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A B S T R A C T

Autocatalytic systems called hypercycles are very often incorporated in ‘‘origin of life" models. We investigate
the dynamics of certain related models called bimolecular autocatalytic systems. In particular, we consider
the dynamics corresponding to the relative populations in these networks, and show that it can be analyzed
using well-chosen autonomous polynomial dynamical systems. Moreover, we use results from reaction network
theory to prove persistence and permanence of several families of bimolecular autocatalytic systems called
autocatalytic recombination systems.
1. Introduction

Biological networks display a wide range of sophisticated dynamics,
due to complex feedback loops and catalytic interactions [1–6]. A
particular instance of such sophistication is manifested in autocatalytic
reaction systems called hypercycles, which have appeared in the ‘‘origin
of life’’ models. Introduced by Manfred Eigen [7] and extended in
collaboration with Peter Schuster [8,9], hypercycles consist of cyclic
connections of molecules that mutually catalyze their own production.
Hypercycles are particular instances of the replicator equation [10,11],
and have been proposed as a possible solution to Eigen’s paradox [7],
a famous problem in evolutionary biology.

The classical three dimensional hypercycle is given by the reaction
network

𝑋1 +𝑋2 → 𝑋1 + 2𝑋2, 𝑋2 +𝑋3 → 𝑋2 + 2𝑋3, 𝑋3 +𝑋1 → 𝑋3 + 2𝑋1.

he dynamical equations corresponding to this hypercycle are given
y

𝑥̇1 = 𝑥1𝑥3
𝑥̇2 = 𝑥1𝑥2
𝑥̇3 = 𝑥2𝑥3.

(1)

s is evident from Eq. (1), the dynamical rate equations corresponding
o each species consist of a combination of positive (non-constant)
onomials. Consequently, the species populations can become un-
ounded in finite time [12], so it is reasonable to analyze the relative
opulations of species in such networks [11]. Taking cue from the
lassical hypercycle, we study more general models called bimolecular
utocatalytic systems, where every reaction is of the form 𝑋𝑖+𝑋𝑗 → 𝑋𝑖+
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𝑋𝑗 +𝑋𝑘. A priori, the dynamics of relative populations of these systems
might not be given by autonomous polynomial differential equations.
Nevertheless, we show that the relative populations of species in these
networks are, after time re-scaling, solutions of autonomous polynomial
dynamical systems.

Autocatalytic networks like the hypercycle received widespread
attention from several researchers in the 1970’s. In particular, Hofbauer,
Schuster, Sigmund, and Wolff [13–17] analyzed a dynamical property
called cooperation, which roughly implies that no species can go extinct.
This is related to the property of persistence in the theory of reaction
networks [18]. A system is persistent if given an initial condition 𝒙(0) ∈
R𝑛
>0, we have lim inf 𝑡→∞ 𝑥𝑖(𝑡) > 0 for all species concentrations 𝑥𝑖 in the

network. Permanence is a related notion; a system is permanent if there
exist positive lower and upper bounds for all solutions in R𝑛

>0. We show
that results from the theory of reaction networks [18–21] can be used
to prove permanence (and implicitly persistence) in several kinds of
autocatalytic recombination systems.

The paper is organized as follows. In Section 2, we recall some
definitions and notations from the theory of reaction networks. More
specifically, we define weakly reversible, endotactic, and strongly endotac-
tic reaction networks. Further, we define the notions of persistence and
permanence and relate them to the Global Attractor Conjecture [22]. In
Section 3, we analyze the dynamics of certain bimolecular autocatalytic
systems. In Theorem 3.1, we show that the relative populations in
bimolecular autocatalytic systems can be obtained as time re-scaled
solutions of polynomial mass-action systems. In Theorem 3.5, we ex-
plicitly characterize the reaction networks that generate the dynamics
of relative populations in such networks. Finally, in Section 4, we
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Fig. 1. (a) A reversible reaction network in R3 with a single linkage class, and a two-dimensional stoichiometric subspace. (b) A strongly endotactic, not weakly reversible, reaction
network in R3.
analyze families of certain bimolecular autocatalytic systems called au-
tocatalytic recombination systems (which are special cases of bimolecular
autocatalytic systems described above). We show that the dynamical
systems generated by relative populations of autocatalytic recombina-
tion systems is permanent using results from reaction network theory.
In Section 5, we summarize our results and discuss possible avenues for
future work.

2. Reaction networks

Here, we recall some basic terminology from the theory of reaction
networks [23–27]. A reaction network can be represented as a directed
graph  = (𝑉 ,𝐸), where ∅ ≠ 𝑉 ⊂ R𝑛 and 𝐸 ≠ ∅ are the sets of vertices
and edges respectively. Such graphs have also been called Euclidean
embedded graphs (abbreviated as E-graphs) [28–30]. In what follows, we
refer to the edges in  as reactions. More precisely, if (𝒔, 𝒔′) ∈ 𝐸, then
we write 𝒔 → 𝒔′ ∈ 𝐸, where 𝒔 is the source vertex and 𝒔′ is the target
vertex. Fig. 1 shows a few examples of E-graphs. A reaction network
′ = (𝑉 ′, 𝐸′) is a subnetwork of  = (𝑉 ,𝐸) if: (i) 𝑉 ′ ⊆ 𝑉 and (ii) 𝐸′ ⊆ 𝐸
with the condition that (𝒔, 𝒔′) ∈ 𝐸′ implies 𝒔, 𝒔′ ∈ 𝑉 ′.

The stoichiometric subspace 𝑆 of a network is the vector space 𝑆 =
span{𝒔′−𝒔 ∣ 𝒔 → 𝒔′ ∈ 𝐸}. For example, the stoichiometric subspace cor-

responding to the network in Fig. 1(a) is given by span
{

⎡

⎢

⎢

⎣

−2
2
0

⎤

⎥

⎥

⎦

,
⎡

⎢

⎢

⎣

0
−2
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⎤

⎥

⎥

⎦

}

.

For 𝒙0 ∈ R𝑛
>0, the compatibility class of 𝒙0 is the affine subspace (𝒙0+𝑆),

and the positive compatibility class of 𝒙0 is the polyhedron (𝒙0+𝑆)∩R𝑛
>0.

Let  = (𝑉 ,𝐸) be a reaction network and let 𝑉𝑆 denote the set of
source vertices. Then

(i)  is reversible if 𝒔 → 𝒔′ ∈ 𝐸 implies 𝒔′ → 𝒔 ∈ 𝐸. Fig. 1(a) is an
example of a reversible reaction network;

(ii)  is weakly reversible if each reaction is part of a directed cycle;
(iii)  is endotactic [18] if for every 𝒘 ∈ R𝑛 and 𝒔 → 𝒔′ ∈ 𝐸 with

𝒘 ⋅ (𝒔′ − 𝒔) < 0, there exists 𝒔̃ → 𝒔̃′ ∈ 𝐸 such that 𝒘 ⋅ (𝒔̃′ − 𝒔̃) > 0
and 𝒘 ⋅ 𝒔̃ < 𝒘 ⋅ 𝒔;

(iv)  is strongly endotactic [21] if for every 𝒘 ∈ R𝑛 and 𝒔 → 𝒔′ ∈ 𝐸
with𝒘⋅(𝒔′−𝒔) < 0, there exists 𝒔̃ → 𝒔̃′ ∈ 𝐸 such that 𝒘⋅(𝒔̃′−𝒔̃) > 0,
𝒘 ⋅ 𝒔̃ < 𝒘 ⋅ 𝒔, and 𝒘 ⋅ 𝒔̃ ≤ 𝒘 ⋅ 𝒔̂ for all 𝒔̂ ∈ 𝑉𝑆 . Fig. 1(a) and (b) are
examples of strongly endotactic reaction networks;

(v) a set 𝐿 ⊆ 𝑉 is a linkage class [25] if 𝐿 is a connected component
of . The reaction networks in Fig. 1(a) and (b) consist of a single
linkage class.

Every strongly endotactic reaction network is endotactic. Every weakly
reversible network is endotactic [18]. Further, a weakly reversible
reaction network with a single linkage class is strongly endotactic [21].
We describe below in Proposition 2.1 a geometric way of checking
strong endotacticity, called the parallel sweep test for strongly endotactic

networks [18,21].

2

Proposition 2.1. Consider a reaction network  and its stoichiometric
subspace 𝑆. For every vector 𝒘 ∉ 𝑆⟂, let𝐻 be the hyperplane perpendicular
to 𝒘 that contains a source vertex 𝒔1 such that for every other source vertex
𝒔2, we have (𝒔2 − 𝒔1) ⋅𝒘 ≥ 0. If for every reaction 𝒔 → 𝒔′ with 𝒔 ∈ 𝐻 , we
have (𝒔′ − 𝒔) ⋅ 𝒘 ≥ 0, and there exists a reaction 𝒔0 → 𝒔′0 with 𝒔0 ∈ 𝐻
such that (𝒔′0 − 𝒔0) ⋅ 𝒘 > 0 for all 𝒘, then the reaction network is said to
have passed the parallel sweep test, and is strongly endotactic. Else, it is
not strongly endotactic.

One can verify that Fig. 1(a) and (b) satisfy the parallel sweep test
for strongly endotactic reaction networks given in Proposition 2.1.

The next proposition provides simple characterization of strong
endotacticity for a special class of networks that will be of particular
interest to us.

Proposition 2.2. Let  be a reaction network such that all the vertices of
 are contained in the convex hull of its source vertices. Then  is strongly
endotactic if and only if for every proper face of the convex hull of the
source vertices, there exists a reaction of  with source vertex on this face
and target vertex that does not belong to this face.

Proof. Let 𝑆 denote the stoichiometric subspace of . Let 𝒘 ∈ R𝑛 be
such that 𝒘 ∉ 𝑆⟂. Let 𝐻 be the hyperplane perpendicular to 𝒘 that
contains a source vertex 𝒔1 such that for every other source vertex 𝒔2,
we have (𝒔2 − 𝒔1) ⋅ 𝒘 ≥ 0. Therefore, the intersection of 𝐻 with the
convex hull of source vertices of  is a proper face of the convex hull.
Let us call this face 𝑓 . Note that any proper face of the convex hull
arises this way.

(⇒) First assume that  is strongly endotactic, so it passes the
parallel sweep test given in Proposition 2.1. In particular, for every
reaction 𝒔 → 𝒔′ whose source vertex lies on 𝑓 , we have (𝒔′ − 𝒔) ⋅𝒘 ≥ 0,
and there exists a reaction 𝒔0 → 𝒔′0 with vertex 𝒔0 that lies on 𝑓 such
that (𝒔′0−𝒔0) ⋅𝒘 > 0. Since the vertices of  are contained in the convex
hull of its source vertices, the reaction 𝒔0 → 𝒔′0 lies in the convex hull;
in particular, the source vertex 𝒔0 lies on 𝑓 and the target vertex does
not belong to 𝑓 .

(⇐) Let us assume that there exists a reaction 𝒔0 → 𝒔′0 lying in the
convex hull such that the source vertex lies on 𝑓 and the target vertex
does not belong to 𝑓 . In particular, this implies that (𝒔′0 − 𝒔0) ⋅ 𝒘 > 0.
We will show that  is strongly endotactic by showing that  passes
the parallel sweep test given in Proposition 2.1. Since all the vertices
of  are contained in the convex hull of its source vertices, for every
reaction 𝒔 → 𝒔′ whose source vertex lies on 𝑓 , we have (𝒔′ − 𝒔) ⋅𝒘 ≥ 0.
This combined with the fact that (𝒔′0 − 𝒔0) ⋅ 𝒘 > 0 shows that  passes
the parallel sweep test and is hence strongly endotactic. □

Remark 2.3. Note that Proposition 2.2 also follows from [21, Remark
3.13].

In particular, we obtain the following.
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Corollary 2.4. Let  be a reaction network such that all the vertices of
are contained in the convex hull of its source vertices. If  is not strongly
ndotactic, then there exists a proper face of the convex hull of the source
ertices of  such that every reaction with source on this face has target on
his face.

roof. This follows from Proposition 2.2. □

If we assume that the vertices of  have non-negative integer com-
onents, and that dynamics are given by mass-action kinetics [18,22,30],
hen  generates a dynamical system on R𝑛

≥0 which can be expressed
s
𝑑𝒙
𝑑𝑡

=
∑

𝒔→𝒔′∈𝐸
𝑘𝒔→𝒔′𝒙𝒔(𝒔′ − 𝒔), (2)

where 𝒙𝒔 = 𝑥1𝑠1𝑥2𝑠2 ⋯ 𝑥𝑛𝑠𝑛 and 𝑘𝒔→𝒔′ > 0 is the rate constant cor-
responding to the reaction 𝒔 → 𝒔′. We will denote the dynamical
system generated by mass-action kinetics as 𝒌 = (𝑉 ,𝐸,𝒌), where
𝒌 = (𝑘𝒔→𝒔′ )𝒔→𝒔′∈𝐸 .

We will say that a dynamical system is polynomial if it is of the form

𝑑𝒙
𝑑𝑡

=
𝑟
∑

𝑖=1
𝒙𝒔𝑖𝒘𝑖, (3)

where 𝒙 ∈ R𝑛
>0, 𝒔𝑖 ∈ Z≥0, and 𝒘𝑖 ∈ R𝑛.

emark 2.5. A polynomial dynamical system consisting of equations
𝑑𝑥𝑖
𝑑𝑡 = 𝑓𝑖(𝒙), where 𝑖 = 1, 2,… , 𝑛 and 𝒙 = (𝑥1, 𝑥2,… , 𝑥𝑛)𝑇 , is given
y mass-action kinetics if and only if 𝑥𝑖 divides every monomial with
egative coefficient in 𝑓𝑖(𝒙) for all 𝑖 ∈ {1, 2,… , 𝑛} [31,32].

efinition 2.6 (Dynamical Equivalence). Two mass-action systems 𝒌 =
𝑉 ,𝐸,𝒌) and ̃𝒌̃ = (𝑉 , 𝐸̃, 𝒌̃) are dynamically equivalent if they generate
he same dynamical system (2), i.e.,
∑

𝒔→𝒔′∈𝐸
𝑘𝒔→𝒔′𝒙𝒔(𝒔′ − 𝒔) =

∑

𝒔̃→𝒔̃′∈𝐸̃
𝑘̃𝒔̃→𝒔̃′𝒙𝒔̃(𝒔̃′ − 𝒔̃). (4)

quivalently, for every 𝒔 ∈ 𝑉 ∪ 𝑉 we have
∑

𝒔→𝒔′∈𝐸
𝑘𝒔→𝒔′ (𝒔′ − 𝒔) =

∑

𝒔→𝒔̃′∈𝐸̃
𝑘̃𝒔→𝒔̃′ (𝒔̃′ − 𝒔). (5)

Note that in Eq. (4), we are summing over all edges, while in Eq. (5),
he sum is over all edges with source vertex 𝒔, where 𝒔 lies in the union
f the vertices of the two E-graphs [33].
For example, mass-action systems generated by the reaction net-

ork in Fig. 1(b) can be made dynamically equivalent to the mass-
ction systems generated by the reaction network in Fig. 1(a). For more
etails and examples for the construction of dynamically equivalent
ystems see [33].
A dynamical system is called autonomous if it can be written in the

orm 𝑑𝒙(𝑡)
𝑑𝑡 = 𝒇 (𝒙(𝑡)). If the rate coefficients depend on time instead

of being constants as in Eq. (2), the dynamics is governed by the
non-autonomous system
𝑑𝒙
𝑑𝑡

=
∑

𝒔→𝒔′∈𝐸
𝑘𝒔→𝒔′ (𝑡)𝒙𝒔(𝒔′ − 𝒔), (6)

here 𝑘𝒔→𝒔′ (𝑡) are assumed to be locally Lipschitz functions. If there
xists an 𝜖 > 0 such that 𝜖 ≤ 𝑘𝒔→𝒔′ (𝑡) ≤ 1

𝜖 for every 𝑘𝒔→𝒔′ (𝑡) in (6),
then the dynamical system is called a variable-𝑘 mass-action system. Note
that every autonomous mass-action system is a variable-𝑘 mass-action
ystem. We now define some important dynamical properties.

efinition 2.7 (Persistence). A dynamical system given by (6) is said
to be persistent if R𝑛

>0 is forward invariant and for any initial condition
(𝒙0, 𝑡0) ∈ R𝑛

>0×R, the solution 𝒙(𝑡) of (6) satisfies lim inf 𝑡→𝑇(𝒙0 ,𝑡0)
𝑥𝑖(𝑡) > 0

for all 𝑖 = 1, 2,… , 𝑛, where 𝑇(𝒙0 ,𝑡0) ∈ (𝑡0,∞] is the maximal time for
which 𝒙(𝑡) is defined.
3

Definition 2.8 (Permanence). A dynamical system given by (6) is said
to be permanent if for every positive compatibility class 𝐶, there exists
a compact set 𝐾 ⊂ 𝐶 such that for every solution 𝒙(𝑡) of (6) with initial
ondition (𝒙0, 𝑡0) ∈ 𝐶 × R, we have 𝒙(𝑡) ∈ 𝐾 for all 𝑡 sufficiently large.

A permanent dynamical system is persistent. These two dynamical
properties are related to important open problems in reaction network
theory. The Persistence Conjecture states that weakly reversible mass-
action dynamical systems are persistent. This conjecture has been
generalized in [18] to the Extended Permanence Conjecture, which states
that variable-𝑘 endotactic mass-action dynamical systems are perma-
nent. These conjectures are intimately related to the more familiar
Global Attractor Conjecture [22], which says that for complex balanced
dynamical systems, each positive compatibility class contains a globally
attracting steady state.

We will need the following lemma about strongly endotactic net-
works.

Theorem 2.9. Dynamical systems generated by strongly endotactic
networks under mass-action kinetics are permanent.

Proof. Follows from [21, Theorem 1.1]. □

3. Autocatalytic systems

One of the goals of this paper is to analyze dynamical properties
like persistence and permanence in the context of autocatalytic networks
[2,34,35] using the framework of reaction network theory. Autocat-
alytic networks have been studied in the context of origin of life [3,36,
37]. An important family of autocatalytic networks called hypercycles
consists of a cyclic connection of molecules capable of self-replicating
themselves by undergoing mutual catalysis. The classical 𝑛-dimensional
hypercycle refers to the following network: 𝑋𝑖 +𝑋𝑖+1 → 𝑋𝑖 + 2𝑋𝑖+1 for
1 ≤ 𝑖 ≤ 𝑛, where 𝑋𝑛+1 = 𝑋1 (in the cyclic sense). The dynamics of
hypercycles has been a topic of interest since the 1980’s when properties
like permanence and the existence of a globally attracting fixed point
were established for special cases [16,38–40].

The concentration of some or all species in autocatalytic systems
can become unbounded in finite time [12]. As a consequence, it makes
sense to analyze the dynamics of relative populations of species in such
networks. There is no reason why the relative population of species of
an autonomous dynamical system should correspond to a solution of an
autonomous dynamical system. However, under certain assumptions on
the original system, we show in Theorem 3.1 that a solution of the sys-
tem of relative populations is a solution of an autonomous polynomial
dynamical system up to time re-scaling. Further, in Theorem 3.5 we
show how to build a reaction network whose dynamics corresponds to
the relative population of bimolecular autocatalytic network.

Theorem 3.1. Consider an autonomous dynamical system  given by
𝑑𝒙
𝑑𝑡 = 𝒇 (𝒙) with 𝒇 (𝒙) = (𝑓1(𝒙), 𝑓2(𝒙),… , 𝑓𝑛(𝒙))𝑇 , where each 𝑓𝑖(𝒙) is a
omogeneous polynomial with real coefficients of degree 𝑑. Let 𝑥𝑇 (𝑡) =
𝑛
𝑖=1 𝑥𝑖(𝑡) denote the total concentration. Then 𝐴̃ can be chosen to be an
utonomous polynomial dynamical system such that for any solution 𝒙(𝑡)
f , the function

̃ (𝑡) =
𝒙(𝑡)
𝑥𝑇 (𝑡)

defined for all time 𝑡 such that 0 < 𝑥𝑇 (𝑡) < ∞, is, up to time-rescaling, a
solution of ̃. Moreover, if  is a mass-action system, then ̃ can also be
chosen to be a mass-action system.

Proof. The proof proceeds by construction of ̃. Let 𝒙̃ = 1
𝑥𝑇

⋅ 𝒙, then

𝑑𝒙̃ = 𝑥−2𝑇

(

𝑑𝒙𝑥𝑇 − 𝒙
𝑛
∑ 𝑑𝑥𝑖

)

= 𝑥−2𝑇

(

𝒇 (𝒙)𝑥𝑇 − 𝒙
𝑛
∑

𝑓𝑖(𝒙)

)

. (7)

𝑑𝑡 𝑑𝑡 𝑖=1 𝑑𝑡 𝑖=1
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Since 𝑓𝑖(𝒙) is a homogeneous polynomial of degree 𝑑 and 𝒙 = 𝑥𝑇 𝒙̃, we
have 𝒇 (𝒙) = 𝑥𝑑𝑇 𝒇 (𝒙̃). Plugging this into Eq. (7) gives

𝑑𝒙̃
𝑑𝑡

=

(

𝒇 (𝒙̃) − 𝒙̃
𝑛
∑

𝑖=1
𝑓𝑖(𝒙̃)

)

𝑥𝑑−1𝑇 , (8)

hich is a time-rescaled version of

𝑑𝒙̃
𝑑𝑡

= 𝒇 (𝒙̃) − 𝒙̃
𝑛
∑

𝑖=1
𝑓𝑖(𝒙̃). (9)

By time-rescaled version, we mean that the vector field defined
y Eq. (8) is obtained by multiplying the vector field of (9) by a positive
calar field. Given a solution 𝒙(𝑡) of a dynamical system, its trajectory
urve is the set {𝒙(𝑡) | 𝑡 is in the maximal interval of existence of 𝒙(𝑡)}.
hen Eqs. (8) and (9) have the same sets of trajectory curves within the
ositive orthant [41], and therefore 𝒙̃ is (after time-rescaling) a solution
f ̃ given by 𝑑𝒙̃

𝑑𝑡 = 𝒇̃ (𝒙̃), where 𝒇̃ (𝒙̃) = 𝒇 (𝒙̃) − 𝒙̃
∑𝑛

𝑖=1 𝑓𝑖(𝒙̃).
If the system  was mass-action, then given the form of Eq. (9)

nd Remark 2.5, it is straightforward to check that ̃ is also mass-
ction. □

We now show that a result similar to Theorem 3.1 holds for non-
autonomous dynamical system.

Corollary 3.2. Consider a variable-𝑘 dynamical system  given by
𝑑𝒙
𝑑𝑡 = 𝒇 (𝒙) with 𝒇 (𝒙, 𝑡) = (𝑓1(𝒙, 𝑡), 𝑓2(𝒙, 𝑡),… , 𝑓𝑛(𝒙, 𝑡))𝑇 where each 𝑓𝑖(𝒙, 𝑡)
s a homogeneous polynomial (in 𝒙) of degree 𝑑, with time-dependent
oefficients, i.e.

𝑖(𝒙, 𝑡) =
∑

𝑗
𝑘𝑗 (𝑡)𝒙𝒔𝑗𝒘𝑗 ,

here 𝜖 ≤ 𝑘𝑗 (𝑡) ≤
1
𝜖 , 𝟏 ⋅ 𝒔𝑗 = 𝑑, and 𝒘𝑗 ∈ R. Let 𝑥𝑇 (𝑡) =

∑𝑛
𝑖=1 𝑥𝑖(𝑡) denote

he total concentration. Then ̃ can be chosen to be a variable-𝑘 dynamical
ystem such that for any solution 𝒙(𝑡) of , the function

̃ (𝑡) =
𝒙(𝑡)
𝑥𝑇 (𝑡)

defined for all time 𝑡 such that 0 < 𝑥𝑇 (𝑡) < ∞, is, up to time-rescaling, a
solution of ̃.

Proof. The proof proceeds in identical fashion to the proof of
Theorem 3.1.

In this case, Eqs. (8) and (9) get transformed to

𝑑𝒙̃
𝑑𝑡

=

(

𝒇 (𝒙̃, 𝑡) − 𝒙̃
𝑛
∑

𝑖=1
𝑓𝑖(𝒙̃, 𝑡)

)

𝑥𝑑−1𝑇 , (10)

and

𝑑𝒙̃
𝑑𝑡

= 𝒇 (𝒙̃, 𝑡) − 𝒙̃
𝑛
∑

𝑖=1
𝑓𝑖(𝒙̃, 𝑡) (11)

espectively. Construct an augmented dynamical system to Eq. (10)
iven by

𝑑𝒙̃
𝑑𝑡

=

(

𝒇 (𝒙̃, 𝑡) − 𝒙̃
𝑛
∑

𝑖=1
𝑓𝑖(𝒙̃, 𝑡)

)

𝑥𝑑−1𝑇 (𝑡)

𝑑𝑦̃
𝑑𝑡

= 1.

(12)

If we assume that the initial condition satisfies 𝑦̃(𝑡0) = 𝑡0, then Eq. (12)
an also be expressed as the autonomous dynamical system

𝑑𝒙̃
𝑑𝑡

=

(

𝒇 (𝒙̃, 𝑦̃) − 𝒙̃
𝑛
∑

𝑖=1
𝑓𝑖(𝒙̃, 𝑦̃)

)

𝑥𝑑−1𝑇 (𝑦̃)

𝑑𝑦̃
𝑑𝑡

= 1.

(13)

For initial condition (𝒙̃(𝑡0), 𝑦̃(𝑡0)) ∶= (𝒙̃0, 𝑦̃0 = 𝑡0) ∈ R𝑛
>0 × R, let

𝒙̃ (𝑡), 𝑦̃ (𝑡)) be the unique solution to (13). Let 𝛤 denote the trajectory
0 0

4

curve corresponding to this solution. Consider the system

𝑑𝒙̃∗
𝑑𝑡

= 𝒇 (𝒙̃∗, 𝑦̃∗) − 𝒙̃∗
𝑛
∑

𝑖=1
𝑓𝑖(𝒙̃∗, 𝑦̃∗)

𝑑𝑦̃∗

𝑑𝑡
= 1

𝑥𝑑−1𝑇 (𝑦̃∗)
.

(14)

Note that the solution of system (14) with the same initial conditions
(𝒙̃0, 𝑦̃0 = 𝑡0) also lies on 𝛤 since (14) is a rescaling of (13) by a factor
𝑥𝑑−1𝑇 [41]. If we now define 𝑘̃(𝑡) = 𝑘(𝑦̃∗(𝑡)), then the solution of the
dynamical system given by Eq. (14) restricted to the components of
𝒙̃∗, with initial condition (𝒙̃0, 𝑦̃0 = 𝑡0), is the same as the solution of
Eq. (11) where we replace 𝒇 (𝒙, 𝑡) by

𝒇̃ (𝒙, 𝑡) =
∑

𝑗
𝑘̃𝑗 (𝑡)𝒙𝒔𝑗𝒘𝑗 . (15)

The replaced system is our desired ̃ and is given by the following:

𝑑𝒙̃
𝑑𝑡

= 𝒇̃ (𝒙̃, 𝑡) − 𝒙̃
𝑛
∑

𝑖=1
𝑓𝑖(𝒙̃, 𝑡) (16)

Given the form of (15), it follows that ̃ is also a variable-𝑘 dynamical
system. □

Corollary 3.3. Consider a dynamical system  given by 𝑑𝒙
𝑑𝑡 = 𝒇 (𝒙)

ith 𝒇 (𝒙) = (𝑓1(𝒙), 𝑓2(𝒙),… , 𝑓𝑛(𝒙))𝑇 where each 𝑓𝑖(𝒙) is a homogeneous
olynomial with real coefficients of degree 𝑑. Let 𝑥𝑇 (𝑡) =

∑𝑛
𝑖=1 𝑥𝑖(𝑡) denote

he total concentration. Then the dynamical system corresponding to 𝒙̃(𝑡) =
𝒙(𝑡)
𝑥𝑇 (𝑡)

is given by

𝑑𝒙̃
𝑑𝑡

= 𝒇 (𝒙̃)

( 𝑛
∑

𝑖=1
𝑥̃𝑖

)

− 𝒙̃
𝑛
∑

𝑖=1
𝑓𝑖(𝒙̃), (17)

so that the right-hand side consists of homogeneous polynomials.

Proof. This follows from Eq. (9) in Theorem 3.1 since ∑𝑛
𝑖=1 𝑥̃𝑖 = 1. □

In what follows in the paper, a lot of results assume that the
dynamics is governed by mass-action kinetics. Note that mass-action
systems can also be variable-𝑘 systems.

Definition 3.4. A reaction network  is said to be a bimolecular
autocatalytic system if every reaction in  is of the form 𝑋𝑖 + 𝑋𝑗 ←←→
𝑋𝑖 +𝑋𝑗 +𝑋𝑙 for some 𝑖, 𝑗, 𝑙 ∈ {1, 2,… , 𝑛}.

The dynamics (after time-rescaling) generated by the relative pop-
ulation variables of a bimolecular autocatalytic system is generated by
another reaction network under mass-action kinetics. The next theorem
gives a precise constructive procedure for obtaining the relative pop-
ulation reaction network given the original bimolecular autocatalytic
system.

Theorem 3.5. Consider a bimolecular autocatalytic system  with con-
centration variables 𝑥1, 𝑥2,… , 𝑥𝑛 corresponding to species 𝑋1, 𝑋2,… , 𝑋𝑛.
For 1 ≤ 𝑖 ≤ 𝑛, let 𝑥𝑖(𝑡) = 𝑥𝑖(𝑡)∕𝑥𝑇 (𝑡) denote the relative population
variables and 𝑥𝑇 (𝑡) the total concentration. Then 𝑥̃1(𝑡), 𝑥̃2(𝑡),… , 𝑥̃𝑛(𝑡) is
(after time-rescaling) a solution of the dynamical system generated by a
reaction network consisting of the following reactions:

For every reaction 𝑋𝑖 + 𝑋𝑗
𝑘𝑖𝑗𝑙 (𝑡)
←←←←←←←←←←←←←←←←←←←←←←→ 𝑋𝑖 + 𝑋𝑗 + 𝑋𝑙 in the bimolecular

autocatalytic system , where 𝑖, 𝑗, 𝑙 ∈ {1, 2,… , 𝑛}, we have the following
set of reactions in the relative population network: {𝑋𝑝 + 𝑋𝑖 + 𝑋𝑗

𝑘𝑖𝑗𝑙 (𝑡)
←←←←←←←←←←←←←←←←←←←←←←→

𝑋𝑖 +𝑋𝑗 +𝑋𝑙 such that 𝑝 ≠ 𝑙.}

Proof. We will consider a single reaction in the bimolecular auto-
catalytic system . By combining the right-hand sides of the other
reactions, we will get our desired result.

Consider the reaction 𝑋𝑖 +𝑋𝑗
𝑘𝑖𝑗𝑙 (𝑡)
←←←←←←←←←←←←←←←←←←←←←←→ 𝑋𝑖 +𝑋𝑗 +𝑋𝑙 for some 𝑖, 𝑗, 𝑙 ∈

{1, 2,… , 𝑛}. We have the following differential equations corresponding



G. Craciun, A. Deshpande, B. Joshi et al. Mathematical Biosciences 345 (2022) 108784

c
a

o
s

to the species 𝑋𝑖, 𝑋𝑗 , 𝑋𝑙, and also for every species 𝑋𝑚 that does not
appear in the above reaction (i.e., for all 𝑚 ≠ 𝑖, 𝑗, 𝑙):
𝑑𝑥𝑖
𝑑𝑡

= 𝑘𝑖𝑗𝑙(𝑡)𝑥𝑖𝑥𝑗𝛿𝑙𝑖
𝑑𝑥𝑗
𝑑𝑡

= 𝑘𝑖𝑗𝑙(𝑡)𝑥𝑖𝑥𝑗𝛿𝑗𝑙
𝑑𝑥𝑙
𝑑𝑡

= 𝑘𝑖𝑗𝑙(𝑡)𝑥𝑖𝑥𝑗
𝑑𝑥𝑚
𝑑𝑡

= 0.

(18)

(Here 𝛿𝑖𝑗 is the Kronecker delta, i.e., 𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗 and 0 if 𝑖 ≠ 𝑗.) The
dynamical system in (18) can be understood in the following way: If
𝑙 ≠ 𝑖 and 𝑙 ≠ 𝑗, then since the species 𝑋𝑖 and 𝑋𝑗 are not produced, there
is no contribution to their rate equations. If either 𝑙 = 𝑖 or 𝑙 = 𝑗, then we
get a contribution of 𝑘𝑖𝑗𝑙(𝑡)𝑥𝑖𝑥𝑗 to the rate equation corresponding to 𝑋𝑖
or 𝑋𝑗 . For every species 𝑋𝑚 that does not appear in the above reaction,
there is no net change in 𝑋𝑚. Therefore

𝑑𝑥𝑚
𝑑𝑡 = 0. Note that the rate

onstants in (18) are exactly the same as in the original bimolecular
utocatalytic reaction 𝑋𝑖 +𝑋𝑗

𝑘𝑖𝑗𝑙 (𝑡)
←←←←←←←←←←←←←←←←←←←←←←→ 𝑋𝑖 +𝑋𝑗 +𝑋𝑙.

Some of the equations in (18) may be redundant, e.g., when 𝑖 = 𝑙
r 𝑗 = 𝑙. According to Corollary 3.3 and using Eq. (18), the dynamical
ystem (up to time-rescaling) for the relative populations variables is

𝑑𝑥̃𝑖
𝑑𝑡

= 𝑘𝑖𝑗𝑙(𝑡)𝑥̃𝑖𝑥̃𝑗𝛿𝑙𝑖

( 𝑛
∑

𝑟=1
𝑥̃𝑟

)

− 𝑘𝑖𝑗𝑙(𝑡)𝑥̃2𝑖 𝑥̃𝑗

𝑑𝑥̃𝑗
𝑑𝑡

= 𝑘𝑖𝑗𝑙(𝑡)𝑥̃𝑖𝑥̃𝑗𝛿𝑗𝑙

( 𝑛
∑

𝑟=1
𝑥̃𝑟

)

− 𝑘𝑖𝑗𝑙(𝑡)𝑥̃𝑖𝑥̃2𝑗

𝑑𝑥̃𝑙
𝑑𝑡

= 𝑘𝑖𝑗𝑙(𝑡)𝑥̃𝑖𝑥̃𝑗

( 𝑛
∑

𝑟=1
𝑥̃𝑟

)

− 𝑘(𝑡)𝑥̃𝑖𝑥̃𝑗 𝑥̃𝑙

𝑑𝑥̃𝑚
𝑑𝑡

= −𝑘𝑖𝑗𝑙(𝑡)𝑥̃𝑖𝑥̃𝑗 𝑥̃𝑚.

(19)

We now show that dynamical system (19) can be generated by the set
of reactions

{𝑋𝑝 +𝑋𝑖 +𝑋𝑗
𝑘𝑖𝑗𝑙 (𝑡)
←←←←←←←←←←←←←←←←←←←←←←→ 𝑋𝑖 +𝑋𝑗 +𝑋𝑙 ∣ 𝑝 ≠ 𝑙}. (20)

There are four cases to consider:

1. 𝑖 = 𝑗 = 𝑙: The set of reactions of the form (20) contribute
𝑘𝑖𝑗𝑙(𝑡)𝑥̃2𝑖

(

∑

1≤𝑟≤𝑛
𝑟≠𝑖

𝑥̃𝑟

)

to 𝑑𝑥̃𝑖
𝑑𝑡 and −𝑘𝑖𝑗𝑙(𝑡)𝑥̃𝑖𝑥̃𝑗 𝑥̃𝑚 to

𝑑𝑥̃𝑚
𝑑𝑡 .

2. 𝑖 = 𝑙, 𝑗 ≠ 𝑙: The set of reactions of the form (20) contribute
𝑘𝑖𝑗𝑙(𝑡)𝑥̃𝑖𝑥̃𝑗

(

∑

1≤𝑟≤𝑛
𝑟≠𝑖

𝑥̃𝑟

)

to 𝑑𝑥̃𝑖
𝑑𝑡 , −𝑘𝑖𝑗𝑙(𝑡)𝑥̃𝑖𝑥̃

2
𝑗 to

𝑑𝑥̃𝑗
𝑑𝑡 , and −𝑘𝑖𝑗𝑙𝑥̃𝑖𝑥̃𝑗 𝑥̃𝑚

to 𝑑𝑥̃𝑚
𝑑𝑡 .

3. 𝑖 ≠ 𝑙, 𝑗 = 𝑙: Similar to the case above, the set of reactions of the
form (20) contribute −𝑘𝑖𝑗𝑙(𝑡)𝑥̃2𝑖 𝑥̃𝑗 to

𝑑𝑥̃𝑖
𝑑𝑡 , 𝑘𝑖𝑗𝑙(𝑡)𝑥̃𝑖𝑥̃𝑗

(

∑

1≤𝑟≤𝑛
𝑟≠𝑗

𝑥̃𝑟

)

to 𝑑𝑥̃𝑗
𝑑𝑡 , and −𝑘𝑖𝑗𝑙(𝑡)𝑥̃𝑖𝑥̃𝑗 𝑥̃𝑚 to

𝑑𝑥̃𝑚
𝑑𝑡 .

4. 𝑙 ≠ 𝑖, 𝑗 ≠ 𝑙: The set of reactions of the form (20) contribute
−𝑘𝑖𝑗𝑙(𝑡)𝑥̃2𝑖 𝑥̃𝑗 to

𝑑𝑥̃𝑖
𝑑𝑡 , −𝑘𝑖𝑗𝑙(𝑡)𝑥̃𝑖𝑥̃

2
𝑗 to

𝑑𝑥̃𝑗
𝑑𝑡 , and −𝑘𝑖𝑗𝑙(𝑡)𝑥̃𝑖𝑥̃𝑗 𝑥̃𝑚 to

𝑑𝑥̃𝑚
𝑑𝑡

and 𝑘𝑖𝑗𝑙(𝑡)𝑥̃𝑖𝑥̃𝑗

(

∑

1≤𝑟≤𝑛
𝑟≠𝑙

𝑥̃𝑟

)

to 𝑑𝑥̃𝑙
𝑑𝑡 .

Therefore, the mass-action system generated by (20) coincides with the
sum of (19) for all 𝑚 ≠ 𝑖, 𝑗, 𝑙. □

We now illustrate how Theorem 3.5 can be applied in the example
below.

Example 3.6. Consider the bimolecular autocatalytic reaction network
 = {𝑋1+𝑋2

𝑘1(𝑡)
←←←←←←←←←←←←←←←←←←→ 𝑋1+𝑋2+𝑋3, 2𝑋1

𝑘2(𝑡)
←←←←←←←←←←←←←←←←←←→ 2𝑋1+𝑋2}. By Theorem 3.5, the

network corresponding to the relative concentrations of  is obtained
by adding all possible species to the reactant side of each reaction
in  (except when it results in a trivial reaction that has the same
reactant and product). In this case, the network corresponding to
relative concentrations ̃ consists of the following reactions:
5

Fig. 2. Recombinant sequence produced from the prefix of one sequence and the suffix
of another.

(i) 2𝑋1 + 𝑋2
𝑘1(𝑡)
←←←←←←←←←←←←←←←←←←→ 𝑋1 + 𝑋2 + 𝑋3 (obtained by adding𝑋1 to the

reactants of𝑋1 +𝑋2
𝑘1(𝑡)
←←←←←←←←←←←←←←←←←←→ 𝑋1 +𝑋2 +𝑋3).

(ii) 𝑋1 + 2𝑋2
𝑘1(𝑡)
←←←←←←←←←←←←←←←←←←→ 𝑋1 + 𝑋2 + 𝑋3 (obtained by adding𝑋2 to the

reactants of𝑋1 +𝑋2
𝑘1(𝑡)
←←←←←←←←←←←←←←←←←←→ 𝑋1 +𝑋2 +𝑋3).

(iii) 3𝑋1
𝑘2(𝑡)
←←←←←←←←←←←←←←←←←←→ 2𝑋1 + 𝑋2 (obtained by adding𝑋1 to the reactants of

2𝑋1
𝑘2(𝑡)
←←←←←←←←←←←←←←←←←←→ 2𝑋1 +𝑋2).

(iv) 2𝑋1 +𝑋3
𝑘2(𝑡)
←←←←←←←←←←←←←←←←←←→ 2𝑋1 +𝑋2 (obtained by adding𝑋3 to the reactants

of 2𝑋1
𝑘2(𝑡)
←←←←←←←←←←←←←←←←←←→ 2𝑋1 +𝑋2).

4. Permanence and global stability of autocatalytic recombination
networks

Theorems 3.1 and 3.5 are applicable to general bimolecular autocat-
alytic systems , i.e., systems involving reactions of the form 𝑋𝑖 +𝑋𝑗 →

𝑋𝑖+𝑋𝑗 +𝑋𝑙. In what follows, we consider networks arising from genetic
recombination that allows us to conclude permanence of the relative
population models.

Genetic recombination is a phenomenon widely believed to be
responsible for variation among species [1,42]. It involves the exchange
of genetic material between molecules of DNA, so the new molecule
inherits certain properties of its parents. Most familiar examples of
recombination take place during prophase I of meiosis. For a single
crossover recombination, two DNA sequences of equal length exchange
genetic information to produce a third sequence of the same length that
has the prefix of one of the sequences and the suffix of the other, as
illustrated in Fig. 2.

For our purpose, we model genetic recombination as bimolecular
autocatalytic systems, as introduced in Definition 3.4.

In particular, in this section we consider networks whose reactions
are of the form

𝑋𝑖+𝑋𝑗 → 𝑋𝑖+𝑋𝑗 +𝑋𝑘, where 𝑋𝑘 represents the gene sequence that
combines the information of the parent molecules 𝑋𝑖 and 𝑋𝑗 .

We shall show that the dynamical systems generated by relative
populations of some of these reaction networks are permanent. The
dynamical systems that we analyze bear striking resemblance to the
fertility equations in [11]. One can also view them as cyclic versions of
the catalytic network equation in [43].

The rest of this paper focuses on two families of networks. The first,
autocatalytic recombination networks with repeated reactant species (see
Definition 4.1 and Section 4.1), is akin to homologous genetic recom-
bination [44,45], which involves the exchange of genetic material in
the form of nucleotide sequences between two similar DNA strands.
Homologous recombination plays an important role in repairing DNA
strands that may be damaged due to chemicals and radiation. In
addition, homologous recombination is used in gene targeting [46–48],
whereby certain genetic traits are introduced in a target organism.

The second, autocatalytic recombination networks with no repeated
species (see Definition 4.10 and Section 4.2), is closer in spirit to non-
homologous genetic recombination [49], which involves the exchange
of genetic material in the form of nucleotide sequences between two
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dissimilar DNA strands. Nonhomologous genetic recombination is used
for repairing breaks in DNA strands.

The rest of this section is organized as follow. We analyze au-
tocatalytic recombination networks with repeated reactant species in
Section 4.1; in particular, we show that when involving three species
or more, the dynamics for relative population is always permanent.
We extend the permanence result to bimolecular networks that contain
reactions of the specific form 2𝑋𝑖 → 2𝑋𝑖+𝑋𝑗 (𝑗 not necessarily different
from 𝑖) which result in producing 𝑋𝑗 . Moreover, every species in the
network is produced by at least one reaction of the above form. Next
in Section 4.2, we analyze autocatalytic recombination networks with
no repeated species. We prove the dynamics for relative population
is permanent in dimension 4–6. Whether permanence holds in higher
dimension remains an open question. We wrap up this work with
Theorem 4.17, where we give a sufficient condition for permanence
of the relative population model for networks that contain reactions of
the form 𝑋𝑖 +𝑋𝑗 → 𝑋𝑖 +𝑋𝑗 +𝑋𝑘.

Many of the theorems we prove use the geometry of a regular
simplex. Recall that a regular 𝑛-simplex is a regular 𝑛-polytope formed
using the convex hull of 𝑛 + 1 vertices in general position [50]. From
here on, we shall refer to a regular 𝑛-simplex simply as a 𝑛-simplex.
In addition, we will use the term extremal point instead of the more
standard term vertex for polytopes.

4.1. Autocatalytic recombination networks with repeated reactant species:
homologous recombination

In this subsection, we prove that for some models of homologous
genetic recombination, the relative population dynamics is permanent
(see Theorem 4.5). More precisely, we model this process using autocat-
alytic recombination networks with repeated reactant species, defined
below. Moreover, in Theorem 4.8 we extend our result to bimolec-
ular networks that contain subnetworks satisfying some assumptions
inspired by this framework for homologous recombination.

Definition 4.1. The autocatalytic recombination network of dimension
𝑛 with repeated reactant species is a reaction network reprecomb(𝑛) with

species 𝑋1, 𝑋2,… , 𝑋𝑛 consisting of the reactions 2𝑋𝑖 → 3𝑋𝑖 and 2𝑋𝑖 →
2𝑋𝑖 +𝑋𝑖+1 for all 𝑖 = 1, 2,… , 𝑛, where 𝑋𝑛+1 = 𝑋1(in the cyclic sense).

Remark 4.2. Note that the autocatalytic recombination networks
with repeated species described in Definition 4.1 are special cases of
bimolecular autocatalytic systems defined in Definition 3.4.

We will show that variable-𝑘 mass-action systems generated by
the relative population networks corresponding to the autocatalytic
recombination network with repeated reactant species in 𝑛 dimensions
reprecomb(𝑛) are permanent.

Before we state and prove the fully general case, it is instructive
to look at smaller dimensions in some detail, in order to understand
some of the geometric ideas that form the basis of our approach. For
example, for 𝑛 = 3, we have:

Proposition 4.3. Consider the autocatalytic recombination network
reprecomb(3) of dimension three as described in Table 1. Let ̃

rep
recomb(3) be the net-

work corresponding to relative populations as constructed in
Theorem 3.5 (the network ̃reprecomb(3) is shown in Fig. 3(a)). Then any
variable-𝑘 mass-action system generated by ̃reprecomb(3) is permanent.

Proof. We will show that ̃reprecomb(3) is strongly endotactic. It will
then follow from Theorem 2.9 that any variable-𝑘 dynamical system
generated by it is permanent. The convex hull formed by the source
vertices of ̃reprecomb(3) is a triangle as shown in Fig. 3.(b). In particular,
the triangle contains all the vertices of ̃reprecomb(3). By Proposition 2.2, to
show that ̃rep is strongly endotactic, it suffices to show that for
recomb(3)

6

Table 1
On the left (right) are listed all the reactions that appear in rep

recomb(3)(̃
rep
recomb(3)). The

algorithm for generating ̃rep
recomb(3) produces a specific set of reactions from each reaction

in rep
recomb(3). The table pairs this subnetwork with the corresponding generating reaction

in rep
recomb(3).

Set of reactions in rep
recomb(3) Set of reactions in ̃rep

recomb(3)

2𝑋1
𝑘1
←←←←←←←←←→ 3𝑋1 2𝑋1 +𝑋2

𝑘1
←←←←←←←←←→ 3𝑋1

2𝑋1 +𝑋3
𝑘1
←←←←←←←←←→ 3𝑋1

2𝑋1
𝑘2
←←←←←←←←←→ 2𝑋1 +𝑋2 3𝑋1

𝑘2
←←←←←←←←←→ 2𝑋1 +𝑋2

2𝑋1 +𝑋3
𝑘2
←←←←←←←←←→ 2𝑋1 +𝑋2

2𝑋2
𝑘3
←←←←←←←←←→ 3𝑋2 2𝑋2 +𝑋3

𝑘3
←←←←←←←←←→ 3𝑋2

2𝑋2 +𝑋1
𝑘3
←←←←←←←←←→ 3𝑋2

2𝑋2
𝑘4
←←←←←←←←←→ 2𝑋2 +𝑋3 3𝑋2

𝑘4
←←←←←←←←←→ 2𝑋2 +𝑋3

2𝑋2 +𝑋1
𝑘4
←←←←←←←←←→ 2𝑋2 +𝑋3

2𝑋3
𝑘5
←←←←←←←←←→ 3𝑋3 2𝑋3 +𝑋1

𝑘5
←←←←←←←←←→ 3𝑋3

2𝑋3 +𝑋2
𝑘5
←←←←←←←←←→ 3𝑋3

2𝑋3
𝑘6
←←←←←←←←←→ 2𝑋3 +𝑋1 3𝑋3

𝑘6
←←←←←←←←←→ 2𝑋3 +𝑋1

2𝑋3 +𝑋2
𝑘6
←←←←←←←←←→ 2𝑋3 +𝑋1

every proper face of the triangle, there exists a reaction with source on
this face and target that does not belong to this face. One can check
that this is the case from Fig. 3.(a). Therefore, ̃reprecomb(3) is strongly
endotactic □

Similarly, for 𝑛 = 4, we have:

Proposition 4.4. Consider the autocatalytic recombination network
reprecomb(4) of dimension four as described in Table 2. Let ̃

rep
recomb(4) be the

network corresponding to relative populations as constructed in Theorem 3.5
(the network ̃reprecomb(4) is shown in Fig. 4). Then any variable-𝑘 mass-action

system generated by ̃reprecomb(4) is permanent.

Proof. We will show that ̃reprecomb(4) is strongly endotactic. It will
then follow from Theorem 2.9 that any variable-𝑘 dynamical system
generated by it is permanent. The convex hull formed by the source
vertices of ̃reprecomb(4) is the tetrahedron shown in Fig. 4. In particular,
the tetrahedron contains all the vertices of ̃reprecomb(4). By Proposition 2.2,
to show that ̃reprecomb(4) is strongly endotactic, it suffices to show that
or every proper face of the tetrahedron, there exists a reaction with
ource on this face and target that does not belong to this face. One can
heck that this is the case from Fig. 4. Therefore, ̃reprecomb(4) is strongly
endotactic. □

Moving to the general case, we define the network reprecomb(𝑛) consist-
ng of the following reactions

2𝑋1 → 3𝑋1

2𝑋1 → 2𝑋1 +𝑋2

⋮

𝑋𝑛−1 → 3𝑋𝑛−1

𝑋𝑛−1 → 2𝑋𝑛−1 +𝑋𝑛

2𝑋𝑛 → 3𝑋𝑛

2𝑋𝑛 → 2𝑋𝑛 +𝑋1.

n the following theorem, we prove that any variable-𝑘 mass-action
ystem generated by ̃reprecomb(𝑛) is permanent.

heorem 4.5. Let 𝑛 ≥ 3. Consider the autocatalytic recombination
etwork of dimension 𝑛 with repeated reactant species given by reprecomb(𝑛).
et ̃reprecomb(𝑛) be constructed as in Theorem 3.5. Then any variable-𝑘
ass-action system generated by ̃rep is permanent.
recomb(𝑛)
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Fig. 3. (a) Reaction network ̃rep

recomb(3) that generates the dynamics of relative populations of the recombination network of dimension three with repeated reactant species given
y rep

recomb(3) in Table 1. (b) Convex hull of all vertices of the network in Fig. 3(a).
Table 2
On the left (right) are listed all the reactions that appear in rep

recomb(4)(̃
rep
recomb(4)). The

algorithm for generating ̃rep
recomb(4) produces a specific set of reactions from each reaction

in rep
recomb(4). The table pairs this subnetwork with the corresponding generating reaction

in rep
recomb(4).

Set of reactions in rep
recomb(4) Set of reactions in ̃rep

recomb(4)

2𝑋1
𝑘1
←←←←←←←←←→ 3𝑋1 2𝑋1 +𝑋2

𝑘1
←←←←←←←←←→ 3𝑋1

2𝑋1 +𝑋3
𝑘1
←←←←←←←←←→ 3𝑋1

2𝑋1 +𝑋4
𝑘1
←←←←←←←←←→ 3𝑋1

2𝑋1
𝑘2
←←←←←←←←←→ 2𝑋1 +𝑋2 3𝑋1

𝑘2
←←←←←←←←←→ 2𝑋1 +𝑋2

2𝑋1 +𝑋3
𝑘2
←←←←←←←←←→ 2𝑋1 +𝑋2

2𝑋1 +𝑋4
𝑘2
←←←←←←←←←→ 2𝑋1 +𝑋2

2𝑋2
𝑘3
←←←←←←←←←→ 3𝑋2 2𝑋2 +𝑋3

𝑘3
←←←←←←←←←→ 3𝑋2

2𝑋2 +𝑋1
𝑘3
←←←←←←←←←→ 3𝑋2

2𝑋2 +𝑋4
𝑘3
←←←←←←←←←→ 3𝑋2

2𝑋2
𝑘4
←←←←←←←←←→ 2𝑋2 +𝑋3 3𝑋2

𝑘4
←←←←←←←←←→ 2𝑋2 +𝑋3

2𝑋2 +𝑋1
𝑘4
←←←←←←←←←→ 2𝑋2 +𝑋3

2𝑋2 +𝑋4
𝑘4
←←←←←←←←←→ 2𝑋2 +𝑋3

2𝑋3
𝑘5
←←←←←←←←←→ 3𝑋3 2𝑋3 +𝑋1

𝑘5
←←←←←←←←←→ 3𝑋3

2𝑋3 +𝑋2
𝑘5
←←←←←←←←←→ 3𝑋3

2𝑋3 +𝑋4
𝑘5
←←←←←←←←←→ 3𝑋3

2𝑋3
𝑘6
←←←←←←←←←→ 2𝑋3 +𝑋4 3𝑋3

𝑘6
←←←←←←←←←→ 2𝑋3 +𝑋4

2𝑋3 +𝑋2
𝑘6
←←←←←←←←←→ 2𝑋3 +𝑋4

2𝑋3 +𝑋4
𝑘6
←←←←←←←←←→ 2𝑋3 +𝑋4

2𝑋4
𝑘7
←←←←←←←←←→ 3𝑋4 2𝑋4 +𝑋1

𝑘7
←←←←←←←←←→ 3𝑋4

2𝑋4 +𝑋2
𝑘7
←←←←←←←←←→ 3𝑋4

2𝑋4 +𝑋3
𝑘7
←←←←←←←←←→ 3𝑋4

2𝑋4
𝑘8
←←←←←←←←←→ 2𝑋4 +𝑋1 3𝑋4

𝑘8
←←←←←←←←←→ 2𝑋4 +𝑋1

2𝑋4 +𝑋2
𝑘8
←←←←←←←←←→ 2𝑋4 +𝑋1

2𝑋4 +𝑋3
𝑘8
←←←←←←←←←→ 2𝑋4 +𝑋1

Proof. We claim that ̃reprecomb(𝑛) is strongly endotactic; it then follows
from Theorem 2.9 that any variable-𝑘 mass-action system generated by
it is permanent. Consider the convex hull formed by the source vertices
in ̃rep . Note that using Theorem 3.5 we get the following: for
recomb(𝑛)

7

Fig. 4. Reaction network ̃rep
recomb(4) of Table 2.

every reaction 2𝑋𝑖 → 2𝑋𝑖+𝑋𝑖+1 in reprecomb(𝑛), we have 3𝑋𝑖 → 2𝑋𝑖+𝑋𝑖+1
as one of the reactions in ̃reprecomb(𝑛). As a consequence, each of the
vertices 3𝑋1, 3𝑋2,… , 3𝑋𝑛 is an extremal point of the convex hull of
source vertices. Therefore this convex hull is an (𝑛 − 1)-simplex. For
contradiction, assume that ̃reprecomb(𝑛) is not strongly endotactic. Then
by Corollary 2.4, there exists a proper face of this simplex such that
every reaction with source on this face has target on this face. Let
𝐹 = (3𝑋𝑖1 , 3𝑋𝑖2 ,… , 3𝑋𝑖𝑘 ) ⊂ (3𝑋1, 3𝑋2,… , 3𝑋𝑛) be this face. Note that
̃reprecomb(𝑛) contains reactions of the form 3𝑋𝑗 → 2𝑋𝑗 + 𝑋𝑗+1 for every
3𝑋𝑗 ∈ 𝐹 . Since ̃reprecomb(𝑛) was assumed to be not strongly endotactic,
we have 2𝑋𝑗 + 𝑋𝑗+1 ∈ 𝐹 . Extending the line segment joining 3𝑋𝑗 and
2𝑋𝑗 +𝑋𝑗+1, we also have 3𝑋𝑗+1 ∈ 𝐹 . Continuing this way, we conclude
𝐹 = (3𝑋1, 3𝑋2,… , 3𝑋𝑛), contradicting the fact that 𝐹 is a proper face
of this simplex. Therefore, ̃reprecomb(𝑛) is strongly endotactic. □

Theorem 4.5 can be generalized to a larger family of reaction
networks that have certain properties associated with an object called
the production graph. The upcoming proposition illustrates this point.

Definition 4.6. Given a reaction network  = (𝑉 ,𝐸), the production
graph () is the graph whose vertices are given by the species in ,
such that there is a directed edge from species 𝑋𝑖 to species 𝑋𝑗 in ()

′ ′
if there exists an edge 𝒚 → 𝒚 ∈ 𝐸 with supp(𝒚) = 𝑋𝑖 and 𝑋𝑗 ∈ supp(𝒚 ).
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Proposition 4.7. Consider a bimolecular autocatalytic system  = (𝑉 ,𝐸)
consisting of the reactions 2𝑋𝑖 → 2𝑋𝑖 + 𝑋𝑗 for each 𝑖 = 1, 2,… , 𝑛 and
𝑗 ≠ 𝑖 such that () is strongly connected. Let ̃ denote the reaction
network corresponding to the relative populations of . Then any variable-𝑘
mass-action system generated by ̃ is permanent.

Proof. We claim that ̃ is strongly endotactic; it then follows from
Theorem 2.9 that any variable-𝑘 mass-action system generated by it
is permanent. Since 𝑃 () is strongly connected, there exists a reaction
2𝑋𝑖 → 2𝑋𝑖 + 𝑋𝑗 for each 𝑖 = 1, 2,… , 𝑛. By Theorem 3.5 there exist
reactions in ̃ which are of the form 3𝑋𝑗 → 2𝑋𝑗 + 𝑋𝑙 such that
𝑙 ≠ 𝑗 for every species 𝑋𝑗 . Therefore the convex hull of the source
vertices of ̃ is a simplex with extremal points (3𝑋1, 3𝑋2,… , 3𝑋𝑛).
For contradiction, assume that ̃ is not strongly endotactic. Then by
Corollary 2.4, there exists a proper face of this simplex such that for
every reaction with source on this face has target on this face. Let
𝐹 = (3𝑋𝑖1 , 3𝑋𝑖2 ,… , 3𝑋𝑖𝑘 ) ⊂ (3𝑋1, 3𝑋2,… , 3𝑋𝑛) be this face. Since ()
is strongly connected, one can argue as in the proof of Theorem 4.5
to show that 𝐹 = (3𝑋1, 3𝑋2,… , 3𝑋𝑛), contradicting the fact that 𝐹
is a proper face of the simplex. Therefore, the network ̃ is strongly
endotactic. □

Under some constraints (to be specified in Theorem 4.8 below),
subnetworks of the relative population network ̃ in Proposition 4.7
can be shown to be strongly endotactic. Consequently the dynamical
system generated by them is permanent.

Theorem 4.8. Consider reaction networks 1, 2 such that the following
hold:

1. 1 is strongly endotactic.
2. 1 is a subnetwork of 2.
3. The vertices of 2 lie in the convex hull of the source vertices of 1.

Then any variable-𝑘 mass-action system generated by 2 is permanent.

Proof. We claim that 2 is strongly endotactic; it then follows from
Theorem 2.9 that any variable-𝑘 mass-action system generated by it is
permanent. Since 1 ⊆ 2 and the vertices of 2 lie in the convex hull
of the source vertices of 1, the convex hull of the source vertices of 1
is the same as the convex hull of the source vertices of 2. Note that the
stoichiometric subspaces of 1 and 2 coincide; call it 𝑆. Let 𝒘 ∈ R𝑛

be such that 𝒘 ∉ 𝑆⟂. Let 𝐻 be the hyperplane perpendicular to 𝒘 that
contains a source vertex 𝒔1 such that for every other source vertex 𝒔2,
we have (𝒔2 − 𝒔1) ⋅ 𝒘 ≥ 0. Therefore, the intersection of 𝐻 with the
convex hull of source vertices of either network is a proper face of the
convex hull. Since 1 is strongly endotactic, by Proposition 2.1, there
exists a reaction in 1 with source on this face such that it points inside
this convex hull. Since 1 ⊆ 2, this reaction is also contained in 2.
This implies that 2 is strongly endotactic. □

Corollary 4.9. Suppose 1 is a bimolecular autocatalytic network con-
sisting of the reactions 2𝑋𝑖 → 2𝑋𝑖 + 𝑋𝑗 for some 𝑖 = 1, 2,… , 𝑛 and 𝑗 ≠ 𝑖
such that 𝑃 (1) is strongly connected. Suppose 2 is another bimolecular
autocatalytic network such that 1 ⊆ 2. Let ̃1 and ̃2 be the networks
corresponding to the relative populations of 1 and 2 respectively. Then
any variable-𝑘 mass-action system generated by ̃2 is permanent.

Proof. Since 𝑃 (1) strongly connected and 1 is a bimolecular auto-
catalytic network with rectants 2𝑋1, 2𝑋2,… , 2𝑋𝑛, the convex hull of
source vertices of ̃1 has corners 3𝑋1, 3𝑋2,… , 3𝑋𝑛 (as outlined in the
proof of Proposition 4.7). The fact that 2 is a bimolecular autocatalytic
network implies that the vertices of 2 are contained in convex hull
formed by (3𝑋1, 3𝑋2,… , 3𝑋𝑛), i.e., the convex hull formed by the
sources of 1. Note that since 1 ⊆ 2, we have ̃1 ⊆ ̃2. In addition, ̃1
s strongly endotactic by Proposition 4.7. The result now follows from
heorem 4.8. □
 t
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Table 3
On the left (right) are listed all the reactions that appear in recomb(3)(̃recomb(3)). The
algorithm for generating ̃recomb(3) produces a specific set of reactions from each reaction
in recomb(3). The table pairs this subnetwork with the corresponding generating reaction
in recomb(3).

Set of reactions in recomb(3) Set of reactions in ̃recomb(3)

𝑋1 +𝑋2
𝑘1
←←←←←←←←←→ 𝑋1 + 2𝑋2 2𝑋1 +𝑋2

𝑘1
←←←←←←←←←→ 𝑋1 + 2𝑋2

𝑋1 +𝑋2 +𝑋3
𝑘1
←←←←←←←←←→ 𝑋1 + 2𝑋2

𝑋2 +𝑋3
𝑘2
←←←←←←←←←→ 𝑋2 + 2𝑋3 2𝑋2 +𝑋3

𝑘2
←←←←←←←←←→ 𝑋2 + 2𝑋3

𝑋1 +𝑋2 +𝑋3
𝑘2
←←←←←←←←←→ 𝑋2 + 2𝑋3

𝑋3 +𝑋1
𝑘3
←←←←←←←←←→ 𝑋3 + 2𝑋1 2𝑋3 +𝑋1

𝑘3
←←←←←←←←←→ 𝑋3 + 2𝑋1

𝑋1 +𝑋2 +𝑋3
𝑘3
←←←←←←←←←→ 𝑋3 + 2𝑋1

𝑋1 +𝑋2
𝑘4
←←←←←←←←←→ 𝑋1 +𝑋2 +𝑋3 𝑋1 + 2𝑋2

𝑘4
←←←←←←←←←→ 𝑋1 +𝑋2 +𝑋3

2𝑋1 +𝑋2
𝑘4
←←←←←←←←←→ 𝑋1 +𝑋2 +𝑋3

𝑋2 +𝑋3
𝑘5
←←←←←←←←←→ 𝑋1 +𝑋2 +𝑋3 𝑋2 + 2𝑋3

𝑘5
←←←←←←←←←→ 𝑋1 +𝑋2 +𝑋3

2𝑋2 +𝑋3
𝑘5
←←←←←←←←←→ 𝑋1 +𝑋2 +𝑋3

𝑋1 +𝑋3
𝑘6
←←←←←←←←←→ 𝑋1 +𝑋2 +𝑋3 𝑋1 + 2𝑋3

𝑘6
←←←←←←←←←→ 𝑋1 +𝑋3 +𝑋3

2𝑋1 +𝑋3
𝑘6
←←←←←←←←←→ 𝑋1 +𝑋2 +𝑋3

4.2. Autocatalytic recombination networks with no repeated reactants: non-
homologous recombination

We now consider autocatalytic recombinant networks involving re-
actants that do not have repeated species. This is similar in spirit to non-
homologous genetic recombination, which involves the exchange of ge-
netic material in the form of nucleotide sequences between two dissimi-
lar DNA strands. Below, we give the precise definition of such networks,
and study whether the relative population dynamics is permanent.

We are able to prove permanence of the relative population dy-
namics for dimensions 𝑛 = 4, 5, 6. Finally, in Theorem 4.17 we extend
ur result to bimolecular networks that can generate all species using
eactions of the form 𝑋𝑖 +𝑋𝑗 → 𝑋𝑖 +𝑋𝑗 +𝑋𝑘.

efinition 4.10. Consider a reaction network  with species
1, 𝑋2,… , 𝑋𝑛. Then  is said to be the autocatalytic recombination
etwork of dimension 𝑛 (and denoted recomb(𝑛)) if it consists of the
eactions 𝑋𝑖 + 𝑋𝑖+1 → 𝑋𝑖 + 2𝑋𝑖+1 and 𝑋𝑖 + 𝑋𝑖+1 → 𝑋𝑖 + 𝑋𝑖+1 + 𝑋𝑖+2
or 𝑖 = 1, 2,… , 𝑛, where 𝑋𝑛+1 = 𝑋1 and 𝑋𝑛+2 = 𝑋2(in the cyclic sense).

Consider the network recomb(3) (given in Table 3). Most notably,
pecies only interact with other species. By Theorem 3.5, the dynamics
f the relative populations of recomb(3) can be generated by the network
̃recomb(3) shown in Table 3 and Fig. 5(a).

roposition 4.11. Any variable-𝑘 mass-action system generated by
̃recomb(3) is permanent.

roof. The dynamics for the relative population model generated by
̃recomb(3) (see Fig. 5(a)) can also be obtained from the dynamical system
enerated by the network in Fig. 5(b) (which is weakly reversible and
ossesses a single linkage class) if we choose the rate constants as
hown in Fig. 5. It follows from [51] that any variable-𝑘 mass-action
ystem generated by ̃recomb(3) is permanent. □

We now shift our attention to the analysis of autocatalytic recom-
ination networks of dimension four, five and six. First, consider the
utocatalytic recombination network recomb(4) of dimension four in
able 4. The network that generates dynamics corresponding to relative
opulations is given by ̃recomb(4), shown also in Table 4. In Fig. 6(a), we
llustrate a subset of reactions in the reaction network recomb(4), namely
hose reactions with sources 𝑋1 +𝑋2 and 𝑋2 +𝑋3.
In what follows, we show that the reaction networks corresponding
o the relative populations of autocatalytic recombinant networks of
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Fig. 5. (a) Reaction network ̃recomb(3) that generates the dynamics of relative populations of the recombination network of dimension three given by recomb(3). (b) Weakly reversible
reaction network with single linkage class that generates the same dynamics as that given by the network in Fig. 5(a), if we choose rate constants as shown.
Fig. 6. (a) A network illustrating a subset of reactions in ̃recomb(4). (b) A reaction network that can generate mass-action systems that are dynamically equivalent to the systems
generated by the network in (a). The reaction 𝑋1 + 2𝑋2 → 𝑋1 +𝑋2 +𝑋3 (marked with blue in (a)) is split as 𝑋1 + 2𝑋2 → 2𝑋1 +𝑋2 and 𝑋1 + 2𝑋2 → 𝑋3 + 2𝑋2 (marked with blue in
b)). The reaction 𝑋1 +𝑋2 +𝑋3 → 𝑋2 +𝑋3 +𝑋4 (marked with green in (a)) is split as 𝑋1 +𝑋2 +𝑋3 → 𝑋2 + 2𝑋3 and 𝑋1 +𝑋2 +𝑋3 → 𝑋1 +𝑋2 +𝑋4 (marked with green in (b)).
R
t
o

imension four, five, and six, i.e., ̃recomb(4), ̃recomb(5) and ̃recomb(6), give
ise to mass-action systems that are dynamically equivalent to systems
enerated by weakly reversible reaction networks with a single linkage
lass. As a consequence, any variable-𝑘 mass-action system generated
y these networks is permanent [51].

roposition 4.12. The mass-action systems generated by the reaction
etwork ̃recomb(4) are dynamically equivalent to systems generated by a
eakly reversible reaction network with a single linkage class.

roof. For the reactions 𝑋1 + 𝑋2 → 𝑋1 + 2𝑋2 and 𝑋1 + 𝑋2 →

1+𝑋2+𝑋3 in recomb(4), Theorem 3.5 gives us the following subnetwork
n ̃recomb(4):

𝑋1 + 2𝑋2 𝑋1 +𝑋2 +𝑋3

𝑋1 +𝑋2 +𝑋4

2𝑋1 +𝑋2

whose geometric embedding is shown in Fig. 6(a). In order for the
ass-action systems generated by this subnetwork to be dynamically
 s

9

equivalent to systems generated by a weakly reversible reaction net-
work, it therefore suffices to find appropriate reactions (i.e., satisfying
dynamical equivalence, or Eq. (4)) with targets 𝑋1 + 𝑋2 + 𝑋4 and
2𝑋1 +𝑋2. We can accomplish this using the following (by keeping the
same rate constants as in the original reaction):

(i) Reaction with target 2𝑋1 +𝑋2: We split the reaction 𝑋1 + 2𝑋2 →

𝑋1 +𝑋2 +𝑋3 into

𝑋1 + 2𝑋2 → 2𝑋1 +𝑋2 and

𝑋1 + 2𝑋2 → 2𝑋2 +𝑋3,

as shown in Fig. 6(b), since (0,−1, 1, 0)𝑇 = (1,−1, 0, 0)𝑇 +
(−1, 0, 1, 0)𝑇 .

(ii) Reaction with target 𝑋1+𝑋2+𝑋4: This can done with the following
sequence of reactions

𝑋1 +𝑋2 +𝑋4 → 𝑋1 +𝑋2 +𝑋3

𝑋1 +𝑋2 +𝑋3 → 𝑋2 +𝑋3 +𝑋4

𝑋2 +𝑋3 +𝑋4 → 𝑋3 +𝑋4 +𝑋1

𝑋3 +𝑋4 +𝑋1 → 𝑋1 +𝑋2 +𝑋4,

which are known to exist in ̃recomb(4) from Table 4.

epeating this procedure for the remainder of the network, we ob-
ain a weakly reversible reaction network. In addition, the sequence
f reactions described in (ii) ensures that this network consists of a

ingle linkage class. Therefore, the mass-action systems generated by
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Table 4
On the left (right) are listed all the reactions that appear in recomb(4)(̃recomb(4)). The
algorithm for generating ̃recomb(4) produces a specific set of reactions from each reaction
in recomb(4). The table pairs this subnetwork with the corresponding generating reaction
in recomb(4).

Set of reactions in recomb(4) Set of reactions in ̃recomb(4)

𝑋1 +𝑋2
𝑘1
←←←←←←←←←→ 𝑋1 + 2𝑋2 2𝑋1 +𝑋2

𝑘1
←←←←←←←←←→ 𝑋1 + 2𝑋2

𝑋1 +𝑋2 +𝑋3
𝑘1
←←←←←←←←←→ 𝑋1 + 2𝑋2

𝑋1 +𝑋2 +𝑋4
𝑘1
←←←←←←←←←→ 𝑋1 + 2𝑋2

𝑋2 +𝑋3
𝑘2
←←←←←←←←←→ 𝑋2 + 2𝑋3 2𝑋2 +𝑋3

𝑘2
←←←←←←←←←→ 𝑋2 + 2𝑋3

𝑋1 +𝑋2 +𝑋3
𝑘2
←←←←←←←←←→ 𝑋2 + 2𝑋3

𝑋2 +𝑋3 +𝑋4
𝑘2
←←←←←←←←←→ 𝑋2 + 2𝑋3

𝑋3 +𝑋4
𝑘3
←←←←←←←←←→ 𝑋3 + 2𝑋4 2𝑋3 +𝑋4

𝑘3
←←←←←←←←←→ 𝑋3 + 2𝑋4

𝑋1 +𝑋3 +𝑋4
𝑘3
←←←←←←←←←→ 𝑋3 + 2𝑋4

𝑋2 +𝑋3 +𝑋4
𝑘3
←←←←←←←←←→ 𝑋3 + 2𝑋4

𝑋4 +𝑋1
𝑘4
←←←←←←←←←→ 𝑋4 + 2𝑋1 2𝑋4 +𝑋1

𝑘4
←←←←←←←←←→ 𝑋4 + 2𝑋1

𝑋1 +𝑋2 +𝑋4
𝑘4
←←←←←←←←←→ 𝑋4 + 2𝑋1

𝑋1 +𝑋3 +𝑋4
𝑘4
←←←←←←←←←→ 𝑋4 + 2𝑋1

𝑋1 +𝑋2
𝑘5
←←←←←←←←←→ 𝑋1 +𝑋2 +𝑋3 𝑋1 + 2𝑋2

𝑘5
←←←←←←←←←→ 𝑋1 +𝑋2 +𝑋3

2𝑋1 +𝑋2
𝑘5
←←←←←←←←←→ 𝑋1 +𝑋2 +𝑋3

𝑋1 +𝑋2 +𝑋4
𝑘5
←←←←←←←←←→ 𝑋1 +𝑋2 +𝑋3

𝑋2 +𝑋3
𝑘6
←←←←←←←←←→ 𝑋2 +𝑋3 +𝑋4 𝑋2 + 2𝑋3

𝑘6
←←←←←←←←←→ 𝑋2 +𝑋3 +𝑋4

2𝑋2 +𝑋3
𝑘6
←←←←←←←←←→ 𝑋2 +𝑋3 +𝑋4

𝑋1 +𝑋2 +𝑋3
𝑘6
←←←←←←←←←→ 𝑋2 +𝑋3 +𝑋4

𝑋3 +𝑋4
𝑘7
←←←←←←←←←→ 𝑋3 +𝑋4 +𝑋1 𝑋3 + 2𝑋4

𝑘7
←←←←←←←←←→ 𝑋3 +𝑋4 +𝑋1

2𝑋3 +𝑋4
𝑘7
←←←←←←←←←→ 𝑋3 +𝑋4 +𝑋1

𝑋2 +𝑋3 +𝑋4
𝑘7
←←←←←←←←←→ 𝑋3 +𝑋4 +𝑋1

𝑋4 +𝑋1
𝑘8
←←←←←←←←←→ 𝑋4 +𝑋1 +𝑋2 𝑋4 + 2𝑋1

𝑘8
←←←←←←←←←→ 𝑋4 +𝑋1 +𝑋2

2𝑋4 +𝑋1
𝑘8
←←←←←←←←←→ 𝑋4 +𝑋1 +𝑋2

𝑋1 +𝑋3 +𝑋4
𝑘8
←←←←←←←←←→ 𝑋4 +𝑋1 +𝑋2

the reaction network ̃recomb(4) are dynamically equivalent to systems
enerated by a weakly reversible reaction network with a single linkage
lass. □

roposition 4.13. The mass-action systems generated by the reaction
etwork ̃recomb(5) are dynamically equivalent to systems generated by a
eakly reversible reaction network with a single linkage class.

roof. For the reactions 𝑋1 + 𝑋2 → 𝑋1 + 2𝑋2 and 𝑋1 + 𝑋2 →
𝑋1+𝑋2+𝑋3 in recomb(5), Theorem 3.5 gives us the following subnetwork
in ̃recomb(5):

𝑋1 + 2𝑋2 𝑋1 +𝑋2 +𝑋3

𝑋1 +𝑋2 +𝑋4 𝑋1 +𝑋2 +𝑋5

2𝑋1 +𝑋2

To make the mass-action systems generated by this subnetwork
ynamically equivalent to weakly reversible systems, it therefore suf-
ices to find appropriate reactions (as in Eq. (4)) with targets 𝑋1 +
𝑋2 + 𝑋4, 2𝑋1 + 𝑋2, and 𝑋1 + 𝑋2 + 𝑋5. We can accomplish this using
the following (by keeping the same rate constants as in the original
reaction):
10
(i) Reaction with target 2𝑋1 +𝑋2: We split the reaction 𝑋1 + 2𝑋2 →
𝑋1 +𝑋2 +𝑋3 into

𝑋1 + 2𝑋2 → 2𝑋1 +𝑋2 and

𝑋1 + 2𝑋2 → 2𝑋2 +𝑋3,

since (0,−1, 1, 0, 0)𝑇 = (1,−1, 0, 0, 0)𝑇 + (−1, 0, 1, 0, 0)𝑇 .
(ii) Reaction with target 𝑋1+𝑋2+𝑋4: We split the reaction 𝑋1+𝑋2+

𝑋3 → 𝑋2 +𝑋3 +𝑋4 into

𝑋1 +𝑋2 +𝑋3 → 𝑋2 + 2𝑋3 and

𝑋1 +𝑋2 +𝑋3 → 𝑋1 +𝑋2 +𝑋4,

since (−1, 0, 0, 1, 0)𝑇 = (−1, 0, 1, 0, 0)𝑇 + (0, 0,−1, 1, 0)𝑇 .
(iii) Reaction with target 𝑋1+𝑋2+𝑋5: This can done with the following

sequence of reactions

𝑋1 +𝑋2 +𝑋5 → 𝑋1 +𝑋2 +𝑋3

𝑋1 +𝑋2 +𝑋3 → 𝑋2 +𝑋3 +𝑋4

𝑋2 +𝑋3 +𝑋4 → 𝑋3 +𝑋4 +𝑋5

𝑋3 +𝑋4 +𝑋5 → 𝑋4 +𝑋5 +𝑋1

𝑋4 +𝑋5 +𝑋1 → 𝑋1 +𝑋2 +𝑋5,

which are known to exist in ̃recomb(5).

epeating this procedure for the remainder of the network, we obtain
weakly reversible reaction network. In addition, the sequence of
eactions described in (iii) ensures that this network consists of a
single linkage class. Therefore, the mass-action systems generated by
the reaction network ̃recomb(5) can be made dynamically equivalent
to systems generated by a weakly reversible reaction network with a
single linkage class. □

Proposition 4.14. The mass-action systems generated by the reaction
network ̃recomb(6) are dynamically equivalent to systems generated by a
weakly reversible reaction network with a single linkage class.

Proof. For the reactions 𝑋1 + 𝑋2 → 𝑋1 + 2𝑋2 and 𝑋1 + 𝑋2 →
𝑋1+𝑋2+𝑋3 in recomb(6), Theorem 3.5 gives us the following subnetwork
in ̃recomb(6):

𝑋1 + 2𝑋2 𝑋1 +𝑋2 +𝑋3

𝑋1 +𝑋2 +𝑋4 𝑋1 +𝑋2 +𝑋5

2𝑋1 +𝑋2 𝑋1 +𝑋2 +𝑋6

To make the mass-action systems generated by this subnetwork
dynamically equivalent to weakly reversible single linkage class, it
therefore suffices to find appropriate reactions (as in Eq. (4)) with
targets 𝑋1 +𝑋2 +𝑋4, 2𝑋1 +𝑋2, 𝑋1 +𝑋2 +𝑋5 and 𝑋1 +𝑋2 +𝑋6. We can
accomplish this using the following (by keeping the same rate constants
as in the original reaction):

(i) Reaction with target 2𝑋1 +𝑋2: We split the reaction 𝑋1 + 2𝑋2 →
𝑋1 +𝑋2 +𝑋3 into

𝑋1 + 2𝑋2 → 2𝑋1 +𝑋2 and

𝑋1 + 2𝑋2 → 2𝑋2 +𝑋3,

since (0,−1, 1, 0, 0, 0)𝑇 = (1,−1, 0, 0, 0, 0)𝑇 + (−1, 0, 1, 0, 0, 0)𝑇 .
(ii) Reaction with target 𝑋1+𝑋2+𝑋4: We split the reaction 𝑋1+𝑋2+

𝑋3 → 𝑋2 +𝑋3 +𝑋4 into

𝑋1 +𝑋2 +𝑋3 → 𝑋2 + 2𝑋3 and
𝑋1 +𝑋2 +𝑋3 → 𝑋1 +𝑋2 +𝑋4,
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Fig. 7. (a) Truncated 2-simplex, which is a hexagon. The facets of the hexagon are truncated line segments. (b) Truncated 3-simplex. The facets of the truncated 3-simplex are
hexagons and triangles (marked in red).
since (−1, 0, 0, 1, 0, 0)𝑇 = (−1, 0, 1, 0, 0, 0)𝑇 + (0, 0,−1, 1, 0, 0)𝑇 .
(iii) Reaction with target 𝑋1+𝑋2+𝑋5: We split the reaction 𝑋5+𝑋6+

𝑋1 → 𝑋6 +𝑋1 +𝑋2 into

𝑋5 +𝑋6 +𝑋1 → 𝑋1 +𝑋2 +𝑋5 and

𝑋5 +𝑋6 +𝑋1 → 𝑋1 + 2𝑋6,

since (0, 1,−1, 0, 0, 0)𝑇 = (0, 1, 0,−1, 0,−1)𝑇 + (0, 0,−1, 1, 0, 1)𝑇 .
(iv) Reaction with target 𝑋1+𝑋2+𝑋6: This can done with the following

sequence of reactions:

𝑋1 +𝑋2 +𝑋6 → 𝑋1 +𝑋2 +𝑋3

𝑋1 +𝑋2 +𝑋3 → 𝑋2 +𝑋3 +𝑋4

𝑋2 +𝑋3 +𝑋4 → 𝑋3 +𝑋4 +𝑋5

𝑋3 +𝑋4 +𝑋5 → 𝑋4 +𝑋5 +𝑋6

𝑋4 +𝑋5 +𝑋6 → 𝑋5 +𝑋6 +𝑋1

𝑋5 +𝑋6 +𝑋1 → 𝑋1 +𝑋2 +𝑋6,

which are known to exist in ̃recomb(6).

Repeating this procedure for the remainder of the network, we obtain
a weakly reversible reaction network. In addition, the sequence of
reactions described in (iv) ensures that this network consists of a
single linkage class. Therefore, the mass-action systems generated by
the reaction network ̃recomb(6) can be made dynamically equivalent
to systems generated by a weakly reversible reaction network with a
single linkage class. □

Corollary 4.15. Any variable-𝑘 mass-action system generated by
̃recomb(4), ̃recomb(5), or ̃recomb(6) is permanent.

Proof. We have shown above that all mass-action systems generated by
̃recomb(4), ̃recomb(5), and ̃recomb(6) are dynamically equivalent to systems
generated by weakly reversible networks with single linkage class. It
follows from [51] that any variable-𝑘 mass-action system generated by
them is permanent. □

We now show in Theorem 4.17 that there is another family of
recombinant networks which can be shown to be strongly endotactic,
the proof of which is based on truncated 𝑛-simplexes. A truncated
𝑛-simplex is constructed by truncating (cutting off) each vertex at one-
third of the length of the edge of the regular 𝑛-simplex. Fig. 7 shows
examples of truncated simplices for 𝑛 = 2 and 𝑛 = 3. Note that the facet
of a truncated 𝑛-simplex is either a face of an (𝑛 − 1)-simplex or a face
of a truncated (𝑛 − 1)-simplex.

Lemma 4.16. For 𝑛 ≥ 3, any proper face of the truncated 𝑛-simplex is
either a face of an (𝑛−1)-simplex facet, or an entire truncated 𝑟-simplex for

some 𝑟 ≤ 𝑛 − 1, but not both.
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Proof. By definition, a proper face of a truncated 𝑛-simplex is either a
face of an (𝑛− 1)-simplex facet or a face of a truncated (𝑛− 1)-simplex.
It therefore suffices to show that (for a truncated 𝑛-simplex) we have:
a face of a truncated (𝑛−1)-simplex that is not a face of an (𝑛−1)-simplex
facet is an entire truncated 𝑟-simplex for some 𝑟 ≤ 𝑛 − 1. We show this by
induction.

Base case (𝑛 = 3): Referring to Fig. 7(b), we see any face of a
truncated 3-simplex that is not a face of the 2-simplex facet (i.e., red
triangle where the cut happened and shaded in Fig. 7(b)) is either an
entire hexagon (which is a truncated 2-simplex) or a certain side of
the hexagon that is not a side of the red triangle where the cut occurs
(which is a truncated 1-simplex).

Let us assume that the property mentioned above is true for all
natural numbers less than 𝑛. The induction hypothesis gives us that a
face of a truncated (𝑛−2)-simplex that is not a face of an (𝑛−2)-simplex
facet is an entire truncated 𝑟-simplex for some 𝑟 ≤ 𝑛 − 2. By definition,
a proper face of a truncated (𝑛− 1)-simplex is either a face of a (𝑛− 2)-
simplex facet or a face of a truncated (𝑛 − 2)-simplex. Now note that a
face of a truncated (𝑛−1)-simplex that is not a face of an (𝑛−1)-simplex
facet cannot be a face of an (𝑛−2)-simplex. This implies that it is a face
of a truncated (𝑛 − 2)-simplex that is not a face of an (𝑛 − 2)-simplex.
By the induction hypothesis, we get that this face is an entire truncated
𝑟-simplex for some 𝑟 ≤ 𝑛 − 1. □

Theorem 4.17. Consider a bimolecular autocatalytic system 𝑛 = (𝑉 ,𝐸)
with 𝑛 species 𝑋1, 𝑋2,… , 𝑋𝑛, consisting of reactions of the form 𝑋𝑖+𝑋𝑗 →
𝑋𝑖 + 𝑋𝑗 + 𝑋𝑘 such that 𝑖 ≠ 𝑗. Suppose for any 𝑖 ≠ 𝑗 the following is true:
there exists a reaction 𝑋𝑖 + 𝑋𝑗 → 𝑋𝑖 + 𝑋𝑗 + 𝑋𝑘 where 𝑘 ∉ {𝑖, 𝑗}, and
there exists a reaction using some of 𝑋𝑖, 𝑋𝑗 , 𝑋𝑘 as reactants that generates
a fourth species 𝑋𝓁 (with 𝓁 ∉ {𝑖, 𝑗, 𝑘}), and then the same for a fifth species
𝑋𝑚 (with 𝑚 ∉ {𝑖, 𝑗, 𝑘,𝓁}), and so on, until we get all 𝑛 species. Let us denote
by ̃𝑛 the reaction network corresponding to the relative populations of 𝑛.
Then any variable-𝑘 mass-action system generated by ̃𝑛 is permanent.

Proof. We prove that ̃𝑛 is strongly endotactic; it then follows from
Theorem 2.9 that any variable-𝑘 mass-action system generated by it
is permanent. From the hypothesis of the theorem, we have that for
all 𝑖 ≠ 𝑗 there exists a reaction in 𝑛 that is of the form 𝑋𝑖 + 𝑋𝑗 →
𝑋𝑖 + 𝑋𝑗 + 𝑋𝑘, with 𝑘 ≠ {𝑖, 𝑗}. By Theorem 3.5, ̃𝑛 has complexes of
the form 2𝑋𝑖 +𝑋𝑗 and 𝑋𝑖 + 2𝑋𝑗 as sources, for all 𝑖 ≠ 𝑗, and these are
the vertices of the truncated (𝑛−1)-simplex. Therefore, the convex hull
of the source vertices of ̃𝑛 is a truncated (𝑛 − 1)-simplex. Since all the
vertices of ̃𝑛 are contained in the convex hull of its source vertices, by
Proposition 2.2, ̃𝑛 is strongly endotactic if and only if for every face of
the convex hull of the source vertices, there is a reaction with source
on this face that points away from this face. Consider a face 𝑓 of the
truncated (𝑛 − 1)-simplex. By Lemma 4.16, we know that 𝑓 is either a

face of a (𝑛−2)-simplex or 𝑓 is an entire truncated 𝑟-simplex generated
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by some species 𝑋𝑖1 ,… , 𝑋𝑖𝑟 for some 𝑟 ≤ 𝑛 − 2. We have the following
ases:

1. If 𝑓 is a face of a (𝑛 − 2)-simplex: Take a point of the form
2𝑋𝑖+𝑋𝑗 on 𝑓 and consider the following reaction in 𝑛:𝑋𝑖+𝑋𝑗 →
𝑋𝑖 + 𝑋𝑗 + 𝑋𝑘 where 𝑘 ∉ {𝑖, 𝑗}. By Theorem 3.5, the network ̃𝑛
contains a reaction 2𝑋𝑖+𝑋𝑗 → 𝑋𝑖+𝑋𝑗+𝑋𝑘. Note that 𝑋𝑖+𝑋𝑗+𝑋𝑘
does not belong to the (𝑛 − 2)-simplex. Therefore, 𝑋𝑖 + 𝑋𝑗 + 𝑋𝑘
does not belong to 𝑓 .

2. If 𝑓 is an entire truncated 𝑟-simplex generated by some species
𝑋𝑖1 ,… , 𝑋𝑖𝑟 : We now use the property that, for any distinct
indices 𝑖, 𝑗 ∈ {1, 2,… , 𝑛}, there exists a reaction 𝑋𝑖 + 𝑋𝑗 →
𝑋𝑖 + 𝑋𝑗 + 𝑋𝑘 in 𝑛 with 𝑘 ∉ {𝑖, 𝑗}, and there exists a way to
use 𝑋𝑖, 𝑋𝑗 , 𝑋𝑘 to make a fourth species, then a fifth species, . . . ,
until we get all the 𝑛 species. Therefore, there exists a way to
use some of the species 𝑋𝑖1 ,… , 𝑋𝑖𝑟 to obtain a species 𝑋𝑖𝑠 that
is not on the face 𝑓 , which gives us our desired reaction.

Therefore, ̃𝑛 is strongly endotactic. □

5. Discussion and future work

Autocatalytic networks are ubiquitous in nature [2,34,37,52]. The
populations of species in autocatalytic networks may become un-
bounded in finite time [12], so it becomes important to analyze the
relative sizes of these populations. In general, relative populations are
not solutions of autonomous dynamical systems, even if the original
populations are solutions of such systems. On the other hand, using
time-rescaling and certain assumptions on the original reaction net-
work, we show that the relative populations do become solutions of
autonomous polynomial dynamical systems (Theorem 3.1). Moreover,
in Theorem 3.5, we give explicit reaction networks that generate the
dynamics corresponding to the relative populations of bimolecular
autocatalytic systems.

In Section 4, we have studied special examples of bimolecular
autocatalytic systems called autocatalytic recombination networks. In Sec-
tion 4.1 we have shown that autocatalytic recombination networks with
repeated species (denoted by ̃reprecomb(𝑛), and corresponding to homolo-
gous recombination) are permanent for all 𝑛. In Section 4.2, we have
shown that autocatalytic recombination networks with no repeated
species (denoted by ̃recomb(𝑛), and corresponding to nonhomologous
recombination) are permanent for 𝑛 ≤ 6.

In particular, the mass-action systems generated by the network
̃recomb(𝑛) can be made dynamically equivalent to systems generated by
a weakly reversible reaction network with single linkage class for 𝑛 ≤ 6.
The method we used to show this dynamical equivalence does not work
for 𝑛 ≥ 7; nevertheless it is possible that these networks also give rise
to permanent systems.

Generalizing these results to higher dimensions may involve some
challenging polyhedral geometry/combinatorics problems, and is an
interesting question for future work.

Another direction for future investigation would be to find con-
ditions under which the results of ‘‘gene targeting’’ via homologous
recombination (as described in Section 4) can be guaranteed to persist
in large populations of cells, and across multiple generations.

Autocatalytic networks are also related to the notion of critical
siphons, as remarked in [53]. A siphon is a set of species which, if
absent initially, remains absent forever. A critical siphon is a siphon that
does not contain the support of a conserved quantity. This approach
is of specific relevance in the DNA programming community [54–56]
where critical siphons can be viewed as building blocks for constructing
complicated biological circuits. In addition, the presence/absence of
critical siphons has important repercussions on the dynamics of the
underlying reaction network. It is known that critical siphons give
rise to autocatalytic sets in a precise sense [53]. Further, mass-action
systems without critical siphons are persistent [57]. In other words,
the presence of critical siphons may cause extinction. In future work,
one can try to study critical siphons in more depth using some of the
methods described here, for the purpose of finding special classes of
critical siphons that do not lead to extinction.
12
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