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Melon (Cucumis melo) is an important diploid crop grown worldwide. To
understand the development of Melon fruits, time-course gene expression
profiling was conducted for two field-grown melon varieties (Western shipper;
F39 and Tuscan da Vinci; TTDV) using the Next Generation Sequencing (NGS)
approach. A total of 449014207 reads were mapped to the melon genome and a
total of 4469 differentially expressed genes in fruits were identified and used to
visualize the transition of transcriptomic profiles during the fruit development. Of
these, 120 transcriptional regulators were identified and grouped into 23 different
classes, that are implied in fruit development, ripening, and metabolic regulations.

Introduction

Muskmelon (Cucumis melo L.) is an important horticultural crop with global production of
approximately 27 million tons (1) and an economic value in US melon production is US$ 345
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million (2). Melon is diploid (2n = 24) and has an approximate genome size of 450 Mbp (3).
The latest version of the high-quality reference genome of melon (DHL92 v4.0) covers 358Mbp
pseudomolecules (4). The life cycle of cantaloupe melon is 80 to 120 days, and the fruit ripening
takes 35 to 45 days after flowering. Melon varieties are classified into two groups, climactic and non-
climactic. Ripening of climactic melon is controlled by an increase of respiration and a plant hormone
ethylene, and non-climatic melon has no such peak.

Physiology and transcriptional landscape of developing fruits undergo dynamic transitions
during the course of fruit maturation. Such a transition is positively and negatively regulated by an
array of transcription regulators. We previously conducted time course analysis of transcriptome of
developing fruits of two melon varieties and detected several key regulators of fruit ripening (5). Here
we further mined the dataset and identified groups of transcriptional regulators whose expression

dynamics is specific to fruit development and ripening.
Materials and Methods

RNA-seq Data Processing

As detailed in (5), RNA-sequencing (RNA-seq) reads for melon cultivar western shipper (F39)
and Tuscan da vinci (TTDV) were obtained by Illumina NovaSeq 6000 with 150 bp paired-end
mode (Gene Expression Omnibus accession number GSE178084). These reads were aligned to
the Melonomics genome sequence: CM3.6.1_pseudomol.fa (https://www.melonomics.net/
melonomics.html#/download) along with the annotation reference: CM4.0.gtf, using STAR
(v2.5.4) with the setting of -outFilterScoreMinOverLread and —outFilterMatchNminOverLread
parameters to be 0.1 for the alignment. The uniquely mapped reads were used to count the number
of reads per gene while mapping.

RNA-seq datasets were obtained for differential expression (DE) analysis to identify 4469
differentially expressed genes (DEGs) in fruits as desribed previously in (§). To identify
transcriptional regulators in DEGs, gene ontology analysis was performed for DEGs in each variety
and genes with DNA binding activity (GO:0003677) were extracted using GO slim gene
classification at http://cucurbitgenomics.org/funcat. DEGs in GO:0003677 commonly found in
F39 and TIDV were identified, and manually curated to generate fruit-specific transcriptional
regulator geneset.

Co-Expression Network Visualization and Clustering of DE Transcription Regulators

Based on the generated RNA-seq count matrix by the aforementioned quantification process,
we performed normalization on counts using DESeq2 package (v1.30.0). Then, the normalized
expression values of the 120 transcriptional regulators across samples were used to calculate the
Pearson correlation p-values between each pair of these 120 transcriptional regulators (6, 7). Based
on these p-values, the interaction network were constructed and visualized by Igraph (v1.2.6)
package (8) by varying the threshold to prune the edges among all the pairs of these 120 transcription
regulators. We set the Pearson correlation p-value threshold at 1e-6 to be considered as significantly
correlated pairs such that the constructed network has a node degree distribution following the
power law, which is often manifested in many real-world networks (9). The resulting co-expression
network identified the edges having the positive Pearson correlation with p-values lower than 1e-6.,
which naturally leads to the clustering of transcription regulators based on the co-expressoin patterns.
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Results and Discussion

To understand the landscape of transcriptional regulators in developing and ripening melon
fruits, we performed data mining of our RNA-seq dataset prepared with two field-grown melon
varieties (5). The 4469 DEGs were fitered by Gene Ontology analysis and genes commonly detected
in two varieties were identified. After removing genes unrelated to transcription factors, expression
pattern of 375 DEGs were inspected using heatmap analysis. The expression patterns of total 120
genes were classified as fruit-specific and these genes were classified into 23 groups based on their
functional annotations (Table 1). Expression patterns and expected functions of representative
groups are discussed below (illustrated in Figure 1).

Table 1. Fruits-Specific Transcription Factors Identified in Melon

ID  Genes Cluster  Degreea  Class Annotation

1 MELO3C007572.2> NA 0 AP2 AP2-like ethylene-responsive transcription
factor TOE3 (AP2a)

2 MELO3C008318.2 NA 0 AP2 Dehydration-responsive element-binding
protein 2C

3 MELO3C024315.2 A 1 AP2 Ethylene-responsive transcription factor

4 MELO3C017940.2 NA 0 AP2 Ethylene-responsive transcription factor

5 MELO3C021306.2 A 13 AP2 Ethylene-responsive transcription factor
RAP2-3-like

6 MELO3C011372.2 B 2 ARF Auxin response factor

7 MELO3C025070.2b NA 0 ARF Auxin response factor

8 MELO3C007104.2> A 2 ARF Auxin response factor

9 MELO3C005590.2 NA 0 AT AT-hook motif nuclear-localized protein 1

10 MELO3C0212182 A 14 AT AT-hook motif nuclear-localized protein 9-
like

11  MELO3C010905.2 NA 0 B3 B3 domain-containing protein REM16-like

12 MELO3C011167.2 B 1 bZip Basic leucine zipper 9

13 MELO3C015754.2 A 4 bZip Basic-leucine zipper (BZIP) transcription
factor family

14  MELO3C016835.2 NA 0 bZip bZIP transcription factor 53-like

1S MELO3C017064.2 A 4 bZip bZIP transcription factor 60

16  MELO3C009753.2 A 3 bZip Transcription factor PERIANTHIA

17 MELO3C006784.2 NA 0 bZip Transcription factor RF2a, putative

18  MELO3C012485.2 A S bZip Transcription factor TGA2-like

19  MELO3C023710.2 A 1 bZip Transcription factor VIP1

20 MELO3C002099.2 NA 0 CaM Calmodulin binding protein-like, putative

21  MELO3C021280.2 B 3 CaM Calmodulin-binding transcription activator

22 MELO3C018642.2 B 2 CaM Calmodulin-binding transcription activator 2
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Table 1. (Continued). Fruits-Specific Transcription Factors Identified in Melon

ID  Genes Cluster Degree ® Class Annotation

23 MELO3C009859.2 B 3 DOF Cyclic dof factor 2

24  MELO3C007274.2 D 3 DOF Dofzinc finger protein DOF1.7-like

25 MELO3C013904.2 C 2 GATA  GATA transcription factor 26-like

26 ~ MELO3C023350.2 A 6 GATA  GATA transcription factor

27  MELO3C023076.2 A 17 GATA  GATA transcription factor 1

28  MELO3C023333.2 A 2 HD BEL1-like homeodomain protein 7

29  MELO3C014565.2 A 4 HD Homeobox domain-containing protein

30  MELO3C020577.2 NA 0 HD Homeobox prospero

31  MELO3C011979.2 D 3 HD Homeobox protein knotted-1-like 6

32 MELO3C010678.2 A 3 HD Homeobox protein knotted-1-like 6

33 MELO3C011281.2 A 3 HD Homeobox protein knotted-1, putative

34  MELO3C007260.2 B 4 HD Homeobox-DDT domain protein RLT1
isoform X1

35  MELO3C012079.2 NA 0 HD Homeobox-leucine zipper family protein

36  MELO3C007666.2> NA 0 HD Homeobox-leucine zipper protein

37  MELO3C021978.2 D 3 HD Homeobox-leucine zipper protein ATHB-20-
like

38  MELO3C023514.2 NA 0 HD Homeobox-leucine zipper protein HOX11-
like

39  MELO3C013937.2 B 1 HD Homeodomain-like superfamily protein

40  MELO3C002209.2 A 18 HD Homeobox leucine zipper family protein

41  MELO3C003468.2 A 3 HD Homeobox leucine-zipper protein

42 MELO3C005992.2 A 7 HD Homeobox-leucine zipper protein ATHB-7

43  MELO3C013727.2 A 8 HD WUSCHEL-related homeobox 13

44  MELO3C010841.2 NA 0 HD WUSCHEL-related homeobox 4

45 MELO3C017032.2 NA 0 HD WUSCHEL-related homeobox 8-like

46  MELO3C007560.2 NA 0 HSF Heat stress transcription factor

47  MELO3C006891.2 A 4 HSF Heat stress transcription factor B-2b-like

48 MELO3C018723.2 A 3 LSH Protein LIGHT-DEPENDENT SHORT
HYPOCOTYLS 10

49 MELO3C020521.2 NA 0 LSH Protein LIGHT-DEPENDENT SHORT
HYPOCOTYLS 6

50  MELO3C019694.2 C 2 MADS AGAMOUS MADS box factor transcription
factor

6

Patil et al.; Melon Breeding and Genetics: Developments in Food Quality & Safety
ACS Symposium Series; American Chemical Society: Washington, DC, 2022.



Table 1. (Continued). Fruits-Specific Transcription Factors Identified in Melon

ID  Genes Cluster Degree ® Class Annotation
SI MELO3C002691.2b NA 0 MADS  MADS box transcription factor AGAMOUS
(TAGL1)
52 MELO3C022316.20 C 1 MADS  MADS-box transcription factor (RIN)
53 MELO3C026300.2> NA 0 MADS  MADS-box transcription factor (RIN)
54  MELO3C024001.2 B 1 MADS  MADS-box transcription factor (AGL1S)
55 MELO3C013580.2 NA 0 MBF1  Multiprotein-bridging factor 1b
56  MELO3C004553.2 NA 0 MBF1  Multiprotein-bridging factor 1c
57 MELO3C024440.2 F 1 Myb Myb family transcription factor family protein
58  MELO3C024799.2 NA 0 Myb Transcription factor MYB44-like
59  MELO3C022302.2 1 Myb Protein LHY-like isoform X1
60  MELO3C005840.2 C 4 Myb Protein REVEILLE 6-like
61  MELO3C025151.2 1 Myb Transcription factor DIVARICATA
62  MELO3C019904.2 NA 0 Myb Transcription factor DIVARICATA
63  MELO3C009188.2 NA 0 Myb Transcription factor DIVARICATA-like
64  MELO3C017315.2 A 2 Myb Transcription factor MYB24-like
65  MELO3C007586.2 A 1 Myb Transcription factor MYB44
66  MELO3C025894.2 A 7 Myb Two-component response regulator
67 MELO3C017185.2 NA 0 NAC NAC domain protein
68  MELO3C016540.2> B 3 NAC NAC domain protein (NOR)
69  MELO3C010632.2 NA 0 NAC NAC domain-containing protein (ATAF1)
70  MELO3C001996.2 NA 0 NAC NAC domain-containing protein 100-like
71  MELO3C010923.2 NA 0 NAC NAC domain-containing protein 13-like
72 MELO3C012391.2 A 13 NAC NAC domain-containing protein 16
73 MELO3C019954.2 A 10 NAC NAC domain-containing protein 17-like
74  MELO3C013173.2 G 1 NAC NAC domain-containing protein 17-like
75  MELO3C014510.2 A 3 NAC NAC domain-containing protein 40
76 ~ MELO3C002628.2 NA 0 NAC NAC domain-containing protein 73-like
77  MELO3C019845.2 B 1 NAC NAC domain-containing protein 78-like
isoform X2
78  MELO3C008056.2 A 1 NAC NAC domain-containing protein 82
79  MELO3C014505.2 NA 0 NAC NAC domain-containing protein 90
80 MELO3C000247.2 NA 0 NAC "NAC domain-containing protein, putative"
81  MELO3C017754.2 A 15 NAC NAC domain-containing protein
82  MELO3C022342.2 A 3 NAC NAC domain-containing protein 83
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Table 1. (Continued). Fruits-Specific Transcription Factors Identified in Melon

ID  Genes Cluster Degree ® Class Annotation

83  MELO3C015196.2 A 4 NFY Nuclear transcription factor Y subunit A-1

84  MELO3C014590.2 A 9 NFY Nuclear transcription factor Y subunit A-1-
like protein

85  MELO3C023554.2 NA 0 NFY Nuclear transcription factor Y subunit A-9-
like

86  MELO3C009309.2 4 NFY Nuclear transcription factor Y subunit B

87  MELO3C011726.2 C 2 NFY Nuclear transcription factor Y subunit B

88  MELO3C003375.2 NA 0 RR Two-component response regulator-like
protein APRR2

89  MELO3C013874.2 A 4 RR Two-component response regulator-APRR2-
like protein

90  MELO3C005370.2 H 1 SEU Transcriptional corepressor SEUSS

91  MELO3C009639.2> A 8 SPL Squamosa promoter binding protein (CNR)

92  MELO3C002048.2 A 4 SPL Squamosa promoter-binding-like protein 12
isoform X1

93  MELO3C014895.2 A 13 SPL Squamosa promoter-binding-like protein
13A

94  MELO3C021144.2> A 10 SPL Squamosa promoter-binding-like protein 8

(CNR)

95  MELO3C016092.2 C 2 TCP Transcription factor TCP4

96  MELO3C019745.2 E 1 TCP Transcription factor TCP4-like

97 MELO3C024459.2 F 1 TCP Transcription factor, TCP

98  MELO3C012086.2 A S TCP Transcription factor TCP15

99  MELO3C022331.2 A 12 TCP Transcription factor TCP20-like

100 MELO3C024673.2 A 1 TIF Trihelix transcription factor

101 MELO3C022356.2 H 1 TIF Trihelix transcription factor ASR3

102 MELO3C000615.2 NA 0 TTF Trihelix transcription factor GT-2

103 MELO3C008175.2 E 1 WRKY  WRKY transcription factor

104 MELO3C010223.2 A 2 WRKY  WRKY transcription factor

105 MELO3C024209.2 G 1 WRKY  WRKY transcription factor 1 isoform X1

106 MELO3C022014.2 C 1 WRKY  WRKY transcription factor, putative

107 MELO3C000030.2 A S WRKY LOW QUALITY PROTEIN: probable
WRKY transcription factor 48

108 MELO3C009097.2 NA 0 WRKY  WRKY transcription factor

109 MELO3C014066.2 A 7 WRKY  WRKY transcription factor
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Table 1. (Continued). Fruits-Specific Transcription Factors Identified in Melon

ID  Genes Cluster Degree ® Class Annotation

110 MELO3C015611.2 NA 0 7F ABSCISIC ACID-INSENSITIVE 5-like
protein 2

111  MELO3C019925.2 NA 0 ZF Abscisic acid-insensitive S-like protein 2

112 MELO3C005595.2 A 9 ZF Zinc finger A20 and AN1 domain-containing
stress-associated protein 1-like

113 MELO3C014608.2 A 13 ZF Zinc finger A20 and AN1 domain-containing
stress-associated protein 8

114 MELO3C023537.2 A 15 ZF Zinc finger A20 and AN1 domain-containing
stress-associated protein 8-like

115 MELO3C021987.2 D 3 ZF Zinc finger homeodomain protein 1

116 MELO3C006469.2 A 12 ZF Zinc knuckle (CCHC-type) family protein,
putative

117 MELO3C000099.2 A 4 ZF Zinc-finger homeodomain protein 10-like

118 MELO3C007832.2 A 12 ZF Zinc-finger homeodomain protein 2

119 MELO3C012094.2 A S ZF Zinc-finger homeodomain protein 9

120 MELO3C002157.2 A 1 ZF Zinc-finger homeodomain protein 9-like

¢ Degree of coexpression.

b The information of tomato homologous genes is described in the main text.
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Figure 1. Heat map of TF expression during the melon fruit development. E and L denote early (E) and late
(L) maturity stages. The samples are 14-day-old leaves (S19, S20, S21) and fruit flesh harvested at 20-25
days (S1, 82, 83, 10, S11, S12), 30-3S days (54, SS, S6, S13, S14, S15), 40 days (S7, S8, S9, S16,
S17, §18), and 45 days (859, S60, S61, S62, S63, S64) after flowering.
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AP2/ERF/DREB

Five TF DEG belonged to this family. MELO3C007572 that express throughout the time course
is a likely ortholog of tomato APETALA2a, which function as a negative regulator of ethylene
production, but a positive regulator of other ripening aspects, such as chlorophyll degradation and
carotenoid  biosynthesis (10, 11). MELO3C024315.2, MELO3C017940.2, and
MELO3C021306.2 are homologous to Arabidopsis RAP2.2, HRE2, and RAP2.3, respectively,
important for hypoxia response.

ARF Family

MELO3C011372.2, MELO3C025070.2, and MELO3C007104.2 represent homolog of
Arabidopsis ARF17, ARF8, and ARF6, respectively. ARF6 and ARFS8 are known to promote
jasmonic acid production and flower maturation. Downregulation of tomato ARF6/ARF8 leads to
floral development defects and female sterility.

AT-hook Family

MELO3C005590.2 and MELO3C021218.2 are homolog of AHL (AT-hook nuclear localized
protein family) that can bind to AT-rich DNA sequences. AT-hook family protein is conserved
in both prokaryotes and eukaryotes, and Arabidopsis AHL proteins were able to regulate various
growth and developmental processes, including hypocotyl elongation, enlargement of leaves and
flowers, and fruits (12).

B3 Domain Family

MELO3C010905.2 is homologous to REM (Reproductive Meristem) family of AP2/B3-like
transcriptional factors, which are targets of flower development regulator genes (13).
MELO3C010905.2 shows high homology to VRN1 and RVN1, which are required for flowering
induction by vernalization (14).

bZip Family

MELO3C011167.2 is homologous to AtbZip9 involved in vascular development (I5).
MELO3C017064.2 is a homolog of Arabidopsis bZip60, a regulator of ER-stress signals (16).
MELO3C009753.2 is a homolog of PERIANTHIA important for gynoecium and fruit development
in Arabidopsis. MELO3C009753.2 and MELO3C012485.2 also show high homology to AHBP-
1B/AtTGA2, which interacts with a key regulator in SA signaling pathway NPR1 to activate PR1
transcription (17). MELO3C006784.2 and MELO3C023710.2 are homolog of Arabidopsis group I
bZIP proteins bZIP69 and VIP1, respectively (18), and respond to hypoosmotic stress (19).

CaM Family

MELO3C002099.2 is a homolog of SAR DEFICIENT 1(SARD1), which is required for SA
production and defense responses (20). MELO3C021280.2 is a homolog of CAMTAS, a regulator
for cold-inducible DREB1B and DREBI1C expressions (21). MELO3C018642.2 is a homolog of
Arabidopsis CAMTA?2, which is involved in plant immunity (22) and aluminum transport (23).
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DOF Family

MELO3C009859.2 is a homolog of CDF2, which controls the miRNA expression CDF2 and
flowering time in Arabidopsis (24).

GATA

MELO3C013904.2 is a homolog of GATA26 in Arabidopsis. MELO3C023350.2 is a homolog
of GATAS. MELO3C023076.2 is a homolog of GATAI, a regulator of chloroplast development,
growth, and division with a nucleus-localized transcription factor GNC in Arabidopsis. These
transcription factors have high expression in green tissues, and cytokinin affects their expression level

(25).

Homeodomain (HD)

MELO3C023333.2 is a homolog of a transcriptional repressor BEL1-like Homeodomain 6
(BLHG6), which forms a heterodimer with KNOTI'ED-like from Arabidopsis 7 (KNAT7) and
involves in the formation of the secondary cell wall (26). MELO3C011979.2 and
MELO3C010678.2 show high homology to Arabidopsis KNAT6, which functions in shoot apical
meristem maintenance (27). MELO3C011281.2 is a homolog of KNAT3, a member of the class
II KNAT family. KAT3 works with KANT7 to synthesize secondary cell walls (28).
MELO3C007260.2 is a homolog of HOMEOBOX-1(HB-1)/RINGLET 1 (RLT1). RLT1 is a
subunit of the Imitation of Switch (ISWI) complex, ATP-dependent chromatin remodeling factors.
In Arabidopsis, the ISWI is required to control fertility (29). MELO3C012079.2 and
MELO3C002209.2 are homologous genes of ATHB13 in a homeodomain leucine zipper class I
(HD-ZipI). ATHB13 is induced by low temperature, drought, and salinity (30). MELO3C007666.2
is a homolog of ABA INSENSITIVE GROWTH 1(ABIG1)/HAT22. ABIG1 is a part of absisic
acid (ABA) signaling to conrol plant growth, especially growth inhition and senecense induced
by drought (31). Tomato HAT?22 is implied in the fruit metabolic shift from early development
and subsequent ripening (32). MELO3C021978.2 is a homolog of ATHB20. Lack of ATHB20
increased seed dormancy and ABA sensitivity in Arabidopsis (33). MELO3C023514.2 is a homolog
of HOMEOBOX FROM ARABIDOPSIS THALIANA 14 (HAT14). MELO3C013937.2 is a
homolog of DUO POLLEN 3 (DUO3). DUO3 is known as an important regulator of male germline
development and embryogenesis (34). MELO3C003468.2 has homology to ATHB8, which works
to stabilize preprocambial cell specification to form leaf vein (35). MELO3C005992.2 is a homolog
of ATHB7, which of transcripts are induced by ABA. ATHB7 involves in the development and
abiotic stress responses like drought stress (36, 37). MELO3C013727.2 and MELO3C017032.2
are homologs of WUSCHEL RELATED HOMEOBOX 13 (WOX13)/HB-4. Arabidopsis WOX13
is a positive regulator of replum and important in the mediolateral patterning of the fruit (38).
MELO3C010841.2 is a homolog of WOX4, a regulator of cambium activity (39).

Heat Shock Factor (HSF)

MELO3C007560.2 is a homolog of HSF4, also known as HSFB1 in Arabidopsis. HSF1 belongs
to class B in the HSF transcription factor family, and the members work as transcriptional repressors.
Lack of HSF4 and another The class B HSF, HSFB2b show high transcriptional level of the defensin
gene PDF1.2A/B (40). The HSB2b homolog in melon is MELO3C006891.2 in the Tablel.
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LSH

MELO3C018723.2 and MELO3C020521.2 belongs to LIGHT-DEPENDENT SHORT
HYPOCOTYLS family involved in light signaling (41).

MADS

MELO3C026300.2 and MELO3C022316.2 are homolog of tomato RIN (ripening inhibitor)
(42). MELO3C002691.2 is homolog of tomato TAGLI involved in fruit metabolite biosynthesis
(43). MELO3C024001.2 is a homolog of Arabidopsis AGAMOUS-LIKE 15(AGLI1S). In
Arabidopsis, AGL1S works with AGL18 to repress the floral transition in Arabidopsis (44).

Multiprotein Bridging Factor 1 (MBF1)

MBP1I is a conserved transcription co-activators to regulate various physiological processes.
Three MBP1 proteins were found in the Arabidopsis genome. AtMBP1a and AtMBP1b belong to
Class 1, and AtMBP1c belongs to Class II (45). MELO3C013580.2. is a homolog of AtMBF1B
and MELO3C004553.2 is a homolog of AtMBF1C. Heat stress and H,O, induced AtMBP1C

expression drastically, although AtMBF1B expression did not change (45).

Myb Family

MELO3C024440.2 is homologous to NID1 involved in nitrogen response. MELO3C024799.2
and MELO3C007586.2 are homologous to Myb73 involved in auxin signaling (46).
MELO3C025894.2 is homologous to BROTHER OF LUX ARRHYTHMO involved in circadian
clock (47). MELO3C022302.2 is homologous to circadian clock gene LATE ELONGATION OF
HYPOCOTYL 1 (48). MELO3C005840.2 is homolog of circadian clock gene REVEILLE 6 (49).
MELO3C025151.2, MELO3C019904.2 and MELO3C009188.2 encodes DIVARICATA
homologs involved in ventral identity during floral development in Antirrhinum (50).

NAC Family

MELO3C016540 is a homolog of tomato NOR (NO RIPENING), and its expression gradually
increased during the fruit development. MELO3C010632.2 is homologous to ATAF1 involved in
ABA biosynthesis (51). MELO3C019845.2 expresses higher in the mature stage, and is homologous
to NAC?78, regulating flavonoid biosynthesis. MELO3C012391.2 is homologous to NAC52/53,
functioning in histone demethylation (52). MELO3C017754.2 is homologous to VNI2 involved in
xylem formation (53).

NF-Y Family

MELO3C015196.2, MELO3C014590.2, and MELO3C023554.2 are homologous to NF-YA1
and A9, involved in fruit development. MELO3C009309.2 and MELO3C011726.2 are
homologous to NF-YB8 and B10, implicated in fruit ripening (54).

APRR Family

MELO3C003375.2, and MELO3C013874.2 are homologous to APRR2, that interact with
TCP family protein, and affect fruit pigments (53, 56).
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SEUSS

MELO3C005370.2 is homologous to corepressor SEUSS involved in diverse developmental
events (57).

SPL Family

MELO3C009639.2 and MELO3C021144.2 are squamosa promoter binding protein-like
family and homologous to tomato COLORLESS NO RIPE protein (58).

TCP Family

MELO3C016092.2 and MELO3C019745.2 are homologous to Arabidopsis TCP4. TCP
family is associated with various aspect of cell growth and development in plants (59).
MELO3C012086.2 and MELO3C022331.2 are homologous to TCP1S and TCP20, which interact
with ARR2 (60).

Trihelix Family

MELO3C000615.2 is homologous to Arabidopsis GTLI cpntrolling proidy levels (61).
MELO3C022356.2 is homologous to ASR4 involved in immunity (62). MELO3C024673.2 is
homologous to GT2L controlling cold and salt responses (63).

WRKY Family

MELO3C010223.2, MELO3C024209.2, and MELO3C022014.2 are homologous to
Arabidopsis WRKY3 and WRKY4 involved in pathogen responses (64). MELO3C008175.2 and
MELO3C009097.2 are homologous to WRKY75 and WRKY70, respectively, also involved in
pathogen responses (65). MELO3C014066.2 is homologous to WRKY2/WRKY34 involved in
pollen development (66).

Zinc Finger Family

MELO3C015611.2 and MELO3C019925.2 are homologous to ABA-RESPONSIVE
ELEMENT BINDING PROTEIN 3 involved in ABA-inducible gene expression (67).
MELO3C005595.2, MELO3C014608.2, and MELO3C023537.2 belongs to stress associated
proteins (SAPs) containing A20/AN1 zinc finger domains, novel regulators of stress responses (68).
MELO3C021987.2, MELO3C000099.2, MELO3C007832.2, MELO3C012094.2, and
MELO3C002157.2 encode Zinc-Finger homeodomain proteins whose functions are implied in
frolar development (69). MELO3C006469.2 is homologous to zinc knuckle protein important for
phytochrome A signaling (70).

Clusters of Transcription Factors

To identify the regulatory network of fruit gene expression, we set to identify the co-expression
network of transcription factors identified above. Based on Pearson correlation analysis, eight
clusters (A-H) were identified (Figure 2). A major cluster (cluster A) contained 53 genes and
represented genes with decreasing trends over the time course of the fruit development. TFs in SPL
and ZF gene families are predominant in Cluster A. These genes correspond to COLORLESS NO
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RIPE homolog and 4 ZF-HD proteins. However, ABIS-like proteins in ZF family showed increasing
trends and did not cluster with other ZF TFs. Also many HD (8/18), including WUSCHEL-like
HD, and MYB (4/10) and NAC (6/16) TFs were associated with cluster A. These TFs may function
in early fruit development. Clusters B and C represented TFs with increasing trends over the course
of the fruit development. Master regulators of fruit ripening, such as NOR homolog (B) and RIN
homolog (C), were included in these clusters. Together, clusters B and C contain 18 TFs. Cluster
D (4 genes) shows relatively stable expression but had expression peaks around the transition stage
S6 (F39) and S17 (IIDV). DOF1.7-like protein, HB protein ATHB20-like, and Zinc-Finger
homeodomain 1 protein belong to this cluster. Minor clusters E-H contain only 2 genes/cluster.
We were not able to identify co-expression patterns in 47 genes with any clusters or among each
other. Several unclustered TFs are known ripening regulators, such as AP2a homolog
(MELO3C007572.2), RIN homolog (MELO3C026300.2) and TAGL1 homolog
(MELO3C002691.2). In our dataset, these TFs are expressed throughout the fruit development,
and may regulate gene expression in cell metabolism directly (71), rather than through cascades of

secondary transcription factors.
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Figure 2. Association of transcription factors in Table 1 during melon fruit ripening. Edges indicate

coexpression with P<10-6 in Pierson correlation analysis.

Conclusion

The transcriptome analysis based on the time-course RNA-seq data from F39 and TIDV
identified 120 melon TFs that are specifically expressed in ripening fruits. Inspection of functional
annotations and clustering analysis of expression patterns showed that a large number of TFs
manifested declining expression levels over the course of the fruit development, followed by a cluster
with increasing trends. Several known master regulator TFs produced distinct expression patterns,
such as early expression of CNR, late expression of NOR and AGL1S. Other master TFs, AP2a,
RIN, TAGLI, and ATAF1, showed rather steady expression and failed to connect with other TFs.
Furthermore, some TFs with increasing trends failed to be associated with the existing clusters. This
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may indicate direct regulation of expression of ripening-related enzymes by master regulators, yet, it
is possible that the dataset used in this study was too small to detect weak to moderate co-expressions.
The larger dataset with diverse growth conditions is currently under analysis and will likely strengthen

our analysis to establish the fine regulatory network of TFs in the melon fruit development.
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