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Abstract. This work introduces a notion of complexes of maximal depth,
and maximal Cohen-Macaulay complexes, over a commutative noetherian lo-
cal ring. The existence of such complexes is closely tied to the Hochster’s “ho-
mological conjectures”, most of which were recently settled by André. Various
constructions of maximal Cohen-Macaulay complexes are described, and their
existence is applied to give new proofs of some of the homological conjectures,
and also of certain results in birational geometry.

Introduction

Big Cohen-Macaulay modules over (commutative, noetherian) local rings were
introduced by Hochster around fifty years ago and their relevance to local algebra
is established beyond doubt. Indeed, they play a prominent role in Hochster’s lec-
ture notes [24], where he describes a number of homological conjectures that can
be proved using big Cohen-Macaulay modules, and their finitely generated coun-
terparts, the maximal Cohen-Macaulay modules; the latter are sometimes called,
as in loc. cit., “small” Cohen-Macaulay modules. Hochster [23,24] proved that big
Cohen-Macaulay modules exist when the local ring contains a field; and conjectured
that even rings of mixed-characteristic possess such modules. This conjecture was
proved by André [1], thereby settling a number of the homological conjectures. In
fact, by results of Hochster and Huneke [29,30], and André [1] there exist even big
Cohen-Macaulay algebras over any local ring. The reader will find a survey of these
developments in [31, 41].

In this work we introduce three versions of the Cohen-Macaulay property that
apply also to complexes of modules, discuss various constructions that give rise
to them, and present some consequences that follow from their existence. In fact
such complexes have come up earlier, in the work of Roberts [47, 48], recalled in
§3.18, and in recent work of Bhatt [4], though only in passing. What we found
is that results that were proved using big Cohen-Macaulay modules can often be
proved using one of their complex variants. This assertion is backed up the material
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presented in Sections 2 and 4. Moreover, as will be apparent in the discussion in
Section 3, the complex versions are easier to construct, and with better finiteness
properties. It thus seems worthwhile to shine an independent light on them. Let
us begin by defining them.

We say that a complex M over a local ring R with maximal ideal m has maximal
depth if depthR M = dimR, where depth is as in §1.6; we ask also that H(M)
be bounded and the canonical map H0(M) → H0(k ⊗L

R M) be non-zero. Any
complex that satisfies the last condition has depth at most dimR, whence the
name “maximal depth”. An R-module has maximal depth precisely when it is
big Cohen-Macaulay. The depth of a complex can be computed in terms of its
local cohomology modules, Hi

m(M), with support on m. Thus depthR M = dimR
means that Hi

m(M) is zero for i < dimR, and nonzero for i = dimR. A complex
of maximal depth is big Cohen-Macaulay if Hi

m(M) = 0 for i > dimR as well.
When in addition the R-module H(M) is finitely generated, M is maximal Cohen-
Macaulay (MCM). Thus an MCM module is what we know it to be. These notions
are discussed in detail in Section 2 and 3.

When R is an excellent local domain with residue field of positive characteristic,
R+, its integral closure in an algebraic closure of its field of fractions, is big Cohen-
Macaulay. This was proved by Hochster and Huneke [29], see also Huneke and
Lyubeznik [32], when R itself contains a field of positive characteristic. When R
has mixed characteristic this is a recent result of Bhatt [4]. Thus for such rings
there is a canonical construction of a big Cohen-Macaulay module, even an algebra.
See also the work of André [2] and Gabber [16] concerning functorial construction
of big Cohen-Macaulay algebras; see also [43, Appendix A]). On the other hand,
R+ is never big Cohen-Macaulay when R contains the rationals and is a normal
domain of Krull dimension at least 3, by a stadard trace argument. As far as we
know, in this context there are no such “simple” models of big Cohen-Macaulay
modules, let alone algebras. See however Schoutens’ work [50].

When R is essentially of finite type containing a field of characteristic zero, the
derived push-forward of the structure sheaf of a resolution of singularities of SpecR
is an MCM complex [47]. What is more, this complex is equivalent to a graded-
commutative differential graded algebra; see 3.18. This is noteworthy because when
such a ring R is also a normal domain of dimension ≥ 3 it cannot have any MCM
algebras, by the same trace argument as for R+. For a local ring R with a dualizing
complex there are concrete constructions of MCM complexes; see Corollaries 3.8
and 3.11 and the paragraph below. However we do not know any that are also
differential graded algebras. In [6] Bhatt gives examples of complete local rings,
containing a field of positive characteristic, that do not have any MCM algebras.

As to applications, in Section 2 we prove the New Intersection Theorem and
its improved version using complexes of maximal depth, extending the ideas from
[33] where they are proved using big Cohen-Macaulay modules. It follows from the
work of Hochster [27] and Dutta [10] that the Improved New Intersection Theo-
rem is equivalent to the Canonical Element Theorem. In Section 3 we use results
from loc. cit. to prove that for local rings with dualizing complexes the Canonical
Element Theorem implies the existence of MCM complexes. An interesting point
emerges: replacing “module” with “complex” puts the existence of big Cohen-
Macaulay modules on par with the rest of the homological conjectures.
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In Section 4 we paraphrase Boutot’s proof of his theorem on rational singularities
to highlight the role of MCM complexes. We also give a new proof of a subadditivity
property for multiplier ideals. On the other hand, there are applications of MCM
modules that do require working with modules; see 3.17. Nevertheless, it is clear
to us that big Cohen-Macaulay complexes and MCM complexes have their uses,
hence this survey.

1. Local cohomology and derived completions

In this section, we recall basic definitions and results on local cohomology and
derived completions. Throughout R will be a commutative noetherian ring. By
an R-complex we mean a complex of R-modules; the grading will be upper or
lower, depending on the context. In case of ambiguity, we indicate the grading; for
example, given an R-complex M , the supremum of H(M) depends on whether the
grading is upper or lower. So we write supH∗(M) for the largest integer i such that
Hi(M) 6= 0, and supH∗(M) for the corresponding integer for the upper grading.

We write D(R) for the (full) derived category of R viewed as a triangulated
category with translation Σ, the usual suspension functor on complexes. We take
[13,39] as basic references, augmented by [3,47], except that we use the term “semi-
injective” in place of “q-injective” as in [39], and “DG-injective”, as in [3]. Similarly
for the projective and flat analogs.

1.1. Derived I-torsion. Let I an ideal in R. The I-power torsion subcomplex of
an R-complex M is

ΓIM := {m ∈ M | Inm = 0 for some n ≥ 0}.

By m ∈ M we mean that m is in Mi for some i. The corresponding derived functor
is denoted RΓI(M); thus RΓI(M) = ΓIJ where M

∼
−→ J is any semi-injective

resolution of M . In fact, one can compute these derived functors from any complex
of injective R-modules quasi-isomorphic to M ; see [39, §3.5]. By construction there
is a natural morphism RΓI(M) → M in the D(R). The R-modules

Hi
I(M) := Hi(RΓI(M)) for i ∈ Z

are the local cohomology modules of M , supported on I. Evidently, these modules
are I-power torsion. Conversely, when the R-module H(M) is I-power torsion, the
natural map RΓI(M) → M is an isomorphism in D(R); see [13, Proposition 6.12],
or [39, Corollary 3.2.1].

In what follows we will use the fact that the class of I-power torsion complexes
form a localizing subcategory of D(R); see [13, §6], or [39, §3.5]. This has the conse-
quence that these complexes are stable under various constructions. For example,
this class of complexes is closed under L⊗L

R (−) for any L in D(R). Thus, for any
R-complexes L and M the natural map

(1.1.1) RΓI(L⊗L
R M) −→ L⊗L

R RΓI(M)

is a quasi-isomorphism.

1.2. Derived I-completion. The I-adic completion of an R-complex M with
respect to the ideal I, denoted ΛIM , is

ΛIM := lim
n>0

M/InM .
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This complex is thus the limit of the system

· · · −→ M/In+1M −→ M/InM −→ · · · −→ M/IM .

The canonical surjections M → M/InM induce an R-linear map M → ΛIM . If
this is an isomorphism we say that M is I-adically complete, or just I-complete,
though we reserve this name mainly for modules. The left-derived completion with
respect to I of an R-complex M is the R-complex

LΛI(M) := ΛIP where P ' M is a semi-projective resolution.

This complex is well-defined in D(R), and there is a natural morphism

M −→ LΛI(M) .

We say M is derived I-complete if this map is a quasi-isomorphism; equivalently if
each Hi(X) is derived I-complete; see [13, Proposition 6.15], or [52, Tag091N]

The derived I-complete modules from a colocalizing subcategory of D(R), and
this means that for N in D(R) the natural map

LΛI(RHomR(N,M)) −→ RHomR(N,LΛI(M))

is a quasi-isomorphism. In particular, when F is a perfect complex, we have an
isomorphim in D(R)

(1.2.1) F ⊗L
R LΛI(M) ' LΛI(F ⊗L

R M).

These isomorphisms will be useful in what follows. It is a fundamental fact, proved
by Greenlees and May [18], see also [13, Proposition 4.3] or [39, §4], that derived
local cohomology and derived completions are adjoint functors:

(1.2.2) RHomR(RΓI(M), N) ' RHomR(M,LΛI(N)) .

One can take this as a starting point for defining derived completions, which works
better in the non-noetherian settings; see [52]. This adjunction implies that the
natural maps are quasi-isomorphisms:

(1.2.3) LΛI(RΓI(M))
'

−−→ LΛI(M) and RΓI(M)
'

−−→ RΓI(LΛ
I(M)) .

The result below, due to A.-M. Simon [51, 1.4], is a version of Nakayama’s Lemma
for cohomology of complete modules. It is clear from the proof that we only need
X to be derived I-complete; see [52, Tag09b9].

Lemma 1.3. For any R-complex X consisting of I-complete modules, and integer
i, if I Hi(X) = Hi(X), then Hi(X) = 0.

Proof. The point is that Zi, the module of cycle in degree i, is a closed submodule
of the I-complete module Xi, and hence is also I-complete. Moreover Hi(X) is the
cokernel of the map Xi+1 → Zi, and a map between I-complete modules is zero if
and only if its I-adic completion is zero. This translates to the desired result. �

1.4. Koszul complexes. Given a sequence of elements r := r1, . . . , rn in the ring
R, and an R-complex M , we write K(r;M) for the Koszul complex on r with
coefficients in M , namely

K(r;M) := K(r;R)⊗R M .

Its homology is denoted H∗(r;M). For a single element r ∈ R, the complexK(r;M)

can be constructed as the mapping cone of the homothety map M
r
−→ M . In

particular, one has an exact sequence
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(1.4.1) 0 −→ M −→ K(r;M) −→ ΣM −→ 0

of R-complexes. The Koszul complex on a sequence can thus be constructed as an
iterated mapping cone. From Lemma 1.3 one gets the result below. Recall that
supH∗(−) denotes the supremum, in lower grading.

Lemma 1.5. Let R be a noetherian ring and X a derived I-complete R-complex.
For any sequence r := r1, . . . , rn in I one has

supH∗(r;X) ≥ supH∗(X) .

Proof. When X is derived I-complete so is K(r;X) for any r ∈ I. It thus suffices
to verify the desired claim for n = 1. Replacing X by ΛIP , where P is a semi-
projective resolution of X, we can assume X, and hence also K(r;X), consists of
I-complete modules. The desired inequality is then immediate from the standard
long exact sequence in homology

· · · −→ Hi(X)
r

−−→ Hi(X) −→ Hi(r,X) −→ Hi−1(X) −→ · · ·

arising from the mapping cone sequence 1.4.1 and Lemma 1.3. �

To wrap up this section we recall the notion of depth for complexes.

1.6. Depth. The I-depth of an R-complex M is

depthR(I,M) := inf{i | Hi
I(M) 6= 0}.

In particular, depthR(I,M) = ∞ if HI(M) = 0. When the ring R is local, with
maximal ideal m, the depth of M refers to the m-depth of M .

Depth can also be computed using Ext and Koszul homology:

depthR(I,M) = inf{i | ExtiR(R/I,M) 6= 0} ,

and if a sequence r := r1, . . . , rn generates I, then

depthR(I,M) = n− sup{i | Hi(r;M) 6= 0}

This last equality can be expressed in terms of Koszul cohomology. All these results
are from [15], though special cases (for example, when M is an R-module) had been
known for much longer.

Remark 1.7. Let R be a commutative ring, I an ideal in R, and M an R-complex.
Set s = supH∗(M).

(1) depthR(I,M) ≥ −s and equality holds if ΓI(Hs(M)) 6= 0.
(2) When R is local and F is a finite free complex, one has

depthR(F ⊗R M) = depthR M − proj dimR F

For part (1) see [15, 2.7]. When F is the resolution of a module and M = R, part
(2) is nothing but the equality of Auslander and Buchsbaum. For a proof in the
general case see, for example, [15, Theorem 2.4].
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2. Complexes of maximal depth and the intersection theorems

In this section we introduce a notion of “maximal depth” for complexes over
local rings. The gist of the results presented here is that their existence implies
the Improved New Intersection Theorem, and hence a whole slew of “homological
conjectures”, most of which have been recently settled by André [1].

A module of maximal depth is nothing but a big Cohen-Macaulay module and
Hochster proved, already in [24], that their existence implies the homological con-
jectures mentioned above. On the other hand, the Canonical Element Conjecture,
now theorem, implies that R has a complex of maximal depth, even one with
finitely generated homology. This will be one of the outcomes of the discussion in
the next section; see Remark 3.15. No such conclusion can be drawn about big
Cohen-Macaulay modules.

2.1. Complexes of maximal depth. Throughout (R,m, k) will be a local ring,
with maximal ideal m and residue field k. We say that an R-complex M has
maximal depth if the following conditions hold:

(1) H(M) is bounded;
(2) H0(M) → H0(k ⊗L

R M) is nonzero; and
(3) depthR M = dimR.

The nomenclature is based on that fact that depthR M ≤ dimR for any complex M
that satisfies condition (2) above. This inequality follows from Lemma 2.2 applied
with F := K, the Koszul complex on a system of parameters for R. Condition (3)
can be restated as

(2.1.1) Hi
m(M) = 0 for i < dimR and HdimR

m (M) 6= 0 .

Clearly when M is a module it has maximal depth precisely when it is big Cohen-
Macaulay; condition (2) says that M 6= mM . Note also that if a complex M has
maximal depth then so doesM⊕Σ

−nN for any R-module N and integer n ≥ dimR.

Lemma 2.2. Let M be an R-complex with the natural map H0(M) → H0(k⊗
L
RM)

nonzero. For any R-complex F with Hi(F ) = 0 for i < 0, if H0(F )⊗R k is nonzero,
then so is H0(F ⊗L

R M).

Proof. We can assume M is semi-projective, so the functor −⊗L
R M is represented

by − ⊗R M . By hypothesis there exists a cycle, say z, in M0 whose image in
k ⊗R M = M/mM is not a boundary. Consider the morphism R → M of R-
complexes, where r 7→ rz. Its composition R → M → k ⊗R M factors through the
canonical surjection R → k, yielding the commutative square

R M

k k ⊗R M.

The dotted arrow is a left-inverse in D(R) of the induced k → k ⊗R M . It exists
because k → H(k ⊗R M) is nonzero, by the choice of z, and the complex k ⊗R M
is quasi-isomorphic to H(k ⊗R M) in D(k), and hence in D(R). Applying F ⊗L

R −
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to the diagram above yields the commutative square in D(R) on the left:

F F ⊗L
R M

F ⊗L
R k F ⊗L

R (k ⊗R M)

H0(F ) H0(F ⊗L
R M)

H0(F ⊗L
R k) H0(F ⊗L

R (k ⊗R M))

The commutative square on the right is obtained by applying H0(−) to the one
on the left. In this square, the hypotheses on F imply that the vertical map on
the left is nonzero, so hence is its composition with the horizontal arrow. The
commutativity of the square then yields that H0(F ⊗L

R M) is nonzero. �

The following result is due to Hochster and Huneke for rings containing a field,
and due to André in the mixed characteristic case.

Theorem 2.3 (André [1], Hochster& Huneke [29,30]). Each noetherian local ring
possesses a big Cohen-Macaulay algebra. �

As has been said before, the existence of big Cohen-Macaulay algebras, and
hence big Cohen-Macaulay modules, implies many of the homological conjectures.
In particular, it can be used to give a quick proof of the New Intersection Theorem,
first proved in full generality by P. Roberts [49] using intersection theory; see also
[46]. Here is a proof that uses only the existence of a complexes of maximal depth;
the point being that they are easier to construct than big Cohen-Macaulay modules.
Our argument is modeled on that of [33, Theorem 2.5], which uses big Cohen-
Macaulay modules.

Theorem 2.4. Let R be a local ring. Any finite free R-complex

F := 0 → Fn → · · · → F0 → 0

with H0(F ) 6= 0 and lengthR Hi(F ) finite for each i satisfies n ≥ dimR.

Proof. Let M be an R-complex of maximal depth. As H(F ) is of finite length, the
R-module H(F ⊗R M) is m-power torsion, so 1.7(1) yields the second equality:

proj dimR F = depthR M − depthR(F ⊗R M)

= depthR M + supH∗(F ⊗R M)

≥ depthR M

= dimR

The first one is by 1.7(2). The inequality is by Lemma 2.2, noting that H0(F )⊗R k
is nonzero by Nakayama’s lemma. �

One can deduce also the Improved New Intersection Theorem 2.7 from the exis-
tence of complexes of maximal depth, but the proof takes some more preparation.

Lemma 2.5. Let R be a local ring and M an R-complex. If M has maximal depth,
then so does LΛI(M) for any ideal I ⊂ R.

Proof. Condition (1) for maximal depth holds because H(M) bounded implies
H(LΛI(M)) is bounded; this follows, for example, from (1.2.2) and the observa-
tion RΓI(R) has finite projective dimension. As to the other conditions, the main
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point is that for any R-complex X such that H(X) is I-power torsion, the canonical
map M → LΛI(M) in D(R) induces a quasi-isomorphism

X ⊗L
R M

'
−−→ X ⊗L

R LΛI(M).

This can be deduced from (1.2.1) and (1.2.3). In particular, taking X = RΓm(R),
where m is the maximal ideal of R, yields

RΓm(M) ' RΓm(LΛ
I(M)) ,

so that depthR M = depthR LΛI(M). Moreover, taking X = k gives the isomor-
phism in the following commutative diagram in D(R):

M k ⊗L
R M

LΛI(M) k ⊗L
R LΛI(M)

'

that is induced by the morphism M → LΛI(M). Since M has maximal depth, the
map in the top row is nonzero when we apply H0(−), and so the same holds for the
map in the bottom row. Thus LΛI(M) has maximal depth. �

Lemma 2.6. Let (R,m, k) is a local ring and M a derived m-complete R-complex
of maximal depth. Set d := dimR. The following statements hold:

(1) For any system of parameters r1, . . . , rd for R, one has

depthR(K(r1, . . . , rn;M)) = n for each 1 ≤ n ≤ d.

In words, the depth of M with respect to the ideal (r1, . . . , rn) is n.
(2) For any p ∈ SpecR one has

depthRp
Mp ≥ dimRp ,

and equality holds when the map H0(M) → H0(k(p) ⊗
L
R M) is nonzero, in

which case the Rp-complex Mp has maximal depth.

Proof. (1) Set r = r1, . . . , rd. The hypothesis that M has maximal depth and the
depth sensitivity of the Koszul complex K(r;R) yield Hi(r;M) = 0 for i ≥ 1. One
has an isomorphism of R-complexes

K(r;M) ∼= K(rn+1, . . . , rd;K(r1, . . . , rn;M)) .

Since M is derived complete with respect to m, it follows from Lemma 1.5, applied
to the sequence rn+1, . . . , rd and X := K(r1, . . . , rn;M), that

Hi(K(r1, . . . , rn;M)) = 0 for i ≥ 1.

On the other hand, since the natural map H0(M) → H0(k ⊗L
R M) is nonzero,

Lemma 2.2 applied with F = K(r1, . . . , rn;R), yields

H0(K(r1, . . . , rn;M)) 6= 0 .

Thus the depth sensitivity of K(r1, . . . , rn;M) yields the equality in (1).
(2) Set h := height p and choose a system of parameters r := r1, . . . , rd for R

such that the elements r1, . . . , rh are in p. One has

depthRp
Mp ≥ depthR((r1, . . . , rh),M) ≥ h .
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where the first inequality is clear and the second one holds by (1). The natural map
M → k(p)⊗L

RM factors through Mp, so under the additional hypothesis Lemma 2.2
implies depthRp

Mp ≤ h. We conclude that Mp has maximal depth. �

Given the preceding result, we argue as in the proof of [33, Theorem 3.1] to
deduce the Improved New Intersection Theorem:

Theorem 2.7. Let R be a noetherian local ring and F := 0 → Fn → · · · → F0 → 0
a finite free R-complex with H0(F ) 6= 0 and lengthHi(F ) finite for each i ≥ 1. If
an ideal I annihilates a minimal generator of H0(F ), then n ≥ dimR− dim(R/I).

Proof. Let M be an R-complex of maximal depth. By Lemma 2.5, we can assume
M is derived m-complete, so Lemma 2.6 applies. Set s := supH∗(F ⊗R M) and
note that s ≥ 0, by Lemma 2.2.

Fix p in AssR Hs(F ⊗R M), so that depthRp
Hs(F ⊗R M)p = 0. The choice of p

implies that H(F ⊗R M)p is nonzero, and hence H(F )p and H(M)p are nonzero as
well. Therefore one gets

(2.7.1)

proj dimRp
Fp = depthRp

Mp − depthRp
(F ⊗R M)p

= depthRp
Mp + s

≥ dimRp + s

The equalities are by 1.7 and the inequality is by Lemma 2.6(2).
Suppose s ≥ 1. We claim that p = m, the maximal ideal of R, so (2.7.1) yields

proj dimR F ≥ dimR ,

which implies the desired inequality.
Indeed if p 6= m, then since lengthR Hi(F ) is finite for i ≥ 1, one gets that

Fp ' H0(F )
p
, which justifies the equality below:

depthRp ≥ proj dimRp
H0(F )

p
= proj dimRp

Fp ≥ dimRp + s

The first inequality is a consequence of the Auslander-Buchsbaum equality 1.7(2),
the second one is from (2.7.1). We have arrived at a contradiction for s ≥ 1.

It remains to consider the case s = 0. Set X := F ⊗R M . Since H0(F ) is finitely
generated, Nakayama’s Lemma and Lemma 2.2 imply that each minimal generator
of H0(F ) gives a nonzero element in H0(X). One of these is thus annihilated by
I, by the hypotheses. Said otherwise, ΓIH0(F ) 6= 0. Since supH∗(X) = 0, this
implies depthR(I,X) = 0, by Remark 1.7, and hence one gets the equality below

depthR X ≤ depthR(I,X) + dim(R/I) = dim(R/I)

The inequality can be verified by arguing as in the proof of [33, Proposition 5.5(4)]:
Let a := a1, . . . , al be a set of generators for the ideal I, and let b := b1, . . . , bn be
elements in R whose residue classes in R/I form a system of parameters. Since M
is derived m-complete, so is X and hence also K(a;X). Then Lemma 1.5 applied
to the sequence b and complex K(a;X) yields

supH∗(a, b;X) ≥ supH∗(a;X) ;

this gives the desired inequality. Finally it remains to invoke the Auslander-
Buchsbaum equality once again to get

proj dimR F = depthR M − depthR X ≥ dimR− dim(R/I) .

This completes the proof. �
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3. MCM complexes

In this section we introduce two strengthenings of the notion of complexes of
maximal depth, and discuss various constructions that yield such complexes. As
before let (R,m, k) be a local ring, of Krull dimension d.

3.1. Big Cohen-Macaulay complexes. We say that an R-complex M is big
Cohen-Macaulay if the following conditions hold:

(1) H(M) is bounded;
(2) H0(M) → H0(k ⊗L

R M) is nonzero.

(3) Hi
m(M) = 0 for i 6= dimR;

If in addition H(M) is finitely generated, M is maximal Cohen-Macaulay ; usu-
ally abbreviated to MCM. Condition (2) implies in particular that H0(k ⊗L

R M) is

nonzero, and from this it follows that Hi
m(M) 6= 0 for some i. Thus condition (3)

implies depthR M = dimR; in particular, a big Cohen-Macaulay complex has max-

imal depth, in the sense of 2.1 and HdimR
m (M) 6= 0. However (3) is more restrictive,

as the following observation shows.

Lemma 3.2. If M is an MCM R-complex, then Hi(M) = 0 for i 6∈ [0, dimR];
moreover, H0(M) 6= 0.

Proof. The last part of the statement is immediate from condition (2).
Set d = dimR. Let K be the Koszul complex on a system of parameters for R.

Then one has isomorphisms

K ⊗R M ' K ⊗L
R RΓm(M) ' K ⊗L

R Σ
−d Hd

m(M)

where the first one is from (1.1.1), since K⊗RM is m-power torsion, and the second
isomorphism holds by the defining property (3) of a big Cohen-Macaulay complex.
Hence

inf H∗(K ⊗R M) ≥ 0 and supH∗(K ⊗R M) ≤ d .

By our hypotheses, the R-module Hi(M) is finitely generated for each i, and since
K is a Koszul complex on d elements, a standard argument leads to the desired
vanishing of Hi(M). �

Any nonzero MCM R-module is MCM when viewed as complex. However, even
over Cohen-Macaulay rings, which are not fields, there are MCM complexes that
are not modules; see the discussion in (2.1). In the rest of this section we discuss
various ways MCM complexes can arise, or can be expected to arise. It turns out
that often condition (2) is the one that is hardest to verify. Here is one case when
this poses no problem; see 3.18 for an application. The main case of interest is
where A is a dg (=differential graded) R-algebra.

Lemma 3.3. Let A be an R-complex with a unital (but not necessarily associative)
multiplication rule such that the Leibniz rule holds and i := inf H∗(A) is finite. If
Hi(A) is finitely generated, then the identity element of A is nonzero in H0(A⊗L

Rk).

Proof. One has Hi(A ⊗L
R k) ∼= Hi(A) ⊗R k and the latter module is nonzero, by

Nakayama’s lemma and the finite generation hypothesis. We have A⊗L
Rk = A⊗RT

where T is a Tate resolution of k; see [54]. So A ⊗R T is also a (possibly non-
associative) dg algebra. Thus if the identity element were trivial in H(A ⊗R T ),
then H(A⊗R T ) = 0 holds, contradicting Hi(A⊗L

R k) 6= 0. �



MCM COMPLEXES 11

The MCM property for complexes has a simple interpretation in terms of their
duals with respect to dualizing complexes.

3.4. Dualizing complexes. Let D be a dualizing complex for R, normalized1 so
Di is nonzero only in the range [0, d], where d := dimR and always with nonzero
cohomology in degree 0. Thus D is an R-complex with H(D) finitely generated,
and RΓm(D) ' Σ−dE, where E is the injective hull of k; see [47, Chapter 2, §3].
For any R-complex M set

M† := RHomR(M,D) .

One version of the local duality theorem is that the functor M 7→ M† is a con-
travariant equivalence when restricted to Db(modR), the bounded derived category
of finitely generated R-modules; see [47, Chapter 2, Theorem 3.5]. For M in this
subcategory, this gives the last of following quasi-isomorphisms:

RHomR(M
†, E) = RHomR(RHomR(M,D), E)

' RHomR(RHomR(M,D),Σd RΓm(D))

' Σd RΓm(RHomR(RHomR(M,D), D))

' Σd RΓm(M)

The rest are standard. Passing to cohomology yields the usual local duality:

(3.4.1) HomR(H
i(M†), E) ∼= Hd−i

m (M) for each i.

When R is m-adically complete, one can apply Matlis duality to express Hi(M†) as

a dual of Hd−i
m (M).

We also need to introduce a class of maps that will play an important role in the
sequel: For any R-module N let ζiN denote the composition of maps

(3.4.2) ExtiR(k,N)
∼=

−−→ ExtiR(k,RΓm(N)) −→ ExtiR(R,RΓm(N)) ∼= Hi
m(N)

where the one in the middle is induced by the surjection R → k. We will be
particular interested in ζdN . If this map is nonzero, then dimR N = dimR, but the
converse does not hold.

Proposition 3.5. With D as above and M an R-complex with H(M) finitely gen-
erated, set N := H0(M†). Then M is MCM if and only if M† ' N and the map
ζdN is nonzero, for d = dimR.

Proof. Given the hypothesis on the local cohomology on M , it follows that Hi(M†)
is nonzero for i 6= 0 and hence M† ' N . Moreover, this quasi-isomorphism yields

RΓm(N) ' RΓm(RHomR(M,D)) ' RHomR(M,RΓm(D)) ' Σ−d HomR(M,E) .

Therefore the map (3.4.2) is induced by (to be precise, the degree 0 component of
the map in cohomology induced by) the map

RHomR(k,HomR(M,E)) −→ HomR(M,E)

By adjunction, the map above is

RHomR(k ⊗L
R M,E) −→ HomR(M,E)

That is to say, (3.4.2) is the Matlis dual of the map H0(M) → H0(k ⊗L
R M). This

justifies the claims.

1In [20,47], a dualizing complex is normalized to be nonzero in [−d, 0].
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Clearly, these steps are reversible: if N is a finitely generated R-module such
that the map (3.4.2) is nonzero, the R-complex RHomR(N,D) is MCM. �

Here then is a way (and the only way) to construct MCM complexes when R has
a dualizing complex: Take a finitely generated R-module N for which ζdN is nonzero;
then the complex RHomR(N,D) is MCM. It thus becomes important to understand
the class of finitely generated R-modules for which the map ζdN is nonzero.

To that end let F be a minimal free resolution of k, and set

Ω := Coker(Fd+1 → Fd) ;

this is the dth syzygy module of k. Since minimal free resolutions are isomorphic as
complexes, this Ω is independent of the choice of resolution, up to an isomorphism.
The canonical surjection F → F>d gives a morphism in D(R):

(3.5.1) ε : k −→ Σ
dΩ .

We view it as an element in ExtdR(k,Ω). The map ζdΩ below is from (3.4.2).

Lemma 3.6. One has ζdΩ(ε) = 0 if and only if ζdΩ = 0 if and only if ζdN = 0 for all
R-modules N .

Proof. Fix an R-module N . Any map f in HomR(Ω, N) induces a map

f∗ : ExtdR(k,Ω) −→ ExtdR(k,N) .

Let F be a resolution of k as above, defining Ω. Any map k → Σ
dN in D(R) is

represented by a morphism of complexes F → Σ
dN , and hence factors through the

surjection F → F>d, that is to say, the morphism ε. We deduce that any element

of ExtdR(k,N) is of the form f∗(ε), for some f in HomR(Ω, N).

In particular, ExtdR(k,Ω) is a generated by ε as a left module over EndR(Ω). This
observation, and the linearity of the ζdΩ with respect to EndR(Ω), yields ζdΩ = 0 if
and only if ζdΩ(ε) = 0. Also each f in HomR(Ω, N) induces a commutative square

ExtdR(k,Ω) Hd
m(Ω)

ExtdR(k,N) Hd
m(N)

f∗

ζd

Ω

Hd

m
(f)

ζd

N

Thus if ζdΩ = 0 we deduce that ζdN (f∗ε) = 0. By varying f we conclude from the
discussion above that ζdN = 0. �

We should record the following result immediately. It is one formulation of the
Canonical Element Theorem; see [27, (3.15)]. The “canonical element” in question
is ζdΩ(ε); see Lemma 3.6.

Theorem 3.7. For any noetherian local ring R, one has ζdΩ 6= 0. �

Here then is first construction of an MCM R-complex.

Corollary 3.8. If R has a dualizing complex the R-complex Ω† is MCM. �

Remark 3.9. Suppose R has a dualizing complex. Given Proposition 3.5 and
Lemma 3.6 it follows that Ω† is MCM if and only there exists some R-complex
M that is MCM. Therefore, the Canonical Element Theorem, in all its various
formulations [27], is equivalent to the statement that R has an MCM R-complex!
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We now describe another way to construct an MCM complex. Let D be a
dualizing complex for R and set ωR := H0(D); this is the canonical module of R.

Lemma 3.10. One has ζdΩ 6= 0 if and only if ζdωR
6= 0.

Proof. We write ω for ωR. Given Lemma 3.6 we have to verify that if ζdΩ 6= 0, then
ζdω 6= 0. Let E be an injective hull of k, the residue field of R. Since this is a faithful

injective, there exists a map α : Hd
m(Ω) → E such that α ◦ ζdΩ 6= 0.

It follows from local duality 3.4.1, applied to M = Ω, that α is induced by a
morphism f : Ω → D; equivalently, an R-linear map f : Ω → ω. This gives the
following commutative diagram

ExtdR(k,Ω) Hd
m(Ω)

ExtdR(k,N) Hd
m(ω) E

f∗

ζd

Ω

Hd

m
(f) α

ζd

ω

Since α ◦ ζdΩ 6= 0 we conclude that ζdω 6= 0, as desired. �

Corollary 3.11. If R has a dualizing complex, the R-complex ωR
† is MCM. �

The preceding result prompts a natural question.

Question 3.12. When is the dualizing complex itself an MCM complex?

Let R be a local ring with a dualizing complex D, normalized as in 3.4. The local
cohomology of D has the right properties, so, by Proposition 3.5, the R-complex
D is MCM precisely when ζdR is nonzero. Easy examples involving non-domains
show that this is not always the case; Dutta [11] asked: Is ζdR nonzero whenever R
is a complete normal domain? Recently, Ma, Singh, and Walther [44] constructed
counterexamples.

On the other hand, when R is quasi-Gorenstein, that is to say, when ωR is free,
it follows from Corollary 3.11 that D is MCM.

Here is a broader question, also of interest, concerning the maps ζiN : It is easy
to check that this is nonzero when i = depthR N . What conditions on N ensure
that this is the only i for which it is true? By taking direct sums of modules of
differing depths, we obtain modules N with ζiN nonzero for more than a single i.

Example 3.13. When (R,m, k) is a regular local ring and N is a finitely generated
R-module, then N is Buchsbaum if and only if ζiN is surjective for each i < dimR N .
So any non-CM Buchsbaum R-module would give an example.

Remark 3.14. Let F ' k be a free resolution of k and r := r1, . . . , rn elements such
that (r) is primary to the maximal ideal. The canonical surjection R/(r) → k lifts
to a morphism of complexes K(r;R) → F . Applying HomR(−, N) induces maps

ExtiR(k,N) −→ Hi(r;N)

It is easy to verify that ζiN factors through this map. What is more, if s is another
sequence of elements such that r ∈ (s), then the map above factors as

ExtiR(k,N) −→ Hi(s;N) −→ Hi(r;N)

Thus if any of maps above are zero, so is ζiN .
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We would like to record a few more observations about MCM complexes.

Remark 3.15. Let (R,m, k) be an arbitrary noetherian local ring. Then its m-

completion, R̂, has a dualizing complex, and hence an MCM R̂-complex, as dis-

cussed above. Since any MCM R̂-complex is a big Cohen-Macaulay complex over
R, we conclude that R has a big Cohen-Macaulay complex, and, in particular, a
complex of maximal depth.

Remark 3.16. Assume R has a dualizing complex and that M is an MCM R-
complex. It is easy to check using Proposition 3.5 that Mp is an MCM Rp-complex
for p in SpecR, as long as condition (2) defining MCM complexes holds at p. For
example, if A is dg R-algebra that is MCM as an R-complex, then since Ap is a dg
Rp-algebra, Lemma 3.3 implies that it is an MCM Rp-complex.

Remark 3.17. While MCM complexes have their uses, as the discussion in Section 2
makes clear, they are not always a good substitute for MCM modules. Indeed, in
[24, §3] Hochster proves if every local ring has an MCM module, then the Serre
positivity conjecture on multiplicities is a consequence of the vanishing conjecture;
see also [31, §4]. Hochster’s arguments cannot be carried out with MCM complexes
in place of modules. The basic problem is this: Given a finite free complex F , over
a local ring R, with homology of finite length, if M is an MCM R-module, then
H(F⊗RM) is concentrated in at most one degree; this need not be the case when M
is an MCM complex. Indeed this is clear from Iversen’s Amplitude inequality [34],
which is a reformulation of the New Intersection Theorem, and reads:

amp(F ⊗L
R X) ≥ amp(X)

where F is any finite free complex with H(F ) 6= 0 and X is an R-complex with
H(X) bounded. Here amp(X) := supH∗(X)− inf H∗(X), the amplitude of X. By
the way, the Amplitude Inequality holds even when H(X) is unbounded [15].

3.18. Via resolution of singularities. The constructions of MCM complexes
described above are independent of the characteristic of the ring, but proving that
they are MCM is a non-trivial task, for it depends on knowing that one has MCM
complexes to begin with; see Remark 3.9. Next, we describe a complex that arises
from a completely different source that one can prove is MCM independently. The
drawback is that it is restricted to algebras essentially of finite type and containing
the rationals. We first record a well-known observation about proper maps.

Lemma 3.19. Let R be any commutative noetherian ring and π : X → Spec(R)
a proper map from a noetherian scheme X. Viewed as an object in D(R) the
complex Rπ∗OX is equivalent to a dg algebra with cohomology graded-commutative
and finitely generated. When R contains a field of characteristic zero, the dg algebra
itself can be chosen to be graded-commutative.

Proof. By [19, Theorem 3.2.1], since OX is coherent and π is proper, Rπ∗OX is
coherent and hence its cohomology is finitely generated. Next, we explain why this
complex is equivalent, in D(R), to a dg algebra. The idea is that OX is a ring
object in D(X) and there is a natural morphism

Rπ∗F ⊗L
R Rπ∗G −→ Rπ∗(F ⊗L

X G)

so Rπ∗OX is ring object in D(R). One can realize this concretely as follows.
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Let {Ui}
n
i=1 be an affine cover of X. Then the Čech complex computing Rπ∗OX

is equivalent to the total complex associated to the co-simplicial commutative ring

0
∏

i Γ(X,Ui)
∏

i,j Γ(X,Ui ∩ Uj)
∏

i,j,k Γ(X,Ui ∩ Uj ∩ Uk)

It remains to point out that the Alexander-Whitney map makes the normalization of
a co-simplicial ring a dg algebra, with graded-commutative cohomology. Moreover,
containing a field of characteristic zero, it is even quasi-isomorphic to a graded-
commutative dg algebra. �

The statement of the next result, which is due to Roberts [47], invokes the
resolution of singularities in characteristic zero, established by Hironaka. The proof
uses Grothendieck duality for projective maps [20] and the theorem of Grauert and
Riemenschneider [17] on the vanishing of cohomology. Given these, the calculation
that is needed is standard; see the proof of [21, Proposition 2.2 ] due to Hartshorne
and Ogus. It will be clear from the proof that the result extends to any context
where one has sufficient vanishing of cohomology; see [47, Theorem 3.3].

Proposition 3.20. Let (R,m, k) be an excellent noetherian local ring containing a
field of characteristic zero, and admitting a dualizing complex. Let π : X → Spec(R)
be a resolution of singularities. The R-complex Rπ∗OX is MCM and equivalent to
a graded-commutative dg algebra.

Proof. Given Lemmas 3.19 and 3.3 it remains to verify that Hj
m(Rπ∗OX) = 0 for

j 6= d, where d := dimR. Let D be a dualizing complex for R and π!D = ωX ,
the dualizing sheaf for X. Since the R-complex Rπ∗OX has finitely generated
cohomology, local duality 3.4.1 yields the first isomorphism below

Hj
m(Rπ∗OX) ∼= Extd−j

R (Rπ∗OX , D)
∨

∼= Extd−j
X (OX , π!D)∨

= Hd−j(X,ωX)
∨

The second isomorphism is by coherent Grothendieck duality [20]. It remains to
invoke the Grauert-Riemenschneider vanishing theorem [17]—see Murayama [45,
Theorems A&B] for the version that applies in the present generality—to deduce
that the last module in the display is 0 for all j 6= d. �

Here is a natural question, growing out of Proposition 3.20. A positive answer
might have a bearing on the theory of multiplier ideals; see Theorem 4.3.

Question 3.21. When R contains a field of positive characteristic, or is of mixed
characteristic, does it have an MCM R-complex that is also a dg algebra? What
about a graded-commutative dg algebra?

4. Applications to birational geometry

In this section we prove two celebrated results in birational geometry using MCM
complexes constructed via Proposition 3.20. The first one generalizes Boutot’s
theorem on rational singularities [9]; the argument is only a slight reworking of
Boutot’s proof, emphasizing the role of the derived push-forward as an MCM com-
plex. Related circles of ideas can be found in the work of Bhatt, Kollár, Kovács,
and Ma [7,36,37,40].
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Theorem 4.1. Let ρ : Z → SpecR be a map of excellent schemes containing a field
of characteristic zero, admitting dualizing complexes, and such that R → Rρ∗OZ

splits in D(R). If Z has rational singularities, then so does R.

Proof. We may assume (R,m) is local. Note that the condition implies R → ρ∗OZ

is injective so in particular R is reduced (as Z is reduced). Take π : X → SpecR to
be a resolution of singularities. Then there is a (reduced) subscheme of X×SpecRZ
that is birational over Z for each irreducible component of Z. Let Y be a resolution
of singularities of that subscheme. Thus there is a commutative diagram:

Y X

Z SpecR.

σ π

ρ

This induces a commutative diagram

R Rρ∗OZ

Rπ∗OX Rρ∗ Rσ∗OY .

∼=

The right vertical map is an isomorphism since Z has rational singularities. Now
since R → Rρ∗OZ splits in D(R), chasing the diagram shows that R → Rπ∗OX

splits in D(R). In particular, we know that the induced map

Hi
m(R) ↪→ Hi

m(Rπ∗OX)

is split-injective for all i. Because Rπ∗OX is a MCM complex, by Proposition 3.20,
it follows that Hi

m(R) = 0 for i < d, that is to say, R is Cohen-Macaulay. Finally, the
Matlis dual of the injection above yields a surjective map π∗ωX � ωR. Therefore
π∗ωX

∼= ωR since X → SpecR is birational.
Putting these together yields ω•

R
∼= Rπ∗ω

•
X , where ω•

R and ω•
X are the normalized

dualizing complex of R and X respectively. Applying RHomR(−, ω•
R) and using

Grothendieck duality yields R ∼= Rπ∗OX . Thus R has rational singularities. �

Here is an application.

Corollary 4.2. If (R,∆) is KLT, then R has rational singularities.

Proof. Let π : Y → X = SpecR be a log resolution of (R,∆). Since (R,∆) is KLT,
we know that dKY − π∗(KX +∆)e is effective and exceptional, thus

R = π∗OY (dKY − π∗(KX +∆)e) = Rπ∗OY (dKY − π∗(KX +∆)e) ,

where the second equality follows from relative Kawamata-Viehweg vanishing [38,
Theorem 9.4.1]; see [45, Theorems A&B] for the general version. Then the compo-
sition of maps

R → Rπ∗OY → Rπ∗OY (dKY − π∗(KX +∆)e) ∼= R ,

is an isomorphism, that is to say, the map R → Rπ∗OY splits in D(R). Theorem
4.1 then implies R has rational singularities. �

Our second application is a new proof of the subadditivity property of multiplier
ideals [38]. The first proof in the generality below is due to Jonsson and Mustaţă [35,
Theorem A.2]. Our idea of using the MCM property of Rπ∗OX to prove this comes
from the analogous methods in positive and mixed characteristic [42, 53].
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Theorem 4.3. Let (A,m) be an excellent noetherian regular local ring containing
a field of characteristic zero. Given ideals a, b in A and numbers s, t ∈ Q≥0, one
has J(A, asbt) ⊆ J(A, as)J(A, bt).

Proof. We first claim that we may assume that a, b are both principal ideals. This
type of reduction is standard for multiplier ideals [38, Proposition 9.2.26], but we do
not know a reference for the case of mixed multiplier ideals J(A, asbt). However the
argument is the same and we now sketch it. Indeed, fix general elements f1, . . . , fk
in a and g1, . . . , gl in b for k > s and l > t and set

D1 =
1

k

∑
Div(fi) =

1

k
Div(

∏
Div(fi))

D2 =
1

l

∑
Div(gi) =

1

l
Div(

∏
Div(gi)) .

For a log resolution π : X → SpecA of (A, a, b) with OX(−F ) = a · OX and
OX(−G) = b · OX , we have that

π−1
∗ Div(fi) + Fexc = π∗Div(fi) and π−1

∗ Div(gi) +Gexc = π∗Div(gi).

where π−1
∗ denotes the strict transform and Fexc and Gexc are the π-exceptional

parts of F and G. Since the fi and gi are generic, the associated divisors and their
strict transforms are reduced. A straightforward computation then shows that

bsF c =
⌊ s
k

∑
π∗Div(fi)

⌋
and btGc =

⌊
t

l

∑
π∗Div(gi)

⌋
.

Thus J(A, asbt) = J(A, (
∏

fi)
s/k(

∏
gi)

t/l), and likewise J(A, as) = J(A, (
∏

fi)
s/k)

and J(A, bt) = J(A, (
∏

gi)
t/l). Therefore we may assume that a and b are principal.

Now we assume a = (f) and b = (g). LetR be the normalization ofA[f1/ds , g1/dt ]
where ds and dt are the denominators of s and t; thus fs, gt are elements in R.
Let π : X → SpecR be a resolution of singularities. Thus X → SpecA is a regular
alteration; we write π also for this map.

In what follows, to simplify notation, we write E for Hd
m(A). Given an element

r ∈ R let 0rE for the kernel of the composite map

E = Hd
m(A) −→ Hd

m(R)
r

−−→ Hd
m(R) −→ Hd

m(Rπ∗OX)

Now suppose that a power rm of r lives in A (for instance r = fs or r = gt). Then
by [8, Theorem 8.1] we have that Tr(J(ωR, r)) = J(A, (rm)1/m). By local duality
it is easy to see that

J(A, (rm)1/m) = annA 0rE .

In particular, J(A, fs) = annA 0f
s

E and J(A, gt) = annA 0g
t

E .
We next claim that the following inclusion holds:

(4.3.1) {η ∈ E | J(A, fs) · η ⊆ 0g
t

E } ⊆ 0f
sgt

E .

Indeed, suppose J(A, fs)η ⊆ 0g
t

E , then J(A, fs) ·gtη = 0 in Hd
m(Rπ∗OX). Note that

gtη makes sense in Hd
m(Rπ∗OX) as the latter is a module over R. Thus

gtη ∈ annHd
m
(Rπ∗OX) J(A, fs) ∼= HomA(A/J(A, fs),Hd

m(Rπ∗OX)) .

Next, because Rπ∗OX is MCM, by Proposition 3.20, one gets the equality below

h−i(Rπ∗OX ⊗L
A E) ∼= Hd−i

m (Rπ∗OX) = 0
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for all i ≥ 1. Thus we conclude that gtη is in the module

HomA(
A

J(A, fs)
,Hd

m(Rπ∗OX)) ∼= h0

(
RHomA(

A

J(A, fs)
,Rπ∗OX ⊗L

A E)

)

∼= h0

(
Rπ∗OX ⊗L

A RHomA(
A

J(A, fs)
, E)

)

∼= h0
(
Rπ∗OX ⊗L

A annE J(A, fs)
)
.

The second isomorphism follows from [14, Proposition 1.1 (4)], noting that A is
regular thus every bounded complex is isomorphic to a bounded complex of flat
modules in D(A), and the third isomorphism follows from the fact that E is an
injective A-module.

Consider following composite map; again, the second multiplication by fs map
makes sense since we can view Rπ∗OX as a complex over R and not merely over A:

E → h0
(
Rπ∗OX ⊗L

A E
) ·fs

−−→ h0
(
Rπ∗OX ⊗L

A E
)
.

Its kernel is annE J(A, fs), by Matlis duality. Thus the composition of the natural
induced maps

Rπ∗OX ⊗L
A annE J(A, fs) → Rπ∗OX ⊗L

A E
·fs

−−→ Rπ∗OX ⊗L
A E

is zero in h0. In particular, since gtη is in h0 of the source of this composite map,
we deduce that, viewed as an element in target, namely in

h0
(
Rπ∗OX ⊗L

A E
)
∼= Hd

m(Rπ∗OX)

it is killed by fs. Therefore fsgtη = 0 in Hd
m(Rπ∗OX) and hence η ∈ 0f

sgt

E .
This justifies (4.3.1).

Finally, for any z ∈ annE J(A, fs)J(A, gt), we have J(A, fs)z ⊆ 0g
t

E and thus

z ∈ 0f
sgt

E by (4.3.1). Therefore

annE J(A, fs)J(A, gt) ⊆ 0f
sgt

E

and hence by Matlis duality J(A, fsgt) ⊆ J(A, fs)J(A, gt). �
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[37] Sándor J. Kovács, A characterization of rational singularities, Duke Math. J. 102 (2000),
no. 2, 187–191, DOI 10.1215/S0012-7094-00-10221-9. MR1749436

[38] Robert Lazarsfeld, Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics
and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-
Verlag, Berlin, 2004. Positivity for vector bundles, and multiplier ideals. MR2095472

[39] Joseph Lipman, Lectures on local cohomology and duality, Local cohomology and its appli-
cations (Guanajuato, 1999), Lecture Notes in Pure and Appl. Math., vol. 226, Dekker, New
York, 2002, pp. 39–89. MR1888195

[40] Linquan Ma, The vanishing conjecture for maps of Tor and derived splinters, J. Eur. Math.
Soc. (JEMS) 20 (2018), no. 2, 315–338, DOI 10.4171/JEMS/768. MR3760297

[41] Linquan Ma and Karl Schwede, Recent applications of p-adic methods to commutative algebra,
Notices Amer. Math. Soc. 66 (2019), no. 6, 820–831. MR3929575

[42] Linquan Ma and Karl Schwede, Perfectoid multiplier/test ideals in regular rings and bounds
on symbolic powers, Invent. Math. 214 (2018), no. 2, 913–955, DOI 10.1007/s00222-018-0813-

1. MR3867632
[43] Linquan Ma, Karl Schwede, Kevin Tucker, Joe Waldron, and Jakub Witaszek, An analog

of adjoint ideals and plt singularities in mixed characteristic (2019), preprint, available at
arxiv.org/abs/1910.14665.

[44] Linquan Ma, Anurag K. Singh, and Uli Walther, Koszul and local cohomology, and a ques-
tion of Dutta, Math. Z. 298 (2021), no. 1-2, 697–711, DOI 10.1007/s00209-020-02619-0.
MR4257105

[45] Takumi Murayama, Relative vanishing theorems for Q-schemes (2021), preprint, available at

https://arxiv.org/pdf/2101.10397.pdf.

[46] Greg Piepmeyer and Mark E. Walker, A new proof of the New Intersection Theorem, J.
Algebra 322 (2009), no. 9, 3366–3372, DOI 10.1016/j.jalgebra.2007.09.015. MR2567425

[47] Paul Roberts, Homological invariants of modules over commutative rings, Séminaire de
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