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Abstract
The Stanley–Stembridge conjecture associates a symmetric function to each natural
unit interval order P . In this paper, we define relations à la Knuth on the symmet-
ric group for each P and conjecture that the associated P-Knuth equivalence classes
are Schur-positive, refining theorems of Gasharov, Brosnan-Chow, Guay-Paquet, and
Shareshian-Wachs. The resulting equivalence graphs fit into the framework of D
graphs studied by Assaf. Furthermore, we conjecture that the Schur expansion is
given by column-readings ofP-tableaux that occur in the equivalence class. We prove
these conjectures for P avoiding two specific suborders by introducing P-analog of
Robinson–Schensted insertion, giving an answer to a long standing question of Chow.
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1 Introduction

Since its formulation in 1993, Stanley-Stembridge conjecture [20, Conjecture 5.5] has
been one of the most intriguing problems in algebraic combinatorics. Interest in it
was greatly strengthened when Shareshian and Wachs [21] related the conjecture to
Hessenberg varieties. The original conjecture was shown by Guay-Paquet [14] to be
equivalent to saying that chromatic symmetric functions of incomparability graphs
of unit interval orders are positive combinations of elementary symmetric functions.
Shareshian and Wachs realized that essentially the same symmetric functions arise as
Frobenius characters of actions of symmetric groups on cohomology rings of Hes-
senberg varieties, as studied by Tymoczko [23]. Shareshian-Wachs conjecture was
proved by Brosnan and Chow [4], and independently by Guay-Paquet [15]. On the
combinatorial level the results of Brosnan-Chow and Guay-Paquet imply a graded
refinement of the Schur positivity result of Gasharov [12]. It also provides useful tools
to understand combinatorics in terms of geometry, i.e. theory of perverse sheaves and
geometric properties of (regular) Hessenberg varieties.

The original Stanley–Stembridge conjecture, nowadays usually stated in terms of
positivity in complete homogenous symmetric functions, remains open except for spe-
cial cases, see Gebhard-Sagan [16], Dahlberg-van Willigenburg [11], Harada-Precup
[17], Cho-Huh [8], Cho-Hong [7], etc.

In an independent development, Assaf [2,3] has introduced a beautiful theory of
D graphs to address Schur positivity questions in symmetric functions, such as Mac-
donald polynomials, LLT polynomials, and k-Schur functions. While as shown by
Blasiak [6] getting exactly the right axiomatization to address those questions can be
very challenging, Assaf’s work provides a very useful framework. In particular her
characterization of dual equivalence graphs has been used in a variety of contexts, see
for example Chmutov [9] and Roberts [18]. Assaf’s ideas were further developed by
Blasiak-Fomin [5] and others.

In this paperwe combine the two lines of research. Specifically, for each unit interval
order P we define an analog of Knuth moves. The resulting P-Knuth equivalence
classes of permutations satisfy correct axioms to fit into the framework ofDgraphs.We
conjecture that via the standard map from permutations to quasisymmetric functions
the images ofP-Knuth equivalence classes are symmetric and Schur positive. This is a
refinement of results of Gasharov, Brosnan-Chow, and Guay-Paquet. Furthermore, we
conjecture that the decomposition into Schur functions can be read off from column
reading words of P-tableaux that occur in the equivalence class.

We prove this Schur positivity conjecture for a special class of unit interval orders
P . For that purpose we introduce an analog of Robinson–Schensted insertion that
preserves descents, solving an open problem dating back to the works of Sundquist-
Wagner-West and Chow. The 1997 work of Sundquist–Wagner–West [22] constructs
a version of Robinson–Schensted insertion for unit interval orders, however in gen-
eral their algorithm does not preserve descents, and thus cannot be used to derive
Schur positivity results. Chow [10] proved that Sundquist–Wagner–West does pre-
serve descents under a very restrictive condition—in our terminology his condition
is to avoid a suborder isomorphic to P(2,1),4. Chow implicitly states in his paper the
question of constructing Robinson–Schensted correspondence that preserves descents
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when P avoids a less restrictive pattern P(3,1,1),5. In this paper we solve this problem
for unit interval orders that avoid both P(3,1,1),5 and P(4,2,1,1),6. As a result, in those
cases we are able to prove Schur positivity of the P-Knuth equivalence classes.

This project started as an attempt to prove Stanley-Stembridge conjecture. This
goal remains elusive, as it would require introducing an affine analog of P-Knuth
equivalence classes and proving their h-positivity. We expect this to be strictly harder
than proving Schur positivity of the P-Knuth equivalence graphs introduced in this
paper, and even that remains open in full generality. Nevertheless, P-Knuth equiva-
lence classes seem to be interesting objects of their own, perhaps having geometric
meaning in terms of (equivariant) cohomology and moment graphs of Hessenberg
varieties. We hope that understanding P-Knuth equivalence classes, and in particular
proving Conjecture 4.16, will shed new light on Stanley-Stembridge conjecture.

The paper proceeds as follows. In Sect. 2 we recall some standard combinatorial
notions such as partitions, partial orders and tableaux. In Sect. 3 we recall properties
and characterizations of natural unit interval orders. We also introduce an important
class of natural unit interval orders called ladders, as well as ladder-climbing property.
In Sect. 4 we introduce P-Knuth equivalence classes and state the main Theorem
4.15. In Sect. 5 we introduce column insertion procedure, which is then used in Sect. 6
to define the full P-Robinson–Schensted insertion algorithm. Section 7 is filled with
examples illustrating everything introduced in the previous sections. In Sects. 8 and 9
we give proofs of the results from previous sections.

2 Definitions and notations

For a, b ∈ Z, we set [a, b] := {x ∈ Z | a ≤ x ≤ b}. For a set X , we let |X | be its
cardinal.

2.1 Partitions

A partition is a finite sequence of integers λ = (λ1, λ2, . . . , λa) such that λ1 ≥ λ2 ≥
· · · ≥ λa > 0. In such a case, we set its length to be a (denoted l(λ)) and its size to be
λ1 + λ2 + · · · + λa (denoted |λ|). When |λ| = n, we also write λ � n. If i > l(λ), we
set λi = 0. We write λ′ to denote the conjugate partition of λ. We define the staircase
partition Stair(n) to be (n − 1, n − 2, . . . , 2, 1). For two partitions λ and μ, we write
λ ⊂ μ if λi ≤ μi for all i ∈ Z>0. Pictorially, it means that the Young diagram of μ

contains that of λ.

2.2 Partial orders

We use the symbols ≥,>,≤, and < for the usual order on R. However, throughout
this paper we discuss various partial orders, for which new symbols are necessary in
order to avoid conflict. Namely, suppose that a partial order P on [1, n] is given. For
a, b ∈ [1, n], we write
(1) a ≺P b (or b 	P a) if a is smaller than b with respect to P ,
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(2) a ←P b (or b →P a) if a < b and a ≺P b,
(3) a ���P b (or b ���P a) if a < b but a �≺P b, and
(4) a - - -P b if a and b are not comparable with respect to P (and a �= b).

If there is no confusion we drop the subscript P from each symbol.
For a partial order P on a set X and its subset Y ⊂ X , the restriction of P to Y ,

denoted P|Y , is well-defined. For two partial orders P on [1, n] and P ′ on [1, m], we
say that P avoids P ′ or P is P ′-avoiding if restriction of P to any subset of [1, n] (of
cardinal m) is not isomorphic to P ′.

2.3 Symmetric groups and words

In this paper, a word means a finite sequence. For a word α = (α1, α2, . . . , αk), we
also write α = α1α2 · · · αk to simplify notations. For a word α, we denote by α the
corresponding underlying set. We let |α| ∈ N be the length of α. If |α| = 0, then we
also write α = ∅. By a subword of α, we mean a word (αi1 , αi2 , . . . , αis ) such that
1 ≤ i1 < i2 < · · · < is ≤ k. For two words α and β, we define α + β to be their
concatenation.

LetSn be the symmetric group permuting [1, n]. We identify elements inSn with
the words in which each of 1, 2, . . . , n appears once. For w = w1w2 · · · wn ∈ Sn and
a partial order P defined on [1, n], we set
• its P-descent to be desP (w) = {i ∈ [1, n − 1] | wi 	P wi+1},
• its genuine P-inversion to be

g-invP (w) ={(i, j) ∈ [1, n]2 | i →P j, i appears before j in w,

and there do not exist any subword ia1a2 · · · ak j of w such that

i - - -P a1 - - -P a2 - - -P · · · - - -P ak - - -P j},

• its (genuine)P-height to be (if g-invP (w) = ∅ then g-htP (w) = 1 and otherwise)

g-htP (w) = max{k ∈ N | there exist a1, a2, . . . , ak−1, ak such that

(a1, a2), . . . , (ak−1, ak) ∈ g-invP (w)},

• its fake P-inversion to be f-invP (w) = {(i, j) ∈ [1, n]2 | i ���P j, i appears
before j in w}, and

• its (fake) P-inversion number to be | f-invP (w)|.
For example, if P is the usual order on [1, n] then g-invP (w) is the set of usual
inversions in w, g-ht(w) is the length of the longest decreasing subword of w, and
f-invP (w) = ∅. On the other hand, ifP is the trivial order on [1, n] then g-invP (w) =
∅, g-htP (w) = 1, and f-invP (w) is the set of usual inversions in w. In addition, if P is
defined with respect to the Hasse diagram in Fig. 1 and w = (9, 5, 1, 8, 4, 7, 3, 6, 2)
then

• desP (w) = {1, 2, 4, 6, 8},
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Fig. 1 An example of partial
order
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• g-invP (w) = {(9, 5), (9, 4), (9, 3), (9, 2), (9, 1), (8, 4), (8, 3), (8, 2), (7, 3),
(7, 2), (6, 2), (5, 1)},

• g-htP (w) = 3 (= the length of (9,5,1)),
• f-invP (w) = {(3, 2), (4, 3), (5, 3), (5, 4), (7, 6), (8, 6), (8, 7), (9, 8)}, and
• | f-invP (w)| = 8.

Remark 2.1 We adopt the convention that if i → j in the Hasse diagram of an order
P then i is greater than j with respect to P , which is in accordance with the notation
i →P j .

2.4 Standard andP-tableaux

A tableau T is said to satisfy the P-tableau condition if for two entries i, j ∈ [1, n]
adjacent in T , (1) if i is above j then i ≺P j , and (2) if i is left to j then i �	P j .
That is, entries in T are increasing along columns and nondecreasing along rows with
respect toP . Such a tableau T is called aP-tableau if in addition it contains each entry
of [1, n] exactly once. (Note that our definition is a conjugated version of the one in
[12, Theorem 3].) We denote by P-Tabn (resp. P-Tabλ) the set of P-tableaux of size
n (resp. of shape λ). Similarly, we denote by SYTn (resp. SYTλ) the set of standard
Young tableaux of size n (resp. of shape λ). Note that if P is the usual order on [1, n]
then P-tableaux are exactly standard Young tableaux.

For a tableau T , we often identify each of its columns with its reading word from
bottom to top and also identify T with the sequence of its columns. In addition,
we define the reading word of T , denoted read(T ), to be the concatenation of col-
umn reading words from bottom to top. We define the descent of T ∈ SYTn to be
des(T ) = {i ∈ [1, n − 1] | i is in a higher row than that of i + 1}. For example, if

T = 1 3 5 8
2 6 7
4

then T is identified with ((4, 2, 1), (6, 3), (7, 5), (8)), the reading

word of T is read(T ) = (4, 2, 1, 6, 3, 7, 5, 8), and des(T ) = {1, 3, 5}.
For a partial order P on [1, n] and T ∈ P-Tabn , we define its fake P-inversion to

be f-invP (T ) = {(i, j) ∈ [1, n]2 | i ���P j, the column of i is left to that of j} and
its fake P-inversion number to be | f-invP (T )|. Since each column of a P-tableau is
a chain in P , it is easy to show that f-invP (T ) = f-invP (read(T )) for any P-tableau
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T . For example, if P is given again by Fig. 1 and T = 1 4 3 2
5 8 7 6
9

then f-invP (T ) =

f-invP (read(T )) = {(3, 2), (4, 3), (5, 3), (5, 4), (7, 6), (8, 6), (8, 7), (9, 8)}, and thus
| f-invP (T )| = 8.

2.5 Schur and fundamental quasi-symmetric functions

For a partition λ, we set sλ to be the Schur function corresponding to λ. For a compo-
sition μ, we set Fμ to be the fundamental quasi-symmetric function corresponding to
μ defined by Gessel.

3 Natural unit interval order

In this section we recall the notion of natural unit interval orders and some of its
properties. Also, we introduce a ladder order which plays a prominent role in this
paper.

3.1 Three equivalent definitions of natural unit interval orders

Here we define natural unit interval orders in three different ways. We refer readers to
[21, Section 4] for the proof that these definitions are indeed equivalent.

3.1.1 Definition in terms of unit intervals

Definition 3.1 We say that P on [1, n] is a natural unit interval order if it there exist n
real numbers y1 < y2 < · · · < yn such that i ≺P j ⇔ yi + 1 < y j .

Pictorially, one may regard y1, . . . , yn as the starting points of unit intervals I1 =
[y1, y1 + 1], I2 = [y2, y2 + 1], . . . , In = [yn, yn + 1]. Then the above definition
translates to the following.

(1) If i < j , then Ii should start before I j in the real line.
(2) We have i ≺P j if and only if I j starts after Ii ends in the real line.

For example, Fig. 2 shows an arrangement of unit intervals and the corresponding
natural unit interval order.

3.1.2 Definition using partitions

For n ∈ Z>0, let λ be a partition contained in Stair(n). We define the partial order
Pλ,n on [1, n] such that a ≺P b if and only if a ≤ λn+1−b. In other words, we have
[1, λi ] = {x ∈ [1, n] | x ≺P n + 1 − i}. For example, when n = 5 and λ = (3, 1)
then Pλ,n is given as in Fig. 3.

Definition 3.2 We say that a partial order P on [1, n] is a natural unit interval order if
P = Pλ,n for some λ ⊂ Stair(n).
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Fig. 2 Natural unit interval order in terms of unit intervals

Fig. 3 Natural unit interval order
in terms of partitions
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3.1.3 Defining properties

One may also define natural unit interval orders by imposing certain conditions on a
partial order, namely:

Definition 3.3 We say that a partial order P on [1, n] is a natural unit interval order if
• the usual order is a linearization of P , i.e. if a ≺P b then a < b, and
• if b ←P c, a - - -P b, and a - - -P c, then b < a < c.

Because of the first condition, ←P ,→P are equivalent to ≺P ,	P when we consider
natural unit interval orders. From now on we usually use the former rather than the
latter for such orders. Also, hereafter we refer to the second condition as Condition
(�). For example, if P is a natural unit interval order and a, b, c ∈ [1, n] satisfy
b ←P c and a < b, then a ←P c by Condition (�).

3.2 (3 + 1) and (2 + 2) avoidance

There is another characterization of natural unit interval orders in terms of suborder
avoidance. Indeed, it is essentially proved in [19] that a partial order P on [1, n] is a
natural unit interval order if and only if the usual order is a linearization of P and P
avoids suborders “(3+ 1)” (disjoint union of a chain of length 3 and an element) and
“(2+ 2)” (disjoint union of two chains of length 2). Here we prove only one direction
which will be useful later on.

Lemma 3.4 (See Fig. 4) Suppose thatP is a natural unit interval order on [1, n]. Then,

(1) there does not exist a, b, c, d ∈ [1, n] such that a →P b →P c, a - - -P d, and
d - - -P c, and
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Fig. 4 (3+1)- and (2+2)-posets a

b d

c

a

b d

c

(2) there does not exist a, b, c, d ∈ [1, n] such that a →P b, c →P d, c - - -P b, and
a - - -P d.

Proof (1) If b > d (resp. b = d) then a →P d by Condition (�) applied to {a, b, d}
(resp. since a →P b) which is absurd. Similarly, if b < d then d →P c by Condition
(�) which is again impossible. (2) If c > a (resp. c = a) then c →P b by Condition
(�) applied to {a, b, c} (resp. since a →P b) which is absurd, and thus c < a.
However, by symmetry we should have a < c as well, which is again impossible. ��

3.3 Properties ofP-tableaux

We discuss some properties of P-tableaux for natural unit interval orders. These will
be frequently used in the later part of this paper without reminder.

Lemma 3.5 Suppose that (ap, . . . , a1) and (bq , . . . b1) are two adjacent columns in a
P-tableau such that the former is on the left of the latter.

(1) If ai > b j then i ≥ j
(2) If ai →P b j then i > j .
(3) If i < j then ai < b j .

Proof For (1), suppose ai > b j and i < j . Then bi ←P b j thus ai →P bi by
Condition (�), which contradicts the P-tableau condition. This proves (1). For (2),
suppose ai →P b j and i ≤ j . Then bi ≤ b j thus ai →P bi by Condition (�),
which contradicts the P-tableau condition. This proves (2). For (3), suppose i < j
and ai ≥ b j . Then bi ←P b j thus ai →P bi by Condition (�), which contradicts the
P-tableau condition. This proves (3). ��

3.4 Ladders

We define a special kind of a natural unit interval order called a ladder order.

Definition 3.6 A partial order P is called a ladder order if it is isomorphic to
PStair(m−1),m for some m ∈ N.

Figure 5 shows the partial order PStair(9),10 which is by definition a ladder order,
and the partition and the unit interval arrangement defining it. The term “ladder” is
inspired from the shapes of its Hasse diagram and the corresponding unit interval
arrangement.
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Fig. 5 PStair(9),10: a ladder of size 10

Definition 3.7 For a partial order P defined on X , we say that A is a ladder in P if
P|A is a ladder order.

For example, if P = PStair(m−1),m then ladders in P are exactly [a, b] for some
a, b ∈ [1, m]. Let us describe somebasic properties of ladders. Laterwewill frequently
use these properties without reminder.

Lemma 3.8 Suppose that P is a natural unit interval order on [1, n] and assume that
y1, . . . , yk ∈ [1, n] such that y1 < y2 < · · · < yk and {y1, . . . , yk} is a ladder in P .
Then,

(1) {yi , . . . , y j } is a ladder in P for any 1 ≤ i ≤ j ≤ k.
(2) yi ���P yi+1 for i ∈ [1, k − 1].
(3) yi ←P y j if j − i ≥ 2.
(4) If x �←P y1 and x ←P y2, then {x, y1, . . . , yk} is a ladder in P .
(5) If z �→P yk and z →P yk−1, then {y1, . . . , yk, z} is a ladder in P .
(6) If yi < x < yi+1 for some i ∈ [1, k − 1], then yi ���P x and x ���P yi+1.

Proof It follows almost directly from the definition of a ladder and Condition (�).
��

3.5 Climbing a ladder

We define a special kind of partial orders called “ladder-climbing” orders.

Definition 3.9 For a partial orderP on [1, n], we say that someone is climbing a ladder
in P or P is ladder-climbing if there exist x, y1, . . . , yk ∈ [1, n] such that

(1) x /∈ {y1, y2, . . . , yk},
(2) {y1, y2, . . . , yk} is a ladder in P , and
(3) y1 ←P x ←P yk .

In this case, we also say that x is climbing a ladder in P or x is climbing (the ladder)
{y1, . . . , yk} in P . If there is no such x , then we say that no one is climbing a ladder
in P or simply P is not ladder-climbing.

Indeed, there is a characterization of ladder-climbing partial orders in terms of the
avoidance of certain suborders as the following proposition shows.
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Fig. 6 P(3,1,1),5 and P(4,2,1,1),6

Proposition 3.10 Let P be a partial order on [1, n]. Then no one is climbing a ladder
in P if and only if it avoids both P(3,1,1),5 and P(4,2,1,1),6. (See Fig. 6 for the Hasse
diagrams of these two orders.)

Proof Direct calculation shows that 3 is climbing the ladder {1, 2, 4, 5} in P(3,1,1),5
and 4 is climbing the ladder {1, 2, 4, 5, 6} in P(4,2,1,1),6. Thus if no one is climbing a
ladder in P then it should avoid P(3,1,1),5 and P(4,2,1,1),6.

It remains to show that ifP is ladder-climbing then there is a set X ∈ [1, n] such that
P|X is isomorphic to eitherP(3,1,1),5 orP(4,2,1,1),6. Suppose that x is climbing the lad-
der {y1, y2, . . . , yk} inP where y1 < y2 < · · · < yk , in which case y1 ←P x ←P yk .
Then without loss of generality we may assume that y2 �←P x and yk−1 �→P x . Since
y1 ���P y2 and yk−1 ���P yk , this implies that y2 ���P x and yk−1 ���P x by
Condition (�). Moreover, we have yi - - -P x for i ∈ [2, k − 1]. Indeed, if yi ←P x
(resp. yi →P x) then y2 ←P x (resp. yk−1 →P x) by Condition (�) applied to
(y2, yi , x) (resp. (x, yi , yk−1)), which is a contradiction.

Since y2 ���P x and yk−1 ���P x we have k ≥ 4. On the other hand, if k ≥ 7
then y2, y4, y6 - - -P x and y2 ←P y4 ←P y6 which is impossible by Lemma 3.4.
Thus it follows that k ∈ [4, 6]. If k = 4, then one can easily show that P restricted
to {x, y1, y2, y3, y4} is isomorphic to P(3,1,1),5 where the isomorphism of posets
is given by (x, y1, y2, y3, y4) �→ (3, 1, 2, 4, 5). If k = 5, then P restricted to
{x, y1, y2, y3, y4, y5} is isomorphic to P(4,2,1,1),6 where the isomorphism is given
by (x, y1, y2, y3, y4, y5) �→ (3, 1, 2, 4, 5, 6). Finally, if k = 6 then P restricted
to {x, y1, y2, y3, y5} is isomorphic to P(3,1,1),5, where the isomorphism is given by
(x, y1, y2, y3, y5) �→ (4, 1, 2, 3, 6). It suffices for the proof. ��

There is another characterization of P(3,1,1),5-avoiding partial orders as follows.

Lemma 3.11 The following two conditions are equivalent.

(1) P avoids P(3,1,1),5.
(2) “A join of two ladders is again a ladder.” Suppose that L and L′ are two ladders

in P such that L∩L′ = {x}. If x is the maximum in L and the minimum in L′ with
respect to the usual order and |L|, |L′| ≥ 3 then L ∪ L′ is also a ladder in P .
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Proof Suppose that P = P(3,1,1),5. Then {1, 2, 3} and {3, 4, 5} are ladders but
{1, 2, 3, 4, 5} is not a ladder. Thus any order that does not avoid P = P(3,1,1),5 can-
not satisfy the second condition. Now suppose that P avoids P(3,1,1),5 and assume
that a1 < · · · < ak < x < b1 < · · · < bl such that {a1, . . . , ak, x} and
{x, b1, . . . , bl} are ladders in P . Then it suffices to show that {ak−1, ak, x, b1, b2}
is again a ladder in P . By assumption we have ak−1 ←P x ←P b2 and
ak−1 ���P ak ���P x ���P b1 ���P b2. Also ak−1 ←P b1 and ak ←P b2 by
Condition (�). Thus if ak ���P b1 then direct calculation shows that P restricted
to {ak−1, ak, x, b1, b2} is isomorphic to P(3,1,1),5, which is a contradiction. Thus
ak ←P b1 and the result follows. ��

4 P-Knuth equivalence and themain theorem

In this section we assume that a fixed natural unit interval order P on [1, n] is given
and define P-Knuth moves and equivalences. Also we state our main theorem in this
paper.

4.1 Definition ofP-Knuth equivalences

First we define the notions of P-Knuth moves and equivalences which generalize the
ones originally introduced by Knuth.

Definition 4.1 Let 1 ≤ a < b < c ≤ n and a ←P c. We say that two words w,w′
are connected by a P-Knuth move if they fall into one of the following situations, in

which case we write w
P� w′ (or w�w′ if there is no confusion).

(1) If a ���P b and b ���P c, then [· · · bca · · · ] P� [· · · cab · · · ].
(2) If a ←P b and b ���P c, then [· · · bca · · · ] P� [· · · bac · · · ] and

[· · · cba · · · ] P� [· · · cab · · · ].
(3) If a ���P b and b ←P c, then [· · · bca · · · ] P� [· · · cba · · · ] and

[· · · acb · · · ] P� [· · · cab · · · ].
(4) If a ←P b and b ←P c, then [· · · bca · · · ] P� [· · · bac · · · ] and [· · · acb · · · ] P�

[· · · cab · · · ].

a
b

c

(1) P|{a,b,c} � P(1),3

a
b

c

(2) P|{a,b,c} � P(1,1),3

a
b

c

(3) P|{a,b,c} � P(2),3

a
b

c

(4) P|{a,b,c} � P(2,1),3
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123

132213

231

312 321

(a) P∅,3

123

132213

231

312 321

(b) P(1),3

123

132213

231

312 321

(c) P(2),3

123

132213

231

312 321

(d) P(1,1),3

123

132213

231

312 321

(e) P(2,1),3

Fig. 7 The P-Knuth moves on S3

In each situation, there exists i ∈ [2, n − 1] such that the set of positions of a, b, and
c is {i − 1, i, i + 1}. In such a case, we say that i is the position of the P-Knuth move
and also that the P-Knuth move occurs at position i .

Definition 4.2 TheP-Knuth equivalence relation on the set ofwords is the equivalence
relation generated by P-Knuth moves. If two words w,w′ are equivalent under this
relation, we say that w and w′ are P-Knuth equivalent and write w

P∼ w′. (If there is
no confusion, we also say that w and w′ are equivalent and write w ∼ w′.)

Note that P-Knuth move/equivalence revert to the usual Knuth move/equivalence
when P is the usual order on [1, n].
Example 4.3 (Fig. 7) All the possible P-Knuth moves for natural unit interval orders
P on [1, 3] are described in Fig. 7. Here, the underlined numbers in each word indicate
its P-descents.

4.2 Relation toP-descents and D graphs

Here we relateP-Knuth equivalences with study of dual equivalence graphs by Assaf.
More precisely, we show that the graphs obtained from the P-Knuth moves are D
graphs in the sense of [1, Definition 4.5]. First let us discuss how P-Knuth moves
affect the P-descents of words.

Lemma 4.4 Assume that w,w′ ∈ Sn are connected by a P-Knuth move at position i .

(1) We have {desP (w) ∩ {i − 1, i}, desP (w′) ∩ {i − 1, i}} = {{i − 1}, {i}}.
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(2) If i > 2, then {desP (w)∩ {i − 2, i − 1}, desP (w′)∩ {i − 2, i − 1}} is equal to one
of {∅, {i − 1}}, {{i − 2}, {i − 1}}, or {{i − 2}, {i − 2, i − 1}}.

(3) If i < n − 1, then {desP (w) ∩ {i, i + 1}, desP (w′) ∩ {i, i + 1}} is equal to one of
{∅, {i}}, {{i}, {i + 1}}, or {{i + 1}, {i, i + 1}}.

(4) If j ∈ [1, n − 1] − [i − 2, i + 1], then desP (w) ∩ { j} = desP (w′) ∩ { j}.

Proof (1) is checked case-by-case. For (2), we only need to check that {desP (w) ∩
{i −2, i −1}, desP (w′)∩{i −2, i −1}} �= {∅, {i −2, i −1}} thanks to (1). This is also
checked case-by-case. (3) is proved similarly to (2). (4) is trivial from the definition
of P-Knuth moves. ��

We recall the notion of signed colored graphs following [1, 4.2] and [2, Defini-
tion 3.1].

Definition 4.5 A signed colored graph of degree n is a collection (V , σ, {Ei }1<i<n)

where V is a set, σ is a function σ : V → 2[1,n−1], and each Ei is a set of unordered
pairs of different elements in V . (Here 2[1,n−1] denotes the power set of [1, n − 1].)
Each element in V is called a vertex, and each element in Ei is called an edge colored i .

Remark 4.6 In [1, 4.2] and [2, Definition 3.1] the function σ assigns to each vertex
v ∈ V a sequence of length n −1 consisting of+ and−. Their definition is equivalent
to ours if we define a new sigma function, say σ ′ : V → 2[1,n−1], such that σ ′(v) � i
(resp. σ ′(v) �� i) if and only if the i-th component of σ(v) equals + (resp. −).

Definition 4.7 Suppose that V ⊂ Sn is closed underP-Knuth moves. Then we define
the P-Knuth equivalence graph �V attached to V to be �V = (V , desP , {Ei }1<i<n)

where each Ei is the set of pairs in V connected by a P-Knuth move at position i .

It is clear that P-Knuth equivalence graph is a signed colored graph of degree n.
Now we recall the notion of D graphs following [1, Definition 4.2, 4.5].

Definition 4.8 A signed colored graph (V , σ, {Ei }1<i<n) of degree n is called a D
graph if the following axioms hold.

Ax1. For w ∈ V and 1 < i < m, |σ(w) ∩ {i − 1, i}| = 1 if and only if there exists
x ∈ V such that {w, x} ∈ Ei . Moreover, x is unique when it exists.

Ax2. Whenever {w, x} ∈ Ei , σ(w)∩ {i} �= σ(x)∩ {i} and σ(w)∩ {h} = σ(x)∩ {h}
for h /∈ [i − 2, i + 1].

Ax3. For {w, x} ∈ Ei , ifσ(w)∩{i−2} �= σ(x)∩{i−2} then |σ(w)∩{i−2, i−1}| = 1.
Also, if σ(w) ∩ {i + 1} �= σ(x) ∩ {i + 1} then |σ(w) ∩ {i, i + 1}| = 1.

Ax5. Whenever |i − j | ≥ 3, {w, x} ∈ Ei , and {x, y} ∈ E j , there exists v ∈ V such
that {w, v} ∈ E j and {v, y} ∈ Ei .

We claim that the P-Knuth equivalence graphs are indeed D graphs.
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Fig. 8 P(2,1),4-Knuth equivalence graph

Proposition 4.9 A P-Knuth equivalence graph is a D graph.

Proof We need to check that Ax1, Ax2, Ax3, and Ax5 hold for P-Knuth equivalence
graphs. For Ax1, it follows from the fact that the P-Knuth move at position i in
Definition 4.1 occurs in all the possible cases ofwords satisfying |σ(w)∩{i−1, i}| = 1.
Ax2 follows from (1) and (4) of Lemma 4.4. Ax3 follows from (2) and (3) of Lemma
4.4. Lastly, Ax5 clearly follows from the definition of P-Knuth moves. ��

In [2, Definition 3.2] and [1, Definition 4.2], they defined dual equivalence graphs
which are a special kind of D graphs by imposing two additional axioms. This
framework is used to study Schur positivity of certain quasi-symmetric functions.
In particular, the “generating functions” attached to a dual equivalence graph is a sin-
gle Schur function by [2, Corollary 4.4]. However, our graphs are not dual equivalence
graphs in general.

Example 4.10 Figure 8 shows all the connected P-Knuth equivalence graphs on S4
with P = P(2,1),4, where underlined numbers denote P-descents and numbers above
edges indicate their colors. (Written above each connected component is the cor-
responding generating function which we will define in a moment.) There is one
connected component with 5 vertices which satisfies neither Axiom 4 nor Axiom 6 of
[2, Definition 3.2] for dual equivalence graphs.

4.3 GenuineP-height and fakeP-inversion number

Here we prove that the P-Knuth move preserves genuine P-heights and fake P-
inversion numbers of permutations. For the former claim, we need to impose
assumption that P is not ladder-climbing.



Robinson–Schensted correspondence for unit interval orders Page 15 of 66 97

Proposition 4.11 Suppose that P avoids P(3,1,1),5 and P(4,2,1,1),6. If w
P� w′, then

g-ht(w) = g-ht(w′). As a result, the genuine P-height is constant on any connected
P-Knuth equivalence graph.

The proof of this proposition will be given in Sect. 8.

Remark 4.12 If we allow that P is ladder-climbing, then the above proposition is

no longer true. For example, when P = P(3,1,1),5 we have 53241
P� 53412 but

g-htP (53241) = |(5, 3)| = 2 �= 3 = |(5, 3, 1)| = g-htP (53412). Likewise, when

P = P(4,2,1,1),6 we have 563241
P� 635241 but g-htP (563241) = |(6, 4, 1)| = 3 �=

2 = |(6, 3)| = g-htP (635241).

Lemma 4.13 If w
P� w′, then | f-invP (w)| = | f-invP (w′)|. As a result, the fake

P-inversion number is constant on any connected P-Knuth equivalence graph.

Proof Suppose that the P-Knuth move w
P� w′ occurs at position i . If either x /∈

{wi−1, wi , wi+1} or y /∈ {wi−1, wi , wi+1} then it is clear that f-invP (w) ∩ {(x, y)} =
f-invP (w′) ∩ {(x, y)} since the relative position of x and y does not change. Thus for
the verification of this lemma we may restrict our attention to words of length 3, e.g.
Fig. 7. Now the lemma follows from case-by-case observation. ��

4.4 Generating functions and themain theorem

Let us define a generating function of a P-Knuth equivalence graph. (cf. [21, Theo-
rem 3.1])

Definition 4.14 For a P-Knuth equivalence graph �V = (V , desP , {Ei }), its generat-
ing function is defined to be γV := ∑

w∈V t | f-invP (w)|FdesP (w).

If we consider a connected P-Knuth equivalence graph, then we may factor out
t | f-invP (w)| from the formula due to Lemma 4.13. More precisely, if �V is a con-
nected graph then γV := t | f-invP (V )| ∑

w∈V FdesP (w) where | f-invP (V )| is the fake
P-inversion number of any element in V . Nowwe state themain theorem of this paper.
Its proof is given in Sect. 9. Note that this strengthens [12, Theorem 4] for a natural
unit interval order which avoids P(3,1,1),5 and P(4,2,1,1),6.

Theorem 4.15 Main theorem Suppose that P is a natural unit interval order on [1, n]
which avoids P(3,1,1),5 and P(4,2,1,1),6. Let � = (V , desP , {Ei }) be a connected P-
Knuth equivalence graph and γV be its generating function. Let w1, . . . , wk be all the
elements in V each of which is the reading word of the P-tableau PT1, . . . , PTk, of
shape λ1, . . . , λk , respectively. Then we have γV = t | f-invP (V )|(sλ1 +· · ·+ sλk ), where
| f-invP (V )| is the fake P-inversion number of any element in V . Furthermore, we
have l(λ1) = · · · = l(λk) which is also equal to the genuine P-height of any w ∈ V .

Conjecture 4.16 (Main conjecture) The claim of the Theorem 4.15 is true for all unit
interval orders P (except the last sentense).
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See Sect. 7.1 for some examples of P-Knuth equivalence graphs and their generating
functions. The following corollary is a direct consequence, which generalizes both
[12, Theorem 3] and [21, Theorem 6.3] for a natural unit interval order which avoids
P(3,1,1),5 and P(4,2,1,1),6.

Corollary 4.17 Suppose that P is a natural unit interval order on [1, n] which avoids
P(3,1,1),5 and P(4,2,1,1),6. Then the generating function of any P-Knuth equivalence
graph is Schur positive, i.e. it is a symmetric function and its coefficients with respect
to the expansion of Schur functions are polynomials in t with nonnegative integer
coefficients.

5 Column insertion algorithm

In this section, we assume that a fixed natural unit interval order P is given and define
a column insertion algorithm.

5.1 Column insertion algorithm Alg8

For convenience, we add ∞,−∞ to the poset ([1, n],P) so that ∞ →P i (resp.
−∞ ←P i) for any i ∈ [1, n]. We define

A := {(am, . . . , a1) | m ∈ N, ai ∈ [1, n] ∪ {∞}, ai �= a j if i �= j and ai , a j �= ∞},
C := {(cl , . . . , c1) | l ∈ N, ci ∈ [1, n], ci ←P c j if i < j},

AC := {(α, c) ∈ A × C | ai �= c j for any i, j}, and

CA := {(c, α) ∈ C × A | ai �= c j for any i, j}.

One may regard A as a set of (input/output) words and C as a set of chains, i.e.
one-column P-tableaux. (Recall that we read columns from bottom to top.)

We introduce the column insertion algorithm Alg�. This defines a function � :
AC → CA and is described in terms of the pseudocode Algorithm 1.

Let us investigate this algorithm inmore detail. It takes the input (α, c) ∈ ACwhere
α = (am, . . . , a1) and c = (cl , . . . , c1). Initiate b = (bm, . . . , b1) with (am, . . . , a1)
and d = (dl , . . . , d1) with (cl , . . . , c1). (Here l = |d|, which may change as the
algorithm is performed.) Also we set d0 := −∞ to simplify our argument. Initialize
p with 1.

5.1.1 Terminal case

If p > m = |α|, then we terminate the algorithm and return (d, β) = (d, b).

5.1.2 Case∞(a)

Suppose that ap = ∞. Then we increase p by 1 and repeat the algorithm from the
beginning.
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Algorithm 1: Column insertion algorithm Alg�

Function �((am , . . . , a1), (cl , . . . , c1)) // ((am , . . . , a1), (cl , . . . , c1)) ∈ AC
m ← |(am , . . . , a1)|
for i ← 1 to m do bi ← ∞ // Initialize (bm , . . . , b1) to (∞, . . . ,∞)

l ← |(cl , . . . , c1)|
d0 ← −∞
for i ← 1 to l do di ← ci // Initialize (dl , . . . , d1, d0) to (cl , . . . , c1, −∞)

p ← 1
while p ≤ m do

if ap = ∞ then p ← p + 1 // Case∞(a): pass if ap = ∞
else

r ← max{i ∈ [0, l] | di < ap} // Choose r so that dr < ap < dr+1
if ap →P dr then // Case I

if r = l then l ← l + 1 // Case I(a)
else bp ← dr+1 // Case I(b)
dr+1 ← ap
p ← p + 1

else // Case II
(h, q) ← max{(i, j) ∈ N

2 | {dr , . . . , dr+i , ap, . . . , ap+ j } is a ladder in P
and ap < ap+1 < · · · < ap+ j }

// The maximum is w.r.t. lexicographic order
if ap+q < dr+h then // Case II(a)

for j ← 0 to q do bp+ j ← ap+ j

else // Case II(b)
for i ← 0 to h do

j ← min{t ∈ [0, q] | ap+t > dr+i }
if i = h then k ← q
else k ← max{t ∈ [0, q − 1] | ap+t < dr+i+1}
bp+ j ← dr+i
for t ← j to k − 1 do bp+t+1 ← ap+t

dr+i ← ap+k

p ← p + q + 1

return ((dl , . . . , d1), (bm , . . . , b1))

Remark 5.1 The reason why we call it Case∞(a) (instead of Case∞) shall become
apparent when we describe another algorithm 	X in the proof of Proposition 5.10.

From now on we suppose ap �= ∞ and choose r ∈ [0, l] such that dr < ap < dr+1.
(If dl < ap, then we set r = l.) First suppose that ap and dr are comparable, i.e.
dr ←P ap.

5.1.3 Case I(a)

We first consider the case when r = l, i.e. ap is bigger than any element in d with
respect to P . (This includes the case when r = l = 0, i.e. d is an empty chain.) In
this case we “add ap to the end of the chain d”, i.e. set dl+1 := ap and replace d with
(dl+1 = ap, dl , · · · , d1). (As a result, the length of d increases by 1.) After this, we
increase p by 1 and repeat the algorithm from the beginning.
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5.1.4 Case I(b)

Now suppose that r < l. (This include the case when −∞ = d0 < ap < d1.) Then
“ap bumps dr+1”; we set bp := dr+1 and then replace dr+1 in dwith ap. For example,
if 1 ←P 3 and 1 ←P 2, then �((2), (3, 1)) = ((2, 1), (3)). (Whether 2 ←P 3 or not
does not affect the result here.) After this, we increase p by 1 and repeat the algorithm
from the beginning.

Now we suppose that ap and dr are not comparable (which forces that r > 0). We
set

A = {(i, j) ∈ N
2 | ap < ap+1 < · · · < ap+ j and {dr , . . . , dr+i , ap, . . . , ap+ j }

is a ladder in P}.

Note that (0, 0) ∈ A as {dr , ap} is a ladder in P by assumption (since PStair(1),2 =
P∅,2). We set (h, q) to be the maximum of A with respect to lexicographic order. In
other words, we choose (h, q) such that

• ap < ap+1 < · · · < ap+q with respect to the usual order,
• {dr , . . . , dr+h, ap, . . . , ap+q} is a ladder in P ,
• h is the biggest among such possible (h, q)’s, and
• q is the biggest among such possible (h, q)’s with h chosen above.

For later use, we define:

Definition 5.2 Weassume the situation above.Then the phrase “maximality inCase II”
indicates the maximality of (h, q) in A.

5.1.5 Case II(a)

First we suppose that ap+q < dr+h , i.e. max{dr , . . . , dr+h, ap, . . . , ap+q} = dr+h .
(e.g. Example 7.1 and 7.3) In this case we do not alter the chain d and simply let
ap, . . . , ap+q “pass through the chain”, i.e. set bi := ai for i ∈ [p, p + q]. After this,
we increase p by q + 1 and repeat the algorithm from the beginning.

Remark 5.3 Here, the maximality in Case II means that either p + q = m or ap+q+1
does not satisfy both ap+q+1 →P ap+q and ap+q+1 ���P dr+h .

5.1.6 Case II(b)

The remaining case is when ap+q > dr+h , i.e. max{dr , . . . , dr+h, ap, . . . , ap+q} =
ap+q . (e.g. Examples 7.2 and 7.3)We split thea-s according towhich intervals between
d-s they fall into. This is given by some u : [r − 1, r + h] → [p − 1, p + q] such
that p − 1 = u(r − 1) < u(r) < u(r + 1) < · · · < u(r + h) = p + q and such that
di < au(i−1)+1 < · · · < au(i) for i ∈ [r , r + h]. Then we replace dr , . . . , dr+h on the
chain in d with au(r), . . . , au(r+h), respectively. Furthermore, for j ∈ [p, p + q] we
set

b j :=
{

di if j = u(i − 1) + 1 for some i ∈ [r , r + h],
a j−1 otherwise.
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After this, we increase p by q + 1 and repeat the algorithm from the beginning.

Example 5.4 A good illustration can be found in Example 7.4. In this case r = 2, h =
1, p = 6, q = 3, and 9 = a9 = max{d2, d3, a6, a7, a8, a9} = max{4, 6, 5, 7, 8, 9}.
The associated part of the poset P is a ladder (consisting of poset elements
4, 5, 6, 7, 8, 9), and as explained in Example 7.4 (1, 3) is the lexicographically max-
imal choice among all pairs that give a ladder. In this case d2 < a6 < d3 < a7 <

a8 < a9, and thus u(1) = 5, u(2) = 6, u(3) = 9. The algorithm tells us to replace d2
with a6 = 5 and d3 with a9 = 9. It also tells us to assign b6 = d2 = 4, b7 = d3 = 6,
b8 = a7 = 7, b9 = a8 = 8. The result can be seen at the end of Fig. 18.

Remark 5.5 Here, the maximality in Case II means that

• either p + q = m or ap+q+1 does not satisfy both ap+q+1 ���P ap+q and
ap+q+1 →P ap+q (or ap+q+1 →P dr+h if ap+q ���P dr+h), and

• either r + h = l or dr+h+1 ����P ai for any i ∈ [p, p + q].
One may check that the second condition is equivalent to

• either r + h = l or dr+h+1 →P ai for any i ∈ [p, p + q].
For later use, we define:

Definition 5.6 We say that ap is in Case I(a), 1(b), etc. if the step in the column
insertion algorithm Alg� processing ap corresponds to Case I(a), 1(b), etc.

This finishes the description of the algorithm Alg�. See Sect. 7.2 for some examples
about this algorithm. Before we proceed, we need to check that:

Theorem 5.7 The algorithm Alg� is well-defined, i.e. �(α, c) ∈ CA.

Proof First suppose that a1, am �= ∞ and only one step of Alg� is performed when
calculating �((am, . . . , a1), (cl , . . . , c1)) = ((dl ′ , . . . , d1), (bm, . . . , b1)). Then we
need to show that bi , d j for i ∈ [1, m], j ∈ [1, l ′] are pairwise different (possibly
except ∞) and d1 ←P d2 ←P · · · ←P dl ′ . But the first part is clear from the
assumption that a1, . . . , am, c1, . . . , cl are pairwise different. The second part is also
easily checked case-by-case using Condition (�). Now the statement in the general
case follows from induction on the number of steps. ��

5.2 Properties of Alg8

Here we discuss some properties of Alg�. Firstly, if �(α, c) = (d, β) then it is easy
to observe the following. (We will use these facts without reminder later on.)

• if ai is in Case∞(a) or Case I(a), we have bi = ∞,
• if ai is in Case I(b), we have ai < bi �= ∞,
• if ai is in Case II(a), we have ai = bi , and
• if ai is in Case II(b), we have ai ���P bi .

The following lemma is less trivial.
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Lemma 5.8 For α = (am, . . . , a1) and c = (cl , . . . , c1), suppose that there exists
i ∈ [1, l] such that ci ←P a j for all j ∈ [1, m]. If �(α, c) = ((dl ′ , . . . , d1),−), then
we have c j = d j for j ∈ [1, i].
Proof It is shown by case-by-case observation. ��

The proofs of the following two propositions are provided in Sect. 8.

Proposition 5.9 Suppose that �(α, c) = (d, β) where α = (am, . . . , a1), β =
(bm, . . . , b1), and c = (cl , . . . , c1). Write α f (resp. β f ) to be the word obtained
by removing ∞ from α (resp. β).

(A) α f + c and d + β f are P-Knuth equivalent. In particular, α f + c = d + β f as
sets.

(B) Suppose that α ∈ C, m ≥ l, and (α, c) satisfies the P-tableau condition, i.e.
ai �→P ci for i ∈ [1, l]. Then d = α and β = (∞, . . . ,∞) + c.

(C) If ai , ai+1 �= ∞ and ai ←P ai+1, then either [bi+1 = ∞] or [bi , bi+1 �= ∞ and
bi ←P bi+1].

(D) If ai , ai+1 �= ∞ and ai �←P ai+1, then either [bi = ∞, bi+1 �= ∞] or [bi , bi+1 �=
∞ and bi �←P bi+1].

Proposition 5.10 Suppose that (α = (am, . . . , a1), c), (α′ = (a′
m, . . . , a′

1), c′) ∈ AC
satisfy �(α, c) = �(α′, c′) and ai = ∞ ⇔ a′

i = ∞. Then we have (α, c) = (α′, c′).

5.3 Another algorithm Alg9

Here we introduce another column insertion algorithm Alg	 which resembles Alg�.
This will not be used for the definition of the P-Robinson–Schensted algorithm in the
next section, but it will play an important role when we prove Proposition 5.10. Also
see Sect. 7.2 for some examples about this algorithm.

For a subset X ⊂ Z>0, the algorithm Alg	 defines a function 	X : AC → CA and
is described by the pseudocode Algorithm 2. Note that the only difference between
Alg� and Alg	 is when ap = ∞, p ∈ X , and d �= ∅, which is as follows.
Case∞b Suppose that ap = ∞, p ∈ X , and d �= ∅. Then we “drag the first entry of
d to b”, i.e. set bp := d1 and replace d with (dl , . . . , d2). (As a result, the length of
d decreases by 1.) After this, we increase p by 1 and repeat the algorithm from the
beginning.

Indeed, if X = ∅ then Alg	 and 	X revert to Alg� and �, respectively.

Lemma 5.11 The algorithm 	X is well-defined.

Proof It is proved in the same manner as Theorem 5.7. ��

6 P-Robinson–Schensted algorithm

In this section, we assume that a fixed natural unit interval order P is given and define
a P-Robinson–Schensted algorithm.
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Algorithm 2: Another algorithm Alg	

Function 	X ((am , . . . , a1), (cl , . . . , c1)) // ((am , . . . , a1), (cl , . . . , c1)) ∈ AC
m ← |(am , . . . , a1)|
for i ← 1 to m do bi ← ∞ // Initialize (bm , . . . , b1) to (∞, . . . ,∞)

l ← |(cl , . . . , c1)|
d0 ← −∞
for i ← 1 to l do di ← ci // Initialize (dl , . . . , d1, d0) to (cl , . . . , c1, −∞)

p ← 1
while p ≤ m do

if ap = ∞ then
if p ∈ X and l > 0 then // Case∞(b)

bp ← d1
for i ← 1 to l − 1 do di ← di+1
l ← l − 1

p ← p + 1 // Case∞(a): pass if ap = ∞ and p /∈ X

else
r ← max{i ∈ [0, l] | di < ap} // Choose r so that dr < ap < dr+1
if ap →P dr then // Case I

if r = l then l ← l + 1 // Case I(a)
else bp ← dr+1 // Case I(b)
dr+1 ← ap
p ← p + 1

else // Case II
(h, q) ← max{(i, j) ∈ N

2 | {dr , . . . , dr+i , ap, . . . , ap+ j } is a ladder in P
and ap < ap+1 < · · · < ap+ j }

// The maximum is w.r.t. lexicographic order
if ap+q < dr+h then // Case II(a)

for j ← 0 to q do bp+ j ← ap+ j

else // Case II(b)
for i ← 0 to h do

j ← min{t ∈ [0, q] | ap+t > dr+i }
if i = h then k ← q
else k ← max{t ∈ [0, q − 1] | ap+t < dr+i+1}
bp+ j ← dr+i
for t ← j to k − 1 do bp+t+1 ← ap+t

dr+i ← ap+k

p ← p + q + 1

return ((dl , . . . , d1), (bm , . . . , b1))

6.1 P-Robinson–Schensted algorithm

We identify P-Tab with the subset of Cn such that (c1, c2, . . . , cn) ∈ Cn corresponds
to the P-tableau whose reading word is c1 + c2 + · · · + cn if such a P-tableau exists.
We define the P-Robinson–Schensted algorithm AlgP-RS as in Algorithm 3.

Let us describe the algorithm in detail. This algorithm takes an input α =
(am, . . . , a1) ∈ A and produces an output (PT , QT ). Initialize p with 0 and
(bm, . . . , b1) with (am, . . . , a1).
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Algorithm 3: P-Robinson-Schensted algorithm AlgP-RS

Function P-RS(am , . . . , a1) // (am , . . . , a1) ∈ A
m ← |(am , . . . , a1)|
for i ← 1 to m do bi ← ai // Initialize (bm , . . . , b1) to (am , . . . , a1)
p ← 0
while (bm , . . . , b1) �= (∞, . . . ,∞) do

p ← p + 1
(PTp, (tm , . . . , t1)) ← �((bm , . . . , b1), ∅)

// PTp is a new column of the P-tableau

QTp ← (i(k), . . . , i(1)) where

{ {i(1), . . . , i(k)} = { j ∈ [1, m] | t j = ∞, b j �= ∞},
1 ≤ i(1) < · · · < i(k) ≤ m

// QTp is a new column of the standard Young tableau
for i ← 1 to m do bi ← ti

// The output of � is the new input on the next step

return ((PT1, . . . , PTp), (QT1, . . . , QTp))

6.1.1 Terminal case

If (bm, . . . , b1) = (∞, . . . ,∞) then terminate the algorithm and return (PT , QT )

where PT = (PT1, . . . , PTp) and QT = (QT1, . . . , QTp).

6.1.2 Main case

Otherwise, we increase p by 1 and set (PTp, (tm, . . . , t1)) to be �((bm, . . . , b1),∅).
Also we set QTp = (i(k), . . . , i(1)) where i(1) < · · · < i(k) are chosen such that
{i(1), . . . , i(k)} = { j ∈ [1.m] | t j = ∞, b j �= ∞}, i.e. they are indices where
Case I(a) of Alg� occured in the calculation of �((bm, . . . , b1),∅). After this, we set
(bm, . . . , b1) to be (tm, . . . , t1) and repeat the algorithm from the beginning.

This finishes the description of the algorithm AlgP-RS. It is clear that each column
of PT (resp. QT ) is a chain with respect to P (resp. the usual order). However, it is
not clear at this moment that PT (resp. QT ) is a P-tableau (standard Young tableau).
Indeed, it is not always so; see Sect. 7.4 for such examples. However, we will observe
that this algorithm behaves well when the given partial order on [1, n] avoidsP(3,1,1),5
and P(4,2,1,1),6.

6.2 Properties ofP-RS

Let Tλ ∈ SYTλ be the standard Young tableau of shape λ where λ′ =
(l1, l2, . . . , l p) such that the i-th column of Tλ consists of (

∑i−1
k=1 lk)+1, (

∑i−1
k=1 lk)+

2, . . . , (
∑i

k=1 lk). For example, we have T(4,3,1) = 1 4 6 8
2 5 7
3

. The following the-

orem summarizes important properties of the algorithm AlgP-RS which is proved in
Sect. 9, together with the main theorem (Theorem 4.15) of this paper.
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Fig. 9 P = P(2,2,1),5, γV =
t2(s32 + s41) 42315

43125

41325

34215

32415

32451

42351

34251

34521

12

1

2, 33

2

3

1

Theorem 6.1 Suppose that P avoids P(3,1,1),5 and P(4,2,1,1),6, i.e. P is not ladder-
climbing. Then the following are satisfied.

(A) For w ∈ Sn, if P-RS(w) = (PT , QT ) then PT is a P-tableau and QT is a
standard Young tableau.

(B) For w ∈ Sn, if P-RS(w) = (PT , QT ) then {n − x | x ∈ desP (w)} = des(QT ).
(C) For w ∈ Sn, If P-RS(w) = (PT , QT ) then w ∼P read(PT ).
(D) For w ∈ Sn, if P-RS(w) = (PT , QT ) then the length of the first column of

PT is equal to g-htP (w). Furthermore, if w′ ∈ Sn satisfies w ∼P w′ and
P-RS(w′) = (PT ′, QT ′), then the lengths of the first column of PT and PT ′ are
the same.

(E) If w = read(PT ) for some PT ∈ P-Tabλ then P-RS(w) = (PT , ω(Tλ)) where
ω : SYTλ → SYTλ is Schützenberger’s evacuation.

(F) If α = (am, . . . , a1) and α′ = (a′
m, . . . , a′

1) are two words of the same length then
P-RS(α) = P-RS(α′) ⇔ α = α′.

(G) P-RS restricts to a bijection P-RS : Sn
∼−→ ⊔

λ�n P-Tabλ × SYTλ.

7 Examples

In this section we give various examples of the objects that we introduced so far.

7.1 P-Knuth equivalence graphs

Here we provide some examples of P-Knuth equivalence graphs whose generating
functions are not a single Schur function. In Figs. 9, 10, 11, 12, 13 and 14, underlined
numbers in each word denote its descents and numbers above edges indicate their
colors. Vertices with bold borders are reading words of some P-tableaux and vertices
of the same colors are the ones that give the same P-tableau under P-RS. Also, two

gray vertices in Fig. 12 are the ones that insert to 3 1 2
5 4

, which is not a P-tableau

for P = P(3,1,1),5.

7.2 Some examples of Alg8 and Alg9

Here we provide some examples how the algorithms Alg� and Alg	 work.
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Fig. 10 P = P(2,1,1),5, γV = t3(s32 + 2s41)
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Fig. 11 P = P(3,2,1),5, γV = t3(2s32 + s41)
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Fig. 12 P = P(3,1,1),5, γV = t3(s311 + s32 + 2s41)
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Fig. 13 P = P(3,3,2,1),6, γV = t4(s33 + 2s42 + s51)
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Fig. 14 P = P(4,3,2,1,1),6, γV = t2(s321 + s411)
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Fig. 15 Alg�: P = P(5,3,2,1),6, α = (4, 3, 2), and c = (6, 5, 1)

Example 7.1 (Fig. 15) Suppose that P = P(5,3,2,1),6, α = (4, 3, 2), and c = (6, 5, 1).
In this case only one step of Alg� is required to calculate �(α, c), i.e. Case II(a).
Here r = p = 1 and dr = 1 < ap = 2 < dr+1 = 5. The set A in the description
of Case II is equal to {(0, 0), (0, 1), (0, 2), (1, 2)}, and thus we have (h, q) = (1, 2).
This corresponds to the ladder in P consisting of elements 1, 2, 3, 4, 5. It follows that
�(α, c) = ((6, 5, 1), (4, 3, 2)).

Example 7.2 (Fig. 16) Suppose thatP = PStair(6),7, α = (7, 5, 4, 2), and c = (6, 3, 1).
Similarly to above, in this case only one step of Alg� is required to calculate �(α, c),
i.e. Case II(b). Here r = p = 1 and dr = 1 < ap = 2 < dr+1 = 3. The set A in
the description of Case II is equal to A = {(0, 0), (1, 0), (1, 1), (1, 2), (2, 2), (2, 3)},
and thus we have (h, q) = (2, 3). The corresponding ladder is the whole poset P . It
follows that �(α, c) = ((7, 5, 2), (6, 4, 3, 1)).

Example 7.3 (Fig. 17) Suppose that P = P(2,1,1),5, α = (5, 4, 2) and c = (3, 1). We
need to process three steps of Alg� to calculate �(α, c) in this case.
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Fig. 16 Alg�: P = PStair(6),7, α = (7, 5, 4, 2), and c = (6, 3, 1)
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Fig. 17 Alg�: P = P(2,1,1),5, α = (5, 4, 2), and c = (3, 1)

(1) Sincea1 = 2 ���P 1 = d1,a1 is inCase II.Here A = {(0, 0), (1, 0), (0, 1), (0, 2)},
and thus we have (h, q) = (1, 0) that is the maximum of A with respect to the
lexicographic order even if the choice of (0, 2) produces a bigger ladder. We set
b1 = 2, p = 2 and continue.

(2) Since a2 = 4 ���P 3 = d2, a2 is in Case II. Here A = {(0, 0)}, and thus
(h, q) = (1, 0). Note that {3, 4, 5} is not a ladder in P since 3 �←P 5. We set
b2 = 3, d2 = 4, p = 3 and continue.

(3) Since a3 = 5 ���P 4 = d2, a3 is in Case II. Here A = {(0, 0)}, and thus
(h, q) = (1, 0). We set b3 = 4, d3 = 5, and terminate the algorithm.

As a result, we have �((5, 4, 2), (3, 1)) = ((5, 1), (4, 3, 2)).
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Fig. 18 Alg�: P = P(7,6,5,4,3,2,1),9, α = (9, 8, 7, 5, 6, 3, 2, 4, 1), and c = ∅

Example 7.4 (Fig. 18) Suppose thatP = P(7,6,5,4,3,2,1),9,α = (9, 8, 7, 5, 6, 3, 2, 4, 1)
and c = ∅. We need to process five steps of Alg� to calculate �(α, c) in this case.

(1) Since the chain is empty, a1 is in Case I(a). We set d1 = 1, p = 2 and continue.
(2) Since a2 = 4 > d1 = 1 and 4 →P 1, a2 is in Case I(a). We set d2 = 4, p = 3

and continue.
(3) Since d1 = 1 < a3 = 2 < d2 = 4 and 2 ���P 1, a3 is in Case II. The set A is

equal to {(0, 0), (0, 1), (1, 1)} thus (h, q) = (1, 1), in which case it is in Case II(a).
We set b3 = 2, b4 = 3, p = 5 and continue.

(4) Since a4 = 6 > d2 = 4 and 6 →P 4, a4 is in Case I(a). We set d3 = 6, p = 6
and continue.

(5) Since d2 = 4 < a6 = 5 < d3 = 6 and 5 ���P 4, a6 is in Case II. The set A is
equal to {(0, 0), (1, 0), (1, 1), (1, 2), (1, 3)} thus (h, q) = (1, 3) in which case it
is in Case II(b). We set d2 = 5, d3 = 9, b6 = 4, b7 = 6, b8 = 7, b9 = 8 and
terminate the algorithm.

As a result, we have �((9, 8, 7, 5, 6, 3, 2, 4, 1),∅) = ((9, 5, 1), (8, 7, 6, 4,∞, 3,
2,∞,∞)).

Example 7.5 (Fig. 19) Suppose that P = P(7,6,5,4,3,2,1),9, α = (∞,∞, 8, 7,∞, 6, 4,
3, 2), c = (9, 5, 1), and X = {5, 8, 9}. We need to process five steps of Alg	 to
calculate 	X (α, c) in this case.

(1) Since d1 = 1 < a1 = 2 < d2 = 5 and 2 ���P 1, a1 is in Case II. The set A is
equal to {(0, 0), (0, 1), (0, 2), (1, 2), (1, 3)} thus (h, q) = (1, 3) in which case it



97 Page 28 of 66 D. Kim, P. Pylyavskyy

1

3

5

7

9

2

4

6

8 2
3
4
6
∞
7
8
∞
∞

1
5
9

X

ap

α c

Case II(b)

2
3
4
6
∞
7
8
∞
∞

4
6
9

1
2
3
5
∞
∞
∞
∞
∞

X

ap

α d b

Case ∞(b)

2
3
4
6
∞
7
8
∞
∞

6
9

1
2
3
5
4
∞
∞
∞
∞

X

ap

α d b

Case II(a)

2
3
4
6
∞
7
8
∞
∞

6
9

1
2
3
5
4
7
8
∞
∞

ap

X

α d b

Case ∞(b)

2
3
4
6
∞
7
8
∞
∞

9 1
2
3
5
4
7
8
6
∞ap

X

α d b

Case ∞(b)

1
2
3
5
4
7
8
6
9

d β

Fig. 19 Alg	 : P = P(7,6,5,4,3,2,1),9, α = (∞, ∞, 8, 7, ∞, 6, 4, 3, 2), c = (9, 5, 1), and X = {5, 8, 9}

is in Case II(b). We set d1 = 4, d2 = 6, b1 = 1, b2 = 2, b3 = 3, b4 = 5, p = 5
and continue.

(2) Since a5 = ∞, 5 ∈ X , and d �= ∅, a4 is in Case∞(b). We set d = (9, 6), b5 = 4,
p = 6 and continue.

(3) Since d1 = 6 < a6 = 7 < d2 = 9 and 7 ���P 6, a6 is in Case II. The set A is
equal to {(0, 0), (0, 1), (1, 1)} thus (h, q) = (1, 1), in which case it is in Case II(a).
We set b6 = 7, b7 = 8, p = 8 and continue.

(4) Since a8 = ∞, 8 ∈ X , and d �= ∅, a8 is in Case∞(b). We set d = (9), b8 = 6 and
continue.

(5) Since a9 = ∞, 9 ∈ X , and d �= ∅, a9 is in Case∞(b). We set d = ∅, b9 = 9 and
continue.

As a result, we have 	{5,8,9}((∞,∞, 8, 7,∞, 6, 4, 3, 2), (9, 5, 1)) =
(∅, (9, 6, 8, 7, 4, 5, 3, 2, 1)).

Remark 7.6 Indeed, Examples 7.4 and 7.5 are “mirror images” to each other. This is
not a coincidence but explained in detail in Sect. 8.6.

7.3 Some examples of AlgP-RS

Here we provide some examples of the algorithm AlgP-RS.
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Example 7.7 Figure 20 shows the steps of AlgP-RS when P = P(2,1),4 and w is
an element of {3241, 3421, 4231, 4312, 4132}, the set of vertices of a connected
P-Knuth equivalence graph that is not a dual equivalence graph (cf. Fig. 8).

Here we have �(3241) = ( 1 3 2
4

, 1 3 4
2

), �(3421) = ( 2 1
4 3

, 1 2
3 4

),

�(4231) = ( 2 1
4 3

, 1 3
2 4

), �(4312) = ( 1 3 2
4

, 1 2 4
3

), and �(4132) =

( 1 3 2
4

, 1 2 3
4

). It is easy to observe in this case that (cf. Theorem 6.1)

(A) the outputs are pairs (PT , QT ) where PT ∈ P-Tabλ, QT ∈ SYTλ for some
λ � 4,

(B) if P-RS(w) = (PT , QT ) then desP (w) = {4 − x | x ∈ des(QT )},
(C) read( 2 1

4 3
) = 4231 and read( 1 3 2

4
) = 4132 are the vertices of the given

connected P-Knuth equivalence graph,

(D) �(4231) = ( 2 1
4 3

, ω( 1 3
2 4

)) = ( 2 1
4 3

, 1 3
2 4

) and

�(4132) = ( 1 3 2
4

, ω( 1 3 4
2

)) = ( 1 3 2
4

, 1 2 3
4

) where ω is

Schützenberger’s evacuation, and
(E), (F) � gives a bijection between the given set of vertices and

{ 2 1
4 3

} × SYT(2,2) �{ 1 3 2
4

} × SYT(3,1).

Furthermore, its generating function is t2(s31 + s22) as expected by Theorem 4.15.

Example 7.8 Figure 21 shows the steps of AlgP-RS when P = P(7,6,5,4,3,2,1),9 and

w = (9, 8, 7, 5, 6, 3, 2, 4, 1). Here we have �(w) = ( 1 4 3 2
5 8 7 6
9

, 1 3 4 6
2 7 8 9
5

).

Note that {9 − x | x ∈ desP (w)} = {1, 4, 6} = des( 1 3 4 6
2 7 8 9
5

).

Example 7.9 Figure 22 shows the steps ofAlgP-RS whenP = P(9,8,6,6,4,3,2,2,1),10 and

w = (8, 4, 6, 7, 10, 1, 2, 5, 3, 9). Here we have �(w) = ( 1 2 3 9
4 6 5 10
8 7

, 1 2 4 5
3 7 8 9
6 10

).

Note that {10 − x | x ∈ desP (w)} = {2, 5, 9} = des( 1 2 4 5
3 7 8 9
6 10

).

7.4 Some pathologies for ladder-climbing partial orders

Here we provide some examples when P-RS does not produce a desired output when
P is ladder-climbing.
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Fig. 20 AlgP-RS: P = P(2,1),4, w ∈ {3241, 3421, 4231, 4312, 4132}
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Fig. 21 AlgP-RS: P = P(7,6,5,4,3,2,1),9, w = (9, 8, 7, 5, 6, 3, 2, 4, 1)
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Fig. 22 AlgP-RS: P = P(9,8,6,6,4,3,2,2,1),10, w = (8, 4, 6, 7, 10, 1, 2, 5, 3, 9)
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Fig. 23 AlgP-RS: P = P(3,1,1),5, w = (3, 4, 5, 2, 1)
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Fig. 24 AlgP-RS: P = P(4,2,1,1),6, w = (4, 3, 6, 5, 2, 1)

Example 7.10 Figure 23 shows the steps of AlgP-RS when P = P(3,1,1),5 and w =
(3, 4, 5, 2, 1). Here we see that �(w) = ( 3 1 2

5 4
, 1 2 5
3 4

). However, PT in this

case is not a P-tableau since 3 →P 1.

Example 7.11 Figure 24 shows the steps of AlgP-RS when P = P(4,2,1,1),6 and w =
(4, 3, 6, 5, 2, 1). Here we see that�(w) = ( 4 1 3 2

6 5
, 1 2 5 6
3 4

). However, PT

in this case is not a P-tableau since 4 →P 1.
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Fig. 25 AlgP-RS: P = P(5,3,2,1,1),7, w = (3, 1, 5, 6, 7, 4, 2)

Example 7.12 Figure 25 shows the steps of AlgP-RS when P = P(5,3,2,1,1),7 and w =
(3, 1, 5, 6, 7, 4, 2). Here we see that �(w) = ( 1 2 6 4

3 5
7

, 1 2 5 6
3 4

7

). However,

PT and QT in this case are not even tableaux.

8 Proof of Propositions 4.11, 5.9, and 5.10

8.1 Proof of Proposition 4.11

We start with the following lemma.

Lemma 8.1 Let P be a natural unit interval order on [1, n]. Suppose that we are given
a, b ∈ [1, n] and w ∈ Sn that satisfy w−1(a) < w−1(b) and a →P b. Then the
following are equivalent:

(1) (a, b) /∈ g-htP (w).
(2) there exists a subword ad1 · · · dkb ofw such that a - - -P d1 - - -P · · · - - -P dk - - -P b.
(3) there exists a subword ad1 · · · dkb of w such that a ���P d1 ���P · · · ���P

dk ���P b.
(4) there exists a subword ad1 · · · dkb of w such that a ���P d1 ���P · · · ���P dk

���P b and {a, d1, . . . , dk, b} is a ladder in P .

Proof (1) ⇔ (2) by definition, and (4) ⇒ (3) ⇒ (2) is clear. It remains to show
(2) ⇒ (4). To this end, suppose that ad1 · · · dkb is a subword of w such that
a - - -P d1 - - -P · · · - - -P dk - - -P b and we construct another subword satisfying the
condition of (4).

For simplicity we set d0 = a and dk+1 = b. First, let di be the last element
in the subword d0d1 · · · dkdk+1 such that d0 - - -P di . By removing d1, d2, . . . , di−1
if necessary, without loss of generality we may assume that it is d1. Similarly we
let d j be the last element in the subword d0d1 · · · dkdk+1 such that d1 - - -P d j . By
removing d2, . . . , d j−1 if necessary, without loss of generality we may assume that it
is d2. We iterate this process, and thus we may assume that di+1 is the last element in
d0d1 · · · dkdk+1 such that di - - -P di+1 for i ∈ [0, k].
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Weclaim that di ���P di+1 for any i ∈ [0, k]. For the sake of contradiction suppose
otherwise, i.e. di ���P di+1 and let i ∈ [0, k] be the smallest element such that
di ���P di+1. If i > 0, then di−1 ���P di by assumption and thus di−1 - - -P di+1
by Condition (�), which contradicts the fact that di is the last element satisfying
di−1 - - -P di . If i = 0, i.e. a ���P d1, then we claim that a ←P d j for any j ≥ 2,
which in particular contradicts the fact that a →P b = dk+1. Thus suppose otherwise.
Then there exists j such that a →P d j , and we choose such j to be the minimum one.
Then we have a < d j−1, d j−1 - - -P d j , and a →P d j , which contradicts Condition
(�). (Note that this argument is valid even when j = 2.)

Now for any i ∈ [1, k], we have di−1 ���P di ���P di+1, and thus di−1 →P di+1
since again di is the last element satisfying di−1 - - -P di . But this means that
{d0, d1, . . . , dk, dk+1} is a ladder in P , which is what we want to prove. ��

Let us start proving Proposition 4.11. Let w = · · · xyz · · · and w′ = · · · x ′y′z′ · · ·
such that the P-Knuth move connecting w and w′ shuffles {x, y, z} = {x ′, y′, z′}.
Suppose that I := (p1, . . . , ps, r1, . . . , ru, q1, . . . , qt ) is the longest subword of gen-
uine P-inversions in w such that I ∩ {x, y, z} = {r1, . . . , ru}. In particular we have
g-htP (w) = s + t +u. Note that s, t ≥ 0 and u ∈ [0, 2]. (u cannot be 3 since otherwise
x →P y →P z in which case there is no P-Knuth move shuffling x, y, z.)

We may assume s, t ≥ 2. Indeed, we add n + 1, n + 2 and 0,−1 to the poset
([1, n],P) so that n +2 →P n +1 →P i →P 0 →P −1 for any i ∈ [1, n]. Then we
replacew andw′ with (n +2, n +1)+w+ (0,−1) and (n +2, n +1)+w′ + (0,−1),
respectively. After this procedure, P still remains to avoid P(3,1,1),5 and P(4,2,1,1),6.
Also, any longest subword of genuineP-inversions inw andw′ contains n+2, n+1, 0,
and −1, which in particular increases s and t by 2, respectively. (Here, we have
p1 = n + 2, p2 = n + 1, qt−1 = 0, and qt = −1.)

We will construct the subword I ′ of genuine P-inversions of length s + t + u on
w′, which contains p1, . . . , ps−1, q2, . . . , qt . It means in particular that g-htP (w′) ≥
s + t + u, which proves the claim by symmetry. Note that we possibly change only
ps, r1, . . . , ru, q1 part from I to obtain I ′. Therefore, the entries before ps−1 and after
q2 in w and w′ do not affect this process. By removing such entries if necessary, it
suffices to assume that s = t = 2, i.e. we have I = (p1, p2, r1, . . . , ru, q1, q2).

Let a, b, c ∈ [1, n] be such that a < b < c and {a, b, c} = {x, y, z} = {x ′, y′, z′}.
From now on we argue case-by-case based on P|{a,b,c} and u ∈ [0, 2].

8.1.1 P|{a,b,c} � P∅,3

There is no P-Knuth move in this case, so there is nothing to prove.

8.1.2 P|{a,b,c} � P(1),3

We have a ���P b ���P c and a ←P c. There is only one P-Knuth move in this

case: [· · · bca · · · ] P� [· · · cab · · · ].
• u = 0 case. In this case we have I = p1 p2q1q2 and in particular (p2, q1) ∈
g-invP (w). If (p2, q1) ∈ g-invP (w′) then we are done since we may set I ′ = I. From
now on we assume (p2, q1) /∈ g-invP (w′).
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First consider the case when w = [· · · bca · · · ] and w′ = [· · · cab · · · ]. By
Lemma 8.1, there exists a subword J := p2d1 · · · dkq1 (k ≥ 1) in w′ where
p2 ���P d1 ���P · · · ���P dk ���P q1 and J is a ladder in P . As (p2, q1) ∈
g-invP (w), it means that the order of some elements in J should be switched under
the P-Knuth move so that it no longer prohibits (p2, q1) from being a genuine P-
inversion of w. Then the only possibility is that J = p2d1 · · · dv−1cbdv+2 · · · dkq1,
i.e. dv = c and dv+1 = b for some v ∈ [1, k − 1].

We claim that we may choose I ′ := p1 p2aq2. To this end we need to check that
(p2, a), (a, q2) ∈ g-htP (w′). First if (p2, a) /∈ g-htP (w′) then as p2 > c →P a
there exists a subword p2e1 · · · ela of w′ such that p2 - - -P e1 - - -P · · · - - -P el - - -P a.
Since c →P a, el appears before c in w′ which means that p2e1 · · · ela
is also a subword of w. However, this contradicts (p2, q1) ∈ g-htP (w) as
a - - -P b - - -P dv+2 - - -P · · · - - -P dk - - -P q1.

This time suppose that (a, q2) /∈ g-htP (w′). Since b > q1 →P q2 and b ���P a,
by Condition (�) we should have a > q2. First suppose that a ���P q2. If v < k − 1
then b →P q1 →P q2 and b ���P a ���P q2, which contradicts Lemma 3.4. Thus
v = k − 1, i.e. J = · · · cbq1. However, direct calculation shows that P restricted to
{c, b, q1, a, q2} is isomorphic to P(3,1,1),5, which is again a contradiction.

Thus we have a →P q2, and by Lemma 8.1 there exists a subword ae1 · · · elq2 of
w′ (l ≥ 1) such that a ���P e1 ���P · · · ���P el ���P q2 and {a, e1, . . . , el , q2} is a
ladder in P . By Lemma 3.11 it follows that {c, b, a, e1, . . . , el , q2} is also a ladder in
P . By assumption we have c →P q1 →P q2, and also q1 /∈ {c, b, a, e1, . . . , el , q2};
it is clear that q1 �= c, b, a, q2, and if q1 = ei for some i then it means that
(q1, q2) /∈ g-ht(w). In other words, q1 is climbing the ladder {c, b, a, e1, . . . , el , q2},
which contradicts the assumption on P .

It remains to consider the case when w = [· · · cab · · · ] and w′ = [· · · bca · · · ]. By
arguing similarly, we should be able to find a subword J = p2d1 · · · dv−1badv+2 · · ·
dkq1 of w′ with the same properties as above. Then we may choose I ′ = p1cq1q2,
which can also be shown analogously. We omit the details.
• u = 1 case. We have I = p1 p2r1q1q2 where r1 ∈ {a, b, c}. First consider the case
when w = [· · · bca · · · ] and w′ = [· · · cab · · · ]. Using Lemma 8.1, one can easily
show that if r1 = a then we may set I ′ = I and we are done.

Now suppose that r1 = b. We claim that we may choose I ′ = p1 p2aq1q2. To this
end we need to verify that (p2, a), (a, q1) ∈ g-htP (w′). First if (p2, a) /∈ g-htP (w′)
then as p2 →P b > a there exists a subword p2e1 · · · ela of w′ such that
p2 ���P e1 ���P · · · ���P el ���P a. Since b ���P a, either el = b or el - - -P b by
Condition (�), which means that (p2, b) /∈ g-htP (w). This is a contradiction and thus
we have (p2, a) ∈ g-htP (w′). On the other hand, since b →P q1 and b ���P a we
have a > q1 by Condition (�). Now if (a, q1) /∈ g-htP (w′), i.e. there exists a subword
ae1 · · · elq1 (l ≥ 0) of w′ such that a ���P e1 ���P · · · ���P el ���P q1 (note that
e1 cannot be b), then since b ���P a it follows that (b, q1) /∈ g-htP (w). This is a
contradiction, and thus we have (a, q1) ∈ g-htP (w′) as desired.

If r1 = c, then by the same argument one can easily show that we may choose
I ′ = p1 p2bq1q2. We omit the details.
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It remains to consider the case when w = [· · · cab · · · ] and w′ = [· · · bca · · · ].
Similarly to above, we may set I ′ = p1 p2cq1q2 if r1 ∈ {b, c} and I ′ = p1q2bq1q2 if
r1 = a. Again we omit the details.
• u = 2 case.We have I = p1 p2caq1q2. Then using Lemma 8.1, one can easily show
that I ′ = I satisfies the desired properties.

8.1.3 P|{a,b,c} � P(1,1),3

We have a ←P b ���P c and a ←P c. Here we have two kinds of P-Knuth moves:

[· · · bca · · · ] P� [· · · bac · · · ] and [· · · cba · · · ] P� [· · · cab · · · ].
• u = 0 case. In this case we have I = p1 p2q1q2 and in particular (p2, q1) ∈
g-invP (w). Since the relative position of b and c does not change by the P-Knuth
moves in this case, one can easily show that (p2, q1) ∈ g-invP (w′) by using Lemma
8.1. Then we are done since we may set I ′ = I.
• u = 1 case.We have I = p1 p2r1q1q2 where r1 ∈ {a, b, c}. Again, since the relative
position of b and c does not change by the P-Knuth moves in this case, one can easily
show that we may set I ′ = I by using Lemma 8.1.
• u = 2 case.We have I = p1 p2r1r2q1q2 where either (r1, r2) = (b, a) or (r1, r2) =
(c, a). Since the relative position of b and c does not change by the P-Knuth moves
in this case, we only need to consider the situations when the relative position of r1
and r2 changes under the moves. We have two cases to consider.

The first case is when I = p1 p2baq1q2, w = [· · · cba · · · ], and w′ =
[· · · cab · · · ]. We claim that we may choose I ′ = p1 p2caq1q2. To this end we
need to check (p2, c) ∈ g-htP (w′). (It is trivial that (c, a) ∈ g-htP (w′) in this
case.) Since p2 →P b and c ���P b, we have p2 > c by Condition (�). Thus
if (p2, c) /∈ g-htP (w′) then there exists a subword p2e1 · · · elc (l ≥ 0) of w′ such
that p2 ���P e1 ���P · · · ���P el ���P c. However, since c ���P b, it implies
(p2, b) /∈ g-htP (w), which is a contradiction.

The remaining case is when I = p1 p2caq1q2, w = [· · · bca · · · ], and w′ =
[· · · bac · · · ]. Here one can show that we may choose I ′ = p1 p2baq1q2 similarly to
above. We omit the details.

8.1.4 P|{a,b,c} � P(2),3

This case is completely analogous to the above case when P|{a,b,c} � P(1,1),3 if one
“reverses” the words therein. We again omit the details.

8.1.5 P|{a,b,c} � P(2,1),3

Wehavea ←P b ←P c.Herewehave twokinds ofP-Knuthmoves: [· · · bca · · · ] P�
[· · · bac · · · ] and [· · · acb · · · ] P� [· · · cab · · · ].
• u = 0 case. In this case we have I = p1 p2q1q2. It is easy to show that (p2, q1) ∈
g-htP (w) implies (p2, q1) ∈ g-htP (w′), and thus we may set I ′ = I.
• u = 1 case. We have I = p1 p2r1q1q2 where r1 ∈ {a, b, c}. Again, one can easily
show that we may set I ′ = I.
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• u = 2 case. We have I = p1 p2r1r2q1q2 where (r1, r2) ∈ {(b, a), (c, a), (c, b)}.
Here we only need to consider the situations when the relative position of r1 and r2
changes under the P-Knuth moves. We have two cases to consider.

The first case is when I = p1 p2caq1q2,w = [· · · bca · · · ], andw′ = [· · · bac · · · ].
Here we may choose I ′ = p1 p2baq1q2. Trivially (b, a) ∈ g-htP (w′), so it
suffices to check that (p2, b) ∈ g-htP (w′). If we suppose otherwise then since
p2 →P c →P b there exists a subword p2e1 · · · elb (l > 0) in w′ such that
p2 ���P e1 ���P · · · ���P el ���P b and {p2, e1, . . . , el , b} is a ladder in P . How-
ever, c /∈ {p2, e1, . . . , el , b} and p2 →P c →P b which means that c is climbing the
aforementioned ladder, which is a contradiction. Thus we have (p2, b) ∈ g-htP (w′).

The remaining case is when I = p1 p2caq1q2, w = [· · · cab · · · ], and w′ =
[· · · acb · · · ]. Here we may choose I ′ = p1 p2cbq1q2 similarly to above. We omit the
details.

We exhausted all the cases and thus conclude the statement.

8.2 Proof of Proposition 5.9(A)

Here, we write (· · · abc · · · ) P� (· · · a′b′c′ · · · ) for {a′, b′, c′} = {a, b, c} to indicate
the location of aP-Knuthmove (that is the underlined part).We startwith the following
lemma. After this, we use wavy underlines, e.g. · · · x1 · · · xk

������
· · · ∼P · · · y1 · · · yk · · ·

for {x1, . . . , xk} = {y1, . . . , yk} to indicate the part where Lemma 8.2 is applied.

Lemma 8.2 Suppose that a fixed natural unit interval order P is given.

(1) If b1 ←P b2 ←P · · · ←P bk and a < b1 then abk · · · b1 ∼P bk · · · b2ab1.
(2) If b1 ←P b2 ←P · · · ←P bk and a > bk then bk · · · b1a ∼P bkabk−1 · · · b1.
(3) If b1 ���P b2 ���P · · · ���P bk, x ←P y, and y < b1 then yxbk · · · b1 ∼P

ybk · · · b1x.
(4) If b1 ���P b2 ���P · · · ���P bk, x ←P y, and x > bk then bk · · · b1yx ∼P

ybk · · · b1x.

Proof For (1), we have abkbk−1 · · · b1
P� bkabk−1bk−2 · · · b1

P� · · · P�
bk · · · b3ab2b1

P� bk · · · b3b2ab1. (2) is proved similarly. For (3), we have

yxbk · · · b1
P� ybk xbk−1 · · · b1

P� · · · P� ybk · · · b2xb1
P� ybk · · · b2b1x . (4)

is proved similarly. ��
We prove (A) by showing that each step in the column insertion algorithm respects

the P-Knuth equivalence. It is sufficient to consider when the input is given by (α =
(am, . . . , a1), c = (cl , . . . , c1)) such that c1 ←P c2 ←P · · · ←P cl , α = α f , and
only one step of Alg� is required to obtain the output. We argue case-by-case.
Case I(a). There is nothing to prove since α + c = d and β = (∞).
Case I(b). The length of α equals 1, i.e. α = (a) for some a. First suppose that
ci < a < ci+1 and ci ←P a for some i ∈ [1, l − 1]. We have

acl · · · ci+2ci+1
������������

ci · · · c1 ∼P cl · · · ci+2aci+1ci ci−1 · · · c1
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P� cl · · · ci+2aci ci+1ci−1 · · · c1
�������������

∼P cl · · · ci+2aci · · · c1ci+1.

which proves the claim. It remains to show that acl · · · c1 ∼P cl · · · c2ac1 if
c1 ←P c2 ←P · · · ←P cl and a < c1, but it follows directly from Lemma 8.2.

Case I(a). It suffices to prove the following lemma.

Lemma 8.3 Suppose that c1 ←P · · · ←P cl , ci < a1 < a2 < · · · < am <

ci+1 for some i ∈ [1, l − 1], and {ci , a1, . . . , am, ci+1} is a ladder in P . Then
am · · · a1cl · · · c1 ∼P cl · · · c1am · · · a1.

Proof Since we have

am · · · a1clcl−1
������������

cl−2 · · · c1 ∼P clam · · · a1cl−1cl−2
��������������

cl−3 · · · c1 ∼P · · ·
∼P cl · · · ci+3am · · · a1ci+2ci+1

��������������
ci · · · c1 ∼P cl · · · ci+2am · · · a1ci+1ci · · · c1 and

cl · · · ci+1ci am · · · a1ci−1
������������

ci−2 · · · c1 ∼P cl · · · ci ci−1am · · · a1ci−2
��������������

ci−3 · · · c1 ∼P · · ·
∼P cl · · · c3c2am · · · a1c1

����������
∼P cl · · · c3c2c1am · · · a1,

it is enough to consider the case when i = 1 and l = 2. However, in this case we have

am · · · a2a1c2c1
P� am · · · a3a2c2a1c1

P� · · · P� amc2am−1am−2 · · · a1c1

P� c2am−1amam−2am−3 · · · a1c1
P� · · · P� c2amam−1 · · · a4a2a3a1x

P� c2amam−1 · · · a3a1a2c1

P� c2amam−1 · · · a3a2c1a1
P� · · · P� c2amc1am−1 · · · a1

P� c2c1am · · · a1

as desired. ��
Case I(b). Suppose that there exist s, t and 0 = u(0) < u(1) < · · · < u(s) =
m such that ct+i < au(i−1)+1 < · · · < au(i) for i ∈ [1, s]. Also we assume that
{ct+1, . . . , ct+s, a1, . . . , am} is a ladder in P . Note that if t + s < l then we may
assume that ct+s+1 →P ai for any i ∈ [1, m] by maximality in Case II.

We argue by induction on s ≥ 1. Assume that s = 1, i.e. ct+1 < a1 < · · · < am

and ct+2 →P ai for any i ∈ [1, m] if t + 1 < l. First if m = 1, then we have

a1cl · · · ct+2
���������

ct+1 · · · c1 ∼P cl · · · ct+3a1ct+2ct+1ct · · · c1

P� cl · · · ct+2a1ct+1ct ct−1 · · · c1
P� cl · · · ct+2a1ct ct+1ct−1ct−2 · · · c1

P� · · ·
P� cl · · · ct+2a1ct · · · c2ct+1c1
P� cl · · · ct+2a1ct · · · c2c1ct+1
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which proves the claim. In general, we have

am · · · a1cl · · · c1 ∼P am · · · a2cl · · · ct+2a1ct · · · c1ct+1

∼P am · · · a3cl · · · ct+2a2ct · · · c1a1ct+1 ∼P · · ·
∼P cl · · · ct+2amct · · · c1am−1 · · · a1ct+1

by iterating the above process m times.
Now suppose that the induction step is valid up to s − 1. Then we have

au(s) · · · a1cl · · · c1

∼P au(s) · · · au(1)+1cl · · · c1au(1) · · · a1

∼P cl · · · ct+s+1au(s)au(s−1) · · · au(2)ct+1 · · · c1 + au(s)−1 · · · au(s−1)+1ct+s

+ au(s−1)−1 · · · au(s−2)+1ct+s−1 + · · · + au(2)−1 · · · au(1)+1ct+2au(1) · · · a1

∼P au(s)−1 · · · au(s−1)+1ct+s + au(s−1)−1 · · · au(s−2)+1ct+s−1 + · · ·
+ au(2)−1 · · · au(1)+1ct+2au(1) · · · a1 + cl · · · ct+s+1au(s)au(s−1) · · · au(2)ct+1 · · · c1

∼P au(s)−1 · · · au(s−1)+1ct+s + au(s−1)−1 · · · au(s−2)+1ct+s−1 + · · · + au(2)−1 · · · au(1)+1ct+2

+ cl · · · ct+s+1au(s)au(s−1) · · · au(2)au(1)ct · · · c1 + au(1) · · · a1ct+1

∼P cl · · · ct+s+1au(s)au(s−1) · · · au(2)au(1)ct · · · c1 + au(s)−1 · · · au(s−1)+1ct+s

+ au(s−1)−1 · · · au(s−2)+1ct+s−1 + · · · + au(2)−1 · · · au(1)+1ct+2 + au(1) · · · a1ct+1

which completes the induction step. (Here, the second ∼P is from induction assump-
tion, the fourth one is from s = 1 case, and the others are from Lemma 8.3.)

8.3 Proof of Proposition 5.9(B)

We argue by induction on l = |c|. First suppose that l = 1. If a1 is in Case I, then it
should be in Case I(b) by assumption and the result is trivial. If a1 is in Case II, then
the only possible case is when a1 is in Case II(b) and either a1 is not processed in the
same step as a2 or α = (a1). Again the result is trivial in this case.

From now on suppose that l ≥ 2 and the result holds up to l − 1. Note that a1 < c2
since otherwise a1 →P c1 by Condition (�). If a1 < c1, then a1 is in Case I(b) and
a1 bumps c1. Then a1 ←P a j for any j ∈ [2, m] and ai ←P c j for j ∈ [2, l], and
thus wemay apply induction assumption on (am, . . . , a2) and (cl , . . . , c2) to prove the
claim. Thus it suffices to assume that c1 < a1 < c2. Since a1 �→P c1, it implies that
a1 ���P c1, and thus a1 is in Case II. Suppose that a1 is in Case II(b) and a1, . . . , ak

are processed in the same step but ak+1 is not. As a1 ←P · · · ←P ak , it means that
a1, . . . , ak bump c1, . . . , ck , respectively, and we may apply induction hypothesis to
(am, . . . , ak+1) and (cl , . . . , ck+1) similarly to above.

It remains to assume that a1 is in Case II(a). Since a1 ←P a2, this only happens
when a1 ���P c2. However, as a1 →P a2 and a2 �→P c2, this forces that a1 < c2 <

a2 and a2 ���P c2 by Condition (�). In other words, {c1, a1, c2, a2} is a ladder in P .
Thus by the assumption that a1 is in Case II(a) we have a2 ���P c3. We may iterate
this argument and observe that {c1, a1, c2, a2, . . . , cl , al} is a ladder. However, in this
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c1

c2
...
...
cl

a1

a2
...
ai

ai+1
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am
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⇒
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d2
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a1

a2
...
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ai+1
...
...

am

b1

b2
...
bi

∞
...
...

∞

α d b

⇒ · · ·

Fig. 26 Description of the calculation

case a1 is in Case II(b), which is a contradiction. Thus a1 cannot be in Case II(a) and
the claim is proved.

8.4 Proof of Proposition 5.9(C)

We assume that the input is given by (α = (am, . . . , a1), c = (cl , . . . , c1)) and the
output is given by (−, β) where β = (bm, . . . , b1). Furthermore, we suppose that ai

is processed in the first step of the algorithm. For example, if ai is in Case I(a) or
Case I(b) then it means that a j = ∞ for j < i .

In order to prove (C), we need to show that bi �= ∞ and bi ←P bi+1 under the
assumption that ai , ai+1 �= ∞, ai ←P ai+1, and bi+1 �= ∞. First we consider the
case when ai and ai+1 are processed in the same step. If this step is in Case II(a),
then ai = bi and ai+1 = bi+1 thus the result is obvious. On the other hand, if this
step is in Case II(b) then one may easily observe that bi < ai < bi+1 < ai+1 and
{bi , ai , bi+1, ai+1} is a ladder in P . In particular we have bi ←P bi+1 as well.

Therefore, it suffices to assume that ai and ai+1 are processed in different steps.
We let d = (dl ′ , . . . , d1) be the chain obtained after the first step (which processes ai )
is performed. (See Fig. 26.) For example, if ai is in Case I(a) then l ′ = l + 1, dl ′ = ai ,
and d j = c j for j ∈ [1, l].

First, we note that bi �= ∞; otherwise, ai is in Case I(a) which means that ai

becomes the largest element in the chain d. Since ai ←P ai+1, it means that ai+1 is
also in Case I(a), which contradicts the assumption that bi+1 �= ∞. In particular, it
follows that l = l ′, i.e. the length of c and d should be equal.

It remains to show that bi ←P bi+1. First assume that ai is in Case I(b), i.e. there
exists j ∈ [0, l − 1] such that c j < ai < c j+1 and c j ←P ai . (Here we put c0 = −∞
as before.) In this case bi = c j+1, d j+1 = ai , and dk = ck for k �= j + 1. Now, if
ai+1 is in

• Case I(a): this is impossible as we assumed that bi+1 �= ∞.
• Case I(b): ai+1 should bump dk = ck for some k ≥ j + 2 since d j+1 =

ai ←P ai+1. As a result, bi = c j+1 ←P ck = bi+1.
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• Case II(a): since ai ←P ai+1, this is only possible when there exists dk = ck

for some k ≥ j + 2 such that ck ���P ai+1. As c j+1 ←P ck , we have
c j+1 ←P ai+1 by Condition (�) applied to (c j+1, ck, ai+1). Therefore we have
bi = c j+1 ←P ai+1 = bi+1.

• Case II(b): it is shown in the same way as Case II(a).

Now we assume that ai is in Case II(a), i.e. ai = bi and d = d. Then for any
x ≥ ai+1 we have ai = bi ←P x by Condition (�) applied to (ai , ai+1, x), and
thus the only nontrivial case occurs when ai+1 is in Case II(b). However, this is only
possible when there exists j ∈ [1, l] such that ai ���P c j ���P ai+1, in which case
ai and ai+1 should be processed in the same step because of the maximality in Case II.
This violates the aforementioned assumption.

Lastly we assume that ai is in Case II(b), i.e. ai ���P bi . Again, by Condition (�)

the only nontrivial case occurs when ai+1 is in Case II(b) and this is only possible
when there exists j ∈ [1, l] such that ai ←P c j = d j ���P ai+1. In this case we
have bi+1 = c j and thus bi ←P c j = bi+1 by Condition (�) applied to (bi , ai , c j ).

We exhaust all the possibilities and thus completed the proof of (C).

8.5 Proof of Proposition 5.9(D)

We keep the setup in the proof of (C) above. First we consider the case when ai and
ai+1 are processed in the same step. If this step is in Case II(a), then ai = bi and
ai+1 = bi+1 thus the result is obvious. On the other hand, if this step is in Case II(b)
then one may easily observe that bi < ai = bi+1 < ai+1 and {bi , ai = bi+1, ai+1}
is a ladder in P . In particular we have bi ���P bi+1 as well. Therefore, it suffices to
assume that ai and ai+1 are processed in different steps.

We suppose that bi+1 = ∞, i.e. ai+1 is in Case I(a). Since ai �←P ai+1, it follows
that dl ′ �= ai , i.e. l = l ′ and dl = cl (and also l �= 0). However, it is only possible
when ai < cl and cl ←P ai+1, which implies ai ←P ai+1 by Condition (�) applied
to (ai , cl , ai+1). This violates our assumption, and thus bi+1 �= ∞ as expected.

It remains to show that bi �←P bi+1 if bi �= ∞, i.e. the length of c is equal to
d. We first assume that ai is in Case I(b), i.e. there exists j ∈ [0, l − 1] such that
c j < ai < c j+1 and c j ←P ai . (Here we put c0 = −∞ as before.) In this case we
have bi = c j+1 > ai , d j+1 = ai , and dk = ck for any k �= j + 1. As bi �←P ai+1
by Condition (�) applied to (ai , bi = c j+1, ai+1), it follows that bi �←P x for
any x ≤ ai+1 again by Condition (�) applied to (bi , x, ai+1). Therefore the only
nontrivial case occurs when ai+1 is in Case I(b) as well. This is only possible when
either [there exists k ∈ [0, j − 1] such that ck < ai+1 < ck+1 and ck ←P ai+1] or
[c j < ai+1 < d j+1 = ai and c j ←P ai+1]. Thus bi+1 is equal to either ck+1 for
k < j or ai . In either case, we have bi = c j+1 �←P bi+1.

Let us assume that ai is in Case II(a), i.e. c = d. As above, the only nontrivial case
occurs when ai+1 is in Case I(b), i.e. there exists j ∈ [0, l − 1] such that c j < ai+1 <

c j+1 and c j ←P ai+1, in which case bi+1 = c j+1. Now if ai = bi ←P bi+1 = c j+1,
then as ai is in Case II(a) there exists k < j + 1 such that ai ���P ck . But this is
contradiction since c j ←P ai+1 implies ck ←P ai+1, which means ai ←P ai+1 by
Condition (�) applied to (ai , ck, ai+1).



Robinson–Schensted correspondence for unit interval orders Page 41 of 66 97

Lastly, we assume that ai is in Case II(b) so that ai ���P bi . As ai and ai+1 are
not processed in the same step, ai should be in d. If ai+1 is in

• Case I(a): this is impossible as we assumed that bi+1 = ∞.
• Case I(b): since ai �←P ai+1, ai+1 either bumps ai or some element above ai in the
chain d, i.e. bi+1 = ai or bi+1 ←P ai . In either case, we should have bi �←P bi+1
since otherwise ai →P bi .

• Case II(a): suppose that bi ←P bi+1 = ai+1. As bi ���P ai , we have ai < ai+1
by Condition (�) applied to (bi , ai , ai+1), and thus {bi , ai , ai+1} is a ladder in P .
However, this violates the maximality of Case II as ai and ai+1 are not processed
in the same step. Thus we should have bi �←P bi+1 = ai+1

• Case II(b): bi+1 is some element in the chain d ′ satisfying ai+1 ���P bi+1. If
bi ←P bi+1, then we should have bi < ai < bi+1 < ai+1 by Condition (�)

applied to (bi , ai , bi+1) and also bi ←P ai+1 by Condition (�) applied to
(bi , bi+1, ai+1). However, in such a case {bi , ai , ai+1} is a ladder in P , which
violates the maximality in Case II. Thus we have bi �←P bi+1

We exhaust all the possibilities and thus completed the proof of (D).

8.6 Proof of Proposition 5.10

Hereafter we write ∞̂ = ∞ and â := n + 1 − a for a ∈ [1, n]. (n is assumed to be
fixed.) We define a new order P̂ on [1, n] such that a →P̂ b if and only if â ←P b̂.
Then one can easily check that P = Pλ,m if and only if P̂ = Pλ′,m . Also, from

now on we write CP ,CP̂ ,�P , 	P̂
X , etc. to clarify which partial order is used in their

definitions. We define

•̂ : A → A : α = (am, . . . , a1) �→ α̂ = (â1, . . . , âm)

•̂ : CP → CP̂ : c = (cl , . . . , c1) �→ ĉ = (ĉ1, . . . , ĉl)

and •̂ : CP̂ → CP similarly. Also we set

ω : CPA → ACP̂ : (c, α) �→ (̂α, ĉ),

and ω : CP̂A → ACP similarly. (Here we abuse notations and denote both functions
by ω.) Note that these functions are well-defined bijections.

Suppose that �P (α, c) = (d, β) for some (α, c) ∈ ACP and (d, β) ∈ CPA where
α = (am, . . . , a1) and β = (bm, . . . , b1). We set X = {m + 1 − i | i ∈ [1, m], ai �=
∞, bi = ∞}. (This set records in which step Case I(a) occured when calculating
�P (α, c).) We claim the following.

Lemma 8.4 Keep the assumptions above. Then we have (α, c) = (ω ◦ 	P̂
X ◦ ω ◦

�P )(α, c) = (ω ◦ 	P̂
X ◦ ω)(d, β), i.e. (̂c, α̂) = 	P̂

X (β̂, d̂).
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Remark 8.5 Since the set X depends on (α, c), the lemma above does not show that
ω ◦ 	P̂

X ◦ ω ◦ �P is the identity. However, it shows that one can recover (α, c) from
(d, β) and X , which essentially proves Proposition 5.10.

Proof We may assume that m ≥ 1 and am �= ∞. Suppose that it only needs one step.
If it is in

• Case I(a): in this case it is clear that α = (a1), β = (∞), d = (a1) + c, and
X = {1}. Thus 	P̂

X (β̂, d̂) = 	P̂{1}((∞), ĉ + (â1)) = (̂c, (â1)) = (̂c, α̂) as desired.
(This corresponds to Case∞(b) of Alg	 .)

• Case I(b): we have α = (a1) and X = ∅. There exists r ∈ [0, l − 1]
such that cr < a1 < cr+1 and cr ←P a1. (If a1 < c1 then we set
r = 0.) Then we have β = (cr+1) and d = (cl , . . . , cr+2, a1, cr , . . . , c1).
Since ĉr+2 < ĉr+1 < â1 and ĉr+2 ←P̂ ĉr+1, we have 	P̂

X (β̂, d̂) =
�P̂ ((ĉr+1), (ĉ1, . . . , ĉr , â1, ĉr+2, . . . , ĉl)) = ((ĉ1, . . . , ĉr , ĉr+1, ĉr+2, . . . , ĉl),

(â1)) = (̂c, α̂) as desired. (This corresponds to Case I(b) of Alg	 , and it is still
valid when r + 2 = l + 1.)

• Case II(a): we have X = ∅, α = β, c = d, and a1 < a2 < · · · < am . There exists
r , h such that {cr , . . . , cr+h} ∪ α is a ladder in P and cr < ai < cr+h for any i .
Then it is easy to see that âm < · · · < â2 < â1, {ĉr , . . . , ĉr+h}∪ α̂ is a ladder in P̂,

and ĉr+h < âi < ĉr for any i . Thus 	P̂
X (β̂, d̂) = �P̂ (̂α, ĉ) = (̂c, α̂) as desired.

(This corresponds to Case II(a) of Alg	 .)
• Case II(b): we have X = ∅. As in the description of Alg�, we choose r , h and
0 = u(r−1) < u(r) < u(r+1) < · · · < u(r+h) = m such that ci < au(i−1)+1 <

· · · < au(i) for i ∈ [r , r +h] and {cr , . . . , cr+h, a1, . . . , am} is a ladder inP . Then
it follows that d = (cl , . . . , cr+h+1, au(r+h), . . . , au(r), cr−1, . . . , c1) and

b j =
{

ci if j = u(i − 1) + 1for some i ∈ [r , r + h],
a j−1 otherwise.

However, it implies that b̂1 > b̂2 > · · · > b̂m , {âu(r), . . . , âu(r+h), b̂1, . . . , b̂m} is
a ladder in P̂ , and ̂bu(i−1)+1 = ĉi > ̂au(i−1)+1 > · · · > âu(i) for i ∈ [r , r + h].
Also note that ĉr−1 →P̂ x for any x ∈ {âu(r), . . . , âu(r+h), b̂1, . . . , b̂m} when
r > 1. Thus

	P̂
X (β̂, d̂) = �P̂ ((b̂1, . . . , b̂m), (ĉ1, . . . , ĉr−1, âu(r), . . . , âu(r+h), ĉr+h+1. . ., ĉl))

= ((ĉ1, . . . , ĉr−1, ĉr , . . . , ĉr+h, ĉr+h+1, . . . , ĉl), (â1, . . ., âm))=(̂c, α̂)

as desired. (This corresponds to Case II(b) of Alg	 .)

To prove the general case we argue by induction on the number of steps of Alg�

for the calculation of �P (α, c). Let m• ∈ [0, m − 1] be the smallest element such
that am•+1, . . . , am are processed in the same step. Set α• = (am• , . . . , a1), α† =
(am, . . . , am•+1),β• = (bm• , . . . , b1) andβ† = (bm, . . . , bm•+1), so thatα = α†+α•
and β = β† + β•. Then there exists d• ∈ CP such that �P (α•, c) = (d•, β•) and
�P (α†, d•) = (d, β†) because of the choice of m•. Thus by induction assumption we
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Fig. 27 Strategy of the proof

have (̂c, α̂•) = 	P̂
X•(β̂•, d̂•) and (d̂•, α̂†) = 	P̂

X†(β̂
†, d̂) where X• = {i + m• − m |

i ∈ X ∩ [m − m• + 1, m]} and X† = X ∩ [1, m − m•].
Therefore, in order to prove the lemma, it suffices to show that the first step of the

calculation of 	P̂
X (β̂, d̂) processes b̂m•+1, . . . , b̂m but not b̂m• . (See Fig. 27.) If am is

in Case I of Alg� then b̂m is in Case I or Case∞ of Alg	 as shown above, in which
case the statement is trivial. Thus we assume that am is in Case II of Alg�. Then we

have |d| = |d•| and X† = ∅. Thus in particular 	P̂
X†(β̂

†, d̂) = �P̂ (β̂†, d̂). We set
d = (dq , . . . , d1) and d• = (d•

q , . . . , d•
1 ).

Case II(a). Suppose that am is in Case II(a) of Alg�. Then d = d•, β† = α† and
there exist r , h such that L := {d•

r , . . . , d•
r+h, am•+1, . . . , am} is a ladder in P and

d•
r ≤ x ≤ d•

r+h for any x ∈ L. Here we need to check that {b̂m•} ∪ {̂x | x ∈ L} is
not a ladder in P̂ , i.e. either m• = 0 or bm• does not satisfy both bm• ←P bm•+1 and
bm• ���P d•

r . For the sake of contradiction we suppose otherwise. By Proposition
5.9(C), it also means that am• ←P am•+1. Also am• cannot be in Case I(a) of Alg�.

Suppose that am• is in Case I(b) of Alg�. Then b•
m is bumped out from the chain

d, and thus d•
r ����P bm• unless am• bumps the r -th element of d and am• = d•

r . But
this is absurd since it means that am• < bm• but bm• ���P d•

r = am• .
Now we assume that am• is in Case II(a) of Alg� and

L′ := {d•
r ′ , . . . , d•

r ′+h′ , am′ , . . . , am• } is the corresponding ladder in P where d•
r ′ <

· · · < d•
r ′+ j and d•

r ′ < am′ < · · · < am• < d•
r ′+h′ . Then bm• = am• , and thus

d•
r ���P bm• = am• which is only possible when r ′ + h′ = r , i.e. L ∪ L′ is again a
ladder inP . (Note that am• = b•

m ←P am•+1.) However, it contradicts the minimality
of m•.

Assume that am• is in Case II(b) of Alg�. Then am• = d•
i for some i , and as

am• ←P am•+1 and am•+1 ���P d•
r we should have i < r and am• = d•

i ←P d•
r . On

the other hand, we always have am• ���P bm• , and thus d•
r →P bm• by Condition

(�). However, it contradicts the assumption that d•
r ���P bm• .
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Case II(b).. Suppose that am is in Case II(b) of Alg� and let
L := {d•

r , . . . , d•
r+h, am•+1, . . . , am} be the corresponding ladder so that d•

r ≤
x ≤ am for any x ∈ L. Then direct calculation as above shows that L =
{dr , . . . , dr+h, bm•+1, . . . , bm}. Note that L ∪ {d•

r−1} cannot be a ladder, and thus

in order for b̂m• to be processed with b̂m•+1, . . . , b̂m we should have that {̂x |
x ∈ L} ∪ {b̂m•} is a ladder in P̂ , i.e. bm•+1 ���P bm• and x →P bm• for any
x ∈ L − {bm•+1} by maximality in Case II. By Proposition 5.9(D), it also means that
am• ���P am•+1.

Assume that am• is in Case I(b) of Alg�. Then am• = d•
i for some i . Since

am• ���P am•+1 and d•
r ���P am•+1, we should have r = i and am• = d•

r . But
it contradicts that bm• > am• as bm• ���P bm•+1 = d•

r .
Assume that am• is in Case II(a) of Alg�. Then bm• = am• ���P am•+1 �= bm•+1

which contradicts that x →P bm• for any x ∈ L − {bm•+1}.
Assume that am• is in Case II(b) of Alg� and L′ is the corresponding ladder where

am• > bm• > x for any x ∈ L′ − {am• , bm• }. Then am• = d•
i for some i . Since

am• ���P am•+1 and dr ���P am•+1, it follows that r = i . Together with the fact that
x →P bm• for any x ∈ L−{bm•+1}, it follows that L∪L′ is again a ladder. However,
it contradicts the minimality of m•.

We exhaust all the cases and finish the proof. ��
We are ready to prove Proposition 5.10.

Proof of Proposition 5.10 Recall that we have (α = (am, . . . , a1), c), (α′ = (a′
m, . . . ,

a′
1), c′) ∈ AC such that ai = ∞ ⇔ a′

i = ∞ and�(α, c) = �(α′, c′). Let (d, β) ∈ CA
be such a result. Let X = {m + 1 − i | i ∈ [1, m], ai �= ∞, bi = ∞} = {m + 1 − i |
i ∈ [1, m], a′

i �= ∞, bi = ∞}. Then by Lemma 8.4 we haveω(	P̂
X (β̂, d̂)) = (α, c) =

(α′, c′) as desired. ��

9 Proof of Theorems 6.1 and 4.15

9.1 Preliminary lemmas

Before the proof we first state the following series of lemmas which will be frequently
used later on.

Lemma 9.1 Suppose that {a1, . . . , ak} is a ladder inP where k ≥ 2 and a1 < · · · < ak.

(1) If b ���P ak, then either {a1, . . . , ak−1, ak, b} or {a1, . . . , ak−2, ak−1, b} is a
ladder in P .

(2) If b ���P a1, then either {b, a1, a2, . . . , ak} or {b, a2, a3, . . . , ak} is a ladder in
P .

Proof For (1), first note that we have b →P ak−2 which follows from Condition (�)

as ak−2 ←P ak . Now if b →P ak−1, then {a1, . . . , ak−1, ak, b} is a ladder in P .
Otherwise, we have b ���P ak−1 and thus {a1, . . . , ak−2, ak−1, b} is a ladder in P .
(2) is proved similarly. ��
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a1

a2

x

(9.3.1)

a1

a2

x

(9.3.2)

a1

a2

x

(9.3.3)

a1

a2

x

(9.3.4)

Fig. 28 Possible cases in Lemma 9.3

Lemma 9.2 Suppose that {a1, . . . , ak} is a ladder in P where a1 < · · · < ak. If
x /∈ {a1, . . . , ak}, a1 ←P x, and no one is climbing a ladder in P , then ai ←P x and
ai+1 < x for i ≤ k − 3.

Proof Since no one is climbing a ladder in P , we have ak �→P x . Since ak−2 ←P ak ,
this means that ak−2 < x by Condition (�). Now suppose that there exists i ≤ k − 3
such that ai �←P x (and thus k ≥ 5). By Condition (�), it is equivalent to assuming
that ak−3 ���P x . Since ak−3 ←P ak−1, this means that x < ak−1 by Condition
(�). Thus we have x ���P ak−1, ak and x ���P ak−2, ak−3. Since ak−4 ←P ak−2,
we also have x →P ak−4 by Condition (�). Now one may check that P restricted
to {ak−4, ak−3, ak−2, x, ak} is isomorphic to P(3,1,1),5, which is a contradiction. It
remains to check that ai < x for i ≤ k − 2, and thus suppose otherwise (and thus
k ≥ 4). It implies that ai−1 ←P ai by Condition (�) since ai−1 ←P x by above (or
by assumption if i = 2), which is a contradiction. ��
Lemma 9.3 Suppose that {b1, . . . , bk, a1, a2, a3} is a ladder in P where b1 < · · · <

bk < a1 < a2 < a3, x /∈ {b1, . . . , bk, a1, a2, a3}, b1 ←P x, and no one is climbing a
ladder in P . Then the relation between {a1, a2} and x falls into one of the following.
(Also see Fig. 28.)

(9.3.1) a1 ���P x and a2 ���P x
(9.3.2) a1 ���P x and a2 ���P x
(9.3.3) a1 ←P x and a2 ���P x
(9.3.4) a1 ←P x and a2 ←P x

Proof By Lemma 9.2 we may assume that k = 1. Then one may check case-
by-case using Condition (�) and a3 �→P x since otherwise x is climbing
{b1, . . . , bk, a1, a2, a3}. ��

Lemma 9.4 Suppose that {a1, . . . , ak} is a ladder in P where a1 < · · · < ak and
k ≥ 4, x /∈ {a1, . . . , ak}, and no one is climbing a ladder in P . If a2 ���P x, then it
falls into one of the following cases. (Also see Fig. 29)

(9.4.1) a1 ���P x, a3 ���P x
(9.4.2) k = 4, a1 ←P x, a3 ���P x, a4 ���P x
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a4

a5

x

not possible

Fig. 29 (Im)Possible cases in Lemma 9.4

(9.4.3) k = 4, a1 ←P x, a3 ���P x, a4 ���P x

Proof Using Lemma 9.2, Condition (�), and the assumption that x is not climbing
{a1, . . . , ak} in P , one may deduce that the only possibilities are the above three cases
and possibly [k = 5, a1 ←P x , a3 ���P x , a4 ���P x , a5 ���P x] (see the last
diagram in Fig. 29). However, the latter is impossible since in this case a3 is climbing
the ladder {a1, a2, x, a5}. ��

9.2 Proof of Theorem 6.1(A)

We are ready to prove Theorem 6.1(A). Since each column of PT (resp. QT ) is a chain
with respect to P (resp. the usual order), we may restrict our attention to comparing
elements in two adjacent columns of PT and QT , respectively. To this end, we set
α, β ∈ A to be α = (am, am−1, . . . , a1), β = (bm, . . . , b1) and set PT = (PT1, PT2)
where PT1, PT2 ∈ C are defined to be PT1 = (dp, . . . , d1) and PT2 = (eq , . . . , e1).
We assume that�(α,∅) = (PT1, β),�(β,∅) = (PT2, γ ) for some γ ∈ A. We define
QT = (QT1, QT2) to be as in the algorithm of P-RS.

We argue by induction on m = |α|. There is nothing to prove when its length
is 0, and thus suppose that m ≥ 1 and the statement is true up to m − 1. We set
m• < m (specified later), and define α• = (am• , . . . , a1), β• = (b•

m• , . . . , b•
2, b•

1),
PT • = (PT •

1 , PT •
2 ) where PT •

1 = (d•
p• , . . . , d•

2 , d•
1 ), PT •

2 = (e•
q• , . . . , e•

2, e•
1),

QT • = (QT •
1 , QT •

2 ), and γ • ∈ A analogously. (See Fig. 30.)
It suffices to assume that am �= ∞. For am in Case I(a), we set m• = m − 1. Then

we have p = p• +1, q = q•, PT1 = (am)+ PT •
1 , QT1 = (m)+ QT •

1 , PT2 = PT •
2 ,

and QT2 = QT •
2 . In this case there is nothing to prove. From now on, we divide all

the remaining possibilities into the following cases. (Note that we have p = p• and
QT1 = QT •

1 in these cases.)

I. am is in Case I(b) (see Fig. 31): we set m• := m − 1. There exists � ∈ [1, p] such
that d•

�−1 < am < d•
� and d•

�−1 ←P am . (Here we set d•
0 = −∞.) Here it is

easy to observe that �((am), PT •
1 ) = (PT1, (bm)). Also we have d� = am < d•

� ,
dk = d•

k if k �= �, β• = (bm−1, . . . , b2, b1), and bm = d•
� .
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...
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β
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1
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2...

eq•

PT •
2

e1

e2...

eq

PT2

Fig. 30 Setup for induction argument

II. am is in Case II(a) (see Fig. 32): we set m• ∈ [0, m − 1] to be the smallest integer
such that am•+1, . . . , am are processed in the same step and ai ���P ai+1 if
i ∈ [m• + 1, m − 1]. Then,
– �((am, . . . , am•+1), PT •

1 ) = (PT1, (bm, . . . , bm•+1)),
– there exists � ∈ [1, p − 1] such that d� < am•+1 < · · · < am < d�+1, and
– Lad := {d�, am•+1, · · · , am, d�+1} is a ladder in P .

Then we have PT1 = PT •
1 , β

• = (bm• , . . . , b2, b1), and bi = ai for i ∈ [m• +
1, m].

III. am is in Case II(b) (see Fig. 33): we set m• ∈ [0, m − 1] to be the smallest
integer such that am•+1, . . . , am are processed in the same step and ai ←P ai+1
if i ∈ [m• + 1, m − 1]. Then,
– �((am, . . . , am•+1), PT •

1 ) = (PT1, (bm, . . . , bm•+1)),
– there exists � ∈ [m − m•, p] such that d•

σ+1 < am•+1 < d•
σ+2 < am•+2 <

· · · < d•
� < am where σ := � − m + m•,

– either � = q• or d�+1 →P am (by maximality in Case II), and
– Lad := {d•

σ+1, am•+1, d•
σ+2, am•+2, . . . , d•

�, am} is a ladder in P .

Thenwehavedi = d•
i for i ∈ [1, σ ]∪[�+1, p] anddi = ai+m−� for i ∈ [σ+1, �],

β• = (bm• , . . . , b2, b1), and bi = d•
i+�−m for i ∈ [m• + 1, m].

The condition �((am, . . . , am•+1), PT •
1 ) = (PT1, (bm, . . . , bm•+1)) implies that in

each case QT2 is obtained from QT •
2 by adding some entries in [m• + 1, m] in order,

which in turn means that QT satisfies the standard Young tableau condition if and
only if p ≥ q. Thus in each case it suffices to prove that p ≥ q and di �→P ei for
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Fig. 31 I. am is in Case I(b)

...

d•

d•
+1

...

am•+1

am•+2

...
...

am

...

bm•

PT •
1 β•

Φ(α•, ∅) =

⇒

...

d•

d•
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...

bm•
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am•+2

...

am

PT1 β

Fig. 32 II. am is in Case II(a)

i ∈ [1, q]. Nowwe also divide possibilities into following cases. (Here we use Lemma
5.8 in each case. Note that we always have bm•+1 < · · · < bm .)

• bm•+1 is in Case I(a): we have eq• ←P bi for i ∈ [m• + 1, m]. Thus ei = e•
i for

i ∈ [1, q•]
• bm•+1 is in Case I(b): there exists r ∈ [1, q] such that e•

r−1 < bm•+1 < e•
r and

e•
r−1 ←P bm•+1. (Herewe set e•

0 = −∞.) Thenwe have ei = e•
i for i ∈ [1, r −1].

• bm•+1 is in Case II: let m′ ∈ [1, m• + 1] be the smallest integer such that
bm′ , . . . , bm•+1 are processed in the same step (thus in particular bm′ < · · · <

bm•+1), and we set PT ◦
2 = (e◦

q• , . . . , e◦
2, e◦

1) ∈ C to be “PT2 right before the
step processing bm′ , . . . , bm”, i.e. such that �((bm, . . . , bm′), PT ◦

2 ) = (PT2,−)

and also �((bm• , . . . , bm′), PT ◦
2 ) = (PT •

2 ,−). (As Case II does not increase the
length of the chain, PT ◦

2 is of length q•. See Fig. 34.)
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Fig. 33 III. am is in Case II(b)

∅
Φ((bm −1, . . . , b1), ∅) e◦

1

e◦
2
...

e◦
q•

PT ◦
2 Φ((bm• , . . . , bm ), PT ◦

2 )

Φ((bm, . . . , bm•+1, bm• , . . . , bm ), PT ◦
2 )
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1

e•
2
...

e•
q•

PT •
2

e1

e2
...
eq

PT2

Fig. 34 Definition of PT ◦
2 , PT •

2 , and PT2 when bm•+1 is in Case II

Also, we set r , s ≥ 1 and 0 ≤ m′ − 1 = u(r) < · · · < u(r + s) = m• + 1 to be
such that e◦

r+ j < bu(r+ j−1)+1 < · · · < bu(r+ j) for j ∈ [1, s] and

Lbe := {e◦
r+1, . . . , e◦

r+s, bm′ , bm′+1, . . . , bm•+1}

is a ladder in P . Note that we always have ei = e•
i = e◦

i for i ∈ [1, r ] by Lemma 5.8
because e◦

r ←P b j for j ∈ [m′, m] by assumption. Also one may easily check that
e•

i = e◦
i for i ≥ r + s + 1. Here we list all the possibilities. (Also see Fig. 35.)

• Case II(a), u(r + s − 1) = m•. (See Fig. 36.) This case includes s = 1 and
u(r) + 1 = u(r + 1) = m• + 1. This means that bm′ , . . . , bm• were originally
in Case II(a) as well. We have r + s + 1 ≤ q• ≤ q, e•

i = e◦
i for all i and also

ei = e•
i for i ∈ [r + 1, r + s − 1] by Lemma 5.8 because e•

r+s−1 ←P b j for
j ∈ [m• + 1, m].
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...

e◦
r+s

...

bm•

bm•+1

PT ◦
2

u(r + s− 1) = m•
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...

e◦
r+s

...

bm•

bm•+1

>

PT ◦
2

u(r + s− 1) < m•

bm• was in Case II(b)

Fig. 35 Two possible cases of bm• on the calculation of �((bm• , . . . , bm′ ), PT ◦
2 )

• Case II(a), u(r + s − 1) < m•. (See Fig. 37.) This means that bm′ , . . . , bm•
were originally in Case II(b). We have r + s + 1 ≤ q• ≤ q, e•

r+i = bu(r+i) for
i ∈ [1, s−1], e•

r+s = bm• , and ei = e◦
i for i ∈ [r +1, r +s] by Lemma 5.8 because

Case II(a) does not alter the given chain and e◦
r+s ←P b j for j ∈ [m• + 1, m] by

assumption.
• Case II(b), u(r + s − 1) < m•. (See Fig. 38.) This means that bm′ , . . . , bm• were
originally in Case II(b) as well. We have ei = e•

i for i ∈ [r + 1, r + s − 1]
and e•

r+s = bm• by Lemma 5.8 since e•
r+s−1 ←P b j for j ∈ [m• + 1, m] by

assumption.
• Case II(b), u(r + s − 1) = m•. (See Fig. 39.) This case includes s = 1 and

u(r) + 1 = u(r + 1) = m• + 1. This means that bm′ , . . . , bm• were originally in
Case II(a). We have e•

i = e◦
i for any i and er+i = bu(r+i) for i ∈ [1, s − 1] by

Lemma 5.8 because bu(r+s−1) = bm• ←P b j for j ∈ [m• +1, m]. Also, it is easy
to observe that e•

r+i < er+i for i ∈ [1, s − 1].
From now on we verify the conditions p ≥ q and di �→P ei for i ∈ [1, q] in each

case. Note that p = p• ≥ q• and d•
i �→P e•

i for any i by induction assumption, and
thus p ≥ q if q = q• and di �→P ei if di = d•

i , ei = e•
i .

I. am is in Case I(b)

We have m• = m − 1. Here it suffices to check dk �→P ek only for k satisfying
k ≤ q and either k > q• or ek < e•

k , which follows from Condition (�), induction
assumption, and the fact that dk ≤ d•

k for k ∈ [1, p].
I.i. bm is in Case I(a): we have q = q• + 1 and PT2 = (bm) + PT •

2 . First in this case
p ≥ � ≥ q since e•

q−1 = e•
q• ←P bm = d•

� . Now it suffices to check dq �→P eq .
Now if � > q, then eq = d•

� �←P d•
q = dq . If � = q, then eq = d•

� �←P am = d�.
I.ii. bm is in Case I(b): we have q = q•, and ei �= e•

i only when i = r in which
case er = bm = d•

� . Thus it suffices to check dr �→P er . Note that r ≤ � since
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Fig. 36 PT ◦
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2 , and PT2 when bm•+1 in Case II(a), u(r + s − 1) = m•
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Fig. 37 PT ◦
2 , PT •

2 , and PT2 when bm•+1 in Case II(a), u(r + s − 1) < m•

d•
� = bm →P e•

r−1. If r < � then dr = d•
r �→P d•

� = er . If r = � then d� =
am �→P d•

� = er thus the condition still holds.
I.iii. bm is in Case II(a), u(r + s − 1) = m − 1: we have PT •

2 = PT2, and thus there
is nothing to check.
I.iv. bm is in Case II(a), u(r + s − 1) < m − 1: in this case we have q = q•,
e•

r+s = bm−1, e•
r+ j = bu(r+ j) for j ∈ [1, s − 1], and e•

k = ek if k /∈ [r + 1, r + s].
Thus it suffices to check dk �→P ek for k ∈ [r + 1, r + s]. Note that r + s ≤ �

since e•
r+s = bm−1 < bm = d•

� . First suppose that k ∈ [r + 1, r + s], k < �, and
dk →P ek . Then as dk = d•

k ←P d•
� = bm it implies that dk is climbing Lbe in P ,

which is a contradiction. Now suppose k ∈ [r +1, r +s], k ≥ � and dk →P ek (which
forces that k = � = r + s). Note that Lbe ∪ {er+s+1} is a ladder in P since bm is in
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Fig. 38 PT ◦
2 , PT •

2 , and PT2 when bm•+1 in Case II(b), u(r + s − 1) < m•
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Fig. 39 PT ◦
2 , PT •

2 , and PT2 when bm•+1 in Case II(b), u(r + s − 1) = m•

Case II(a) and Lbe ∪ {er+s+1, d�+1} is also a ladder as d�+1 = d•
�+1 →P d•

� = bm

and d�+1 = d•
�+1 �→P e•

r+s+1 = er+s+1. Since d� ←P d�+1, we see that d� is
climbing the ladder Lbe ∪ {er+s+1, d�+1} which is a contradiction. (See Fig. 40.)
I.v. bm is in Case II(b), u(r + s −1) < m −1: we have q = q•, er+s = bm > bm−1 =
e•

r+s and ek = e•
k for k �= r + s, and thus there is nothing to check.

I.vi. bm is in Case II(b), u(r +s −1) = m −1: we have q = q•, e•
r+i < bu(r+i) = er+i

for i ∈ [1, s] and e•
k = ek for k /∈ [r + 1, r + s], and thus there is nothing to check.
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Fig. 40 am in Case I(b), bm in
Case II(a),
u(r + s − 1) < m − 1, � = r + s

er+s

er+s+1

bu(r+s−1)+1

...

...

bm−1

bm

d

d +1

II. am is in Case II(a)

Recall that bi = d•
i+�−m for i ∈ [m• + 1, m]. Since di = d•

i for all i , similarly to
above it suffices to check dk �→P ek only for k satisfying k ≤ q and either k > q• or
ek < e•

k .

II.i. bm•+1 is in Case I(a): direct calculation shows that q = q• +1 and PT2 = (am)+
PT •

2 . First we have p ≥ � + 1 ≥ q• + 1 = q since d�+1 > am•+1 = bm•+1 →P eq• .
It remains to check dq �→P eq . If � + 1 = q, then d�+1 ���P am = eq , and thus the
result holds. Otherwise, i.e. if � + 1 > q, then dq ≤ d� < am = eq , and thus again
the result holds.

II.ii. bm•+1 is in Case I(b): Note that � + 1 ≥ r since d•
�+1 > am•+1 =

bm•+1 →P e•
r−1. First assume that r = q or e•

r+1 →P bm = am . (This includes
the case m = m• + 1.) Then we have q = q•, er = am , and ek = e•

k for k �= r ,
and thus it suffices to show that dr �→P er = am . However, if dr →P am then
d�+1 ≥ dr →P am thus d�+1 →P am , which contradicts the assumption.

From now on we suppose that e•
r+1 �→P am (so that m ≥ m• + 2). In this case

am > e•
r by Condition (�) since e•

r+1 �→P am and e•
r+1 →P e•

r . First we assume
m = m• + 2. Then we have am ���P e•

r+1; otherwise we should have am > e•
r+1,

but it is impossible by Condition (�) since e•
r+1 →P e•

r > am−1 but am ���P am−1.
Now direct calculation shows that q = q•, er = am−1, and ek = e•

k for k �= r ,
and thus it suffices to show that dr �→P er = am−1. If � + 1 > r , then we have
dr ≤ d� < am−1 = er , and thus we are done. Now we claim that � + 1 �= r ; first
note that d� > er−1 since am−1 →P e•

r−1 = er−1 and am−1 ���P d�. Together with
d� = d•

� �→P e•
� = er−1, this means that d� ���P er−1. Also er+1 →P am−1 since

er+1 = e•
r+1 →P e•

r > am−1. But this means that {er−1, d�, am−1, am, er+1} is a
ladder in P which e•

r is climbing (er+1 →P e•
r →P er−1), which is a contradiction.

(See Fig. 41.)
It remains to assume that m ≥ m• + 3. We claim that e•

r �→P am•+1. Other-
wise, am−1 < e•

r by Lemma 9.2 which in turn implies that am−1 ←P e•
r+1 and

am ���P e•
r+1 by assumption. However, it means that {am•+1, . . . , am, e•

r+1} is a
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Fig. 41 am in Case II(a), bm in
Case I(b), m = m• + 2,
� + 1 = r d

am−1

am

d +1

er−1

er+1

e•
r

am•+1

am•+2

...

am−1

am

d +1

e•
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e•
r

e•
r+1

(9.3.1)

am•+1

am•+2

...

am−1

am

d +1

e•
r−1

e•
r

e•
r+1

(9.3.2)

am•+1

am•+2

...

am−1

am

d +1

e•
r−1

e•
r

e•
r+1

(9.3.3)

Fig. 42 am in Case II(a), bm in Case I(b), m ≥ m• + 3

ladder that e•
r is climbing, which is a contradiction. Since e•

r > am•+1 by assump-
tion, it follows that e•

r ���P am•+1. Now we apply Lemma 9.4 to Lad (of length
m − m• + 2 ≥ 5) and e•

r and conclude that d� ���P e•
r and am•+2 ���P e•

r .
Note that e•

r+1 →P am•+1 by Condition (�) as e•
r ←P e•

r+1 and e•
r > am•+1. Thus

by Lemma 9.2 we have e•
r →P a j for j ∈ [m• +1, m −2] and we may apply Lemma

9.3 to {am−1, am} and e•
r+1. As am �←P e•

r+1 by assumption, case (9.3.4) is excluded.
In other cases, direct calculations shows that er = am•+1, ek = e•

k if k /∈ {r , r + 1},
and

• (9.3.1): either er+1 = e•
r+1 or er+1 = am > e•

r+1.• (9.3.2): er+1 = am .
• (9.3.3): er+1 = e•

r+1.

(See Fig. 42.) In any case we have q = q•. Thus it suffices to check that dr �→P er ,
and dr+1 �→P er+1 in case (9.3.2). Note that here we have � + 1 > r since
d�+1 →P am−1 ≥ am•+2 > e•

r . If dr →P er = am•+1, then since dr ←P d�+1 it
means that dr is climbing Lad , which is a contradiction. Also in case (9.3.2) we have
dr+1 �→P er+1 = am by Condition (�) since dr+1 ≤ d�+1 and d�+1 ���P am .

II.iii. bm•+1 is in Case II(a), u(r + s − 1) = m•: when m = m• + 1, then PT2 =
PT •

2 , and thus there is nothing to check. Thus suppose that m ≥ m• + 2. Note that
e•

r+s ���P am•+1 = bm•+1 since bm•+1 is in Case II(a) and u(r + s − 1) + 1 = m•,
and � ≥ r + s since d•

�+1 →P am•+1 > e•
r+s . First assume that e•

r+s ←P am•+2.
Then Lad ∪ {e•

r+s} − {d�} is a ladder and e•
r+s ←P e•

r+s+1, and thus by Lemma
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am•+1
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...

am−1

am

d +1

e•
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(9.3.1)
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Fig. 43 am in Case II(a), bm in Case II(a), u(r + s − 1) = m•, m ≥ m• + 2, e•
r+s ←P am•+2

Fig. 44 am in Case II(a), bm in
Case II(a), u(r + s − 1) = m•,
m ≥ m• + 2, e•

r+s ���P am•+2

d
am−1

am

d +1

e•
r+s

e•
r+s+1

9.2 we have e•
r+s →P a j for j ∈ [m• + 1, m − 2] and we may apply Lemma

9.3 to {am−1, am} and e•
r+s+1. (9.3.4) is impossible since bm•+1 is in Case II(a), i.e.

there exists j ∈ [m• + 1, m] such that a j = b j ���P e•
r+s+1. In other cases, direct

calculation shows that ek = e•
k if k �= r + s + 1 and

• (9.3.1): either er+s+1 = e•
r+s+1 or er+s+1 = am > e•

r+s+1.• (9.3.2): er+s+1 = am .
• (9.3.3): er+s+1 = e•

r+s+1.

(See Fig. 43.) In any case we have q = q•. Thus we only need to check that
dr+s+1 �→P er+s+1 = am in case (9.3.2). But this holds by Condition (�) since
dr+s+1 ≤ d�+1 and d�+1 ���P am = er+s+1.

It remains to assume that e•
r+s ���P am•+2. Since e•

r+s ←P e•
r+s+1, this means

that am•+2 < e•
r+s+1 by Condition (�). On the other hand, in this case bm•+1 is

in Case II(a) only if am•+1 ���P e•
r+s+1. Thus we may apply Lemma 9.4 to Lad

and e•
r+s+1. Here (9.4.3) is the only one satisfying am•+2 < e•

r+s+1, in which case
m = m• + 2 and PT2 = PT •

2 . (See Fig. 44.) Thus there is nothing to prove.

II.iv. bm•+1 is in Case II(a), u(r + s − 1) < m•: first assume that m = m• + 1.
Then q = q•, e•

r+s = bm−1, e•
r+ j = bu(r+ j) for j ∈ [1, s − 1], and e j = e•

j if
j /∈ [r + 1, r + s]. Thus it suffices to check dk �→P ek for k ∈ [r + 1, r + s]. Since
d•
�+1 = d�+1 > am = bm > bm−1 = e•

r+s , we have r + s ≤ � + 1. Also since
d�+1 ���P am = bm , by Lemma 9.1 either Lbe ∪ {d�+1} or Lbe ∪ {d�+1} − {bm} is a
ladder. Now if dk →P ek for some k ∈ [r + 1, r + s], k < � + 1 then as dk ←P d�+1
it implies that dk is climbing a ladder, which is impossible. It remains to check the case
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Fig. 45 am in Case II(a), bm in
Case II(a), m = m• + 1,
� + 1 = r + s

d

d +1

d +2

am

er+s+1

when k = r + s = � + 1. We claim that this is impossible. First, � + 2 = r + s + 1 ≥
q ≥ p, and thus d�+2 is well-defined. Furthermore, d�+2 = d•

�+2 �→P e•
r+s+1 =

er+s+1, and thus d�+1 < er+s+1 by Condition (�) since d�+2 →P d�+1. On the
other hand, if d�+2 < er+s+1 then am < d�+1 ←P d�+2 < er+s+1 which implies
bm = am ←P er+s+1, but it contradicts the assumption that bm is in Case II(a).
Therefore, we have d�+1 < er+s+1 < d�+2 and also d�+2 ���P er+s+1. Now one
may check thatP restricted to {d�, am, d�+1, er+s+1, d�+2} is isomorphic toP(3,1,1),5,
which is a contradiction. (See Fig. 45.)

Now assume that m ≥ m• + 2. First d•
�+1 = d�+1 →P am•+1 > bm• = e•

r+s , and
thus � ≥ r + s. As Lbe is a ladder of size ≥ 3 by assumption, Lbe ∪ (Lad − {d�})
is also a ladder by Lemma 3.11. Now by Lemma 9.4 we have e•

r+s+1 →P x for any
x ∈ Lbe ∪ (Lad − {d�}) − {am−1, am, d�+1}, and we may apply 9.3 to {am−1, am}
and e•

r+s+1. Keep in mind that bm•+1 is in Case II(a) which implies that (9.3.4) is
impossible. Direct calculation shows that e•

r+ j = bu(r+ j) for j ∈ [1, s − 1], e•
r+s =

bm• , ek = e•
k if k /∈ [r + 1, r + s + 1} and

• (9.3.1): either er+s+1 = e•
r+s+1 or er+s+1 = am > e•

r+s+1.• (9.3.2): er+s+1 = am .
• (9.3.3): er+s+1 = e•

r+s+1.

(See Fig. 46.) In any case we have q = q•. Thus it suffices to show that dk �→P ek

if k ∈ [r + 1, r + s] and dr+s+1 �→P er+s+1 in case (9.3.2). The former is clear.
Indeed, if k ∈ [r + 1, r + s] then k < � + 1, and thus dk ←P d�+1. Therefore, if
dk →P ek then dk is climbing Lbe ∪ (Lad − {d�}) which is a contradiction. Now if
we are in case (9.3.2) then d�+1 ≥ dr+s+1 and d�+1 ���P am = er+s+1, and thus
dr+s+1 �→P er+s+1.

II.v. bm•+1 is in Case II(b), u(r + s − 1) < m•: note that Lbe � am•+1, bm• , e◦
r+s ,

and thus Lbe is of length ≥ 3. If m > m• + 1 then Lbe ∪ (Lad − {d�}) is a ladder
by Lemma 3.11, and thus so is Lbe ∪ (Lad − {d�, d�+1}). If m = m• + 1 then
Lbe ∪ (Lad −{d�, d�+1}) = Lbe is clearly a ladder. Then direct calculation shows that
q = q•, er+s = bm > bm−1 = e•

r+s , and ei = e•
i otherwise, and thus there is nothing

to check here.

II.vi. bm•+1 is in Case II(b), u(r + s − 1) = m•: first assume that Lbe ∪ (Lad −
{d�, d�+1}) = Lbe � {am•+2, . . . , am} is a ladder. Then direct calculation shows that
er+i = bu(r+i) > e•

r+i for i ∈ [1, s − 1], er+s = bm > e•
r+s , and ei = e•

i if
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bm•
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am−1

am
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(9.3.3)

Fig. 46 am in Case II(a), bm in Case II(a), u(r + s − 1) < m•, m ≥ m• + 2

Fig. 47 am in Case II(a), bm in
Case II(b), u(r + s − 1) = m•,
Lbe � {am•+2, . . . , am } is not a
ladder

e•
r+1

am•+1

am•+2

...

am

e•
r+2

i /∈ [r + 1, r + s], and thus there is nothing to check. Thus suppose otherwise,
i.e. Lbe ∪ {am•+2, . . . , am} is not a ladder and in particular m ≥ m• + 2. Since
{am•+1, . . . , am, d�+1} is a ladder of length ≥ 3, by Lemma 3.11 the length of Lbe

should be at most 2, i.e. Lbe = {e•
r+1, am•+1} and also e•

r+1 ���P am•+2. Also we
have either q• = r + 1 or e•

r+2 →P am•+1 = bm•+1 since bm•+1 is in Case II(b).
If q• > r + 1 then we may apply Lemma 9.3 to {am−1, am} and e•

r+2. Again since
bm•+1 is in Case II(b), the only possible cases is (9.3.4), i.e. am ←P e•

r+2. Now direct
calculation shows that q = q•, er+1 = am > e•

r+1 and ei = e•
i otherwise. Thus there

is nothing to check. (See Fig. 47.)
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III. am is in Case II(b)

Recall that bi = ai for i ∈ [m•+1, m]. Here, we have di = d•
i if i ∈ [1, σ ]∪[�+1, p].

Thus here we only need to check that p ≥ q when q �= q• and dk �→P ek if k ≤ q
and either k > q•, ek < e•

k , or k ∈ [σ + 1, �].
III.i. bm•+1 is in Case I(a): direct calculation shows that q = q• + m − m• and
PT2 = (d•

�, . . . , d•
σ+1) + PT •

2 . Note that σ ≥ q• since d•
σ+1 = bm•+1 →P eq• , and

thus in particular q ≤ σ + m − m• = � ≤ p. It remains to check dk �→P ek for
k ∈ [q• + 1, q]. However, since eq•+i = bm•+i = d•

σ+i ���P am•+i = dσ+i and
dσ+i ≥ dq•+i for i ∈ [1, q − q•], we have dq•+i �→P eq•+i by Condition (�) as
desired.

III.ii. bm•+1 is in Case I(b): we claim that

– q = max{q•, r + m − m• − 1},
– er+i = bm•+i+1 = d•

σ+i+1 for i ∈ [0, m − m• − 1] and ek = e•
k otherwise, and

– bm•+i+1 are in Case I(either (a) or (b)) if i < m − m• − 1.

(See Fig. 48.) Note that the first part follows from the other parts. To this end, we use
induction on i . If i = 0 then it is obvious by assumption. Now assume that the result is
true up to i − 1. First suppose that i < m − m• − 1. If bm•+i+1 > e•

r+i , then we have
bm →P bm•+i+1 > e•

r+i →P er+i−1 = bm•+i which means that e•
r+i is climbing

Lad , a contradiction. Thus bm•+i+1 < e•
r+i , and direct calculation shows that bm•+i+1

is in Case I and er+i = bm•+i+1.
Finally, we assume i = m − m• − 1 > 0. If q• < r + m − m• − 1 or

bm < e•
r+m−m•−1 then bm is in Case I and the result is obvious, and thus sup-

pose otherwise. If e•
r+m−m•−1 ←P bm , then bm →P e•

r+m−m•−1 →P bm−1,
am−1 ���P bm , and am−1 ���P bm−1, which contradicts Lemma 3.4(1). Thus we
have e•

r+m−m•−1 ���P bm . If q• < r + m − m• or bm ←P e•
r+m−m• , then bm is in

Case II(b) and er+m−m•−1 = bm , and thus we are done. It remains to consider the case
when q• ≥ r + m − m• and e•

r+m−m• ���P bm , so that bm is in Case II(a). But then
am−1 ←P e•

r+m−m• by Lemma 3.4(1) applied to bm−1, e•
r+m−m•−1, e•

r+m−m• , and
am−1. This means that {bm−1, am−1, bm, e•

r+m−m• } is a ladder in P which e•
r+m−m•−1

is climbing, which is a contradiction. (See Fig. 49.)
Note that σ + 1 ≥ r as d•

σ+1 = bm•+1 →P e•
r−1. Thus r + m − m• − 1 ≤

σ + m − m• = � ≤ p, which means that q ≤ p. It remains to check that dk �→P ek

for k ∈ [σ + 1, �] ∪ [r , r + m − m• − 1], k ≤ q. If k ∈ [σ + 1, �] then we have
dk = ak+m−� ���P bk+m−� = er+k+m−�−m•−1 = er+k−σ−1 and er+k−σ−1 ≤ ek ,
which means that dk �→P ek by Condition (�). Similarly, if k ∈ [r , r + m − m• − 1]
then dk+σ+1−r ���P ek and dk+σ+1−r ≥ dk , and thus dk �→P ek by Condition (�).

III.iii. bm•+1 is in Case II(a), u(r + s − 1) = m•: note that σ + 1 ≥ r + s since
d•
σ+1 = bm•+1 > e•

r+s . First we assume that m = m• +1, in which case PT2 = PT •
2 .

Here it suffices to check that dk �→P ek for k = σ + 1 = �, k ≤ q. It is obvious when
σ +1 = � > r + s by Condition (�) since d� = am ���P bm and bm < er+s+1 ≤ e�.
Now we assume that k = � = r + s. Then � + 1 ≤ p since � + 1 = r + s + 1 ≤
q ≤ p, and d�+1 > er+s+1 by Condition (�) since d�+1 = d•

�+1 →P d•
� = bm and

bm ���P er+s+1. As d� = d•
�+1 �→P e•

r+s+1 = er+s+1 by assumption, it means that
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Fig. 48 am in Case II(b), bm•+1 in Case I(b)

Fig. 49 am in Case II(b), bm•+1
in Case I(b),
er+m−m• ���P bm ,
bm ���P er+m−m•−1

bm−1

bm

e•
r+m−m•−1

e•
r+m−m•

am−1

Fig. 50 am in Case II(b), bm•+1
in Case II(a), u(r + s − 1) = m•,
m = m• + 1, � = r + s bm

er+s

er+s+1

d

d +1

d�+1 ���P er+s+1, i.e. {er+s, bm, er+s+1, d�+1} is a ladder. Now if d� →P er+s then
d� is climbing {er+s, bm, er+s+1, d�+1}, which is a contradiction. (See Fig. 50.)

Nowwe show that the case m > m• +1 is impossible. For the sake of contradiction
we assume this condition. Here bm•+1 is in Case II(a) only if e•

r+s+1 ���P bm•+1,
which in turn implies that e•

r+s+1 < bm•+2 by Condition (�). Since bm•+1 ���P e•
r+s ,

eitherLad∪{e•
r+s}orLad∪{e•

r+s}−{bm•+1} is a ladder byLemma9.1. Ifm > m•+2 or
Lad ∪{e•

r+s} is a ladder then bm•+1 ←P e•
r+s+1 byLemma9.2 since e•

r+s ←P e•
r+s+1,

but this is a contradiction. Thus m = m• + 2 and Lad ∪ {e•
r+s} − {bm−1} is a ladder,
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Fig. 51 am in Case II(b), bm•+1
in Case II(a),
u(r + s − 1) = m•, m > m• + 1 bm−1

bm

e•
r+s

e•
r+s+1

am−1

am

Fig. 52 am in Case II(b), bm in
Case II(a), u(r + s − 1) < m•,
m = m• + 1, � = r + s

er+s

er+s+1

bu(r+s−1)+1
...

...
bm−1

bm

d

d +1

i.e. e•
r+s ���P am−1. Now we apply Lemma 9.3 to {am−1, bm} and e•

r+s+1; the only
possible case is (9.3.1) since e•

r+s+1 < bm . However, in this case bm−1 is in Case II(b)
(together with bm), which is a contradiction. (See Fig. 51.)

III.iv. bm•+1 is in Case II(a), u(r + s − 1) < m•: first we assume that m = m• + 1,
in which case q = q•, e•

r+i = bu(r+i) for i ∈ [1, s − 1], e•
r+s = bm−1, and ei = e•

i
otherwise. Thus here it suffices to check that dk �→P ek for k ∈ {�} ∪ [r + 1, r + s],
k ≤ q. Note that � ≤ r + s since d•

� = bm > bm−1 = e•
r+s . For k < �, first

note that either Lbe ∪ {d�} or Lbe ∪ {d�} − {bm} is a ladder by Lemma 9.1 since
bm ���P am = d�. Thus if dk →P ek then dk is climbing a ladder as dk ←P d�, which
is a contradiction. It remains to consider the case k = �. If � < r + s, then it follows
from Condition (�) since d� = am ���P bm and bm < e•

r+s+1 = er+s+1 ≤ e�. If
k = � = r +s, then first �+1 = r +s +1 ≤ q ≤ p, and d�+1 = d•

�+1 →P d•
� = bm .

Since d�+1 �→P er+s+1 and er+s+1 ���P bm , by Condition (�) it follows that
d�+1 ���P er+s+1, i.e. Lbe ∪ {er+s+1, d�+1} is a ladder in P . Now if d� →P er+s

then as d� ←P d�+1 it implies that d� is climbing a ladder, which is contradiction.
(See Fig. 52.)

Now assume that m > m• + 1, and we prove that this is impossible. Indeed,
bm•+1 ���P e◦

r+s+1 = e•
r+s+1 since bm•+1 ←P bm•+2 and bm•+1 is in Case II(a).

However, sinceLbe ∪Lad is a ladder by Lemma 3.11 and er+s = e◦
r+s ←P e◦

r+s+1 =
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Fig. 53 am in Case II(b), bm•+1
in Case II(a),
u(r + s − 1) < m•, m > m• + 1 bm•

bm•+1

...

bm

er+s

e•
r+s+1am•+1

...

am

e•
r+s+1, we should have bm•+1 ←P e•

r+s+1 by Lemma 9.2. This is a contradiction.
(See Fig. 53.)

III.v. bm•+1 is in Case II(b), u(r + s − 1) < m•: first we assume that m = m• + 1,
in which case q = q•, er+s = bm > bm−1 = e•

r+s , and ei = e•
i otherwise. Thus

here it suffices to check that dk �→P ek for k = �, k ≤ q. Note that � ≥ r + s since
d•
� = bm > bm−1 = e•

r+s , which implies e� ≥ er+s . As d� = am ���P bm = er+s ,
the result follow from Condition (�).

Now we assume that m > m• + 1. Then Lbe ∪ Lad is a ladder by Lemma 3.11,
and thus if q ≤ r + s + 1 then bm•+1 ←P e◦

r+s+1 = e•
r+s+1 by Lemma 9.2 as

e•
r+s+1 = e◦

r+s+1 →P e◦
r+s . Now almost the same argument as in III.ii. applies here

and one can show that q = max{q•, r +s +m−m•−1}, er+s+i = bm•+i+1 = d•
σ+i+1

for i ∈ [0, m − m• − 1], and ei = e•
i otherwise. First, we have σ + 1 ≥ r + s

since d•
σ+1 = bm•+1 > bm• = e•

r+s . Thus r + s + m − m• − 1 ≤ σ + m −
m• = � ≤ p, which means that q ≤ p. It remains to verify that dk �→P ek for
k ∈ [σ + 1, �] ∪ [r + s, r + s + m − m• − 1], k ≤ q. If k ∈ [σ + 1, �] then
we have dk = ak+m−� ���P bk+m−� = er+s+k+m−�−m•−1 = er+s+k−σ−1 and
er+s+k−σ−1 ≤ ek , which means that dk �→P ek by Condition (�). Similarly, if
k ∈ [r + s, r + s + m − m• − 1] then dk+σ+1−r−s ���P ek and dk+σ+1−r−s ≥ dk ,
and thus dk �→P ek by Condition (�).

III.vi. bm•+1 is in Case II(b), u(r + s − 1) = m•: note that σ + 1 ≥ r + s as
d•
σ+1 = bm•+1 > e•

r+s . First suppose that r + s + 1 ≤ q• and e•
r+s+1 ���P bm•+1.

Since bm•+1 is in Case II(b), this forces that m > m• +1 and e•
r+s+1 ���P bm•+2. On

the other hand, by Lemma 9.1 eitherLad ∪{e•
r+s} orLad ∪{e•

r+s}−{bm•+1} is a ladder,
thus we may apply Lemma 9.3 to {am−1, bm} and e•

r+s+1. The only possible case is
when m = m• +2 and we are in (9.3.1), i.e. am−1 ���P e•

r+s+1 and e•
r+s+1 ���P bm .

Now direct calculation shows that q = q•, er+i = bu(r+i) > e•
r+i for i ∈ [1, s −1],

er+s = bm−1 > e•
r+s , er+s+1 = bm > e•

r+s+1, and ei = e•
i otherwise, and thus it

suffices to checkdk �→P ek for k = {σ+1 = �−1, �}, k ≤ q.Wehaved�−1 �→P e�−1
by Condition (�) since d�−1 = am−1 ���P bm−1 = er+s and e�−1 ≥ er+s and
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Fig. 54 am in Case II(b), bm•+1
in Case II(b),
u(r + s − 1) = m•,
e•

r+s+1 ���P bm•+1
bm−1

bm

e•
r+s

e•
r+s+1

am−1

am

similarly d� �→P e� since d� = am ���P bm = er+s+1 and e� ≥ er+s+1. (See
Fig. 54.)

This time suppose that either r + s + 1 > q• or e•
r+s+1 →P bm•+1. Then almost

the same argument as in III.ii. applies here and one can show that q = max{q•, r +
s + m − m• − 1}, er+i = bu(r+i) > e•

r+i for i ∈ [1, s − 1], er+s = bm•+1 > e•
r+s ,

er+s+i = bm•+i+1 = d•
σ+i+1 for i ∈ [1, m −m• −1], and ei = e•

i otherwise. First, we
have σ + 1 ≥ r + s since d•

σ+1 = bm•+1 > bm• = e•
r+s . Thus r + s + m − m• − 1 ≤

σ + m − m• = � ≤ p, which means that q ≤ p.
It remains to verify that dk �→P ek for k ∈ [σ +1, �]∪[r +s+1, r +s+m−m•−1],

k ≤ q. If k ∈ [σ + 1, �] then we have dk = ak+m−� ���P bk+m−� =
er+s+k+m−�−m•−1 = er+s+k−σ−1 and er+s+k−σ−1 ≤ ek , which means that
dk �→P ek by Condition (�). Similarly, if k ∈ [r + s + 1, r + s + m − m• − 1]
then dk+σ+1−r−s ���P ek and dk+σ+1−r−s ≥ dk , and thus dk �→P ek by Condition
(�).

We exhausted all the possibilities and thus proved Theorem 6.1(A).

9.3 Proof of Theorem 6.1(B)

Let us write w = (an, . . . , a1). Then n − i ∈ desP (w) if and only if ai ←P ai+1. We
first show that ai ←P ai+1 if and only if i ∈ des(QT ). The result is trivial if i and
i +1 are in the same column of QT , and thus suppose otherwise. Then by Proposition
5.9, i +1 is in the former column than that of i . Since QT is a standard Young tableau
by part (A), it follows that i is in the upper row than i +1, and thus i ∈ des(QT ). Now
suppose that ai �←P ai+1. By Proposition 5.9, i should be in the former column than
that of i + 1. In this case it is easy to see that i + 1 cannot be in the lower row than
that of i because of the standard Young tableau condition, and thus i /∈ des(QT ).

9.4 Proof of Theorem 6.1(C)

For w ∈ Sn , let P-RS(w) = (PT = (PT1, . . . , PTp), QT ) and choose w =
w0, w1, . . . , wp = (∞, . . . ,∞) ∈ A such that �(wi ,∅) = (PTi+1, wi+1) for
i ∈ [0, p − 1]. Then by Proposition 5.9(A), we have (recall that α f is the word
obtained from α by removing ∞)

w ∼P PT1 + w
f
1 ∼P PT1 + PT2 + w

f
2 ∼P · · · ∼P PT1 + PT2 + · · · PTp = read(PT )
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as desired.

9.5 Proof of Theorem 6.1(D)

By Theorem 6.1(C) if P-RS(w) = (PT , QT ) then w ∼P read(PT ). Thus by
Proposition 4.11 we have g-htP (w) = g-htP (read(PT )). Furthermore, if w ∼P w′
and P-RS(w′) = (PT ′, QT ′) then by the same reason g-htP (read(PT )) ∼P
g-htP (w) ∼P g-htP (w′) ∼P g-htP (read(PT ′)).

Thus it suffices to show that g-htP (read(T )) equals the length of the first col-
umn of T for any T ∈ P-Tab. Let us denote by l the length of the first column of
T . Since the first column of T is a subword of genuine P-inversions in read(T ),
it follows that g-htP (read(T )) ≥ l. Now for the sake of contradiction suppose
g-htP (read(T )) > l. Then by pigeonhole principle there exists a, b ∈ [1, n] such
that (a, b) ∈ g-htP (read(T )), the column containing a is on the left of that of b, and
b is not in the upper row than a.

Let c be the element located in the intersection of the row of a and the column of
b. We claim that (a, c) ∈ g-htP (read(T )). Indeed, if b = c then we are done, and
thus suppose otherwise. As b and c are in the same column we have b →P c. Since
a →P b by assumption, if (a, c) /∈ g-htP (read(T )) then by Lemma 8.1 there exists
a subword ae1 · · · ekc in read(T ) such that a ���P e1 ���P · · · ���P ek ���P c
and {a, e1, . . . , ek, c} is a ladder in read(T ). Note that b cannot be any of ei since any
element between b and c in read(T ) is bigger than c with respect to P . However, this
means that b is climbing the ladder {a, e1, . . . , ek, c}which contradicts the assumption.

Now let d1, d2, . . . , ds be the elements between a and c in the row of T containing
a and c. We also set d0 = a and ds+1 = c for simplicity. (Note that d0d1 · · · dsds+1 is
a subword of read(T ).) Then by the condition ofP-tableaux, we have di �→P di+1 for
i ∈ [0, s]. (In particular, we have s ≥ 1.) We claim that there exists e1 ∈ {d1, . . . , ds}
such that d0 - - -P e1. Suppose otherwise, then as d0 →P ds+1 and d0 �→P d1, there
exists j ∈ [1, k] such that d0 ←P d j and d0 →P d j+1. However, this is impossible
since d j �→P d j+1.

Since d0 - - -P e1 and d0 →P ds+1, we have e1 > ds+1 by Condition (�). If
e1 ���P ds+1 then it contradicts that (a, c) = (d0, ds+1) ∈ g-htP (read(T )), and
thus we should have e1 →P ds+1. Now we can iterate this process forever and find
e1, e2, . . . ∈ {d1, . . . , ds} such that e1 - - -P e2 - - -P · · · . This is clearly a contradiction,
and thus we conclude that g-htP (read(T )) = l which is what we want to prove.

9.6 Proof of Theorem 6.1(E)

Let P-RS(w) = (PT ′, QT ′). We first show that PT ′ = PT . Let PT =
(PT1, . . . , PTk, PTk+1, . . . , PTp) where the length of PTi equals 1 if and only if
i > k. Then direct calculation shows that �(PTk + PTk+1 + · · · + PTp,∅) =
((PTk), (∞, . . . ,∞)+ PTk+1+· · ·+ PTp +(∞)). Now if we assume PTi = (. . . , a)

and PTi+1 = (b, . . . , c) for i ∈ [1, k−1], thenwehavea < b since otherwisea →P c
by Condition (�) which contradicts the assumption that PT is a P-tableau. (Here it is
crucially used that the length of PTi+1 is≥ 2.) In other words, if x and y are processed
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in the same step then x, y should be in the same column of PT . Thus by Proposition
5.9(B), we have�(w,∅) = (PT1, (∞, · · · ,∞)+ PT2+(∞, · · · ,∞)+ PT3+· · ·+
(∞, · · · ,∞) + PTk+1 + · · · + PTp + (∞)), i.e. the first column of PT ′ is equal to
that of PT . Now we iterate this argument to conclude that PT = PT ′ as desired.

It remains to show that QT ′ = ω(Tλ). By part (B) of the theorem, if we set
l1, . . . , l p to be the column lengths of λ then we have des(QT ′) = {n − x | x ∈
[1, n−1], x �= ∑k

i=1 li for some k ∈ [1, p]}. By the property of evacuation, it follows
that des(ω(QT ′)) = [1, n − 1] − {∑k

i=1 li | k ∈ [1, p]}. Now the result follows from
the fact that Tλ is the only standardYoung tableau of shape λ that satisfies this property.

9.7 Proof of Theorem 6.1(F)

Suppose that P-RS(α) = P-RS(α′) = (PT , QT ) where PT = (PT1, . . . , PTp) ∈
P-Tabλ and QT = (QT1, . . . , QTp) ∈ SYTλ. Also, let α = α0, α1, . . . , αp =
(∞, . . . ,∞) and α′ = α′

0, α
′
1, . . . , α

′
p = (∞, . . . ,∞) be the elements in A such

that �(αi ,∅) = (PTi+1, αi+1) and �(α′
i ,∅) = (PTi+1, α

′
i+1) for i ∈ [0, p − 1].

Clearly αp = α′
p, and thus it suffices to show that αi+1 = α′

i+1 ⇒ αi = α′
i for i ∈

[0, p − 1]. However it follows from Lemma 8.4 since (∅, α̂i ) = 	P̂
Xi+1

(α̂i+1, PTi+1)

and (∅, α̂′
i ) = 	P̂

Xi+1
(α̂′

i+1, PTi+1) where Xi+1 = {|α| + 1 − j | j ∈ QTi+1}.

9.8 Proof of Theorem 6.1(G)

Bypart (F) of the theorem, it suffices to show thatP-RS : Sn → ⊔
λ�n P-Tabλ ×SYTλ

is surjective. We have (here ω is Schützenberger’s evacuation)

∑

λ�n

∑

PT ∈P-Tabλ

∑

QT ∈SYTλ

Fdes(ω(QT ))

=
∑

λ�n

∑

PT ∈P-Tabλ

∑

QT ∈SYTλ

Fdes(QT ) (∵ ω is an involution on SYTλ)

=
∑

λ�n

|P-Tabλ | · sλ (∵ [Ges84])

=
∑

w∈Sn

FdesP (w) (∵ [Gas96, Theorem 4])

=
∑

(PT ,QT )∈imP-RS

Fdes(ω(QT )) (∵ part (B) and injectivity of P-RS)

=
∑

λ�n

∑

PT ∈P-Tabλ

∑

(PT ,QT )∈imP-RS

Fdes(ω(QT )).

This equality holds only when P-RS is surjective, from which the result follows.

Remark 9.5 It is possible to prove surjectivity of P-RS without relying on Gasharov’s
result. Indeed, instead onemay argue similarly to the proof of Proposition 5.10 and use
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properties of P-tableaux for P which avoids P(3,1,1),5 and P(4,2,1,1),6. Or conversely,
from the theorem above we obtain the following bi-product.

Theorem 9.6 Suppose that P avoids P(3,1,1),5 and P(4,2,1,1),6. Let PT = (PT1, . . . ,
PTl) ∈ P-Tabλ and QT = (QT1, . . . , QTl) ∈ SYTλ for some λ � n. Define
α0, α1, . . . , αl ∈ A, c0, c1, . . . , cl ∈ C successively so that αl = (∞, . . . ,∞), |αl | =
n, and 	P̂

Xi
(α̂i , P̂Ti ) = (̂ci−1, α̂i−1) for i ∈ [1, l] where Xi = {n + 1− x | x ∈ QTi }.

Then we have c0 = c1 = · · · = cl = ∅, P-RS(α0) = (PT , QT ), and α0 ∈ Sn.

Proof By Theorem 6.1(G), there exists w ∈ Sn such that P-RS(w) = (PT , QT ). It
means that there exists w = w0, w1, . . . , wl = (∞, . . . ,∞) such that �(wi−1,∅) =
(PTi , wi ) and QTi = { j ∈ [1, n] | (wi−1) j �= ∞, (wi ) j = ∞} for i ∈ [1, l] where
(wi−1) j and (wi ) j are the j-th coordinates of wi−1 and wi , respectively. Now the
result follows from successively applying Lemma 8.4. ��

9.9 Proof of Theorem 4.15

Suppose that � = (V , desP , {Ei }) is a connected P-Knuth equivalence graph. We
claim that PT ∈ {PT1, . . . , PTk} if P-RS(w) = (PT , QT ) for some w ∈ V .
Indeed, we have read(PT ) ∼P w ∼P wi ∼P read(PTi ) for any i ∈ [1, k] by Theo-
rem 6.1(C). By assumption, it means that read(PT ) ∈ {read(PT1), . . . , read(PTk)}.
Since a P-tableau is completely determined by its reading word, it means that
PT ∈ {PT1, . . . , PTk} as desired.

It is clear that Sn is a disjoint union of connected P-Knuth equivalence graphs.
Since P-RS is a bijection between Sn and

⊔
λ�n P-Tabλ ×SYTλ, it follows that

P-RS(V ) = ⊔k
i=1{PTi } × SYTλi . Thus we have (here | f-invP (V )| is a fake P-

inversion number of any w ∈ V and ω is Schützenberger’s evacuation)

γV = t | f-invP (V )| ∑

w∈V

FdesP (w)

= t | f-invP (V )| ∑

(PT ,QT )∈P-RS(V )

Fdes(ω(QT )) (∵ Theorem 6.1(B) and injectivity of P-RS)

= t | f-invP (V )|
k∑

i=1

∑

T ∈SYTλi

Fdes(ω(T )) (∵ P-RS(V ) =
k⊔

i=1

{PTi } × SYTλi )

= t | f-invP (V )|
k∑

i=1

∑

T ∈SYTλi

Fdes(T ) (∵ ω is an involution on each SYTλi )

= t | f-invP (V )|
k∑

i=1

sλi (∵ [Ges84])

as desired.
Finally, the last sentense of the theorem follows directly from Theorem 6.1(D).
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