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The Stanley—Stembridge conjecture associates a symmetric function to each natural
unit interval order P. In this paper, we define relations a la Knuth on the symmet-
ric group for each P and conjecture that the associated P-Knuth equivalence classes
are Schur-positive, refining theorems of Gasharov, Brosnan-Chow, Guay-Paquet, and
Shareshian-Wachs. The resulting equivalence graphs fit into the framework of D
graphs studied by Assaf. Furthermore, we conjecture that the Schur expansion is
given by column-readings of P-tableaux that occur in the equivalence class. We prove
these conjectures for P avoiding two specific suborders by introducing P-analog of
Robinson—Schensted insertion, giving an answer to a long standing question of Chow.
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1 Introduction

Since its formulation in 1993, Stanley-Stembridge conjecture [20, Conjecture 5.5] has
been one of the most intriguing problems in algebraic combinatorics. Interest in it
was greatly strengthened when Shareshian and Wachs [21] related the conjecture to
Hessenberg varieties. The original conjecture was shown by Guay-Paquet [14] to be
equivalent to saying that chromatic symmetric functions of incomparability graphs
of unit interval orders are positive combinations of elementary symmetric functions.
Shareshian and Wachs realized that essentially the same symmetric functions arise as
Frobenius characters of actions of symmetric groups on cohomology rings of Hes-
senberg varieties, as studied by Tymoczko [23]. Shareshian-Wachs conjecture was
proved by Brosnan and Chow [4], and independently by Guay-Paquet [15]. On the
combinatorial level the results of Brosnan-Chow and Guay-Paquet imply a graded
refinement of the Schur positivity result of Gasharov [12]. It also provides useful tools
to understand combinatorics in terms of geometry, i.e. theory of perverse sheaves and
geometric properties of (regular) Hessenberg varieties.

The original Stanley—Stembridge conjecture, nowadays usually stated in terms of
positivity in complete homogenous symmetric functions, remains open except for spe-
cial cases, see Gebhard-Sagan [16], Dahlberg-van Willigenburg [11], Harada-Precup
[17], Cho-Huh [8], Cho-Hong [7], etc.

In an independent development, Assaf [2,3] has introduced a beautiful theory of
D graphs to address Schur positivity questions in symmetric functions, such as Mac-
donald polynomials, LLT polynomials, and k-Schur functions. While as shown by
Blasiak [6] getting exactly the right axiomatization to address those questions can be
very challenging, Assaf’s work provides a very useful framework. In particular her
characterization of dual equivalence graphs has been used in a variety of contexts, see
for example Chmutov [9] and Roberts [18]. Assaf’s ideas were further developed by
Blasiak-Fomin [5] and others.

In this paper we combine the two lines of research. Specifically, for each unit interval
order P we define an analog of Knuth moves. The resulting P-Knuth equivalence
classes of permutations satisfy correct axioms to fit into the framework of D graphs. We
conjecture that via the standard map from permutations to quasisymmetric functions
the images of P-Knuth equivalence classes are symmetric and Schur positive. This is a
refinement of results of Gasharov, Brosnan-Chow, and Guay-Paquet. Furthermore, we
conjecture that the decomposition into Schur functions can be read off from column
reading words of P-tableaux that occur in the equivalence class.

We prove this Schur positivity conjecture for a special class of unit interval orders
‘P. For that purpose we introduce an analog of Robinson—Schensted insertion that
preserves descents, solving an open problem dating back to the works of Sundquist-
Wagner-West and Chow. The 1997 work of Sundquist—Wagner—West [22] constructs
a version of Robinson—Schensted insertion for unit interval orders, however in gen-
eral their algorithm does not preserve descents, and thus cannot be used to derive
Schur positivity results. Chow [10] proved that Sundquist—-Wagner—West does pre-
serve descents under a very restrictive condition—in our terminology his condition
is to avoid a suborder isomorphic to P2, 1),4. Chow implicitly states in his paper the
question of constructing Robinson—Schensted correspondence that preserves descents
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when P avoids a less restrictive pattern P(3 1,1),5. In this paper we solve this problem
for unit interval orders that avoid both P3 1,1),5 and P4,2,1,1),6- As a result, in those
cases we are able to prove Schur positivity of the P-Knuth equivalence classes.

This project started as an attempt to prove Stanley-Stembridge conjecture. This
goal remains elusive, as it would require introducing an affine analog of P-Knuth
equivalence classes and proving their i-positivity. We expect this to be strictly harder
than proving Schur positivity of the P-Knuth equivalence graphs introduced in this
paper, and even that remains open in full generality. Nevertheless, P-Knuth equiva-
lence classes seem to be interesting objects of their own, perhaps having geometric
meaning in terms of (equivariant) cohomology and moment graphs of Hessenberg
varieties. We hope that understanding P-Knuth equivalence classes, and in particular
proving Conjecture 4.16, will shed new light on Stanley-Stembridge conjecture.

The paper proceeds as follows. In Sect. 2 we recall some standard combinatorial
notions such as partitions, partial orders and tableaux. In Sect. 3 we recall properties
and characterizations of natural unit interval orders. We also introduce an important
class of natural unit interval orders called ladders, as well as ladder-climbing property.
In Sect. 4 we introduce P-Knuth equivalence classes and state the main Theorem
4.15. In Sect. 5 we introduce column insertion procedure, which is then used in Sect. 6
to define the full P-Robinson—Schensted insertion algorithm. Section 7 is filled with
examples illustrating everything introduced in the previous sections. In Sects. 8 and 9
we give proofs of the results from previous sections.

2 Definitions and notations

Fora,b € Z,we set [a,b] :={x € Z | a < x < b}. For a set X, we let |X| be its
cardinal.

2.1 Partitions

A partition is a finite sequence of integers A = (A1, A2, ..., Ay) such that A1 > Ay >
-+« > )Ag > 0. In such a case, we set its length to be a (denoted /(1)) and its size to be
A+ A2+ -+ A (denoted |A]). When |[A| = n, we also write A - n. If i > [()), we
set A; = 0. We write A’ to denote the conjugate partition of . We define the staircase
partition Stair(n) tobe (n — 1,n — 2, ..., 2, 1). For two partitions A and u, we write
A C pif A; < p; foralli € Z.. Pictorially, it means that the Young diagram of u
contains that of A.

2.2 Partial orders

We use the symbols >, >, <, and < for the usual order on R. However, throughout
this paper we discuss various partial orders, for which new symbols are necessary in
order to avoid conflict. Namely, suppose that a partial order P on [1, n] is given. For
a,b e [1, n], we write

(1) a <p b (or b >p a) if a is smaller than b with respect to P,
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2)a<pb(orb—pa)ifa<banda <p b,
(3) a«-—-pb(orb--+pa)ifa <bbuta £p b, and
(4) a---p b if a and b are not comparable with respect to P (and a # b).

If there is no confusion we drop the subscript p from each symbol.

For a partial order P on a set X and its subset ¥ C X, the restriction of P to Y,
denoted Py, is well-defined. For two partial orders P on [1, n] and P’ on [1, m], we
say that P avoids P’ or P is P’-avoiding if restriction of P to any subset of [1, n] (of
cardinal m) is not isomorphic to P’.

2.3 Symmetric groups and words

In this paper, a word means a finite sequence. For a word « = (1, a2, ..., ak), we
also write @« = a3 - - - o to simplify notations. For a word «, we denote by o the
corresponding underlying set. We let |«| € N be the length of «. If || = O, then we
also write « = . By a subword of «, we mean a word («;,, ;,, ..., ;) such that
1 <i; <ip <--- <iy <k.Fortwo words o and B, we define o + 8 to be their
concatenation.

Let G,, be the symmetric group permuting [1, n]. We identify elements in G,, with
the words in which each of 1, 2, ..., n appears once. Forw = wjw; - - - w, € 6, and
a partial order P defined on [1, n], we set

e its P-descent to be desp(w) = {i € [1,n — 1] | w; >p wit1},
e its genuine P-inversion to be

g-invp(w) =((, j) € [1,n]* | i —p j,i appears before j in w,
and there do not exist any subword iajas - - - aij of w such that

[---paj---pay---p-+----pak---p j},
e its (genuine) P-height to be (if g-invp(w) = ¥ then g-htp(w) = 1 and otherwise)

g-htp(w) = max{k € N | there existay, az, ..., ar_1, ax such that

(a1, a2), ..., (ak—1, ax) € g-invp(w)},

e its fake P-inversion to be f-invp(w) = {(i, j) € [1,n]> | i --»p j,i appears
before j in w}, and
e its (fake) P-inversion number to be | f-invp (w)].

For example, if P is the usual order on [1, n] then g-invp(w) is the set of usual
inversions in w, g-ht(w) is the length of the longest decreasing subword of w, and
f-invp (w) = @. On the other hand, if P is the trivial order on [1, n] then g-invp (w) =
#, g-htp(w) = 1, and f-invp (w) is the set of usual inversions in w. In addition, if P is
defined with respect to the Hasse diagram in Fig. 1 and w = (9,5, 1, 8,4,7,3,6,2)
then

o desp(w) ={1,2,4,6, 8},
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Figc;l.1 An example of partial 9
/|
6 7 8

NN
3 4 5

e

2 1

o g-invp(w) = {(9,5),09,4),0,3),0,2),0,1),8,4),(8,3),(8,2),(7,3),

(7,2), (6,2), (5, D},

g-htp (w) = 3 (= the length of (9,5,1)),

f-invp (w) = {(3, 2), 4, 3), (5,3), (5,4), (7,6), (8,6), (8,7), (9, 8)}, and
| f-invp(w)| = 8.

Remark 2.1 We adopt the convention that if i — j in the Hasse diagram of an order
‘P then i is greater than j with respect to P, which is in accordance with the notation

i—>pjJ.

2.4 Standard and P-tableaux

A tableau T is said to satisfy the P-tableau condition if for two entries i, j € [1, n]
adjacent in T, (1) if i is above j then i <p j, and (2) if i is left to j then i ¥#p j.
That is, entries in T are increasing along columns and nondecreasing along rows with
respect to P. Such a tableau T is called a P-tableau if in addition it contains each entry
of [1, n] exactly once. (Note that our definition is a conjugated version of the one in
[12, Theorem 3].) We denote by P-Tab,, (resp. P-Tab, ) the set of P-tableaux of size
n (resp. of shape 1). Similarly, we denote by SYT,, (resp. SYT,) the set of standard
Young tableaux of size n (resp. of shape A). Note that if P is the usual order on [1, n]
then P-tableaux are exactly standard Young tableaux.

For a tableau T, we often identify each of its columns with its reading word from
bottom to top and also identify 7" with the sequence of its columns. In addition,
we define the reading word of T', denoted read(7'), to be the concatenation of col-
umn reading words from bottom to top. We define the descent of T € SYT, to be
des(T) = {i € [1,n — 1] | i is in a higher row than that of i 4 1}. For example, if
T = é 2 ; 8| then 7 is identified with (4,2, 1), (6, 3), (7. 5), (8)), the reading
4
word of T is read(T) = (4,2, 1,6,3,7,5,8), and des(T) = {1, 3, 5).

For a partial order P on [1, n] and T € P-Tab,,, we define its fake P-inversion to
be f-invp(T) = {(i, j) € [(1,n]%|i --+p j, the column of i is left to that of j} and
its fake P-inversion number to be | f-invp(T')|. Since each column of a P-tableau is
a chain in P, it is easy to show that f-invp(T') = f-invp(read(T)) for any P-tableau
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T . For example, if P is given again by Fig. l and T = 41312 |then f-invp(T) =

o=
oo
3
[e)

f-invp (read(T)) = {(3, 2), (4, 3), (5, 3), (5,4), (7,6), (8,6), (8,7), (9, 8)}, and thus
| f-invp(T)| = 8.

2.5 Schur and fundamental quasi-symmetric functions

For a partition A, we set s, to be the Schur function corresponding to A. For a compo-
sition 1, we set F, to be the fundamental quasi-symmetric function corresponding to
w defined by Gessel.

3 Natural unit interval order

In this section we recall the notion of natural unit interval orders and some of its
properties. Also, we introduce a ladder order which plays a prominent role in this

paper.
3.1 Three equivalent definitions of natural unit interval orders

Here we define natural unit interval orders in three different ways. We refer readers to
[21, Section 4] for the proof that these definitions are indeed equivalent.

3.1.1 Definition in terms of unit intervals

Definition 3.1 We say that PP on [1, n] is a natural unit interval order if it there exist n
real numbers y; < y» < --- < ypsuchthati <p j & y; +1 < y;.

Pictorially, one may regard yi, ..., y, as the starting points of unit intervals /] =
i,y1 +11, 1 = [y2,y2 + 11,..., I, = [yu, y» + 1]. Then the above definition
translates to the following.

(1) Ifi < j, then /; should start before /; in the real line.
(2) We have i <p j if and only if /; starts after /; ends in the real line.

For example, Fig. 2 shows an arrangement of unit intervals and the corresponding
natural unit interval order.

3.1.2 Definition using partitions

For n € Z-o, let A be a partition contained in Stair(n). We define the partial order
Ps..non[l,n] such thata <p b if and only if @ < A, 11—p. In other words, we have
[1,x;]={x € [l,n] | x <p n+ 1 —i}. For example, whenn = Sand A = (3, 1)
then P;, 5, is given as in Fig. 3.

Definition 3.2 We say that a partial order P on [1, n] is a natural unit interval order if
P = P, for some A C Stair(n).
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Fig.2 Natural unit interval order in terms of unit intervals

Fig.3 Natural unit interval order
in terms of partitions

T W N =

20

1 2 3 45

3.1.3 Defining properties

One may also define natural unit interval orders by imposing certain conditions on a
partial order, namely:

Definition 3.3 We say that a partial order P on [1, ] is a natural unit interval order if

e the usual order is a linearization of P, i.e. if a <p b then a < b, and
e ifb<pc,a---pb,anda---pc,thenb < a < c.

Because of the first condition, <—p, —p are equivalent to <p, >p when we consider
natural unit interval orders. From now on we usually use the former rather than the
latter for such orders. Also, hereafter we refer to the second condition as Condition
(M). For example, if P is a natural unit interval order and a, b, ¢ € [1, n] satisfy
b <p canda < b, then a <—p ¢ by Condition ().

3.2 (3 + 1) and (2 + 2) avoidance

There is another characterization of natural unit interval orders in terms of suborder
avoidance. Indeed, it is essentially proved in [19] that a partial order P on [1, n] is a
natural unit interval order if and only if the usual order is a linearization of P and P
avoids suborders “(3 + 1)” (disjoint union of a chain of length 3 and an element) and
“(2+2)” (disjoint union of two chains of length 2). Here we prove only one direction
which will be useful later on.

Lemma 3.4 (See Fig. 4) Suppose that P is a natural unit interval order on [1, n]. Then,

(1) there does not exist a, b, c,d € [1,n] such thata —p b —p ¢, a---pd, and
d---pc,and
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Fig.4 (3+1)- and (2+2)-posets a a c

(2) there does not exist a, b, c,d € [1,n] such thata —p b, c ->p d, c---p b, and
a---pd.

Proof (1) If b > d (resp. b = d) then a —p d by Condition (h) applied to {a, b, d}
(resp. since a —p b) which is absurd. Similarly, if b < d then d —p ¢ by Condition
(h) which is again impossible. (2) If ¢ > a (resp. ¢ = a) then ¢ —p b by Condition
(M) applied to {a, b, ¢} (resp. since @ —p b) which is absurd, and thus ¢ < a.
However, by symmetry we should have a < ¢ as well, which is again impossible. O

3.3 Properties of P-tableaux

We discuss some properties of P-tableaux for natural unit interval orders. These will
be frequently used in the later part of this paper without reminder.

Lemma 3.5 Suppose that (ap, ..., a1) and (by, ... b1) are two adjacent columns in a
‘P-tableau such that the former is on the left of the latter.

(1) Ifa; > bj theni > j
(2) Ifa; —>p bj theni > j.
(3) Ifi < j then a; < b;.

Proof For (1), suppose a; > bj and i < j. Then b; <—p b; thus a; —p b; by
Condition (rh), which contradicts the P-tableau condition. This proves (1). For (2),
suppose a¢; —p bj and i < j. Then b; < b; thus a; —p b; by Condition (i),
which contradicts the P-tableau condition. This proves (2). For (3), suppose i < j
and a; > b;. Then b; <—p b; thus a; —p b; by Condition (i), which contradicts the
‘P-tableau condition. This proves (3). O

3.4 Ladders

We define a special kind of a natural unit interval order called a ladder order.

Definition 3.6 A partial order P is called a ladder order if it is isomorphic to
Pstair(m—1),m for some m € N.

Figure 5 shows the partial order Psir9),10 Which is by definition a ladder order,
and the partition and the unit interval arrangement defining it. The term “ladder” is
inspired from the shapes of its Hasse diagram and the corresponding unit interval
arrangement.
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Fig.5 Pstair9),10: a ladder of size 10

Definition 3.7 For a partial order P defined on X, we say that A is a ladder in P if
P| 4 is a ladder order.

For example, if P = Psuirn—1),» then ladders in P are exactly [a, b] for some
a, b € [1, m]. Letus describe some basic properties of ladders. Later we will frequently
use these properties without reminder.

Lemma 3.8 Suppose that P is a natural unit interval order on [1, n] and assume that
Vi, ..., Yk € [1,n] such that y1 < y» < --- < yy and {y1, ..., Yx} is a ladder in P.
Then,

M) {yi,...,yj}isaladder in P forany 1 <i < j <k.

(2) yi ¢--p yiq1fori €1,k —1].

@) yi <pyjifj—i=2

@A) If x £&~p y1and x <—p y, then {x, y1, ..., Y} is a ladder in P.

) If z Ap ykand 2 —p yi—1, then {y1, ..., Yk, 2} is a ladder in P.

©) If yi <x < yiq1forsomei € [1,k— 1], then y; «--p x and x «--p yi1].

Proof It follows almost directly from the definition of a ladder and Condition (rh).
O

3.5 Climbing a ladder

We define a special kind of partial orders called “ladder-climbing” orders.

Definition 3.9 For a partial order P on [1, n], we say that someone is climbing a ladder
in P or P is ladder-climbing if there exist x, y1, ..., Yk € [1, n] such that

M x &y y2, - ks

2) {y1,y2,...,yx}1s aladder in P, and

(3) y1 <P x <P

In this case, we also say that x is climbing a ladder in ‘P or x is climbing (the ladder)
{y1, ..., yx} in P. If there is no such x, then we say that no one is climbing a ladder
in ‘P or simply P is not ladder-climbing.

Indeed, there is a characterization of ladder-climbing partial orders in terms of the
avoidance of certain suborders as the following proposition shows.
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5 6

4 )
3 3 4

2 2
1 1

Fig.6 P31,1),5 and P4.2,1,1),6

Proposition 3.10 Let P be a partial order on [1, n]. Then no one is climbing a ladder
in P if and only if it avoids both P3,1,1y,5 and P@.2,1,1).6. (See Fig. 6 for the Hasse
diagrams of these two orders.)

Proof Direct calculation shows that 3 is climbing the ladder {1, 2, 4, 5} in P31,1),5
and 4 is climbing the ladder {1, 2, 4, 5, 6} in P(4,2.1,1),6- Thus if no one is climbing a
ladder in P then it should avoid P3,1,1),5 and P4,2.1,1),6-

It remains to show thatif P is ladder-climbing then there is aset X € [1, n] such that
‘Plx is isomorphic to either P(3 1.1),5 or P4,2,1,1),6. Suppose that x is climbing the lad-
der {y1, y2, ..., yx}in’P where y; < y» < --- < yi,inwhichcase y; <—p x <p w.
Then without loss of generality we may assume that y, #~p x and y;_; /4 p x. Since
y1 «—-p y2 and yx_1 ¢--p Yi, this implies that y; «--p x and yx_1 --+p x by
Condition (). Moreover, we have y; ---p x fori € [2, k — 1]. Indeed, if y; <p x
(resp. y; —p x) then y <p x (resp. yk—1 —p x) by Condition () applied to
(y2, yi, x) (resp. (x, yi, Yk—1)), which is a contradiction.

Since y; «--p x and yx_; --+p x we have k > 4. On the other hand, if £ > 7
then y;, y4, yo---p x and y» <—p ya <—p Yy which is impossible by Lemma 3.4.
Thus it follows that k € [4, 6]. If k = 4, then one can easily show that P restricted
to {x, y1, y2, ¥3, y4} is isomorphic to P 1 1),5 where the isomorphism of posets
is given by (x, y1, y2,¥3,y4) +— (3,1,2,4,5). If k = 5, then P restricted to
{x, ¥1, ¥2, ¥3, y4, y5} is isomorphic to P42 1,1),6 Where the isomorphism is given
by (x, ¥1,¥2,¥3, y4,¥5) — (3,1,2,4,5,6). Finally, if k = 6 then P restricted
to {x, y1, ¥2, ¥3, ¥5} is isomorphic to P(3,1,1),5, where the isomorphism is given by
(x, ¥1, ¥2, ¥3, ¥5) — (4,1, 2, 3, 6). It suffices for the proof. O

There is another characterization of P(3 1,1),5-avoiding partial orders as follows.

Lemma 3.11 The following two conditions are equivalent.

(1) P avoids P3,1,1),5-

(2) “A join of two ladders is again a ladder.” Suppose that L and L' are two ladders
in P such that LN L' = {x}. If x is the maximum in L and the minimum in L' with
respect to the usual order and |L|, |L'| > 3 then L U L' is also a ladder in P.
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Proof Suppose that P = P 1,1),5. Then {1,2,3} and {3,4,5} are ladders but
{1,2,3,4,5} is not a ladder. Thus any order that does not avoid P = P3,1,1),5 can-
not satisfy the second condition. Now suppose that P avoids Pz 1,1y,5 and assume
that a; < -+ < ax < x < by < --- < by such that {ay,...,ar,x} and
{x, by, ..., by} are ladders in P. Then it suffices to show that {a;_1, ax, x, b1, by}
is again a ladder in P. By assumption we have ay—1 <p x <p by and
Ap—1 ¢--p Qg <—-p X «--p b «-—p by. Also ax—1 <—p by and a; <p by by
Condition (rh). Thus if a; «--p by then direct calculation shows that P restricted
to {ax_1, ak, x, by, ba} is isomorphic to P 1,1),5, which is a contradiction. Thus
ay <—p b; and the result follows. O

4 P-Knuth equivalence and the main theorem

In this section we assume that a fixed natural unit interval order P on [1, n] is given
and define P-Knuth moves and equivalences. Also we state our main theorem in this

paper.
4.1 Definition of P-Knuth equivalences

First we define the notions of P-Knuth moves and equivalences which generalize the
ones originally introduced by Knuth.

Definition4.1 Let 1 <a < b < ¢ < nand a <p c. We say that two words w, w’
are connected by a P-Knuth move if they fall into one of the following situations, in

. . P . . .
which case we write w «~ w’ (or we~w’ if there is no confusion).

(1) Ifa «-—pbandb «——p ¢, then [---bea---] < [---cab-- 1.

QK a <p bandb ¢—p c then [---bca---]1 < [---bac---] and
[---cba-~-]«\7f»[--~cab~-~].
B3 Ifa «—-p bad b <«p c, then [---bca---1 «w [---cba---] and
P
[---ach---]«w[--cab---].

4) Ifa <p bandb «p c,then[---bca-~-]«z)w[--~bac~-~]and[~-~acb---]w
[---cab---].

C C . C
| | l\/,b
a<’ a 7 a<’
(D Pligpey = Pays 2 Pliabey =Pans 3 Pliab.e = P2).3
|
i

D) Plia,b,cy = P2,1),3
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213 132 213 132
231 123 123
321
(@) Py (b) Pay,s () P2),3
132
123
312 321
(d) P13 (€) Pis

Fig.7 The P-Knuth moves on &3

In each situation, there exists i € [2, n — 1] such that the set of positions of a, b, and
cis {i — 1,1, i+ 1}. In such a case, we say that i is the position of the P-Knuth move
and also that the P-Knuth move occurs at position i.

Definition 4.2 The P-Knuth equivalence relation on the set of words is the equivalence

relation generated by P-Knuth moves. If two words w, w’ are equivalent under this
. . . P .

relation, we say that w and w’ are P-Knuth equivalent and write w ~ w’. (If there is

no confusion, we also say that w and w’ are equivalent and write w ~ w’.)

Note that P-Knuth move/equivalence revert to the usual Knuth move/equivalence
when P is the usual order on [1, n].

Example 4.3 (Fig. 7) All the possible P-Knuth moves for natural unit interval orders
P on[l, 3] are described in Fig. 7. Here, the underlined numbers in each word indicate
its P-descents.

4.2 Relation to P-descents and D graphs

Here we relate P-Knuth equivalences with study of dual equivalence graphs by Assaf.
More precisely, we show that the graphs obtained from the P-Knuth moves are D
graphs in the sense of [1, Definition 4.5]. First let us discuss how P-Knuth moves
affect the P-descents of words.

Lemma 4.4 Assume that w, w' € &, are connected by a P-Knuth move at position i.

(1) We have {desp(w) N{i — 1,i},desp(w)N{i —1,i}} = {{i — 1}, {i}}.
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2) Ifi > 2, then {desp(w)N{i —2,i — 1}, desp(w') N {i —2,i — 1}} is equal to one
of 0, (i — 1}, {{i =2}, {i = 1}}, or {{i =2}, {i —2,i —1}}.

3) Ifi <n—1, then {desp(w) N{i,i + 1}, desp(w") N {i,i + 1}} is equal to one of
@, i}, (G}, i + 13}, or {{i + 1}, {i, i + 1}}.

@D Ifjell,n—11—1[i —2,i + 1], then desp(w) N {j} = desp(w’) N {j}.

Proof (1) is checked case-by-case. For (2), we only need to check that {desp(w) N
{i—2,i—1},desp(w)N{i —2,i—1}} # {@, {i —2, i — 1}} thanks to (1). This is also
checked case-by-case. (3) is proved similarly to (2). (4) is trivial from the definition
of P-Knuth moves. O

We recall the notion of signed colored graphs following [1, 4.2] and [2, Defini-
tion 3.1].

Definition 4.5 A signed colored graph of degree n is a collection (V, o, {E;}1<i<n)
where V is a set, o is a function o : V — 2[L2=11 and each E; is a set of unordered
pairs of different elements in V. (Here 2UL.n=11 denotes the power set of [1,n — 1].)
Each elementin V is called a vertex, and each element in E; is called an edge colored i.

Remark 4.6 In [1, 4.2] and [2, Definition 3.1] the function o assigns to each vertex
v € V asequence of length n — 1 consisting of + and —. Their definition is equivalent
to ours if we define a new sigma function, say o’ : V. — 217~ such that o/(v) 3 i
(resp. o’ (v) # i) if and only if the i-th component of o (v) equals + (resp. —).

Definition 4.7 Suppose that V C &, is closed under P-Knuth moves. Then we define
the P-Knuth equivalence graph I'y attached to V to be I'y = (V, desp, {Ei}1<i<n)
where each E; is the set of pairs in V connected by a P-Knuth move at position i.

It is clear that P-Knuth equivalence graph is a signed colored graph of degree n.
Now we recall the notion of D graphs following [1, Definition 4.2, 4.5].

Definition 4.8 A signed colored graph (V, o, {E;}1<i<,) of degree n is called a D
graph if the following axioms hold.

Axl. Forw e Vand 1 <i <m, |o(w)N{i —1,i}| = 1 if and only if there exists
x € V such that {w, x} € E;. Moreover, x is unique when it exists.

Ax2. Whenever {w, x} € E;,c(w)N{i} Zox)N{i}and o (w)N{h} = o(x)N{h}
forh ¢ [i —2,i+1].

Ax3. For{w, x} € E;,ifo(w)N{i =2} # o (x)N{i —2} then |o (w)N{i -2,i—1}| = 1.
Also,ifo(w)N{i + 1} #o(x)N{i 4+ 1} then [c(w) N {i,i + 1}| = 1.

Ax5. Whenever |i — j| > 3, {w, x} € E;, and {x, y} € E}, there exists v € V such
that {w, v} € E; and {v, y} € E;.

We claim that the P-Knuth equivalence graphs are indeed D graphs.



97 Page 14 of 66 D. Kim, P. Pylyavskyy

— S4 — — 1S4 — — tS4 — ls31

(1382} {1023 }{1123]

— t254 - — t54 — — t254 - ts31

2341 }i{ 2314 }L{ 3124

t2531 ts22 t254 —

ERIRREOERon

t2(,531 + S22)
| 3 2 | 3 | 2
[3241|-" {3421 -={4231] > {4312] ‘4132\ [4321]

Fig.8 P(3,1),4-Knuth equivalence graph

Proposition 4.9 A P-Knuth equivalence graph is a D graph.

Proof We need to check that Ax1, Ax2, Ax3, and Ax5 hold for P-Knuth equivalence
graphs. For Axl1, it follows from the fact that the 7P-Knuth move at position i in
Definition 4.1 occurs in all the possible cases of words satisfying |o (w)N{i —1,i}| = 1.
Ax2 follows from (1) and (4) of Lemma 4.4. Ax3 follows from (2) and (3) of Lemma
4.4. Lastly, Ax5 clearly follows from the definition of 7P-Knuth moves. O

In [2, Definition 3.2] and [1, Definition 4.2], they defined dual equivalence graphs
which are a special kind of D graphs by imposing two additional axioms. This
framework is used to study Schur positivity of certain quasi-symmetric functions.
In particular, the “generating functions” attached to a dual equivalence graph is a sin-
gle Schur function by [2, Corollary 4.4]. However, our graphs are not dual equivalence
graphs in general.

Example 4.10 Figure 8 shows all the connected P-Knuth equivalence graphs on &4
with P = P(3,1),4, where underlined numbers denote P-descents and numbers above
edges indicate their colors. (Written above each connected component is the cor-
responding generating function which we will define in a moment.) There is one
connected component with 5 vertices which satisfies neither Axiom 4 nor Axiom 6 of
[2, Definition 3.2] for dual equivalence graphs.

4.3 Genuine P-height and fake P-inversion number
Here we prove that the 7P-Knuth move preserves genuine P-heights and fake P-

inversion numbers of permutations. For the former claim, we need to impose
assumption that P is not ladder-climbing.
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Proposition 4.11 Suppose that P avoids P3.1,1),5 and Pa2,1.1)6- If w 2 w', then
g-hi(w) = g-ht(w’). As a result, the genuine P-height is constant on any connected
‘P-Knuth equivalence graph.

The proof of this proposition will be given in Sect. 8.

Remark 4.12 1f we allow that P is ladder-climbing, then the above proposition is

no longer true. For example, when P = P31 1),5 we have 53241 L, 53412 but
g-htp(53241) = |(5,3)] = 2 # 3 = |(5,3, 1)| = g-htp(53412). Likewise, when

P = P 1.1)6 we have 563241 <2 635241 but g-htp (563241) = |(6,4, 1)] = 3 #
2 =(6,3)| = g-htp(635241).

Lemma4.13 If w 2 w', then |f-invp(w)| = |f-invp(w')|. As a result, the fake
‘P-inversion number is constant on any connected P-Knuth equivalence graph.

Proof Suppose that the P-Knuth move w A w’ occurs at position i. If either x ¢
{wi—1, wi, wiy1} ory ¢ {w;_1, w;, wi4+1} then it is clear that f-invp (w) N {(x, y)} =
f-invp (w’) N {(x, y)} since the relative position of x and y does not change. Thus for
the verification of this lemma we may restrict our attention to words of length 3, e.g.
Fig. 7. Now the lemma follows from case-by-case observation. O

4.4 Generating functions and the main theorem

Let us define a generating function of a P-Knuth equivalence graph. (cf. [21, Theo-
rem 3.1])

Definition 4.14 For a P-Knuth equivalence graph I'y = (V, desp, {E;}), its generat-
ing function is defined tobe yy :== >, .y ¢l FHinvp (W) Faespw)-

If we consider a connected P-Knuth equivalence graph, then we may factor out
VeI from the formula due to Lemma 4.13. More precisely, if T'y is a con-
nected graph then yy := ¢/Finve(V)l Y wev Fdesp ) where |f-invp (V)] is the fake
‘P-inversion number of any element in V. Now we state the main theorem of this paper.
Its proof is given in Sect. 9. Note that this strengthens [12, Theorem 4] for a natural
unit interval order which avoids P 1,1),5 and Pa.2,1,1),6-

Theorem 4.15 Main theorem Suppose that P is a natural unit interval order on [1, n]
which avoids P3,1,1),5 and Pua.1,1),6. Let I' = (V, desp, {E;}) be a connected P-
Knuth equivalence graph and yy be its generating function. Let wy, . .., wy be all the
elements in V each of which is the reading word of the P-tableau PTy, ..., PTy, of
shape M1, ..., Ay, respectively. Then we have yy = t'f"'”VP(V”(sM 4o+ 83,), where
| f-invp (V)| is the fake P-inversion number of any element in V. Furthermore, we
have [(A1) = - - - = [(A) which is also equal to the genuine P-height of any w € V.

Conjecture 4.16 (Main conjecture) The claim of the Theorem 4.15 is true for all unit
interval orders P (except the last sentense).
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See Sect. 7.1 for some examples of P-Knuth equivalence graphs and their generating
functions. The following corollary is a direct consequence, which generalizes both
[12, Theorem 3] and [21, Theorem 6.3] for a natural unit interval order which avoids
Piay.s and Pao a6

Corollary 4.17 Suppose that P is a natural unit interval order on [1, n] which avoids
Pai.11).5 and Pa2.1,1),6. Then the generating function of any ‘P-Knuth equivalence
graph is Schur positive, i.e. it is a symmetric function and its coefficients with respect
to the expansion of Schur functions are polynomials in t with nonnegative integer
coefficients.

5 Column insertion algorithm

In this section, we assume that a fixed natural unit interval order P is given and define
a column insertion algorithm.

5.1 Column insertion algorithm Algq,

For convenience, we add oo, —oo to the poset ([1, n], P) so that oo —p i (resp.
—00 «—p i)foranyi € [1, n]. We define

A:={(am,...,a1) |meN,a; € [1,n]U{oo},a; #a;ifi # janda;,a; # oo},
C:={(c,...,c) 11 eN, ¢ e[l,nl,c; <pcjifi < j},

AC ;= {(a,c) e Ax €| a; #cjforany i, j}, and

CA:={(c,a) e € xA|a; #cjforanyi, j}.

One may regard 2 as a set of (input/output) words and € as a set of chains, i.e.
one-column P-tableaux. (Recall that we read columns from bottom to top.)

We introduce the column insertion algorithm Algg,. This defines a function & :
A — €A and is described in terms of the pseudocode Algorithm 1.

Let us investigate this algorithm in more detail. It takes the input (¢, ¢) € A€ where

o = (ay,...,a1)and ¢ = (¢, ..., cy). Initiate b = (b, ..., by) with (a,, ..., ar)
and 0 = (dj,...,dy) with (¢, ...,c1). (Here [ = |9, which may change as the
algorithm is performed.) Also we set dy := —oo to simplify our argument. Initialize
p with 1.

5.1.1 Terminal case
If p > m = ||, then we terminate the algorithm and return (d, 8) = (0, b).
5.1.2 Case oo(a)

Suppose that a, = oco. Then we increase p by 1 and repeat the algorithm from the
beginning.
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Algorithm 1: Column insertion algorithm Algg,

Function ®((ay,, ..., ay), (¢, ..., c1)) // ((am,...,a1),(c,...,c1)) € AC
m < |[(am,...,a1)|
fori < 1tomdob; < oo // Initialize (by,...,b1) to (oco,...,00)
<y epl
dy < —oo
fori < 1toldod; < ¢; // Initialize (d;,...,dy,dy) to (c,...,c1, —00)
p <1
while p < m do
if ap =ocothen p < p+1 // Caseoo(a): pass if ap =00
else
r < max{i € [0,1] | d; < ap} // Choose r so that dr <ap <dyyg
if ap —p dy then // Case I
ifr=1Ithen [ <[ +1 // Case I(a)
else by, < d, 11 // Case I(b)
dry1 < ap
Lp<p+l
else // Case II
(h, q) < max{(i, j) € N2 | {d,~,...,d,+i,ap,...,ap+_i}isaladderin’P

andap <apt) < <apyj}
// The maximum is w.r.t. lexicographic order

if aptg < dyyp, then // Case II(a)
| forj < 0togdob,, ;< ap,;
else // Case II(b)

fori < Otoh do
j < min{r € [0,q] | apss > dyrii)
ifi =hthenk < ¢
else k < max{r € [0,q — 1] | ap+t < dryit1}
bpyj < dpyi
fort < jtok—1dob,yy) < apts

dryi < apip

| p<prt+tg+l

| return ((d}, ....d1), bm, ..., b1))

Remark 5.1 The reason why we call it Case co(a) (instead of Case co) shall become
apparent when we describe another algorithm Wy in the proof of Proposition 5.10.

From now on we suppose a, # oo and choose r € [0, I]suchthatd, < a, < d; 1.
(If d; < ap, then we set r = [.) First suppose that a), and d, are comparable, i.e.
dr <p ap.

5.1.3 Casel(a)

We first consider the case when r = [, i.e. a, is bigger than any element in 0 with
respect to P. (This includes the case when r = [ = 0, i.e. 0 is an empty chain.) In
this case we “add a,, to the end of the chain 0", i.e. set dj+1 := a, and replace 0 with
(di1 = ap,d;, --- ,dy). (As aresult, the length of 0 increases by 1.) After this, we
increase p by 1 and repeat the algorithm from the beginning.
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5.1.4 Casel(b)

Now suppose that » < [. (This include the case when —oo = dyp < a, < d.) Then
“ap bumps d,17; we set by, := d, and then replace d, 1 in d with aj,. For example,
if ] «<—p 3and1 <p 2,then ®((2), (3, 1)) = ((2, 1), (3)). (Whether 2 <—p 3 or not
does not affect the result here.) After this, we increase p by 1 and repeat the algorithm
from the beginning.

Now we suppose that a,, and d, are not comparable (which forces that 7 > 0). We
set

A={G, ) eN?| ay <app1 <--- <apyjand {dy, ..., dryi ap, ... dpsj)
is a ladder in P}.

Note that (0,0) € A as {d,, ap} is a ladder in P by assumption (since Psgir(1),2 =
Py.2). We set (h, q) to be the maximum of A with respect to lexicographic order. In
other words, we choose (%, ¢) such that

ap < apy1 < --- < apyq with respect to the usual order,
{dr,....drsh,ap, ..., apsq}isaladderin P,

h is the biggest among such possible (%, ¢)’s, and

q is the biggest among such possible (4, ¢)’s with i chosen above.

For later use, we define:

Definition 5.2 We assume the situation above. Then the phrase “maximality in Case II”
indicates the maximality of (%, g) in A.

5.1.5 Casell(a)

First we suppose that apyy < dyqp, i.e. max{d,, ..., dryp, ap, ..., ap1g} = dryp.
(e.g. Example 7.1 and 7.3) In this case we do not alter the chain 0 and simply let
ap, ..., apyq “pass through the chain”, i.e. set b; := q; fori € [p, p + q]. After this,

we increase p by g + 1 and repeat the algorithm from the beginning.

Remark 5.3 Here, the maximality in Case Il means that either p + g = m or ap44+1
does not satisfy both ap g1 =P apiqg and apigy1 ——*p dryp.

5.1.6 Casell(b)

The remaining case is when a,y > dyyp, ie. max{d,, ..., dryn,ap, ..., apyq} =
apiq-(e.g. Examples 7.2 and 7.3) We split the a-s according to which intervals between
d-s they fall into. This is given by some u : [r — 1,7 +h] — [p — 1, p + gq] such
that p — 1 =u(r — 1) <u(r) <u(r+1) <--- <u(r+h) = p -+ q and such that

di < ayi-1+1 <--- <ayg) fori € [r,r + h]. Then we replace d,, . .., dr4j, on the
chain in ? with ay(y, ..., Gu(+n), respectively. Furthermore, for j € [p, p + q] we
set

b d; if j=u(—1)+ 1forsomei € [r,r + h],
777 laj-1 otherwise.
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After this, we increase p by g + 1 and repeat the algorithm from the beginning.

Example 5.4 A good illustration can be found in Example 7.4. In thiscase r =2, h =
I,p =6,9g =3,and 9 = a9 = max{ds, d3, ae, a7, ag, a9} = max{4,6,5,7, 8, 9}.
The associated part of the poset P is a ladder (consisting of poset elements
4,5,6,7,8,9), and as explained in Example 7.4 (1, 3) is the lexicographically max-
imal choice among all pairs that give a ladder. In this case d» < ag < d3 < a7 <
ag < ag, and thus u(1) = 5, u(2) = 6, u(3) = 9. The algorithm tells us to replace d»
with ag = 5 and dz with ag = 9. It also tells us to assign bg = dr =4, b7 = d3z =6,
bg = a7 =7, by = ag = 8. The result can be seen at the end of Fig. 18.

Remark 5.5 Here, the maximality in Case II means that

e cither p + g = m or ap,41 does not satisfy both apy441 --»p api4 and

Ap+q+1 —>Pp Ap+q (OI' Apt+qg+1 —>Pp dr_;,_h if Ap+q P dr_;,_h), and
e citherr +h =lord,4p4+1 /-+p a; foranyi € [p, p + q].

One may check that the second condition is equivalent to

e citherr +h =Ilord,4p+1 —>p a; foranyi € [p, p+ q].
For later use, we define:

Definition 5.6 We say that a, is in Case I(a), 1(b), etc. if the step in the column
insertion algorithm Algg, processing a,, corresponds to Case I(a), 1(b), etc.

This finishes the description of the algorithm Algg. See Sect. 7.2 for some examples
about this algorithm. Before we proceed, we need to check that:

Theorem 5.7 The algorithm Algy is well-defined, i.e. (o, c) € CA.

Proof First suppose that a1, a,, # oo and only one step of Algg, is performed when
calculating ®((ap,, ..., a1), (c1,...,c1)) = (dy,...,d1), (by,...,b1)). Then we
need to show that b;,d; fori € [1,m], j € [1, I'] are pairwise different (possibly
except 00) and di «<—p dy «<p --- <p dy. But the first part is clear from the
assumption that ay, ..., ay, c1, .. ., ¢; are pairwise different. The second part is also
easily checked case-by-case using Condition (). Now the statement in the general
case follows from induction on the number of steps. O

5.2 Properties of Alg,

Here we discuss some properties of Algg,. Firstly, if ®(«, ¢) = (d, B) then it is easy
to observe the following. (We will use these facts without reminder later on.)

if a; is in Case oo(a) or Case I(a), we have b; = oo,
if a; is in Case 1(b), we have a; < b; # oo,

if a; is in Case II(a), we have a; = b;, and

if g; is in Case II(b), we have a; --+p b;.

The following lemma is less trivial.
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Lemma5.8 For o« = (am,...,a1) and ¢ = (cy, ..., c1), suppose that there exists
i €[1,{]suchthatc; <—p ajforall j € [1,m]. If ®(a,c) = ((dy, ..., d1), —), then
we have cj = d; for j € [1,i].

Proof 1t is shown by case-by-case observation. O
The proofs of the following two propositions are provided in Sect. 8.

Proposition 5.9 Suppose that ®(a,c) = (d, B) where ¢« = (am,...,a1), B =
(bms ..., b1), and ¢ = (¢, ..., c1). Write o (resp. ,Bf) to be the word obtained
by removing oo from « (resp. ).

(A) af + candd + BT are P-Knuth equivalent. In particular, o/ +c = d + B/ as
sets.

(B) Suppose that « € €, m > I, and (¢, c) satisfies the P-tableau condition, i.e.
ai ~>pcifori €[1,1]l. Thend = o and 8 = (00, ..., 00) +c.

(C) Ifai,ai+1 # oo and aj <—p a;+1, then either [bj+1 = o0] or [b;, bi+1 # o0 and
bi <p bit1].

(D) Ifai, ai+1 # ocanda; #~p aj1, then either [b; = 00, bj1| # oo]or[b;, bi+1 #
oo and b; #~p bit1]

Proposition 5.10 Suppose that (¢ = (ap, ...,a1),c), (@ = (a,,,...,a}),c’) € AC

m? )
satisfy ®(a, ¢) = ® (o', ¢') and a; = 00 & a] = oo. Then we have (a, ¢) = (&', ¢’).

5.3 Another algorithm Algy,

Here we introduce another column insertion algorithm Alg, which resembles Algg,.
This will not be used for the definition of the P-Robinson—Schensted algorithm in the
next section, but it will play an important role when we prove Proposition 5.10. Also
see Sect. 7.2 for some examples about this algorithm.

For a subset X C Z..¢, the algorithm Algy, defines a function Wy : 2¢€ — €2 and

is described by the pseudocode Algorithm 2. Note that the only difference between
Algg and Algy is when a, = 00, p € X, and 0 # ¢, which is as follows.
Caseocb Suppose that a, = 0o, p € X, and 0 # . Then we “drag the first entry of
0 to b”, i.e. set b, := d; and replace 0 with (dj, ..., d2). (As a result, the length of
0 decreases by 1.) After this, we increase p by 1 and repeat the algorithm from the
beginning.

Indeed, if X = ¢ then Algy, and Wy revert to Algq, and P, respectively.

Lemma 5.11 The algorithm Vy is well-defined.

Proof 1t is proved in the same manner as Theorem 5.7. O

6 P-Robinson-Schensted algorithm

In this section, we assume that a fixed natural unit interval order P is given and define
a P-Robinson—Schensted algorithm.
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Algorithm 2: Another algorithm Alg,,

Function Wy ((ap, - .., a1), (¢, ..., c1)) // ((am,...,a1),(c,...,c1)) € AC
m < |(am, ..., ap)|
fori < 1tomdob; < oo // Initialize (by,...,b1) to (oco,...,00)
<y epl
dy < —oo
fori < 1toldod; < ¢; // Initialize (d;,...,dy,dy) to (c,...,c1, —00)
p <1

while p < m do

if ap = oo then

if p € X and !/ > 0O then
bp < dy

[ <—1-1

| p<p+1

else

r<max{i € [0,/] | d; <ap}
if ap —p dr then
ifr=Ithen [ <[+ 1
else by < dy

drq1 < ap
Lp<p+l

else

if ap+q < dy1p then
L for j < 0togdob,;

else
for i < Otoh do

if i = hthenk < ¢
bpyj < dryi

dryi < apik

| p<pPp+g+1

| return ((d, ..., d1), (bm, ..., b1))

(h,q) < max{(i, j) € N* | {dy, ..
andap <apy) <+ <dpyj}
// The maximum is w.r.t.

// Caseoo(b)

fori < 1tol —1dod; < d;4

// Caseoo(a): pass if ap=o00 and p¢ X

// Choose r so that dr <ap <dyyy
// Case I

// Case I(a)

// Case I(b)

// Case II
-y dryi ap, ..., apyj}isaladderin P

lexicographic order
// Case II(a)

(—dp+j
// Case II(b)

Jj < min{r €[0.q] | aps > dpyi)
else k < max{r € [0,q — 1] | ap+s < dpyiy1}

fort < jtok—1dobyisi1 < apts

6.1 P-Robinson-Schensted algorithm

We identify P-Tab with the subset of ¢€” such that (ch, 3, ..., " een corresponds
to the P-tableau whose reading word is ¢! + ¢ 4 - - - 4+ ¢” if such a P-tableau exists.
We define the P-Robinson—Schensted algorithm Algp g as in Algorithm 3.

Let us describe the algorithm in detail. This algorithm takes an input o
.,a1) € 2 and produces an output (PT, QT). Initialize p with 0 and

(al‘l’lv .

(bm, ..., b1) with (ay, ..., ay).
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Algorithm 3: P-Robinson-Schensted algorithm Algp gg

Function P-RS(ap,, . .., ay) /7 @my ..., ay) e
m < |(am, ..., ay)|
fori < 1tomdob; < a; // Initialize (bp,..., b1) to (am,..., ap)
p<0
while (b, ..., by) # (o0, ..., o) do
p<p+l

(PTp, (tms -+ » 1)) < ®((bm, ..., b1),9)
// PTp is a new column of the P-tableau
(D). i) = (j € [Lom] | 1; = 00, bj # o0},
1<i(l)<---<itk)y<m
// QTp is a new column of the standard Young tableau

fori < ltomdob; <t
// The output of & is the new input on the next step

r;turn ((PTy, ..., PTp), (QTy, ..., 0Tp))

0Ty < (i(k), ..., i(1)) where

6.1.1 Terminal case

If (by,...,b1) = (00,...,00) then terminate the algorithm and return (PT, QT)
where PT = (PTh, ..., PTp) and QT = (QTi, ..., OT)).

6.1.2 Main case

Otherwise, we increase p by 1 and set (PT), (t, ..., 1)) to be ®((by, ..., b1), D).
Also we set QT, = (i(k),...,i(1)) where i(1) < --- < i(k) are chosen such that
{i(1),...,ik)} = {j € [1.m] | t; = 00,b; # 00}, i.e. they are indices where
Case I(a) of Alg4 occured in the calculation of @ ((by, ..., b1), ). After this, we set
(bm, ..., b1) tobe (ty, ..., t1) and repeat the algorithm from the beginning.

This finishes the description of the algorithm Algp . It is clear that each column
of PT (resp. QT) is a chain with respect to P (resp. the usual order). However, it is
not clear at this moment that PT (resp. QT) is a P-tableau (standard Young tableau).
Indeed, it is not always so; see Sect. 7.4 for such examples. However, we will observe
that this algorithm behaves well when the given partial order on [1, n] avoids P(3,1,1),5
and P4.2,1,1),6-

6.2 Properties of P-RS

Let T, € SYT, be the standard Young tableau of shape A where A’ =
(1,1, ..., 1) such that the i-th column of T}, consists of (Z};ll ) +1, (Z};ll I +

2,..., (Zizl It). For example, we have T4 3 1) = é 2 3 8 ‘ The following the-
3

orem summarizes important properties of the algorithm Algp_rg which is proved in
Sect. 9, together with the main theorem (Theorem 4.15) of this paper.
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Theorem 6.1 Suppose that P avoids P3.1,1),5 and P 2.1,1).6, i-e. P is not ladder-
climbing. Then the following are satisfied.

(A) For w € G, if P-RS(w) = (PT, QT) then PT is a P-tableau and QT is a
standard Young tableau.

(B) Forw € &, if P-RS(w) = (PT, QT) then {n — x | x € desp(w)} = des(QT).

(C) Forw € G, If P-RS(w) = (PT, QT) then w ~p read(PT).

(D) For w € &, if P-RS(w) = (PT, QT) then the length of the first column of
PT is equal to g-hitp(w). Furthermore, if w' € &, satisfies w ~p w' and
P-RS(w') = (PT’, QT"), then the lengths of the first column of PT and PT' are
the same.

(E) If w = read(PT) for some PT € P-Tab,, then P-RS(w) = (PT, w(T,)) where
w : SYT, — SYT), is Schiitzenberger’s evacuation.

(F) Ifa = (am, ..., a1) and o’ = (aj,, ..., ay) are two words of the same length then
P-RS(a) = P-RS(a) & a =o'

(G) 'P-RS restricts to a bijection P-RS : &, — L, P-Tab, x SYT;.

7 Examples

In this section we give various examples of the objects that we introduced so far.

7.1 P-Knuth equivalence graphs

Here we provide some examples of P-Knuth equivalence graphs whose generating
functions are not a single Schur function. In Figs. 9, 10, 11, 12, 13 and 14, underlined
numbers in each word denote its descents and numbers above edges indicate their
colors. Vertices with bold borders are reading words of some P-tableaux and vertices
of the same colors are the ones that give the same P-tableau under P-RS. Also, two

gray vertices in Fig. 12 are the ones that insert to g ‘1‘ 2 ‘ which is not a P-tableau

for P =Pg,1,1),5-

7.2 Some examples of Algq, and Algy,

Here we provide some examples how the algorithms Algs and Algy, work.
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Fig. 15 Alge: P = Ps3.2.1).6.@ = (4,3,2),and ¢ = (6,5, 1)

Example 7.1 (Fig. 15) Suppose that P = P532,1).6, ¢ = (4,3,2),and c = (6, 5, 1).
In this case only one step of Algg is required to calculate ® (e, ), i.e. Case II(a).
Herer = p=1landd, =1 < ap =2 < dy,y1 = 5. The set A in the description
of Case II is equal to {(0, 0), (0, 1), (0, 2), (1, 2)}, and thus we have (4, g) = (1, 2).
This corresponds to the ladder in P consisting of elements 1, 2, 3, 4, 5. It follows that
®(a,c) = ((6,5, 1), (4,3,2)).

Example 7.2 (Fig. 16) Suppose that P = Pspirs), 7. = (7,5,4,2),andc = (6, 3, 1).
Similarly to above, in this case only one step of Algg, is required to calculate ® (e, ¢),
ie. Casell(b). Here r = p = landd, =1 <ap =2 < dry1 = 3. The set A in
the description of Case Il is equal to A = {(0, 0), (1, 0), (1, 1), (1, 2), (2,2), (2, 3)},
and thus we have (%, g) = (2, 3). The corresponding ladder is the whole poset P. It
follows that ®(«, ¢) = ((7, 5, 2), (6, 4, 3, 1)).

Example 7.3 (Fig. 17) Suppose that P = P2, 1,1),5. ¢ = (5,4,2) and c = (3, 1). We
need to process three steps of Algg, to calculate ® (e, ¢) in this case.
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Fig. 16 Algg: P = Pspir6),7-« = (7,5,4,2),and c = (6, 3, 1)
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Fig.17 Alge: P =P 1,1),5- ¢ = (5,4,2),andc = (3, 1)

(1) Sincea; =2 --+p 1 =dj,a;isinCase II. Here A = {(0, 0), (1, 0), (0, 1), (0, 2)},
and thus we have (4, g) = (1, 0) that is the maximum of A with respect to the
lexicographic order even if the choice of (0, 2) produces a bigger ladder. We set
b1 = 2, p = 2 and continue.

(2) Since ap = 4 --»p 3 = db, ap is in Case Il. Here A = {(0,0)}, and thus
(h,gq) = (1,0). Note that {3, 4, 5} is not a ladder in P since 3 £p 5. We set
by = 3,dy =4, p = 3 and continue.

(3) Since a3 = 5 --»p 4 = dp, a3 is in Case Il. Here A = {(0,0)}, and thus
(h,q) = (1,0). We set b3 = 4, d3 = 5, and terminate the algorithm.

As aresult, we have ®((5,4,2), (3,1)) = ((5, 1), 4, 3,2)).
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and ¢ = ). We need to process five steps of Algg, to calculate @ (e, c) in this case.

(1) Since the chain is empty, a; is in Case I(a). We set d; = 1, p = 2 and continue.

(2) Sincea =4 >dy =1and4 —p 1,azisin CaseI(a). Wesetdy =4, p =3
and continue.

(3) Sinced); =1 <az =2 <d, =4and2 --+p 1, a3 is in Case II. The set A is
equal to {(0, 0), (0, 1), (1, 1)} thus (k, g) = (1, 1), in which case itis in Case II(a).
We set b3 = 2, by = 3, p = 5 and continue.

(4) Sinceas =6 >dy =4and 6 —p 4, a4 is in Case I(a). Wesetd3 = 6, p = 6
and continue.

(5) Sincedy, =4 <ag=5<d3 =6and 5 --+p 4, ag is in Case II. The set A is
equal to {(0, 0), (1,0), (1, 1), (1, 2), (1, 3)} thus (&, g) = (1, 3) in which case it
is in Case II(b). We set dp) = 5,d3 = 9, bg = 4, b7 = 6, bg = 7, bg = 8 and
terminate the algorithm.

As a result, we have ®((9,8,7,5,6,3,2,4,1),0) = ((9,5,1),(8,7,6,4, o0, 3,
2, 00, 00)).

’’’’’’

3,2),c = (9,5, 1), and X = {5,8,9}. We need to process five steps of Algy to

calculate W («, ¢) in this case.

(1) Sinced) =1 <a; =2 <d, =5and2 --+p 1, aj is in Case II. The set A is
equal to {(0, 0), (0, 1), (0, 2), (1, 2), (1, 3)} thus (h, g) = (1, 3) in which case it
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Fig. 19 Alg\yi P = P(7,6,5,4,3,2,1),9’ o = (OO, 00, §, 7, o0, 6, 4, 3, 2), Cc = (9, 5, l), and X = {5, 8, 9}

isin Case II(b). Wesetd) = 4,d> = 6,b1 = 1,bp =2,b3 =3,b4 =5, p=5
and continue.

(2) Since as = 00,5 € X, and 0 # @, a4 is in Case co(b). We set 0 = (9, 6), bs = 4,
p = 6 and continue.

(3) Sinced; =6 <ag =7 <dy =9and 7 --+p 6, ag is in Case II. The set A is
equal to {(0, 0), (0, 1), (1, 1)} thus (&, g) = (1, 1), in which case it is in Case II(a).
We set bg = 7, b7 = 8, p = 8 and continue.

(4) Sinceag = 00,8 € X, and 0 # @, ag is in Case oo(b). We set 0 = (9), by = 6 and
continue.

(5) Since ag = 00,9 € X, and 0 # @, ag is in Case co(b). We set 0 = @, bg = 9 and
continue.

As a result, we have Wisg509;((00,00,8,7,00,6,4,3,2),(95,1) =
@, 9,6,8,7,4,5,3,2, 1)).

Remark 7.6 Indeed, Examples 7.4 and 7.5 are “mirror images” to each other. This is
not a coincidence but explained in detail in Sect. 8.6.

7.3 Some examples of Algp ps

Here we provide some examples of the algorithm Algp gs.
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Example 7.7 Figure 20 shows the steps of Algprg when P = P 1y4 and w is
an element of {3241, 3421, 4231, 4312, 4132}, the set of vertices of a connected
P-Knuth equivalence graph that is not a dual equivalence graph (cf. Fig. 8).

Here we have ®(3241)

®@231) = (2!
43

= (1312][113[4)) o@4aan) = (2[1][1]2],
4] 2 NENEE
; i), o@312) = (L[312][1[2]4)) and d4132) =

312,

L
4] 4

1]2 ‘ 3 ‘). It is easy to observe in this case that (cf. Theorem 6.1)

(A) the oTltputs are pairs (PT, QT) where PT € P-Tab,, QT € SYT;, for some

A4,

(B) if P-RS(w) = (PT, QT) thendesp(w) = {4 —x | x € des(QT)},
(C) read( 2|1 ) = 4231 and read(| 1|3 ‘ 2 ‘) = 4132 are the vertices of the given

4|3

connected P-Knuth equivalence graph,

D) ®@4231) = (2|1 o [3])) = (2L} 1]3]) and
413 2[4 4[3[[2]4
o@132) = (13]2] o

(1 3‘4‘)) = (1 3‘2‘, 1 2‘3‘) where o is
2 4 4

Schiitzenberger’s evacuation, and
(E), (F) @ gives a bijection between the given set of vertices and

43

{ 2|1 } X SYT(2,2) I_l{ 1

3 ‘ 2 ‘} X SYT(3,1).

Furthermore, its generating function is #2(s3; + s22) as expected by Theorem 4.15.

w = (9,8,7,5,6,3,2,4,1). Here we have ®(w) = (L[4|3[2]|1]3]46),

Note that {9 — x | x € desp(w)} = {1, 4, 6} = des(

Example 7.9 Figure 22 shows the steps of Algp_rg when P
w=(8,4,6,7,10,1,2,5,3,9). Here we have ®(w) = (

Note that {10 — x | x € desp(w)} = {2, 5, 9} = des(

,,,,

5|8|7|6 7189

2
3]

w
o) -lk‘\o
o)

R

1
2|7
2]

P©,8,6,6,4,3,2,2,1),10 and

112[3[9|[1]2]4]5)).
416|510/ [3]7[8]9
8|7 6[10
1[2]4]5)).

3[7[8]9

6]10

7.4 Some pathologies for ladder-climbing partial orders

Here we provide some examples when P-RS does not produce a desired output when

‘P is ladder-climbing.



97 Page 30 of 66 D. Kim, P. Pylyavskyy

<7
w
W N s = 8

[ R N S

'S

’
\

38

!

@
g8 3

J (8
3
28 | [®

o) 2
(00| =

\
N -
’
\
3 2 10,
{00} 00 00
-/ -/ -/
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Fig.24 Algprs: P = 73(4’2’1’1)’6, w=(4,3,6,52,1)

Example 7.10 Figure 23 shows the steps of Algp rg when P = P31.1),5 and w =

(3,4,5,2,1). Here we see that ®(w) = (|

case is not a P-tableau since 3 —p 1.

3|1]2

RE

2

54

3

4

5 ‘). However, PT in this

Example7.11 Figure 24 shows the steps of Algp rg when P = P 2.1,1),6 and w =
5 ‘ 6 ‘). However, PT

4,3,6,5,2,1). Here we see that ® (w) = (|

in this case is not a P-tableau since 4 —p 1.

471

3]2],

1

2

6|5

3

4
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Fig. 25 Algp_Rsi P = 73(5!372,171)77, w=(3,1,5,6,7,4,2)

Example 7.12 Figure 25 shows the steps of Algp rg Wwhen P = P53 1.1),7 and w =

(3,1,5,6,7,4,2). Here we seethatcb(w)z(; 2 6‘4‘ ; 2 5‘6‘). However,

5 4
7] 7]

PT and QT in this case are not even tableaux.

8 Proof of Propositions 4.11, 5.9, and 5.10
8.1 Proof of Proposition 4.11

We start with the following lemma.

Lemma 8.1 Let P be a natural unit interval order on [1, n]. Suppose that we are given
a,b € [1,n] and w € &, that satisfy w™'(a) < w™'(b) and a —p b. Then the
following are equivalent:

(1) (a,b) ¢ g-htp(w).

(2) there exists asubwordad - - - dib of w suchthata ---pdy---p------pdx---p b.

(3) there exists a subword ad - - - dib of w such that a --+p dy --+p -+ ——»p
dy --+p b.

(4) there exists a subword ady - - - dyb of w such that a --+p dy --+p --- —-+p di

--sp band{a,dy,...,d, b} is aladderinP.

Proof (1) < (2) by definition, and (4) = (3) = (2) is clear. It remains to show
(2) = (4). To this end, suppose that adj---dib is a subword of w such that
a---pdy---p------pdr---p b and we construct another subword satisfying the
condition of (4).

For simplicity we set dy = a and dr4+1 = b. First, let d; be the last element
in the subword dod; - - - drdi+1 such that dy---p d;. By removing di, da, ..., d;i_1
if necessary, without loss of generality we may assume that it is d;. Similarly we
let d; be the last element in the subword dod; - - - didy1 such that di ---p d;. By
removing da, ..., d;_1 if necessary, without loss of generality we may assume that it
is dp. We iterate this process, and thus we may assume that d; 11 is the last element in
dodi - - - dpdi41 such that d; ---p diyq fori € [0, k].
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We claim thatd; --+p d;41 foranyi € [0, k]. For the sake of contradiction suppose
otherwise, i.e. d; «--p di+1 and let i € [0, k] be the smallest element such that
di «—-p diy1.If i > 0, then d;_1 --+p d; by assumption and thus d;_1 ---p dj+1
by Condition (rh), which contradicts the fact that d; is the last element satisfying
di_1---pd;. Ifi =0, ie.a «--p di, then we claim that a <—p d; for any j > 2,
which in particular contradicts the fact thata —p b = di1. Thus suppose otherwise.
Then there exists j such thata —p d;, and we choose such j to be the minimum one.
Then we have a < dj_1,dj_1---pdj, and a —p dj, which contradicts Condition
(M). (Note that this argument is valid even when j = 2.)

Now foranyi € [1, k], wehaved;_| --+p d; --+p dijy1,and thus d;_; —p djt1
since again d; is the last element satisfying d;_1---p d;. But this means that
{do,d1, ..., dx,drs1} is aladder in P, which is what we want to prove. |

Let us start proving Proposition 4.11. Letw = ---xyz--- and w’ = ---x'y'z’ - -~
such that the P-Knuth move connecting w and w’ shuffles {x, y, z} = {x/,y,7'}.
Suppose that Z := (p1, ..., Ps,sF1,---sTu,q1, - - - » q¢) 1s the longest subword of gen-
uine P-inversions in w such that Z N {x, y, z} = {ry, ..., r,}. In particular we have
g-htp(w) = s+t +4u. Note thats, r > Oand u € [0, 2]. (u cannot be 3 since otherwise
x —p y —p z in which case there is no P-Knuth move shuffling x, y, z.)

We may assume s, ¢ > 2. Indeed, we add n + 1,n 4+ 2 and 0, —1 to the poset
([1,n],P)sothatn+2 -pn+1 —->pi >p 0 —>p —1foranyi € [1, n]. Then we
replace w and w’ with (n+2,n+1)+w+ (0, —1)and (n +2,n+1) +w’'+ (0, —1),
respectively. After this procedure, P still remains to avoid P 1,1),5 and Pa.2,1,1),6-
Also, any longest subword of genuine P-inversions in w and w’ contains n+2, n+1, 0,
and —1, which in particular increases s and ¢ by 2, respectively. (Here, we have
pir=n+2,pp=n+1,¢;—1=0,and g = —1.)

We will construct the subword Z’ of genuine P-inversions of length s + ¢ + u on
w’, which contains p1, ..., ps—1, 42, ..., q;. It means in particular that g-htp (w’) >
s + t + u, which proves the claim by symmetry. Note that we possibly change only
DssT1s .-+, Ty, q1 part from Z to obtain Z’. Therefore, the entries before p;_ and after
¢> in w and w’ do not affect this process. By removing such entries if necessary, it
suffices to assume that s = ¢t = 2,i.e. we have Z = (p1, p2, 71, .- - Fu, 41, q2).

Leta,b,c e [1,n]besuchthata < b < cand {a,b,c} = {x,y,z} = {x',y, 7}
From now on we argue case-by-case based on Pl 5.} and u € [0, 2].

8.1.1 Plia,b,c} = Pg,3
There is no P-Knuth move in this case, so there is nothing to prove.
8.1.2 Plia,b,0 = P1),3

We have a «--p b «--p c and a <—p c. There is only one P-Knuth move in this

case: [---bca - -] o [--cab---].

e u = 0 case. In this case we have 7 = p|paqi1g2 and in particular (p2,q1) €
g-invp (w). If (p2, g1) € g-invp(w’) then we are done since we may set 7' = 7. From
now on we assume (pz, 1) ¢ g-invp (w’).
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First consider the case when w = [---bca---] and w' = [---cab---]. By
Lemma 8.1, there exists a subword J := pod;---drqy (k > 1) in w’ where
p2 ——»p dl ——»p -+ ——p diy ——»p q1 and J is a ladder in P. As (p2,q1) €

g-invp (w), it means that the order of some elements in J should be switched under
the P-Knuth move so that it no longer prohibits (p>, ¢1) from being a genuine P-
inversion of w. Then the only possibility is that J = pad - - - dy—1¢cbdyys - - - diqi,
i.e.dy =canddyy] = b forsomev € [1,k — 1].

We claim that we may choose 7’ := p; prags. To this end we need to check that
(p2.a), (a,q2) € g-htp(w'). First if (p2,a) ¢ g-htp(w’) thenas po > ¢ —>p a
there exists a subword pyeq - - - eja of w’ such that py ---pey---p------pe---pa.
Since ¢ —p a, ¢ appears before ¢ in w’ which means that ppe;---ea
is also a subword of w. However, this contradicts (p2,q1) € g-htp(w) as
a---pb---pdyy2---p------pdi---pqi.

This time suppose that (a, ¢2) ¢ g-htp(w’). Since b > g1 —p g2 and b --+p a,
by Condition (h) we should have a > ¢. First suppose thata --+p ¢2. If v < k — 1
then b —p g1 —p g2 and b --+p a —--+p ¢2, which contradicts Lemma 3.4. Thus
v=k—1,ie. J = ---cbq;. However, direct calculation shows that P restricted to
{c, b, q1,a, g2} is isomorphic to P3 1,1),5, Which is again a contradiction.

Thus we have a —p g2, and by Lemma 8.1 there exists a subword aej - - - ¢;g2 of
w’ (I > 1)suchthata --+p e; --+p -+ --3p ¢ ——+p qaand {a, ey, ..., ¢}, g2} isa
ladder in P. By Lemma 3.11 it follows that {c, b, a, ey, . .., €;, g2} is also a ladder in
‘P. By assumption we have ¢ —p g1 —p ¢2,and also g1 ¢ {c,b,a,e1,...,e1,q2};
it is clear that q; # c, b, a, g2, and if g1 = e; for some i then it means that
(91, g2) ¢ g-ht(w). In other words, g is climbing the ladder {c, b, a, e1, ..., e, ¢},
which contradicts the assumption on P.

It remains to consider the case when w = [---cab---]and w’ = [---bca - --]. By
arguing similarly, we should be able to find a subword J = pady - - - dy—1bady4> - - -
drq1 of w’ with the same properties as above. Then we may choose 7' = picqiqa,
which can also be shown analogously. We omit the details.

e u = 1 case. We have 7 = p; par1q1q92 where r; € {a, b, c}. First consider the case
when w = [---bca---]and w’ = [---cab---]. Using Lemma 8.1, one can easily
show that if r; = a then we may set 7' = Z and we are done.

Now suppose that r; = b. We claim that we may choose Z' = p; praqiq>. To this
end we need to verify that (p2, a), (a, q1) € g-htp(w'). Firstif (p2, a) ¢ g-htp(w')
then as pp —p b > a there exists a subword pye;---ea of w' such that
p2--*pel-—+p----—3pe --+»pa.Sinceb --»p a, eithere;, = bore ---p b by
Condition (rh), which means that (p2, b) ¢ g-htp (w). This is a contradiction and thus
we have (p2, a) € g-htp(w’). On the other hand, since b —p ¢y and b --»p a we
have a > ¢ by Condition (). Now if (a, g1) ¢ g-htp(w’), i.e. there exists a subword
aey ---eiq) (I > 0)of w suchthata --+p e; --+p --- --+p ¢; --+p q; (note that
el cannot be b), then since b --+p a it follows that (b, q1) ¢ g-htp(w). This is a
contradiction, and thus we have (a, q1) € g-htp(w/ ) as desired.

If ri = c, then by the same argument one can easily show that we may choose
T’ = p1p2bqiq>. We omit the details.
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It remains to consider the case when w = [---cab---]and w’ = [---bca---].
Similarly to above, we may set Z' = p| pacqiq2 if r1 € {b, c} and T’ = p1qabqq3 if
r1 = a. Again we omit the details.
ey = 2 case. We have 7 = pj prcaqiqz. Then using Lemma 8.1, one can easily show
that 7' = Z satisfies the desired properties.

8.1.3 Plia,b,c = P(,1),3

We have a <—p b «--p c and a <—p c. Here we have two kinds of P-Knuth moves:

[---bca---] L, [---bac---land [ --cba---] L, [---cab---].

e u = 0 case. In this case we have 7 = p|paqi1g92 and in particular (p2,q1) €
g-invp (w). Since the relative position of b and ¢ does not change by the P-Knuth
moves in this case, one can easily show that (p2, q1) € g-invp(w’) by using Lemma
8.1. Then we are done since we may set 7' = 7.

ey = 1 case. We have 7 = p|par1q1q2 wherery € {a, b, c}. Again, since the relative
position of b and ¢ does not change by the P-Knuth moves in this case, one can easily
show that we may set Z' = 7 by using Lemma 8.1.

e u = 2 case. We have 7 = pj poriraq1g2 where either (11, r2) = (b, a) or (r1,rp) =
(c, a). Since the relative position of b and ¢ does not change by the P-Knuth moves
in this case, we only need to consider the situations when the relative position of r|
and r, changes under the moves. We have two cases to consider.

The first case is when Z = pipsbaqiqz, w = [---cba---], and w' =
[---cab---]. We claim that we may choose Z' = p|pacaqiqz. To this end we
need to check (p2,c) € g-htp(w’). (It is trivial that (c,a) € g-htp(w’) in this
case.) Since pp —p b and ¢ --+p b, we have p» > ¢ by Condition (). Thus
if (p2,¢) ¢ g-htp(w’) then there exists a subword pae; - --¢;c (I > 0) of w’ such
that po --+p e} --+p -+ --3p ¢ —--+p c. However, since ¢ --+p b, it implies
(p2, b) ¢ g-htp(w), which is a contradiction.

The remaining case is when Z = pjpacaqiqz, w = [---bca---], and w' =
[---bac - --]. Here one can show that we may choose Z' = p| pobaqq» similarly to
above. We omit the details.

8.1.4 Plia,b,c; = P(2),3

This case is completely analogous to the above case when P4, p,¢} = P(1,1),3 if one
“reverses” the words therein. We again omit the details.

8.1.5 Plia,b,c) = P2,1),3

Wehavea <—p b <—p c. Here we have two kinds of P-Knuth moves: [- - - beca - - - ] A

[-~-bac--~]and[~-~acb-~-]e«&[-ncab-n].

e 1 = 0 case. In this case we have Z = p| paq1q2. It is easy to show that (p2, q1) €
g-htp (w) implies (p2, g1) € g-htp(w’), and thus we may set 7' = 7.

e u = 1 case. We have 7 = p|par1q192 where | € {a, b, c}. Again, one can easily
show that we may set 7' = 7.
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e u = 2 case. We have 7 = p|pariraq1q2 where (r1,r2) € {(b,a), (c,a), (c, b)}.
Here we only need to consider the situations when the relative position of 7 and r,
changes under the P-Knuth moves. We have two cases to consider.

The first case is whenZ = p|prcaqiqa, w = [-+-bca---],andw’ = [---bac---].
Here we may choose Z' = piprbaqiqy. Trivially (b,a) € g-htp(w'), so it
suffices to check that (p2,b) € g-htp(w’). If we suppose otherwise then since
p» —p ¢ —>p b there exists a subword pye;---¢b (I > 0) in w’ such that
p2--»>pel -——p---——+»pe —-+»p band {py, e, ..., e, b}is aladder in P. How-
ever,c ¢ {p2,e1,...,e;, b} and p» —p ¢ —p b which means that c is climbing the
aforementioned ladder, which is a contradiction. Thus we have (p», b) € g-htp(w’).

The remaining case is when Z = pypacaqiqz, w = [---cab---], and w' =
[---ach---]. Here we may choose Z' = pj pachbqiqs similarly to above. We omit the
details.

We exhausted all the cases and thus conclude the statement.

8.2 Proof of Proposition 5.9(A)

Here, we write (- - ) 2 (---a'b'c--)for{a’, b, '} = {a,b, c} to indicate
the location of a P- Knuth move (that is the underlined part). We start with the followmg
lemma. After this, we use wavy underlines, e.g. -+~ X - Xg =" ~p oy Yoo

for {x1, ..., xx} = {y1, ..., yx} to indicate the part where Lemma 8.2 is applied.

Lemma 8.2 Suppose that a fixed natural unit interval order P is given.

(D) If by <p by <p -+ <pbranda < by thenaby ---by ~p by ---brab.

Q) Ifby <p by <p -+ «<pbranda > by then by ---bra ~p brabx_1---by.

B) Ifby «—-p by ¢——p -+ «——p by, x <p y,and y < by then yxby---by ~p
yby - - - by x.

@) Ifby «-—-p by ¢-——-p -+ ¢«——p by, x <p y, and x > by then by ---byyx ~p
yby - - byx.

Proof For (1), we have abibi_i-- b1 <~ brabg_1bg_a---by cms -0 <

by -+ - bzabyby 2, by - - -b3byaby. (2) is proved similarly. For (3), we have

yxby --- by L ybrxbr_1--- by Lot B ybi - - - baxby L ybi - -babi1x. (4)
is proved similarly. O

We prove (A) by showing that each step in the column insertion algorithm respects
the P-Knuth equivalence. It is sufficient to consider when the input is given by (o =
(am,...,a1),c = (ci,...,c1))suchthatc; «<—p cr <p -+ <pc,a = af, and
only one step of Algg, is required to obtain the output. We argue case-by-case.

Case I(a). There is nothing to prove since @ + ¢ = d and 8 = (00).
Case I(b). The length of « equals 1, i.e. « = (a) for some a. First suppose that
¢i <a < cjt1 and ¢; <—p a forsome i € [1,] — 1]. We have

acy -+ CigaCit | Ci =+~ €1 ~P €] -+ Ciy2ACi41CiCin] -+ C]
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P
S CaGC G VP € Gt G

which proves the claim. It remains to show that ac;---c; ~p ¢j---cracy if
c] <pcy <p - <pcanda < cy, but it follows directly from Lemma 8.2.

Case I(a). It suffices to prove the following lemma.

Lemma 8.3 Suppose that c; <p -+ <p ¢, ¢ < a1 < ay < +++ < 4y <
cit1 for some i € [1,1 — 1], and {c;, a1, ...,am,ci+1} is a ladder in P. Then
A - A1C -~ Cl ~P Cl -+ Cldp -+~ a].

Proof Since we have

Gy QUGCL =2+ €1 P €l A1 G213+ €1 P

NP CLe e Cig3m e A1C42CI1CE s CL P €Lt Cig2diy - A1Ci41Gc o cp and
€l Cie Ciliy - QG Ci €1 P €1 Gy GG €1 P -

NP Cl €30 AICL P €l C3C2C A - A

it is enough to consider the case wheni = 1 and [ = 2. However, in this case we have

P P P
A - AQA1CCL Gy =+ - A3AQCRAIC > ==+ e~ A CAm— 1Ay —2 * * * A1C]

P PP P
vy Cm—1AmAm—20m—3 "+ A]C] ¥+ =+ & CQAm Ay —] ** * A4A2A3A| X~ CQAmay—] * - A3a1A2C]

P P P P

NS CQAm ]+ A3AQCIA] &~ <+ & CQAmCl Ay —] ** A & C2C1 A+ d]
as desired. ]
Case I(b). Suppose that there exist s, and 0 = u(0) < u(l) < --- < u(s) =
m such that ¢;y; < ayi—1+1 < -+ < ayq fori € [1,s]. Also we assume that
{ct+1, ..., Ct4s, a1, ...,an} is a ladder in P. Note that if t + s < [ then we may
assume that ¢; 1 —p a; for any i € [1, m] by maximality in Case II.

We argue by induction on s > 1. Assume thats = 1,i.e. c;41 < ay < -+ < ap

and ¢,4» —>p a; forany i € [1,m] ift + 1 < [. Firstif m = 1, then we have
aic| - Cry2Ct41 -+ Cl ~Pp €l Cr43A1C42C1Ct » - - C

P
2 CL s Cp42A1Cr 416 Cr—1 - - - C

P P
e CL s Cp 201 CtCr1Cr—1Cr =2+ - - C] &> - -
P

e CL et Cr42A1Cr 0 - C2Cr 1€

P
ey Cp s Cr20a]Cr - - C2C 1 Cr -]
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which proves the claim. In general, we have

G =+ @1C] -+ CL~P G+ - A2+ * €421 Cp * + C1C14]
NP am...a3CI...Ct+2azct...clalct+l ’\17) ..

~PCLt G2 Cr t Cldp—1 *  A1Cr ]

by iterating the above process m times.
Now suppose that the induction step is valid up to s — 1. Then we have

y(s) -+ a1c -+ C1
P Ay(s) t Au(1)41€1 " Clay(l) - a1
NP €L Crgs 418y (s) Au(s—1) * Qu(2)Cr+1 €1+ Ay(s)—1 *** Au(s—1)+1Ct+s
+ays—1)—1" " Au(s—2)+1Ct+s—1 + -+ ay@2)—1 - Au()+1C1+2au(1) * - a1
~P Ay(s)—1  Au(s—1)41Ct+s T Ay(s—1)—1 " Au(s—2)+1Ct4s—1 + -
Fay@2)—1 " Au(1)4+1Ct42au(1) " A1+ C - Crps 418y (s)Au(s—1) ** Au(2)Ct+1 " Cl
NP Ay(s)—1 " Qu(s—1)+1Ct+s T Au(s—1)—1 " Qu(s—2)+1Cr4s—1 T -+ ay@2)—1 " Au(1)4+1€142
F ¢l CsH1u(s) Gu(s—1) *** Qu(2)Gu(1)Ct "+ €1 F ay(1) " A1Cr+1
NP €L Crds+1u(s) Qu(s—1) T Qu(2)Gu(1)Ct €1t Qy(s)—1 - Qu(s—1)+1Ct+s
Fau(s—1)—1 """ Au(s—2)+1Cr4s—1 T - T Qu2)—1 " Qu(1)+1C142 T Ay(1) -+ 41141

which completes the induction step. (Here, the second ~p is from induction assump-
tion, the fourth one is from s = 1 case, and the others are from Lemma 8.3.)

8.3 Proof of Proposition 5.9(B)

We argue by induction on [ = |c|. First suppose that [ = 1. If a; is in Case I, then it
should be in Case I(b) by assumption and the result is trivial. If a; is in Case II, then
the only possible case is when a; is in Case II(b) and either a; is not processed in the
same step as ap or « = (ap). Again the result is trivial in this case.

From now on suppose that/ > 2 and the result holds up to/ — 1. Note that a; < ¢3
since otherwise a; —p ¢ by Condition (). If a; < ¢1, then a; is in Case I(b) and
a1 bumps c¢;. Then a; <—p a; forany j € [2,m] and a; <—p ¢; for j € [2,1], and
thus we may apply induction assumption on (ay,, . .., az2) and (¢, . . ., ¢2) to prove the
claim. Thus it suffices to assume that ¢c; < a; < ¢. Since a; /4 p c1, it implies that
ay --+p c1, and thus a; is in Case II. Suppose that a; is in Case II(b) and ay, .. ., ax
are processed in the same step but ax41 is not. As aj <—p --- <—p ai, it means that
ai,...,a bump cy, ..., c, respectively, and we may apply induction hypothesis to
(am,...,ak+1) and (cy, ..., ck4+1) similarly to above.

It remains to assume that a; is in Case II(a). Since a; <—p aa, this only happens
when aj «--p cy. However, as a; —p ap and ay /p ¢z, this forces that a; < ¢; <
ap and ay --+p ¢ by Condition (rh). In other words, {c1, a1, ¢2, a2} is a ladder in P.
Thus by the assumption that a; is in Case II(a) we have ay «--p c3. We may iterate
this argument and observe that {cy, ai, c2, a2, ..., ¢, a;} is a ladder. However, in this
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—a—~ —C— —a—~ ~0— —b—
€1 o dy b1
€2 9 ds ba

Ai+1 C 41 00
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Fig.26 Description of the calculation

case aj is in Case II(b), which is a contradiction. Thus a; cannot be in Case II(a) and
the claim is proved.

8.4 Proof of Proposition 5.9(C)

We assume that the input is given by (¢ = (a, ..., a1),c = (cy,...,c1)) and the
output is given by (—, 8) where 8 = (b, . .., by). Furthermore, we suppose that g;
is processed in the first step of the algorithm. For example, if a; is in Case I(a) or
Case I(b) then it means that a; = oo for j < i.

In order to prove (C), we need to show that b; # oo and b; <—p b;41 under the
assumption that a;, aj+1 # 00, a;j <—p aj+1, and b; 11 # oo. First we consider the
case when a; and a;4 are processed in the same step. If this step is in Case Il(a),
then a; = b; and a;+1 = b;4 thus the result is obvious. On the other hand, if this
step is in Case II(b) then one may easily observe that b; < a; < bj+1 < aj4+1 and
{bi, a;, bi+1, ai+1} is a ladder in P. In particular we have b; <—p b; 1 as well.

Therefore, it suffices to assume that a; and a;4 are processed in different steps.
Weletd = (dy, ..., d) be the chain obtained after the first step (which processes a;)
is performed. (See Fig. 26.) For example, if a; is in Case I(a) thenl’ =1+ 1, dy = q;,
andd; = cj for j € [1,1].

First, we note that b; # o0; otherwise, a; is in Case I(a) which means that g;
becomes the largest element in the chain 0. Since a; <—p a;+1, it means that a; 1 is
also in Case I(a), which contradicts the assumption that b; 1 # oo. In particular, it
follows that I = /', i.e. the length of ¢ and ? should be equal.

It remains to show that b; <—p b;y;. First assume that ; is in Case I(b), i.e. there
exists j € [0,/ —1]suchthatc; < a; < cjy1andcj <—p a;. (Here we put cp = —0c0
as before.) In this case b; = ¢j11,dj41 = a;, and dy = ¢ for k # j + 1. Now, if
aj4+1 is in

e Case I(a): this is impossible as we assumed that b; ;1 # co.
o Case I(b): a;41 should bump dy = ¢ for some k > j + 2 since dj;1 =
a; <p ajy1- As aresult, b; = Cj+1 <P Ck = bit1.
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e Case Il(a): since a; <—p aj+1, this is only possible when there exists dy = ci
for some k > j + 2 such that ¢4 ¢--p a;j41. As cj41 <p ck, we have
Cj+1 <P aij4+1 by Condition (h) applied to (¢j1, ¢k, ai+1). Therefore we have
bi =cjy1 <p ait1 = bit1.

e Case II(b): it is shown in the same way as Case II(a).

Now we assume that g; is in Case Il(a), i.e. @; = b; and d = 0. Then for any
x > a;jy1 we have a; = b; <—p x by Condition (rh) applied to (a;, a;j+1, x), and
thus the only nontrivial case occurs when a; 1 is in Case II(b). However, this is only
possible when there exists j € [1,[] such that @; <--p ¢; «--p a;+1, in which case
a; and a1 should be processed in the same step because of the maximality in Case II.
This violates the aforementioned assumption.

Lastly we assume that a; is in Case II(b), i.e. a; --+p b;. Again, by Condition (rh)
the only nontrivial case occurs when a;41 is in Case II(b) and this is only possible
when there exists j € [1,/] such that ; <—p ¢; = d; «--p a;41. In this case we
have b; | = c¢; and thus b; <—p c; = b; | by Condition () applied to (b;, a;, cj).

We exhaust all the possibilities and thus completed the proof of (C).

8.5 Proof of Proposition 5.9(D)

We keep the setup in the proof of (C) above. First we consider the case when a; and
aj4+1 are processed in the same step. If this step is in Case Il(a), then @; = b; and
ai+1 = bj41 thus the result is obvious. On the other hand, if this step is in Case II(b)
then one may easily observe that b; < a; = bj+1 < aj4+1 and {b;, a; = biy1,ai+1}
is a ladder in P. In particular we have b; «--p b;11 as well. Therefore, it suffices to
assume that a; and a;4 are processed in different steps.

We suppose that b; ;| = 00, i.e. aj+ is in Case I(a). Since a; #p a;41, it follows
that dyy # a;,i.e. 1 =1’ and d; = ¢; (and also [ # 0). However, it is only possible
when a; < ¢; and ¢; <—p a;41, which implies a; <—p a;+1 by Condition () applied
to (a;, c1, ai+1). This violates our assumption, and thus b; | # oo as expected.

It remains to show that b; #p b;11 if b; # o0, i.e. the length of ¢ is equal to
0. We first assume that g; is in Case I(b), i.e. there exists j € [0,/ — 1] such that
¢j <a; <cjqr and cj <p a;. (Here we put ¢ = —oo0 as before.) In this case we
have b; = c¢j41 > a;,djy1 = a;,and dy = ¢, forany k # j+ 1. Asb; #p ait
by Condition (rh) applied to (a;, b; = Cj+1,@i41), it follows that b; #p x for
any x < a;4+] again by Condition (rh) applied to (b;, x, aj+1). Therefore the only
nontrivial case occurs when a;41 is in Case I(b) as well. This is only possible when
either [there exists k € [0, j — 1] such that ¢ < a@;j4+1 < cx+1 and ¢x <—p aj4+1] or
[c; < aiy1 < djs1 = a; and ¢; <—p a;41]. Thus b;4q is equal to either ¢4 for
k < j or a;. In either case, we have b; = cj1 #~p bi11.

Let us assume that g; is in Case Il(a), i.e. ¢ = 0. As above, the only nontrivial case
occurs when a; 11 is in Case I(b), i.e. there exists j € [0,/ — 1] suchthatc; < a;11 <
cjy1andc; <p ajt1,inwhichcase biy1 = cjy1. Nowifa; =b; <—p biy1 =cjt1,
then as a; is in Case Il(a) there exists k < j + 1 such that a; «--p ci. But this is
contradiction since ¢; <—p a;41 implies ¢ <—p a;+1, which means a; <—p a;41 by
Condition (rh) applied to (a;, ¢k, @j+1).
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Lastly, we assume that ¢; is in Case II(b) so that a; --+p b;. As a; and a;4] are
not processed in the same step, a; should be in 0. If g; 41 is in

e Case I(a): this is impossible as we assumed that b; 1 = o0.

e Case I(b): sincea; #p aj+1,a;+1 either bumps a; or some element above a; in the
chain0,i.e. bj;| = a; or bj;|1 <—p a;.Ineither case, we should have b; £p b; 1
since otherwise a; —p b;.

e Case Il(a): suppose that b; <—p bjy| = aj4+1. As b; «--p a;, we have a; < a4+
by Condition (rh) applied to (b;, a;, a;+1), and thus {b;, a;, a; 1} is a ladder in P.
However, this violates the maximality of Case II as a; and a;1 are not processed
in the same step. Thus we should have b; #p b1 = a;j+1

e Case II(b): b;y; is some element in the chain d’ satisfying a; 41 --+p bjt1. If
b; <p biy1, then we should have b; < a; < b;j+1 < aj+1 by Condition (rh)
applied to (b;, a;, bjy+1) and also b; <—p a;11 by Condition (rh) applied to
(bi, bi+1, ai+1). However, in such a case {b;, a;, a;+1} is a ladder in P, which
violates the maximality in Case II. Thus we have b; £&p b;41

We exhaust all the possibilities and thus completed the proof of (D).

8.6 Proof of Proposition 5.10

Hereafter we write 30 = 00 arl(\i?i :=n+1—afora € [1,n]. (nis assumed to tlg
fixed.) We define a new order P on [1, n] such that a -5 bif and only if @ <p b.
Then one can easily check that P = Py ,, if and only if P = Py ,,. Also, from

now on we write QZP, QP, <I>P, \IJZ?, etc. to clarify which partial order is used in their
definitions. We define

o A—->A:a=(an,...,a)—~a=(y,...,am)

P s ePic=(@,....cD>CT=@,....0)
and’e : Qﬁ — ¢7 similarly. Also we set
w:ePA - AP 2 (c,0) — @,70),

and w : €PU — AP similarly. (Here we abuse notations and denote both functions
by w.) Note that these functions are well-defined bijections.

Suppose that &P (a,¢) =, B) for some («, ¢) € A¢” and (d, B) € P9 where
o= (am,...,a;)and B = (b, ...,b1). Weset X ={m+1—i|i€e[l,m],a #
o0, bj = oo}. (This set records in which step Case I(a) occured when calculating
®” («, ¢).) We claim the following.

Lemma 8.4 Keep the assumptions above. Then we have (a,c) = (w o \11)7(3 owo
P) (@, ) = (@0 W] o w)(d, B), i.e. (€. @) = V% (B. d).
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Remarlﬁ 8.5 Since the set X depends on («, c), the lemma above does not show that
wo \IIZ(D owo ®F is the identity. However, it shows that one can recover (¢, ¢) from
(d, B) and X, which essentially proves Proposition 5.10.

Proof We may assume that m > 1 and a,,, # 0o. Suppose that it only needs one step.
If itis in
e Case I(a): in this case it is clear that @ = (a1), B = (00), d = (a1) + ¢, and
X = {1). Thus WP (B, d) = W (00), €+ (@) = (©, (@) = (G, @) as desired.
(This corresponds to Case co(b) of Algy,.)

e CaseI(b): we have « = (a;) and X = (. There exists r € [0,] — 1]
such that ¢, < a1 < c¢r41 and ¢ <p aj. (If a1 < ¢ then we set

r = 0.) Then we have 8 = (¢;4+1) and d = (cl,...,c,+2,a1,c1,...,c1).
Since €42 < G1 < ai and G423 <p 41, we have WP(B.d) =

— - —_ —~ —_— —_ —_~ —~ T — _~
QP((C;’+1)7(01,---7Crval,cr+2»---,cl)) = ((c]a"'acracr+]5cr+2a-"761)7

(a1)) = (¢, @) as desired. (This corresponds to Case I(b) of Alg,,, and it is still
valid whenr +2 =1+ 1.)
e Casell(a): wehave X = 0,0 = 8,c =d,anda; < ap < --- < ap. There exists

r, h such that {c,, ..., c,4n} U is aladder in P and ¢, < a; < c¢y4j for any i.
Then itis easy tosee thata,, < --- < @ < ai, {Gr, ..., ¢} U is aladder in P,

and ¢,4, < @ < ¢ for any i. Thus \IIZ;(B\, d) = ®P(@,?) = (C, Q) as desired.
(This corresponds to Case II(a) of Algy,.)

e Case II(b): we have X = (. As in the description of Algs, we choose r, & and
O=u(r—1) <u(r) <u@+1) <--- <u(r+h) =msuchthatc; < a,i_14+1 <
<o <ayqyfori e [r,r+hland{c,, ..., crqn, a1, ..., an}isaladder in P. Then
it follows that d = (¢, ..., Cr4h+1, Aur+h)s - - - » Qu(r)> Cr—1, - - -, €1) and

, e if j=u(i — 1)+ Iforsomei € [r, r + K],
J 7 Na j—1 otherwise.

However, it implies that 5, > by > -+ > by, {a/u@,...,am),a,...,l;n:} is
aladder in P, and by(i—1)+1 = G > GuG—1)+1 > -+ > auq) fori € [r,r + hl.
Also note that ¢,_1 —5 x forany x € {du(rys - - -+ Quirtiys P1,s - - ., by} When
r > 1. Thus
WP B D = P B oy (& — — ——
xB.d) =D ((b1,....bpn), (Cl, . .. Cr1,Qu(r) - - > Au(r+h)s Crh+1- -, Cl))
:((aﬂ"‘7C/r?lﬂa’"‘7@7@5"'76)7(&77"'55}’;))2(&&)

as desired. (This corresponds to Case II(b) of Alg,.)

To prove the general case we argue by induction on the number of steps of Algg
for the calculation of ®” (a, ¢). Let m* € [0, m — 1] be the smallest element such
that aye41, ..., ay are processed in the same step. Set «® = (aye, ..., a1), af =
(@ms -+ amos1), B* = (e, ..., by)and BT = (b, ..., bpes1),s0thate = af +a®
and B = % + B°. Then there exists d* € ¢7 such that ®7 («®, ¢) = (d*, 8°) and
®P (af, d*) = (d, BT) because of the choice of m®. Thus by induction assumption we
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Fig. 27 Strategy of the proof

have (€, &%) = WF.(B*. d*) and (d*, a¥) = WP, (87, d) where X* = (i + m* —m |
ieXNim—m® +1 mlyand XT = X N[1,m — m*].

Therefore, in grder to prove the lemma, it suffices to show that the first step of the
calculation of \11}7?(;/3\, Zl\)/grocesses b/m-:, e, En\l but not b/m\- (See Fig. 27.) If a,, is
in Case I of Algy, then by, is in Case I or Case oo of Algy, as shown above, in which
case the statement is trivial. Thus we assume that ay, is in Case II of Algq> Then we

have |d| = |d®| and XT = ¢. Thus in particular \1/7’ (B, d) = P (BT, d). We set
d=(dy,...,d)andd* = (d3,...,d}).

Case II(a). Suppose that a,, is in Case II(a) of Algg. Then d = d°, B" = af and
there exist r, i such that £ := {d?, ...,dr'+h, ame+1, .., an} 1s a ladder in P and
d? < x <d},, forany x € L. Here we need to check that {l;,.n\o} U{X | x e L}is
not a ladder in ﬁ, i.e. either m* = 0 or b« does not satisfy both b,,e <—p b+41 and
by «--p d}. For the sake of contradiction we suppose otherwise. By Proposition
5.9(C), it also means that as <—p @pe41. Also aye cannot be in Case I(a) of Algg,.

Suppose that a,,. is in Case I(b) of Algg. Then b}, is bumped out from the chain
0, and thus d? /-+p by unless a,e+ bumps the r-th element of 0 and a,, = d. But
this is absurd since it means that a,,e < bye but bye <--p d? = ape.

Now we assume that ap,e is in Casell(a) of Alg, and

= {d?, S r +h,, Qs . .., ame} 1s the corresponding ladder in P where dr', <
- < d'/+j and d) < aw < - < ame < d - Then bye = aye, and thus
d? --+p by = aye which is only possible when r’ + h' = r,ie. LU L' is again a
ladder in P. (Note that a,,« = b;, <—p a;u+41.) However, it contradicts the minimality
of m®.

Assume that aye is in Case II(b) of Algg,. Then a,» = d for some i, and as
Qe <P apet1 and aye 1 -->p d? we should have i < r and a;e = d? <—p d?.On
the other hand, we always have a,,» --+p by, and thus d? —p b,,» by Condition
(). However, it contradicts the assumption that d? --+p bye.
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Case II(b) Suppose that a, is in Casell(b) of Alges and let

{d’, . r+h,am-+1, ..., ap} be the corresponding ladder so that d} <
X 5 a,, for any x € L. Then direct calculation as above shows that £ =
{dr,....drin,beyt, ..., by). Note that £ U {d? ;} cannot be a ladder, and thus

in order for bm- to be processed with b me—+1s - - l;-,,\, we should have that {x |
x € L} U {bm } is a ladder in 77, ie. byey1 --+p bpye and x —p bye for any
x € L — {bye4+1} by maximality in Case II. By Proposition 5.9(D), it also means that
Ame €==P dme*+1-

Assume that ae is in Case I(b) of Algg. Then a,e = d for some i. Since
ame <—-Pp ames1 and d? «--p aye41, we should have r = i and a,+ = d;. But
it contradicts that by,e > aye as bye ¢—-p byeq = d.

Assume that a,,e is in Case II(a) of Algg. Then bye = apme <--p ame+1 7% bimet1
which contradicts that x —p bys for any x € £ — {bye11}.

Assume that ay,» is in Case II(b) of Algg, and £’ is the corresponding ladder where
ame > bye > x forany x € L' — {aye, biye}. Then aye = d? for some i. Since
ame «--p apes1 and d, «--p ape41, it follows that r = i. Together with the fact that
X —>p bye forany x € L — {bys41}, it follows that LU L’ is again a ladder. However,
it contradicts the minimality of m*®.

We exhaust all the cases and finish the proof. O

We are ready to prove Proposition 5.10.

Proof of Proposition 5.10 Recall that we have (¢ = (ap, ..., a1),¢), (&' = (@, ...,
ay), c’) € ACsuchthata; = 0o < a; = ooand P (e, ¢) = (', ¢’). Let (d, B) € €A
besucharesult. Let X ={m + 1 —i |i € [l,m],a; #00,b; =00} ={m+1—1i|
i €[l,m], alf # 00, b = oo}.ThenbyLemma8.4wehavew(\IJ)7?(3, Zl\)) =(a,c) =
(o, ) as desired. O

9 Proof of Theorems 6.1 and 4.15
9.1 Preliminary lemmas

Before the proof we first state the following series of lemmas which will be frequently
used later on.

Lemma 9.1 Supposethat{ay, ..., ai}isaladderin’P wherek > 2anda; < --- < ay.

(D) If b -->p ag, then cither {ay, ..., ak—1,ar, b} or {ai, ..., ax—2,ak—1,b} is a
ladder in P.

(2) If b «--p ay, then either {b,ay,ay, ...,ar} or {b,as,as, ...,ax} is a ladder in
P.

Proof For (1), first note that we have b —p ag—, which follows from Condition (rh)

as ap_p <p ar. Now if b —p ag_y, then {ay, ..., ax_1, ax, b} is a ladder in P.

Otherwise, we have b --+p ax—1 and thus {ay, ..., ar—2, ax—1, b} is a ladder in P.

(2) is proved similarly. O
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Fig. 28 Possible cases in Lemma 9.3

Lemma 9.2 Suppose that {a1, ...,ax} is a ladder in P where a; < --- < ai. If
x ¢ {ay,...,ar}, a1 <p x, and no one is climbing a ladder in P, then a; <p x and
aiv1 < xfori <k —3.

Proof Since no one is climbing a ladder in P, we have a; /4 p x. Since ax_y <p ax,
this means that a;_» < x by Condition (rh). Now suppose that there exists i < k — 3
such that a; £#p x (and thus k > 5). By Condition (rh), it is equivalent to assuming
that ay_3 «--p x. Since ax_3 <—p ai—i, this means that x < a;_; by Condition
(M). Thus we have x <--p ax—1, ax and x --+p ax—y, ax—3. Since ax_4 <~p aj—3,
we also have x —p ax_4 by Condition (rh). Now one may check that P restricted
to {ak—_4, ax—3, ak—2, x, ai} is isomorphic to P 1,1),5, which is a contradiction. It
remains to check that a; < x fori < k — 2, and thus suppose otherwise (and thus
k > 4). It implies that a;—; <p a; by Condition (rh) since a;—; <—p x by above (or

by assumption if i = 2), which is a contradiction. O
Lemma 9.3 Suppose that {b1, ..., by, a1, az, a3} is a ladder in P where by < --- <
by <ay <ay <az, x ¢{by,...,by,a1,az,a3}, by <p x, and no one is climbing a

ladder in P. Then the relation between {ay, a2} and x falls into one of the following.
(Also see Fig. 28.)

9.3.1) a; «--pxanday --+p x
9.32) a; «-—-pxanday «--p x
9.33) ay «<pxanday «—-p x
9.34) a; < pxanday <p x

Proof By Lemma 9.2 we may assume that k = 1. Then one may check case-
by-case using Condition (h) and a3 /p x since otherwise x is climbing
{b1,.... bk, a1, a2, az}. |

Lemma 9.4 Suppose that {ai, ..., ar} is a ladder in ‘P where a1 < --- < a and
k>4 x ¢ {ay,...,ar}, and no one is climbing a ladder in P. If ap «--p x, then it
falls into one of the following cases. (Also see Fig. 29)

9.4.1) a; «—-p x,a3 ——+p x
942) k=4,a1 <px,a3 -—»p x,a4 ——+3p X
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aj < -~

a4—/’

(9.4.1) (9.4.2) (9.4.3) not possible

Fig.29 (Im)Possible cases in Lemma 9.4

943) k=4,a1 <px,a3 «--px,a4 —-+p X

Proof Using Lemma 9.2, Condition (), and the assumption that x is not climbing
{ai, ..., ax}inP, one may deduce that the only possibilities are the above three cases
and possibly [k = 5, a1 <—p x,a3 ¢«--p X, a4 --+p x, a5 --+p x] (see the last
diagram in Fig. 29). However, the latter is impossible since in this case a3 is climbing
the ladder {a1, az, x, as}. O

9.2 Proof of Theorem 6.1(A)

We are ready to prove Theorem 6.1(A). Since each column of PT (resp. QT')is a chain
with respect to P (resp. the usual order), we may restrict our attention to comparing
elements in two adjacent columns of PT and QT, respectively. To this end, we set
o, f elUtobea = (ay, am—1,-..,a1), B = (by,...,by)andset PT = (PTy, PT»)
where PTi, PT, € € are defined tobe PTy = (dp, ...,d1) and PTr = (ey, ..., e1).
We assume that & («, ¥) = (PT1, B), (B, ?) = (PT,, y) forsome y € 2. We define
QT = (QTy, QT») to be as in the algorithm of P-RS.

We argue by induction on m = |«|. There is nothing to prove when its length
is 0, and thus suppose that m > 1 and the statement is true up to m — 1. We set
m® < m (specified later), and define a®* = (ape, ..., a1), B* = (b),., ..., b3, b}),

PT® = (PT?, PT}) where PT? = (dl‘,.,...,dz‘,dl’), PT} = (e;., ..., e5,e0),
QT* = (QT;, QT;), and y* € 2 analogously. (See Fig. 30.)

It suffices to assume that a,, # oo. For a,, in Case I(a), we set m®* = m — 1. Then
wehave p = p*+1,9 =¢q°, PT| = (an) + PT?, QT = (m)+ QT}, PT, = PTy,
and Q7> = QT . In this case there is nothing to prove. From now on, we divide all
the remaining possibilities into the following cases. (Note that we have p = p*® and
QT = QT in these cases.)

L. a,, isin Case I(b) (see Fig. 31): we set m*® := m — 1. There exists o € [1, p] such
that dé;_l < ay < dé and dé_l <p am. (Here we set dj = —o0.) Here it is
easy to observe that ®((a), PT\") = (PT1, (by)). Also we have dy, = a;, < dg,
dx =dg ifk # 0, B* = (by—1, ..., b2, b1), and by, = d.
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Fig.30 Setup for induction argument

IL. a,, is in Case II(a) (see Fig. 32): we set m® € [0, m — 1] to be the smallest integer
such that ay,e41, ..., a, are processed in the same step and a; «--p aj4; if
i € [m®+1,m —1]. Then,

- q)((amv o 7am'+])7 PT].) == (PTla (bma ceey bm'+1))a
— there exists ¢ € [1, p — 1] such thatd, < apey1 < --+ < am < dp41, and
= Laq '=1{dg, ames1, -+, am, dp41} is aladder in P.

Then we have PTy = PT?, B* = (bye, ..., b2, b1), and b; = a; fori € [m® +
1, m].

III. a,, is in Case II(b) (see Fig. 33): we set m®* € [0,m — 1] to be the smallest
integer such that a,;+11, ..., a, are processed in the same step and a; <—p aj+1
ifi € [m®*+ 1, m — 1]. Then,

- (I)((amv v 7am'+1)’ PTI.) = (PTls (bmv L) bm'-l—l))’

there exists o € [m — m®, p] such that d;+l < met1 < d;+2 < met2 <
oo <dg <apy whereo := 0 —m+m®,

either o = ¢°® or dypy1 —p a,, (by maximality in Case II), and

— Lagq = {dy 1 amet1,dy o ames2, .., dg, a,,} is a ladder in P.

Thenwehaved; = d; fori € [1, o]U[o+1, plandd; = ajym— fori € [0+1, 0],

B* = (bwe.....bo. by).and by = dp,,_, fori € [m® +1,m).

The condition ® ((an, ..., ame+1), PT) = (PT1, (bm, - .., byey1)) implies that in
each case QT is obtained from QT by adding some entries in [m® + 1, m] in order,
which in turn means that Q7T satisfies the standard Young tableau condition if and
only if p > g. Thus in each case it suffices to prove that p > g and d; /4 p e; for
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Fig.32 II. gy, is in Case II(a)

i €[1, q]. Now we also divide possibilities into following cases. (Here we use Lemma
5.8 in each case. Note that we always have b;,e4 1 < --- < by,.)

® by is in Case I(a): we have ege <—p b; fori € [m® + 1, m]. Thus ¢; = ¢7 for
i€l q%]

® byeqq isin Case I(b): there exists r € [1, g] such that e?_| < byeq1 < e} and
er_; <p byey1. (Here we setey = —00.) Then we have e; = ¢} fori € [1,r—1].

® byeyy is in CaseIl: let m’ € [1,m® + 1] be the smallest integer such that
by, ..., byes1 are processed in the same step (thus in particular b,y < --- <
bme11), and we set PT; = (e;., ...,e3,e7) € €tobe “PT; right before the
step processing by, ..., by”, i.e. such that ®((by, ..., by), PTy) = (P12, —)
and also ®((bye, ..., by ), PTy) = (PT3, —). (As Case Il does not increase the
length of the chain, PT’ is of length ¢°. See Fig. 34.)
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Fig.34 Definition of PTy, PTy, and PT, when bye 1 is in Case IT

Also,wesetr,s >land0<m' — 1 =u@) < --- <u(r+s)=m*+1tobe
such that ef+j <byg4j-1)+1 < -+ < bygyj for j € [1,s] and

‘Cbe = {e;)+] LN} ef.l,-xa bmla bml—‘rla e bm'—H}

is a ladder in P. Note that we always have ¢; = e} = ¢7 fori € [1, r] by Lemma 5.8
because ey <—p b; for j € [m’, m] by assumption. Also one may easily check that
e} = e; fori > r + s + 1. Here we list all the possibilities. (Also see Fig. 35.)

e Casell(a), u(r +s — 1) = m®. (See Fig. 36.) This case includes s = 1 and
u(r)+1 = u@ + 1) = m® + 1. This means that b,,, ..., b, were originally
in Case Il(a) as well. We have r + s +1 < ¢°* < q, ¢] = ¢} for all i and also
ej = ¢} fori € [r +1,r +s — 1] by Lemma 5.8 because er'+s_1 <p bj for
j€m®+1,m].
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Fig.35 Two possible cases of b,,e on the calculation of ®((byse, ..., byy), PTy)

e Casell(a), u(r + s — 1) < m®. (See Fig. 37.) This means that b,,, ..., by
were originally in Case II(b). We have r +s + 1 < ¢°* < g, e}, ; = by(r+i) for
ie€ll,s—1],e,; = byes,ande; = ¢; fori € [r+1, r+s] by Lemma 5.8 because
Case Il(a) does not alter the given chain and e, <—p b; for j € [m* + 1, m] by
assumption.

e Case Il(b), u(r +s — 1) < m®. (See Fig. 38.) This means that b, ..., b, were
originally in Case II(b) as well. We have ¢; = ¢} fori € [r + 1,7 +s5 — 1]
and e, = by by Lemma 5.8 since e; <p bj for j € [m®* + 1,m] by

r+s—1
assumption.
e Casell(b), u(r + s — 1) = m®. (See Fig. 39.) This case includes s = 1 and
u(r)+1=u(r +1) = m® + 1. This means that b, ..., b,,» were originally in

Case Il(a). We have e? = e7 for any i and e, 1; = by fori € [1,s — 1] by
Lemma 5.8 because by 45—1) = byye <—p bj for j € [m* + 1, m]. Also, itis easy
to observe that er‘+i < erqifori e[l,s —1].

From now on we verify the conditions p > g and d; /p e; fori € [1, q] in each
case. Note that p = p® > ¢g*® and d} /p e for any i by induction assumption, and
thus p > gifg =q®*andd; ~pe;ifdi =d?, e; =e;.

L. an, isin Case I(b)

We have m®* = m — 1. Here it suffices to check dy /p e; only for k satisfying
k < q and either k > ¢°® or e, < e, which follows from Condition (rh), induction
assumption, and the fact that dy < dp for k € [1, p].

Li. b, is in Case I(a): we have ¢ = ¢® + 1 and PT; = (b;,) + PT5 . First in this case
p > 0 > g since e;_l = e;. <p by = dj. Now it suffices to check dy /P ¢4.
Now if ¢ > g, theneg = dj #~p dy =dy.1f 0 = g, theney = dj #—p am = dp.
Lii. by, is in Case I(b): we have ¢ = ¢°®, and ¢; # e} only when i = r in which
case ¢, = b, = déj. Thus it suffices to check d, /4 p e,. Note that r < o since



Robinson-Schensted correspondence for unit interval orders

Page 510f66 97

index — PTy — — PT3 — — PTy — — PT§ —
T 6,,‘ f— 67“ f— eT’ f—— 6,',,
r+1 €rt1 —_— €ri1 —_— €r41 —— €rt1
r+s—1 €rts—1 == Erts—1 == Er+s—1 == €rts—1
r+s €;+5 _ 6;‘+s Crs e;+s
. . .
r+s+1 Cris+l - Cris+1 Erts+1 Cris+1
q° €ge = €ge €q* €ge
- - - - - -
q €q
| —
Fig.36 PT,, PTy,and PT, when by, in Case I(a), u(r +5 — 1) =m*®
index — P13 — — P13 — — PTy — — PTY —
r er fr—— eT‘ fr— 87, fr— e,r
r+1 Cr+1 bu(r+1) Cr41 = €r41
r4+s—1 Cris—1 bu(r+sfl) Cris—1 O Cris—1
r+s er+s bmo er+s —_— €T+.s
. . °
r+s+1 Crts+1 - Cris+1 Erts+1 Cris+1
q° €ge —— €ge €qe €ge
| — | — | —
q €q
| —

Fig.37 PTy, PTy,and PT, when b,,e_ | in Case Il(a), u(r +s — 1) < m®
g 2 2 2 me®+1

dy = bnw —p e . Ifr <gthend, =d? />p dj = e . Ifr =gthend, =
am >p dé = ¢, thus the condition still holds.

Liii. b, is in Case Il(a), u(r +s — 1) = m — 1: we have PT; = PT>, and thus there
is nothing to check.

Liv. by, is in Case lI(a), u(r + s — 1) < m — 1: in this case we have g = ¢°,
ey s = bm—1, er'+j = by+j for j € [1,s —1],and ef = ex itk ¢ [r + 1,7 + s].
Thus it suffices to check dy /~p ex fork € [r + 1,7 + s]. Note that r + 5 < o
since ey, = by—1 < by = dé. First suppose that k € [r + 1,7 + 5], k < o, and
dy —p ex. Thenas dy = df <—p dé = b, it implies that dy is climbing L, in P,
which is a contradiction. Now suppose k € [r+1,r+s], k > ¢ and dy — p e (which
forces that k = o = r + 5). Note that Ly, U {€,15+1} is a ladder in P since b, is in
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index
r
r+1
r+s—1
r+s
r+s+1
L ]

q

q

— PTy —

€r

[e]
er+l

o
erJrsfl
o
erJrs
.
€r+s+1
.

eq.
- -

y

N

— PTy —

Er

Cr41

67'+s—1
67'+s
Erts+1

Fig.38 PTy, PT;,and PT, when byt in Case II(b), u(r +s — 1) < m*®

index
T
r+1

r+s—1
r4+s
r+s+1

q

q

o
— PT2 I\
€r
L]
e7‘+1
L]
er-i—s—l

L]
er-i—s

.
er-l—s-i—l

€ge
-

TR

.
— PT2 ﬂ
er
L]
67+1
L[]
er+s—1

L[]
er+s

°
er+s+1

— PT5 —
€r
bu(r+1)
bu(r+sf 1)
er-&-s

€r4s+1

€qe

€q
- J

Fig.39 PTy, PT;, and PT, when by,e 1 in Case II(b), u(r +s — 1) =m*®

— PT§ —,
€r
[e]
er—i—l

o
€T+S,1
o
er+s

.
er+s+1

€ge
-

o
— PT2 —
€r
L]
er+1
L]
er-l—s—l

e
er+.s

.
€T+s+1

(‘b
Qe .-
L]

Case Il(a) and Lpe U {e, 4541, do+1} is also a ladder as dypq1 = d5+1 —p dg = by
and doy1 = dj | 7P €l = eryst1. Since dy <—p doy1, We see that dy is
climbing the ladder Lpe U {e; 1541, dp+1} Which is a contradiction. (See Fig. 40.)
Lv. b, isin Case II(b), u(r +s —1) < m — 1: wehave ¢ = q°, e;45s = by, > byy—_1 =
ey, and e = e; for k # r + s, and thus there is nothing to check.
Lvi. b, isin Case II(b), u(r +s—1) = m —1: wehave g = ¢°, e;Jﬂ. < bugr+iy = €r4i
fori € [1,s] and e; = ¢ fork & [r + 1,7 + s], and thus there is nothing to check.
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Fig.40 a;, in Case I(b), by, in
Case Il(a), -
ur+s—1)<m—-1,0=r+s bu(r+5,1)+1

IS €ris

IL. a,, is in Case ll(a)

Recall that b; = di°+9_m fori € [m®* + 1, m]. Since d; = d; for all i, similarly to
above it suffices to check dy /p ey only for k satisfying k < ¢ and either k > ¢°® or
ex < ey.

ILi. b+ 41 is in Case I(a): direct calculation shows thatg = ¢*+1and PT» = (a,,) +
PT;. Firstwehave p > 0+1 > g*+1=gsincedyi1 > amer1 = b1 —p ego.
It remains to check d; /~p e;. If 0 + 1 =g, thendy 1 -->p a, = ¢4, and thus the
result holds. Otherwise, i.e. if ¢ + 1 > ¢, thend; < d, < a, = ey, and thus again
the result holds.

ILii. b,+41 is in CaseI(b): Note that o + 1 > r since d;_H > Apes] =
bmey1 —p er_,. First assume that r = g or e;+1 —p by = ap. (This includes
the case m = m*® + 1.) Then we have g = ¢°, e, = ay, and e = ¢f for k # r,
and thus it suffices to show that d, /Ap e, = a,. However, if d. —p a, then
dot1 > dp —p ay thus dy1 —p a,, which contradicts the assumption.

From now on we suppose that ¢}, | #p an (so that m > m® + 2). In this case
am > er by Condition (1) since ey L1 7P adm and e} 1 P ey. First we assume
m = m® + 2. Then we have a,, «--p e;H; otherwise we should have a,, > er'H,
but it is impossible by Condition (rh) since e P ey > ap—1 butay, ——+p ap—1.
Now direct calculation shows that ¢ = ¢°, ¢, = ay—1, and e = ¢} for k # r,
and thus it suffices to show that d, Ap ¢, = an—1. If 0 + 1 > r, then we have
d, <d, < ay_1 = e, and thus we are done. Now we claim that ¢ + 1 # r; first
note that d, > e, since a;,—1 —p er_| = e,—1 and a1 --+p d,. Together with
do = d; 4P ez) = e,_1, this means that d, --+p e,_1. Also ¢,1 —p ap,_1 since
erp1 = e;+1 —p ey > ay—1. But this means that {e, 1, dp, am—1, am, er41} is a
ladder in P which e} is climbing (e,+1 —p ef —p e,_1), which is a contradiction.
(See Fig. 41.)

It remains to assume that m > m® 4 3. We claim that e} /A p a;+41. Other-
wise, am—1 < e; by Lemma 9.2 which in turn implies that a,,—1 <p ey | and
am «--p ey, by assumption. However, it means that {ape+t1, ..., dm, €7, } is a
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Fig.41 ay, in Case Il(a), by, in
Case I(b), m = m® + 2, -
o+1=r Q (\

A
!
!
| .
| 'I"
\

a m

Ame+1 ¢« - /K Ame+1 P /K

U R LN T--_ e
. ser < e
(e 42 Ame42

(9.3.1) (9.3.2)

Fig.42 ay, in Case Il(a), by, in Case I(b), m > m® + 3

ladder that ey is climbing, which is a contradiction. Since e; > a1 by assump-
tion, it follows that e} --+p a,+11. Now we apply Lemma 9.4 to L4 (of length
m —m® +2 > 5)and e} and conclude that d, <--p ey and apyeq2 -—>p er.

Note that e:H —p apye+1 by Condition (M) as ey <—p e;+1 and e} > aye41. Thus
by Lemma 9.2 we have e; —p a; for j € [m®+1, m — 2] and we may apply Lemma
9.3 to{am—1,an}ande}, . Asan #—p e; | by assumption, case (9.3.4) is excluded.
In other cases, direct calculations shows that e, = ajyey1, ex = ep if k & {r,r + 1},
and

e (9.3.1): either e, 41 = e;+1 or €41 = Ay > e;+1.
e (93.2): er41 = ap-

o (933)ep1=e,,.

(See Fig. 42.) In any case we have g = ¢°. Thus it suffices to check that d, A p e,,
and dy+1 /7P er+1 in case (9.3.2). Note that here we have o + 1 > r since
doy1 =P -1 = apeq2 > er. If d. —p e, = apeiq, then since d, <—p dpy it
means that d, is climbing L,4, which is a contradiction. Also in case (9.3.2) we have
dr+1 /P e,+1 = a by Condition () since dy 1 < doy1 and dyy1 -—>p ap.

ILiii. b4 is in Case ll(a), u(r + s — 1) = m®: when m = m*® + 1, then PT» =
PT;, and thus there is nothing to check. Thus suppose that m > m*® + 2. Note that
ey s «==P amet1 = byeyy since byeyy isin Case Il(a) and u(r +5 — 1) +1 = m®,
and o > r + s since dé | —P Gmey1 > e;Jré First assume that e}, <p ame2.

Then Lqq U {e],} — {dp} is a ladder and ep, i «<p ey, ., and thus by Lemma
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SN s oy s

a'm'+1 - / Ame +1 / (1m'+1 /

am'+2 am +2 ”rrz'+2

& Gmog

L]
d9+l Crist1

(1g+1 dy+1
(9.3.1) (9.3.2) (9.3.3)
Fig.43 ay in Case Il(a), by, in Case l(a), u(r +s — 1) =m®,m > m® +2, ¢} <P apeq2
Fig.44 a;, in Case Il(a), by, in d

2 (&
Case lI(a), u(r +s — 1) = m®, 0 ¢« _ oy Crts
m>m®+2,e  ¢--p aye 2

T~ e
_ oy Crgstl
dg+1 -7

9.2 we have e}, —p a; for j € [m®* + 1,m — 2] and we may apply Lemma
9.3 to {am—1,am} and €7, ;. (9.3.4) is impossible since b4 is in Case ll(a), i.e.
there exists j € [m® + 1, m] such thata; = b; «--p e}, .. In other cases, direct
calculation shows that e = ey if k # r +s + 1 and

o (93.1):either e,ys41 =€, | OT €rpspl =am > €5 -
o (932) eryyr1 = am.
4 (9 3 3) Cr+s+1 = er+s+]

(See Fig. 43.) In any case we have ¢ = ¢°. Thus we only need to check that
drys+1 7>P erts+1 = ay in case (9.3.2). But this holds by Condition (rh) since
drys+1 < dpy1 and dpy -->p am = €r4s+1-

It remains to assume that 7, «--p apey2. Since ef «<p €7, ., this means
that aeq2 < ey sl by Conditlon (m). On the other hand, in this case bye41 i
in Case Il(a) only if apet1 «--p €7, . Thus we may apply Lemma 9.4 to L4
and er+v+l Here (9.4.3) is the only one satisfying apue+2 < e}, ., in which case
m=m®*+2and PT, = PT;. (See Fig. 44.) Thus there is nothing to prove.

ILiv. by,e 41 is in Case lI(a), u(r + s — 1) < m®: first assume that m = m*® + 1.
Then g = ¢°, ¢}y = by—1, e;ﬂ- = byg4j for j € [1,s —1],and ¢; = e; if
j & [r + 1, r 4 s]. Thus it suffices to check dy /4 p e fork € [r + 1, r + s]. Since
dg:—s—l = dot+1 > ay = by > by—1 = €7, , we have r + s < ¢ + 1. Also since
do+1 -=*P am = by, by Lemma 9.1 either Ly U {dp41} or Lpe U {dot1} — (b} isa
ladder. Now if dy —p e forsome k € [r + 1,7 +s],k < o+ 1thenasdy <p dp11
it implies that dj, is climbing a ladder, which is impossible. It remains to check the case
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Fig.45 ay, in Case Il(a), by, in
Case II(a), m = m*® + 1,
o+l=r+s

o2

when k = r +s = o + 1. We claim that this is impossible. First, o +2 =r+s+1 >
q > p, and thus dy; is well-defined. Furthermore, dy 2 = dé 2 PP e =
erys+1, and thus dyy1 < e,4541 by Condition (M) since dy12 —p dp41. On the
other hand, if dy42> < e,4441 then a, < doi1 <—p doi2 < eryg41 Which implies
by = a, <p er+s5+1, but it contradicts the assumption that b, is in Case Il(a).
Therefore, we have dy 1 < €,1541 < dp42 and also dyy2 -->p e,4511. Now one
may check that P restricted to {dy, am, dp+1, €ry5+1, do12}is isomorphic to P(3 1.1),5,
which is a contradiction. (See Fig. 45.)

Now assume that m > m® + 2. First dé_H =dpt1 =P Amet1 > bye =€}, and
thus ¢ > r + 5. As Ly, is a ladder of size > 3 by assumption, Lpe U (Lag — {dp})
is also a ladder by Lemma 3.11. Now by Lemma 9.4 we have ey . | —p x for any
x € Lpe U (Laag — {dp}) — {@m—1,am, dg41}, and we may apply 9.3 to {a,—1, an}
and e? il Keep in mind that b;,+ is in Case II(a) which implies that (9.3.4) is
impossible. Direct calculation shows that e? ; = by () for j € [1,s — 1], e7, =
bme,ex =epifk ¢ [r +1,r +s5 + 1} and

e (9.3.1): either €,454+1 = er'_HJrl OF €y q541 = am > €}, (-

e (93.2): r45+1 = am.

e (933) erp541 = e;+s+l.

(See Fig. 46.) In any case we have ¢ = ¢°. Thus it suffices to show that dy /A p ex
ifk € [r+1,r +s]and dy45+1 /P er+s5+1 in case (9.3.2). The former is clear.
Indeed, if k € [r + 1,7 + s] then k < ¢ + 1, and thus dy <—p dy1. Therefore, if
dr —p e then dy is climbing Ly, U (L4q — {dp}) which is a contradiction. Now if
we are in case (9.3.2) then dp 1 > dyy511 and dpy1 -->p am = €,4541, and thus
drys+1 5P €ris+l-

ILv. byeq is in Case II(b), u(r + s — 1) < m®: note that Lype > amey1, be, ey,
and thus Ly, is of length > 3. If m > m® + 1 then Ly, U (L4q — {d,}) is a ladder
by Lemma 3.11, and thus so is Ly U (Lag — {dp, do+1}). If m = m® + 1 then
Lpe U (Lag —{dg, dgy1}) = Lpe is clearly aladder. Then direct calculation shows that
q=4q° erts = by > by—1 = ey, and ¢; = e} otherwise, and thus there is nothing
to check here.

ILvi. byeiq is in Case II(b), u(r +s — 1) = m®: first assume that Lp, U (Lyg —
{do, do11}) = Lpe U{ame42, ..., ap} is a ladder. Then direct calculation shows that

erti = bug4iy > ey fori € [1,s — 1], eppy = b > e}, and ¢; = ¢} if
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Cris Cris
T Y
Erts Prae -7
-7
7 bu(r+s—1)+1 bu,(r+s—1)+1
b IS IS
u(r4+s—1)+1 N N
SN bu(r+s—1)+2 bu(’"+3_1)+2
et 2
bu(r+s—1)+2 7 e
e id : :
- S N
bm' bm'
1 21
Gme 41 Ame+1

R N
N N
N N
/ Ame 42 / Ame 42

(9.3.1) (9.3.2) (9.3.3)
Fig.46 a,, in Case Il(a), by, in Case Il(a), u(r +s — 1) < m®, m > m® + 2

Fig.47 a, in Case 1I(a), by, in

L]
(&
Case II(b), u(r +s — 1) = m®, 7/,,45_(T+1
Lpe U{ame o, ..., am}isnota Ame+1 K
ladder r\\ 7
N 7
Ame +
h
Ly
(0753 ‘o .
€r+2

i ¢ [r+ 1,r + s], and thus there is nothing to check. Thus suppose otherwise,

ie. Lpe U {amey2,...,ay} is not a ladder and in particular m > m® + 2. Since
{@me1, ..., am,doy1} is a ladder of length > 3, by Lemma 3.11 the length of Ly,
should be at most 2, i.e. Lp, = {er'H , me+1} and also er'Jrl «-—p Qpeyn. Also we

have either g®* = r + 1 or e;+2 —P ame41 = bpes1 since byeyq is in Case 1I(b).
If g* > r + 1 then we may apply Lemma 9.3 to {a;,—1, an} and e}, ,. Again since
bye+1 is in Case II(b), the only possible cases is (9.3.4),i.e. ay <—p e, ,. Now direct
calculation shows that g = ¢°, e, 11 = a > ey 1 and e¢; = e} otherwise. Thus there
is nothing to check. (See Fig. 47.)
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III. a,, is in Case ll(b)

Recall thatb; = q; fori € [m®*+1, m]. Here, wehaved; = d?ifi € [1, o]U[o+1, p].
Thus here we only need to check that p > g when g # ¢® and dy A p erifk <gq
and either k > g°®, ¢ < ep,0ork € [0 + 1, 0].

L. bye41 is in Case I(a): direct calculation shows that ¢ = ¢°®* + m — m*® and
P, =, ..., d’+1) + PT;. Note that o > ¢°® since daJrl = byey1 =P 4o, and
thus in particular ¢ < 0 +m — m® = o < p. It remains to check dy /4 p e for
k € [q* + 1, q]. However, since egeq; = byeq; = d;JH. «—-p Apeti = doyi and
doti = dgeqi fori € [1,9 — q°], we have dyey; />p eqo4; by Condition (rh) as
desired.

ILii. b,,,+1 is in Case I(b): we claim that

- q =max{q®,r +m —m*® — 1},
— erti = bpeyiv1 =dj;  fori € [0,m —m® — 1] and e, = e} otherwise, and
— bpeyit1 are in Case I(either (a) or (b)) ifi <m —m® — 1.

(See Fig. 48.) Note that the first part follows from the other parts. To this end, we use
induction on i. If i = 0 then itis obvious by assumption Now assume that the result is
true up to i — 1. First suppose thati < m —m® — 1. If byye it > er+l, then we have
bm —p bpetiv1 > €}, —>p erti—1 = bye4; which means that e} _; is climbing
La4, a contradiction. Thus bys 141 < e ., and direct calculation shows that byye 441
isin Case l and e, 4; = byoyit1.

Finally,weassumei =m-m*—1>0.Ifg* <r+m-—m*—1or
bn < e, _ne_; then by, is in CaseI and the result is obvious, and thus sup-
pose otherwise. If er+m me—1 <P bp, then by, —p er+m me—1 —P bm—1,
am—1 «—-p by, and a1 --+p b, _1, which contradicts Lemma 3.4(1). Thus we
haveel, o | ¢—-pbn. 1fq* <r+m—m®orby, <p er+m e then by, is in
Case II(b) and e, 4 —me—1 = by, and thus we are done. It remains to consider the case
wheng® >r+m—m®ande}, . --+p by, sothat by, is in Case II(a). But then
am—1 <p €5, _» by Lemma 3.4(1) applied to by,—1, ;+m me—1 ;+m e and
a,,—1. This means that {b,,_1, am—1, b, e;+m e 18 aladder in P which e}
is climbing, which is a contradiction. (See Fig. 49.)

Note that 0 + 1 > r as d; l_b-+1—>7>e - Thus r +m —m® — 1 <
o +m—m® = < p,whichmeans thatg < p. It remains to check that dy /~p ek
fork e [o+ 1,0]U[r,r +m —m®* — 1], k < q.If k € [0 + 1, o] then we have
dp = Ak+m—p ~ P bk—i—m—g = €r+k+m—o—m*—1 = €r+k—0—1 and ey 4p—o-1 < e,
which means that d; /p e; by Condition (rh). Similarly, ifk € [r,r + m —m® — 1]
then di4o+1—r --+p ex and dy4o+1—r > di, and thus d; 4 p e by Condition (rh).

r+i’

r+m—m®—1

MLiii. b4 is in Case II(a), u(r + s — 1) = m®: note that o + 1 > r + s since
d{;H = bye+1 > ey, . First we assume that m = m*® + 1, in which case PT, = PT5.
Here it suffices to check that dy /4 p e fork =0 +1 = 0,k < q.Itis obvious when
0 +1 = o > r+s by Condition () since d, = ap, --+p by and by, < ey4541 < €.
Now we assume thatk = o =r +s. Thenpo+ 1 < psincepo+1=r+s+1 <
q < p,and dyy1 > er4541 by Condition (i) since dpy1 = d +1 —P dy =bp and

by «—-p erys11. Asdy = dQ+1 7P € i1 = €rts+1 by assumptlon 1t means that
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PTs n ) ,Ph
Ly €r €r Er €r
bm”rl T T
T ery1 _x bme-t1 bme+1 bme 41
bm'+2 bm'+2 T T
1 = T == : = | .
bm—l b
T T m—1
bm—l bm—l / T T
T 6:_,’_2 T €;+2 bm €;+m7m'71 bm
b by, . .
. - - J )

Fig.48 ay, in Case II(b), b, 1 in Case I(b)

Fig.49 ay, in Case II(b), bye 11
in Case I(b),

¢
ertm—m® ~=*P bm, - \
b =P erpm—mo—1 Am—1

Fig.50 ay, in Case II(b), b,,e |
in Case l(a), u(r +s — 1) = m®, Y
m=m®*+1,0=r+s

b
S
d, .
e
T o _y r+s+1

doy1~

er+s

dos1 ——>p erysi1,1e.{erq5, b, erq541, dpy1}is aladder. Now if d, —p e, then
d, is climbing {e; s, by, €r4541, dg41), which is a contradiction. (See Fig. 50.)
Now we show that the case m > m*® -+ 1 is impossible. For the sake of contradiction
we assume this condition. Here b,,,+41 is in Case II(a) only if e;_H_H -=>p by,
which in turn implies thatey | | < b2 by Condition (). Since bye 11 --»>p €7,
either L,qU{ey Y or LoqU{er ) —{bpey1}isaladderby Lemma9.1.1fm > m®+2or
LaaUler }isaladderthenbye) <—p ey byLemma9.2sinceer, <p e (|,
but this is a contradiction. Thus m = m® + 2 and L,q U {e; ;} — {b;,—1} is a ladder,
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Fig.51 ay, in Case II(b), b0 1| s e®
in Case Il(a), I S

u(r+s—1)=m®m>m®+1 e b1
’ -

Fig.52 a;, in Case II(b), by, in
Case Il(a), u(r +s — 1) < m®, T
m=m®*+1,0=r+s

€r+s

T / AL

dot1 ™~

ie. e, ¢--p am—1. Now we apply Lemma 9.3 to {ay—1, by} and er+s+1, the only
possible case is (9.3.1) since erﬂJrl < by,. However, in this case b, is in Case II(b)
(together with b,,), which is a contradiction. (See Fig. 51.)

ILiv. bye 1 is in Case lI(a), u(r + s — 1) < m®: first we assume that m = m® + 1,
in which case ¢ = ¢°, er‘+i = byg+i fori € [1,s — 1], ep s = by—1, and ¢; = e}
otherwise. Thus here it suffices to check that dy /A p e fork € {o} U[r + 1, r + 5],
k < q. Note that o < r + s since dé = by > by = e}, . For k < p, first
note that either Ly, U {d,} or Ly U {d,} — {by} is a ladder by Lemma 9.1 since
by <--p ay, = dyp. Thusifd; —p ey thendy is climbing aladderas dy <p d,, which
is a contradiction. It remains to consider the case k = . If o < r + s, then it follows
from Condition (M) since dy = am ~-+p by and by, < e;_H_H = erqs+1 < ep. If
k=90 =r+s,thenfirsto+1=r+s+1=<g < p,andd,y| = d5+1 —pdy =bn.
Since dpy1 2P erts+1 and €441 --+p by, by Condition () it follows that
doy1 ——>P €ryst1, 1€ Lpe U{e, 1541, dpy1} is aladder in P. Now if dy —p e, 45
then as d, <—p d,41 it implies that d,, is climbing a ladder, which is contradiction.
(See Fig. 52.)

Now assume that m > m*® 4+ 1, and we prove that this is impossible. Indeed,
bpet1 «-—-p e 1 = r'+s+1 since byey1 <—p bpei2 and byeyq is in Case II(a).

However, since Lpe U Lyq is aladder by Lemma3.11and s =€) <p ey, | =
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Fig.53 ay, in Case II(b), b0 1|

e,
in Case Il(a), rts
_ . .

ur+s—1)<m®*, m>m®+1 byne

T

l

bmc+1
T €741

er, o+ 1> we should have byt <p e by Lemma 9.2. This is a contradiction.

(See Fig. 53.)

r+s+1

HLv. b;e41 is in Case II(b), u(r + s — 1) < m®: first we assume that m = m*® + 1,
in which case ¢ = ¢°, e;45 = by > bu—1 = €7, and ¢; = e otherwise. Thus
here it suffices to check that dy /p e for k = o, k < g. Note that o > r + s since
dL; = by > by—1 = e}, whichimplies e, > e;15. Asdy = ay --+p by = eryy,
the result follow from Condition (rh).

Now we assume that m > m® 4 1. Then Ly, U L4 is a ladder by Lemma 3.11,
and thus if q <r+s+1thenbyet1 <p e, | = e, . by Lemma 9.2 as
€ si1 —P €45 Now almost the same argument as in IILii. applies here

r+s+l

and one can show thatg = max{q®, r +s+m—m®—1},e;y54i = bpetiv1 =dj ;4
fori € [0,m —m® — 1], and ¢; = e; otherwise. First, we have o +1 > r + s
smced 4= = bpoy1 > bype = €. Thusr +s+m—m®* -1 < o +m—

= o < p, which means that ¢ < p. It remains to verify that dy /4 p e; for
k elo+LolUlr+s,r+s+m—-—m*—1],k < q.If k € [0 + 1, 0] then
we have dy = Ak+m—o ~*P bk+m—g = €rqstkt+m—o—m*—1 = €r4st+k—o—1 and
eristk—o—1 =< ek, which means that d; /p ex by Condition (). Similarly, if
kelr+s,r+s+m—m®—1]thenditot1—r—s ——>p ex and diyo+1-r—s = di,
and thus d; /4 p e; by Condition (rh).

HLvi. byey is in Case II(b), u(r + s — 1) = m®: note that o + 1 > r 4+ s as
d = = byey1 > ey . First suppose that » + 5 + 1 < ¢* and er+s+l =3P bpyey.
S1nce bye+1 is in Case I1(b), this forces that m > m*® + 1 and er+s+1 -p byey2.0On
the other hand, by Lemma 9.1 either L,y U{ey  } or LogU{er, } —{bpey1}is aladder,
thus we may apply Lemma 9.3 to {a;,—1, by} and e} 1 The only possible case is
whenm = m® +2 and we are in (9.3.1), i.e. am 1 ¢—-p er+v+1 ander‘ﬂ_ir1 «——p by,

Now direct calculation shows thatg = ¢°, e, +; = by +i) > er+l fori e [1,s—1],
eris = bu1 > ey, erys11 = by > er+s+l, and e¢; = e; otherwise, and thus it
suffices tocheckdy /> p e;fork = {o+1 = 0—1,0},k < g.Wehaved,_1 />p ep_1
by Condition () since dy—1 = ap—1 --*>p bu—1 = ;45 and ¢,_1 > e,y and
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Fig.54 ay, in Case II(b), b, 1| e®
in Case II(b), oy Tt
u(r +s —1) =m®, bon—1 -
€ sl “P Doy e K
A —1 “_ N
X I N _ ~
N - e
S Cris+1
s bm "
Ay~ B

similarly d, /4 7p e, since dy = ay, -->p by = er4511 and 5 > €,1541. (See
Fig. 54.)

This time suppose that either r + 5 + 1 > g® or ey, .| =P bpe41. Then almost
the same argument as in IILii. applies here and one can show that ¢ = max{q®,r +
s+m—m®*—1}, e,4i = byg4i) > er'+i fori € [1,s — 1], er45 = byet1 > €7,
ertst+i = bmetiv1 =dy;, fori € [1,m—m®—1],and ¢; = e} otherwise. First, we
haveo +1>r +ssincedy | = byet1 > bpe = €2, . Thusr +s+m—m® —1<
o +m—m® = < p,which means that ¢ < p.

It remains to verify thatdy /p ey fork € [o+1, o]JU[r+s+1, r+s+m—m®—1],
k < g It k € [0 +1,0] then we have di = aiym— P bram—o =
ertstktm—g-m'—1 = €rqystk—o—1 and e, 1ok -1 =< e, which means that
dy /P er by Condition (M). Similarly, if k € [r +s + 1,r +s +m — m® — 1]
then dxyo41—r—s ——*p ex and diyo+1—r—s > di, and thus dy /4 p e; by Condition
(M).

We exhausted all the possibilities and thus proved Theorem 6.1(A).

9.3 Proof of Theorem 6.1(B)

Letus write w = (ay, ...,a1). Thenn —i € desp(w) if and only if a; <—p a;41. We
first show that a; <—p a;4+1 if and only if i € des(QT). The result is trivial if i and
i + 1 are in the same column of QT and thus suppose otherwise. Then by Proposition
5.9, i + 1 is in the former column than that of i. Since QT is a standard Young tableau
by part (A), it follows that i is in the upper row than i + 1, and thus i € des(Q7T'). Now
suppose that a; #p a;+1. By Proposition 5.9, i should be in the former column than
that of i + 1. In this case it is easy to see that i + 1 cannot be in the lower row than
that of i because of the standard Young tableau condition, and thus i ¢ des(QT).

9.4 Proof of Theorem 6.1(C)

For w € &,, let P-RS(w) = (PT = (PTi,..., PTp), OT) and choose w =
wo, Wi, ..., wWp = (00,...,00) € 2 such that &(w;,¥) = (PTiq1, w;y1) for
i € [0, p — 1]. Then by Proposition 5.9(A), we have (recall that a/ is the word
obtained from o by removing oo)

w~p PTi+w| ~p PTi+ Pl +w) ~p --- ~p PTj + PTs +--- PT, = read(PT)
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as desired.

9.5 Proof of Theorem 6.1(D)

By Theorem 6.1(C) if P-RS(w) = (PT, QT) then w ~p read(PT). Thus by
Proposition 4.11 we have g-htp(w) = g-htp(read(PT)). Furthermore, if w ~p w’
and P-RS(w’) = (PT’, QT’) then by the same reason g-htp(read(PT)) ~p
g-htp(w) ~p g-htp(w') ~p g-htp(read(PT’)).

Thus it suffices to show that g-htp(read(T)) equals the length of the first col-
umn of T for any T € P-Tab. Let us denote by / the length of the first column of
T. Since the first column of T is a subword of genuine P-inversions in read(7),
it follows that g-htp(read(7)) > [. Now for the sake of contradiction suppose
g-htp(read(7)) > [. Then by pigeonhole principle there exists a, b € [1, n] such
that (a, b) € g-htp(read(T)), the column containing a is on the left of that of b, and
b is not in the upper row than a.

Let ¢ be the element located in the intersection of the row of @ and the column of
b. We claim that (a, c) € g-htp(read(7)). Indeed, if b = ¢ then we are done, and
thus suppose otherwise. As b and c¢ are in the same column we have b —p c. Since
a —p b by assumption, if (a, ¢) ¢ g-htp(read(7)) then by Lemma 8.1 there exists
a subword aeq - --exc in read(T) such thata --+p e --»p --- —-3p e -—>p C
and {a, ey, ..., e, c} is aladder in read(7T'). Note that b cannot be any of ¢; since any
element between b and ¢ in read(7T') is bigger than ¢ with respect to P. However, this
means that b is climbing the ladder {a, ey, . . . , ek, ¢} which contradicts the assumption.

Now letdy, da, . .., ds be the elements between a and ¢ in the row of T containing
a and c. We also set dy = a and d;41 = c for simplicity. (Note that dod - - - dgds41 18
a subword of read(7").) Then by the condition of P-tableaux, we have d; /p d;+ for
i € [0, s]. (In particular, we have s > 1.) We claim that there exists e; € {dy, ..., ds}
such that dy - --p ej. Suppose otherwise, then as dy —p ds+1 and dy /p dj, there
exists j € [1, k] such that dy <—p d; and dy —p d;41. However, this is impossible
sinced; /~>pdjy1.

Since dy---pe; and dy —p dg41, we have e > ds41 by Condition (rh). If
e1 --»p dgy1 then it contradicts that (a,c) = (do, ds+1) € g-htp(read(T)), and
thus we should have e; —p d;4+1. Now we can iterate this process forever and find
e, e, ... €{dy,...,ds}suchthate; ---p es ---p - - - . This is clearly a contradiction,
and thus we conclude that g-htp (read(7")) = [ which is what we want to prove.

9.6 Proof of Theorem 6.1(E)

Let P-RS(w) = (PT’,QT’). We first show that PT’ = PT. Let PT =
(PTy, ..., PTy, PTiq1, ..., PT),) where the length of PT; equals 1 if and only if
i > k. Then direct calculation shows that ®(PTy + PTyy + - - + PT,,0) =
((PTy), (00, ..., 00)+PTy 1+ -+ PTy+(00)). Nowif we assume PT; = (..., a)
and PTiy1 = (b, ...,c)fori € [1, k—1],thenwehavea < b since otherwisea —p ¢
by Condition (rh) which contradicts the assumption that PT is a P-tableau. (Here it is
crucially used that the length of PT;4 1 is > 2.) In other words, if x and y are processed
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in the same step then x, y should be in the same column of PT. Thus by Proposition
5.9(B), we have ®(w, ¥) = (PTy, (co, -+ ,00)+PTr+ (o0, --- ,00)+PT3+---+
(00, -+ ,00) + PTiqq + -+ PTp, + (00)), i.e. the first column of PT’ is equal to
that of PT. Now we iterate this argument to conclude that PT = PT’ as desired.

It remains to show that Q7' = w(T3). By part (B) of the theorem, if we set
li,...,1, to be the column lengths of A then we have des(QT') = {n —x | x €
[I,n—1],x # Z?:l l; for some k € [1, p]}. By the property of evacuation, it follows
that des(w(QT")) =[1,n — 1] — {Z;‘:1 l; | k € [1, p]}. Now the result follows from
the fact that 7), is the only standard Young tableau of shape A that satisfies this property.

9.7 Proof of Theorem 6.1(F)

Suppose that P-RS(«) = P-RS(e) = (PT, QT) where PT = (PTi, ..., PT)) €
P-Taby, and QT = (QT1,...,Q0Ty) € SYT,. Also, let « = ap,a1,...,0p =
(00,...,00) and &' = ), @, ...,a;, = (00, ...,00) be the elements in 2 such

that ®(«;, ¥) = (PTit1, ai41) and O (o), V) = (PT,-+1,alf+1) fori € [0,p — 1].
Clearly o), = &},, and thus it suffices to show that ;41 = &, | = o; = o; fori €

[0, p — 1]. However it follows from Lemma 8.4 since (9, &@;) = \IIZZH (@i+1, PTi11)

and (¢, ) = WE (o, PTis1) where X1 = {la| + 1= j | j € QTiy1}.

9.8 Proof of Theorem 6.1(G)

By part (F) of the theorem, it suffices to show that P-RS : &,, — |_|,_,, P-Tab, x SYT),
is surjective. We have (here w is Schiitzenberger’s evacuation)

Z Z Z Fes(w(0T))

Abn PTeP-Tab, QT eSYT,

= Z Z Z Faes(oT) (. w is an involution on SYT},)
AMn PTeP-Tab, QT eSYT;,

=Y |P-Taby | - 5 (.- [Ges84])
An

= Z Faespw) (.- [Gas96, Theorem 4])
weS,

= Z Faes(w(0T)) (. part (B) and injectivity of P-RS)

(PT,QT)eim P-RS

=) > > Fies((0T))-
A-n PTeP-Tab;, (PT,QT)cim P-RS

This equality holds only when P-RS is surjective, from which the result follows.

Remark 9.5 1t is possible to prove surjectivity of P-RS without relying on Gasharov’s
result. Indeed, instead one may argue similarly to the proof of Proposition 5.10 and use
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properties of P-tableaux for P which avoids P 1,1y,5 and P4,2.1,1),6. Or conversely,
from the theorem above we obtain the following bi-product.

Theorem 9.6 Suppose that P avoids P3.1,1),5 and P.2,1.1).6. Let PT = (PTy, ...,
PT)) € P-Tab) and QT = (QTy,...,QT)) € SYT, for some A F n. Define

o, 01y, 0 € A, co, c1, ..., c1 € €successively so that o) = (00, ..., 00), || =
n, and\IJZ?i(éfi, PT;) = (ci—1, ai_1) fori € [1,[1where X = {n+1—x | x € QT;}.
Then we have co = c¢1 = --- =c¢; = 0, P-RS(ag) = (PT, QT), and ap € G,,.

Proof By Theorem 6.1(G), there exists w € &,, such that P-RS(w) = (PT, QT). It
means that there exists w = wq, wi, ..., w; = (00, ..., 00) such that ®(w;_, ¥) =
(PT;,w;) and OT; = {j € [1,n] | (wi—1); # oo, (w;); = oo} fori e [I, ] where
(w;j—1); and (uT)j are the j-th coordinates of w;_; and wj;, respectively. Now the
result follows from successively applying Lemma 8.4. O

9.9 Proof of Theorem 4.15

Suppose that I' = (V, desp, {E;}) is a connected P-Knuth equivalence graph. We
claim that PT € {PTy,..., PT}} if P-RS(w) = (PT, QT) for some w € V.
Indeed, we have read(PT) ~p w ~p w; ~p read(PT;) for any i € [1, k] by Theo-
rem 6.1(C). By assumption, it means that read(P7T) € {read(PT}), ..., read(PTy)}.
Since a P-tableau is completely determined by its reading word, it means that
PT € {PT,,..., PT;} as desired.

It is clear that G, is a disjoint union of connected P-Knuth equivalence graphs.
Since P-RS is a bijection between &, and | _[,, , P-Tab, x SYT,, it follows that
P-RS(V) = L]le{PT,-} x SYT,,. Thus we have (here |f-invp(V)]| is a fake P-
inversion number of any w € V and w is Schiitzenberger’s evacuation)

Yv = [‘ Fimve (V) Z Fdes7> (w)

weV
= ¢|Finvp (V)] > Faesw(or)) (. Theorem6.1(B) and injectivity of P-RS)
(PT,QT)eP-RS(V)
B k k
=dHPWIN" N Fes() (- P-RS(V) =|_|{PTi} x SYT},)
i=1TeSYT),; i=1
) k
= ¢IFve (V)] Z Z Faes(t) (. w is an involution on each SYT},)
i=1 TeSYTk[
) k
= (I FvP I, (. [Ges84])
i=1
as desired.

Finally, the last sentense of the theorem follows directly from Theorem 6.1(D).
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