allowed ratio of the average distance between residues assigned to a substructure in

a snapshot divided by that same average distance in the equilibrated file such that the substruc-

ture is deemed folded in that snapshot (See main text Materials and methods, subsection “Sub-

structure analysis”). Different linestyles indicate different values of f (as per legend in panel B),
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We note that for all transitions, small deviations of f away from the value used in the main text,

namely f = 1.7, do not significantly change the predicted folding rates, indicating that f = 1.7 is

a reasonable value. However, larger deviations in f produce more significant changes to these

predictions. If our threshold for declaring a substructure folded is too strict (f * �1.5), then

the algorithm tends to overpredict unfolding events, whereas too lenient a threshold (f * �2)

causes the algorithm to underpredict such events. We note that for the extreme values of f, the

kinetic clusters slightly change. Namely when f = 1.5 all clusters except a(b)cd include only the

respective topological configuration in which b is unfolded (e.g. (b)cd now only includes cd),

as b is rarely declared folded under this strict threshold. Conversely, when f = 2, clusters a(b)cd
and (b)cd include only the respective configuration in which b is folded, as b is rarely declared

unfolded under this lenient threshold. Finally we note that higher f values may reasonably be

used for predominantly helical proteins where interactions between contacting residues typi-

cally involve sidechains, as opposed to backbone hydrogen bonds as in predominantly sheet

proteins such as protein G.

(TIF)

S9 Fig. DBFOLD predictions are robust to choice of s value within a reasonable range. Pre-

dicted folding rate as a function of simulation temperature for each transition that satisfies

either condition I or II (as in main text Fig 6) for different values of s. Following initial assign-

ment, all topological configurations that encompass less than a fraction s of snapshots over all

unfolding simulations are reassigned to the most similar topological configuration that is rep-

resented at a fractional prevalence greater than s (see main text Materials and methods, subsec-

tion “Computing and extrapolating unfolding rates”). This is useful for larger proteins to

reduce the number of unfolding rate parameters. In the main text, a value of s = 0 is used (no

reassignment), but these panels show that a value of s = 0.001 does not drastically change any

results. This value reassigns states that are not part of the two predominant folding/unfolding

pathways, but leave intact assignments for states belonging to these pathways. Meanwhile, a

value of s = 0.005 does not drastically change results with the exception of the (b)c ! a(b)c
transition rates. This is because, for this relatively large value of s, configuration a(b)c, which is

observed with frequency less than 0.005 among all snapshots despite belonging to one of the

dominant folding/unfolding pathways, gets reassigned. These results therefore indicate that

the value of s should always be small enough that topological configurations belonging to the

dominant pathways are not reassigned.

(TIF)

S10 Fig. DBFOLD predictions are robust to choice of m value within a reasonable range.

Predicted folding rate as a function of simulation temperature for each transition that satisfies

either condition I or II (as in main text Fig 6) for different values of m, the misassignemnt

probability in the hidden Markov model used to reduce misassignment of snapshots to incor-

rect topological configurations (see main text Methods section, subsection Computing and

extrapolating unfolding rates). A value of m = 0.1 is used in the main text, but these panels

show that our results are robust even if m is varied over an order of magnitude.

(TIF)

S11 Fig. DBFOLD predicts greater stability for N-terminal hairpin in protein L as com-

pared to protein G. We compute potentials of mean force (PMFs) as a function of topolgoical

configuration (as in main text Fig 3C) for protein G (left panels) and its close structural homo-

log protein L (right panels) at temperatures of T = 0.88 TM (top row) and T = 0.94 TM (bottom

row), where TM is the melting temperature for protein G. Equilibrium simulations for protein

L were run for *1.5 billion MC steps, then analyzed in an analogous fashion as for protein G
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(see Methods in main text), starting from the crystal structure with PDB ID 2ptl. Substructures

for protein L are defined nearly identically as for protein G. As shown here, at temperatures

below the melting temperature, topological configurations in which the N-terminal hairpin

(substructure a) is folded but not the C-terminal hairpin (namely configurations a, ab, and

abd) are lower in free energy in protein L than they are in protein G. This is consistent with

phi-value analysis, which suggests that the N-terminal hairpin in isolation is more stable in the

former protein.

(TIF)

S12 Fig. DBFOLD predicts increased folding flux through the N-terminal pathway in pro-

tein L as compared to protein G. For protein G (red curve with markers and error bars) and

protein L (green curve with markers and error bars), we compute the ratio of the rate at which

the N-terminal hairpin folds starting from the unfolded state (transition ;/b − >a(b)) to the

rate at which the C-terminal hairpin folds (transition ;/b − >(b)c). Error bars are obtained via

bootstrapping is in main text Fig 6. We observe that for both proteins, the N-terminal hairpin’s

folding is significantly slower than that of the C-terminal hairpin at temperatures below the

melting temperature TM. But for protein L, this ratio is higher, indicating increased N-terminal

folding as compared to protein G. Thus, although our MCPU potential does not predict a

complete change in folding flux towards the N-terminal pathway in protein L, it nevertheless

captures a partial shift which is potentially consistent with experimental ϕ-values. We note

that for protein G, it was necessary to initialize simulations from the a(b) cluster in order to

compute the N-terminal folding rate. This is because, during simulations initialized from the

native state, a very low amount of flux through the N-terminal unfolding pathway was

observed, thus precluding the collection of sufficient statistics for Arrhenius fitting.

(TIF)
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