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Heat capacity of URu2−xOsxSi2 at low temperatures
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We perform measurements of the heat capacity as a function of temperature on URu2−xOsxSi2 alloys. Our
experimental results show that the critical temperature of the second-order phase transition increases while the
value of the Sommerfeld coefficient in the ordered state decreases with an increase in osmium concentration. We
also observe an increase in the values of the heat capacity at the critical temperature as well as a broadening of
the critical fluctuation region with an increase in x. We analyze the experimental data using the Haule-Kotliar
model which, in particular, identifies the “hidden order” transition in the parent material URu2Si2 as a transition
to a state with a nonzero hexadecapole moment. We demonstrate that our experimental results are consistent
with the predictions of that model.
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I. INTRODUCTION

The manifestly second-order phase transition develops in
URu2Si2 at temperature Tc0 = 17.55 K [1–4]. The nature
of the order parameter emerging below the transition has
remained hotly debated for the last 25 years [5–10]. In partic-
ular, the problem with the identification of the order parameter
has made an analysis of thermodynamic data quite challeng-
ing. Notably, the temperature dependence of the heat capacity,
for example, shows that the Ginzburg region, where the contri-
bution from critical fluctuations is comparable to or exceeds
the mean-field contribution, is very narrow, and yet the ab-
sence of a clear idea about the nature of the order parameter
inhibits any attempt to analyze the thermodynamic data even
at the mean-field level.

Despite the fact that significant progress was made both
experimentally and theoretically towards the identification of
the “hidden order” [9,10], new ideas about the nature of
the hidden order transition still continue to appear [11–18].
Specifically, one of the main focus points of the ongoing dis-
cussions is still whether the hidden order transition involves
quasilocalized 5 f 2 states of uranium or is driven by the itiner-
ant electronic degrees of freedom, which are hybridized with
the 5 f electronic states. The possible resolution of this debate
is likely to come from designing the experiments in a way that
would help one to unambiguously contrast the measurement
results with theoretical predictions [19–22].

One type of such experiments involves the study of alloys
in which Ru is substituted with either Fe or Os [23–25]. For
example, the substitution of Ru with Os produces an effect

of negative pressure, leading to a predominantly isotropic
lattice expansion. By contrasting the changes in the critical
temperature Tc with the changes in the Sommerfeld coefficient
γ , one should (at least, in principle) be able to check whether
this leads to a contradiction to either “itinerant” or “localized”
theoretical models. Qualitatively, in the itinerant scenario, for
example, one would expect that both γ and Tc should either
decrease or increase with the change in external pressure since
both of these quantities provide a measure of hybridization
between the itinerant and localized degrees of freedom.

In this Letter, we report on the measurements of the heat
capacity in URu2−xOsxSi2 across the hidden order phase tran-
sition. Our experimental results demonstrate that the critical
temperature of the transition grows with an increase in os-
mium concentration and reaches a value of Tc ≈ 1.43Tc0 for
x = 0.2 (see Fig. 1). Consequently, we have also analyzed
the electronic contribution to the heat capacity at low enough
temperatures below Tc and found that the Sommerfeld coeffi-
cient actually decreases with x. We were also able to obtain
satisfactory fits for the heat capacity data using the model
put forward by Haule and Kotliar [11,26], which explains
the second-order transition as a state with a complex order
parameter: the real part of the order parameter corresponds
to the nonzero hexadecapole moment, while the imaginary
part is determined by the staggered magnetic moment. Taking
into account the results of the earlier transport measurements
in URu2−xOsxSi2, we arrived at the conclusion that osmium
substitutions promote the emergence of the antiferromagnetic
order at concentrations x � 0.15.
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FIG. 1. Heat capacity C as a function of temperature T in
URu2−xOsxSi2 alloys. Inset: Entropy construction to estimate the
critical temperature of the second-order phase transition. There are
three main features that are of interest to us: the critical temperature
Tc, the maximum value of the heat capacity, and the broadening of
the thermal fluctuation region around Tc all increase with increasing
osmium concentration x.

II. EXPERIMENTAL DETAILS

Single crystals of URu2−xOsxSi2 were grown using the
Czochralski method in a tetra-arc furnace. The crystals were
cut into a rectangle with the c axis along the shortest
dimension of the crystal. These single crystals were first
polished with sandpaper to make their surface smooth for
better coupling to the heat capacity platform. They were then
washed thoroughly with ethanol to remove any impurities
left. In this paper we quote the actual values of osmium
concentrations.

Heat capacity measurements were performed in zero mag-
netic field over the temperature range T = 2–50 K, and the
data were obtained using a relaxation technique in the He-4
option of the Quantum Design physical properties measure-
ment system.

III. DATA ANALYSIS

The analysis of the heat capacity data at temperatures much
lower than the critical temperature, T � Tc, is straightfor-
ward since the main contribution to the heat capacity in this
temperature region comes from itinerant electrons and lattice
vibrations, Cel(T ) + Cph(T ). We find that at low temperatures
Cel(T ) ≈ γ T and Cph(T ) = (T/ωD)3I (ωD/T ), where γ is the
Sommerfeld coefficient, ωD is the Debye temperature, and
I (x) is a known function of x: I (x → ∞) ≈ 26.

At temperatures T ∼ Tc, however, the contribution from
the electronic degrees of freedom, which govern the hidden
order transition, becomes a dominant one. In order to analyze
our data in this temperature region, one generally needs to put
forward an idea about the origin of the order parameter so
that the temperature dependence of the heat capacity can be
computed and, ultimately, can be compared to (or used to fit)

the experimental data. Thus, as a starting point, we need to de-
cide whether to consider the itinerant degrees of freedom (i.e.,
electrons on the spd orbitals of uranium) as a driving force for
the second-order phase transition or, on the contrary, adopt the
“localized picture” in which the electrons on the localized 5 f 2

orbitals are the main driving force for the transition. Based on
earlier observations of BCS-like features of the transition in
the stoichiometric URu2Si2 [1], it is, indeed, tempting to use
one of the recently proposed itinerant models (for a recent
review see [9] and references therein) to analyze the data.
One needs to keep in mind, however, that the mean-field-
like temperature dependence of the thermodynamic response
functions in the BCS model [27] (excluding the very narrow
region in the immediate vicinity of the transition) is controlled
by the retarded nature of the electron-phonon interactions that
drive the superconducting transition [28]. This is manifested
in the smallness of the ratio of the Debye frequency to the
Fermi energy, ωD/εF � 1 [29,30]. In particular, in the weak-
coupling limit, the retardation effects are implemented as an
ultraviolet cutoff � = ωD in the self-consistent calculation of
the order parameter. There are known limitations to this line of
arguments [31], but we think that these limitations are not rel-
evant for the hidden order transition. To summarize, to the best
of our knowledge there is no experimental evidence for the
retardation effects being observed through the hidden order
transition and the emergence of an energy scale (analogous to
ωD in the BCS theory) that would be much smaller than the
Fermi energy.

Therefore, we are compelled to adopt a point of view in
which interactions between the localized f -orbital degrees
of freedom must be the ones leading to the transition [32].
Among the multiple models available to us (see, e.g., [9,10]
for review) to analyze our data we consider the model pro-
posed by Haule and Kotliar (HK) [11,26]. The HK model
involves a system of interacting two-level systems (TLSs), and
each TLS corresponds to a ground-state non-Kramers doublet
of the uranium 5 f 2 valence configuration. The components
of the corresponding state vector |�〉T = (|a〉 |b〉) of the non-
Kramers doublet are

|a〉 = i√
2

(|4〉 − | − 4〉),

|b〉 = cos φ√
2

(|4〉 + | − 4〉) − sin φ|0〉.

Here the states are written in the eigenbasis of the to-
tal angular momentum operator Ĵ2 and its projection on
the z axis Ĵz (we remind the reader that the 5 f 2 va-
lence configuration corresponds to a state with J = 4). One
can check that the following averages acquire nonzero val-
ues: 〈b|Ĵz|a〉 = 4i cos φ and 〈b|(ĴxĴy + ĴyĴx )(Ĵ2

x − Ĵ2
y )|a〉 =

12
√

35 sin φ + 28 cos φ. Here φ is a parameter that ultimately
determines the magnitude of the magnetic moment at T �
Tc(x = 0) in the hidden order state. Thus, it is convenient to
formally associate the first average with 〈�|σ̂y|�〉 and the
second average with 〈�|σ̂x|�〉, where σ̂x and σ̂y are the Pauli
matrices. As a result, one can formally introduce the complex
order parameter ψ = 〈�|σ̂x + iσ̂y|�〉 describing a state that
may emerge below some temperature as the lowest-energy
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FIG. 2. Results of our analysis of the heat capacity at temperatures below the critical temperature. To fit the data in the panel for x = 0, we
used the following values of the parameters: nph = 375, ntls = 9.15, γ = 0.049 (J/mol K2), ωD = 305 K, V0 = 18.25 K, and s(T = 0) = 3.85.
To fit the remaining data, we changed only the values of γ and V0. In the panel for x = 0.025, γ = 0.049 (J/mol K2), V0 = 18.75. In the panel
for x = 0.13, γ = 0.038 (J/mol K2), V0 = 21.15. In the panel for x = 0.20, γ = 0.029 (J/mol K2), V0 = 25.75 K.

state for the following Hamiltonian:

Ĥ = −
∑

i 
= j

V (�ri − �r j )σ̂x(�ri)σ̂x(�r j ) − 


2

∑

i

σ̂z(�ri)

+
∑

i j

U (�ri − �r j )σ̂y(�ri )σ̂y(�r j ). (1)

Here the first term describes the interactions which lead
to the emergence of the hidden order (V > 0, a state with
nonzero hexadecapole moment), the second term accounts
for the splitting of the non-Kramers doublet, and the third
term accounts for the antiferromagnetic interactions (U > 0).
As was recently shown [26], the mean-field analysis of the
model Hamiltonian (1) provides a satisfactory description of
the thermodynamics measurements under external pressure
and magnetic field.

To perform the data analysis, we introduce several sim-
plifications of the model Hamiltonian (1). First and foremost
we assume that the interactions leading to the emergence of
the nonzero expectation value 〈�|σ̂x|�〉 are sufficiently long
range, with the characteristic length scale r0 � a (a is the lat-
tice spacing). This allows us to perform a controlled calcula-
tion of the heat capacity, so that the contribution from thermal
fluctuation effects is small in powers of (a/r0)3 [33]. Second,
we completely neglect the contribution from the last two
terms: the second term is practically irrelevant for the temper-
atures T ∼ Tc, while, as we will see from our analysis below,

the third term contributes significantly to the heat capacity
only at relatively high osmium concentrations, x ∼ 15%.

In order to compute the specific heat, we follow the avenue
of Ref. [33]. We introduce s = 〈�|σ̂x(�ri)|�〉, and following
our discussion above, we rewrite (1) as follows:

Ĥ = NV0s2 − sV0

∑

i

σ̂x(�r j )

−
∑

i 
= j

V (�ri − �r j )(σ̂x(�ri ) − s)(σ̂x(�r j ) − s), (2)

where V0 = ∑
j V (�ri − �r j ) and N is the number of uranium

lattice sites. Within the mean-field approximation the third
term in (2) can be neglected as it describes the effect of
thermal fluctuations on the mean-field results. The subsequent
minimization of the free energy with respect to the mean-field
parameter s ultimately results in the following expression for
the heat capacity (kB = 1, β = 1/T ):

ch.o.(T ) = (βV0s(T ))2

cosh2[βV0s(T )] − βV0
, (3)

and the temperature dependence of the order parameter
s(T ) can be found by solving the mean-field equation s =
tanh(βV0s).

Thus, we write C(T ) = Cel(T ) + Cph(T ) + Ch.o.(T ) and
employ this expression to fit our heat capacity data. Specif-
ically, we use the data for the stoichiometric compound to
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FIG. 3. Dependence of the interaction strength V0 and the critical
temperature of the second phase transition as a function of osmium
concentration x. Given the overall mean-field nature of the transition,
it is not surprising to find V0 ∝ Tc. Inset: Extracted value of the Som-
merfeld coefficient γ as a function of the osmium concentration x.
The reduction in the value of γ signals a decrease in the hybridization
between the spd- and f -electron states of uranium.

find the corresponding prefactors for the phonon, Cph(T ) =
nphcph(T ), and f -electron, Ch.o.(T ) = ntlsch.o.(T ), contribu-
tions along with the Debye temperature ωD and dimensionless
matrix element s(T = 0). We note here that for the case of
higher concentrations, x > 15%, the mean-field order param-
eter introduced above should be understood as an absolute
value of the matrix element 〈�|[σ̂x(�ri) + iσ̂y(�ri)]|�〉.

The results of our analysis are shown in Fig. 2. Generally,
we find that the heat capacity data for x = 0, x = 0.025, and
x = 0.13 can be systematically described by our model (2).
After we find a satisfactory result by fixing the lattice pa-
rameters obtained from the analysis of the heat capacity data
at T � Tc for URu2Si2, we analyze the remaining sets by
changing only two parameters: the interaction strength V0 and
Sommerfeld coefficient γ .

Since we have observed experimentally that the critical
temperature of the transition increases with x and also be-
cause, at the level of the mean-field approximation, Tc � V0, it
follows that in order to obtain good fits to the data we need to
increase the value of V0. At the same time we have also noted
that the best fits are obtained if we gradually decrease the
value of γ while increasing x. These results are summarized
in Fig. 3.

Our fitting procedure did not work well for the x = 0.2
sample: there are obvious discrepancies between the theo-
retically predicted result and the experimental data in the
temperature region where the contribution from the f elec-
trons becomes comparable with the remaining contributions
from the itinerant electrons and the lattice vibrations. Our in-
terpretation of these observations is discussed in what follows.

FIG. 4. Specific heat jump at the critical temperature, 
C(Tc ) =
Cmax(Tc − ε) − Cmin(Tc + ε) (ε � Tc), as a function of osmium con-
centration x.

IV. DISCUSSION

The possible origin of the discrepancy between the results
of our fitting procedure and the heat capacity for x = 0.2
can be traced back to the recent results of transport studies
of URu2−xOsxSi2 [23]. Specifically, it was shown that at ap-
proximately x ≈ 0.15 there is a change in slope of Tc vs x
corresponding to the onset of the long-range antiferromag-
netic order. In addition, we note that the value of the heat
capacity for x = 0.2 at T = Tc exceeds the corresponding
values for other samples by approximately 20%. This fact
can be accounted for by the enhanced exchange interactions
U (�ri − �r j ). In addition, our data clearly show that there is
an increasing contribution ∝ (a/r0)3√Tc/|T − Tc| from the
thermally induced magnetic fluctuations with the correlation
function Di j = 〈[σ̂y(�ri ) − μs][σ̂y(�r j ) − μs]〉, where μs is the
value of the staggered magnetic moment. These observations
are supported by the decrease of the specific heat jump at T =
Tc (Fig. 4), which is again accounted for by the broadening
of the Ginzburg region, which we estimate to be |δT |/Tc �
(a/r0)6. In other words, the expansion of the lattice with x
must cause the reduction of r0 and the broadening of the
critical fluctuation region.

Another consequence of our analysis is the observation of
the decreasing value of the Sommerfeld coefficient γ (x) with
x (Fig. 3, inset). This reduction most likely is induced by
the diminished hybridization between the spd and 5 f 2 states.
Since the effect of osmium substitution produces the lattice
expansion, the reduction in hybridization implies that the lead-
ing fluctuation channel is 5 f 2 ↔ 5 f 1, as was suggested in
Ref. [18]. This behavior is in contrast to the option of valence
fluctuations in the second channel 5 f 2 ↔ 5 f 3, which would
actually be enhanced with an increase in x and, consequently,
would lead to an increase in the values of γ .

Last, we would like to comment on the increasing value
of V0 which follows from our fitting procedure. We remind
the reader that the parameter V0 plays the role of the effective
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interaction strength and is equal to V (r) integrated over space,
Eq. (2). Earlier studies [1,24,25,34] have associated the prod-
uct V0s(0) with the hybridization (and/or charge) gap. In our
theory s(0) cannot possibly change with x or external pressure
since its value is determined by a local matrix element. How-
ever, since the lattice is expanding, V0 must be changing, and
its apparent increase with x implies that V0 must be inverse
proportional to the correlation radius r0.

V. CONCLUSIONS

We have measured and analyzed the heat capacity as a
function of temperature in URu2−xOsxSi2. Osmium alloying
leads to a lattice expansion equivalent to an effect of
negative pressure. Our data may be considered an addition
to the transport data on the same alloys [23], with similar
conclusions regarding the increase in Tc with x. Decreasing
values of the Sommerfeld coefficient with the increase in x
implies that the second-order phase transition is driven by
the interactions between the localized f -orbital degrees of
freedom. The second important aspect of our work consists
of an attempt to use a theoretical model to analyze our results:

this is in clear contrast to earlier experimental studies which
used purely phenomenological expressions [1,23–25,34]
to estimate the changes in the heat capacity through the
second-order transition.
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