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Abstract

Tensors, which provide a powerful and flexible model for representing multi-attribute data and
multi-way interactions, play an indispensable role in modern data science across various fields in
science and engineering. A fundamental task is to faithfully recover the tensor from highly in-
complete measurements in a statistically and computationally efficient manner. Harnessing the
low-rank structure of tensors in the Tucker decomposition, this paper develops a scaled gradient
descent (ScaledGD) algorithm to directly recover the tensor factors with tailored spectral initializa-
tions, and shows that it provably converges at a linear rate independent of the condition number of
the ground truth tensor for two canonical problems — tensor completion and tensor regression —
as soon as the sample size is above the order of n3/2 ignoring other parameter dependencies, where
n is the dimension of the tensor. This leads to an extremely scalable approach to low-rank tensor
estimation compared with prior art, which suffers from at least one of the following drawbacks:
extreme sensitivity to ill-conditioning, high per-iteration costs in terms of memory and computa-
tion, or poor sample complexity guarantees. To the best of our knowledge, ScaledGD is the first
algorithm that achieves near-optimal statistical and computational complexities simultaneously for
low-rank tensor completion with the Tucker decomposition. Our algorithm highlights the power of
appropriate preconditioning in accelerating nonconvex statistical estimation, where the iteration-
varying preconditioners promote desirable invariance properties of the trajectory with respect to
the underlying symmetry in low-rank tensor factorization.
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1. Introduction

Tensors Kolda and Bader (2009); Sidiropoulos et al. (2017), which provide a powerful and flexible
model for representing multi-attribute data and multi-way interactions across various fields, play
an indispensable role in modern data science with ubiquitous applications in image inpainting Liu
et al. (2012), hyperspectral imaging Dian et al. (2017), collaborative filtering Xiong et al. (2010),
topic modeling Anandkumar et al. (2014), network analysis Papalexakis et al. (2016), and many
more.

1.1 Low-rank tensor estimation

In many problems across science and engineering, the central task can be regarded as tensor es-
timation from highly incomplete measurements, where the goal is to estimate an order-3 tensor1

X ? ∈ R
n1×n2×n3 from its observations y ∈ R

m given by

y ≈ A(X ?).

Here, A : Rn1×n2×n3 7→ R
m represents a certain linear map modeling the data collection process.

Importantly, the number m of observations is often much smaller than the ambient dimension
n1n2n3 of the tensor due to resource or physical constraints, necessitating the need of exploiting
low-dimensional structures to allow for meaningful recovery.

One of the most widely adopted low-dimensional structures—which is the focus of this paper—is
the low-rank structure under the Tucker decomposition Tucker (1966). Specifically, we assume that
the ground truth tensor X ? admits the following Tucker decomposition2

X ? = (U?,V?,W?) · S?,

where S? ∈ R
r1×r2×r3 is the core tensor, and U? ∈ R

n1×r1 , V? ∈ R
n2×r2 , W? ∈ R

n3×r3 are
orthonormal matrices corresponding to the factors of each mode. The tensor X ? is said to be low-
multilinear-rank, or simply low-rank, when its multilinear rank r = (r1, r2, r3) satisfies rk � nk,
for all k = 1, 2, 3. Compared with other tensor decompositions such as the CP decomposition
Kolda and Bader (2009) and tensor-SVD Zhang et al. (2014), the Tucker decomposition offers
several advantages: it allows flexible modeling of low-rank tensor factors with a small number of
parameters, fully exploits the multi-dimensional algebraic structure of a tensor, and admits efficient
and stable computation without suffering from degeneracy Paatero (2000).

Motivating examples. We point out two representative settings of tensor recovery that guide
our work.

• Tensor completion. A widely encountered problem is tensor completion, where one aims to predict
the entries in a tensor from only a small subset of its revealed entries. A celebrated application
is collaborative filtering, where one aims to predict the users’ evolving preferences from partial

1. For ease of presentation, we focus on 3-way tensors; our algorithm and theory can be generalized to higher-order
tensors in a straightforward manner.

2. Other popular notation for Tucker decomposition in the literature includes [[S?;U?,V?,W?]] and S? ×1 U? ×2

V?×3W?. In this work, we adopt the same notation (U?,V?,W?) · S? as in Xia and Yuan (2019) for convenience
of our theoretical developments.
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observations of a tensor composed of ratings for any triplet of user, item, time Karatzoglou et al.
(2010). Mathematically, we are given entries

X ?(i1, i2, i3), (i1, i2, i3) ∈ Ω,

in some index set Ω, where (i1, i2, i3) ∈ Ω if and only if that entry is observed. The goal is then
to recover the low-rank tensor X ? from the observed entries in Ω.

• Tensor regression. In machine learning and signal processing, one is often concerned with deter-
mining how the covariates relate to the response—a task known as regression. Due to advances in
data acquisition, there is no shortage of scenarios where the covariates are available in the form
of tensors, for example in medical imaging Zhou et al. (2013). Mathematically, the i-th response
or observation is given as

yi = 〈Ai,X ?〉 =
∑

i1,i2,i3

Ai(i1, i2, i3)X ?(i1, i2, i3), i = 1, 2, . . . ,m,

where Ai is the i-th covariate or measurement tensor. The goal is then to recover the low-rank
tensor X ? from the responses y = {yi}mi=1.

1.2 A gradient descent approach?

Recent years remarkable successes have emerged in developing a plethora of provably efficient algo-
rithms for low-rank matrix estimation (i.e. the special case of order-2 tensors) via both convex and
nonconvex optimization. However, unique challenges arise when dealing with tensors, since they
have more sophisticated algebraic structures Hackbusch (2012). For instance, while nuclear norm
minimization achieves near-optimal statistical guarantees for low-rank matrix estimation Candès
and Tao (2010) within a polynomial run time, computing the nuclear norm of a tensor turns out to
be NP-hard Friedland and Lim (2018). Therefore, there have been a number of efforts to develop
polynomial-time algorithms for tensor recovery, including but not limited to the sum-of-squares
hierarchy Barak and Moitra (2016); Potechin and Steurer (2017), nuclear norm minimization with
unfolding Gandy et al. (2011); Mu et al. (2014), regularized gradient descent Han et al. (2020), to
name a few; see Section 1.4 for further discussions.

In view of the low-rank Tucker decomposition, a natural approach is to seek to recover the
factor quadruple F? := (U?,V?,W?,S?) directly by optimizing the unconstrained least-squares loss
function:

min
F

L(F ) :=
1

2
‖A ((U ,V ,W ) · S)− y‖22 , (1)

where F := (U ,V ,W ,S) consists of U ∈ R
n1×r1 , V ∈ R

n2×r2 , W ∈ R
n3×r3 , and S ∈ R

r1×r2×r3 .
Since the factors have a much lower complexity than the tensor itself due to the low-rank structure,
it is expected that manipulating the factors results in more scalable algorithms in terms of both
computation and storage. This optimization problem is however, highly nonconvex, since the factors
are not uniquely determined.3 Nonetheless, one might be tempted to solve the problem (1) via
gradient descent (GD), which updates the factors according to

Ft+1 = Ft − η∇L(Ft), t = 0, 1, . . . , (2)

3. For any invertible matrices Qk ∈ R
rk×rk , k = 1, 2, 3, one has (U ,V ,W ) · S =

(UQ1,V Q2,WQ3) ·((Q
−1
1 ,Q−1

2 ,Q−1
3 ) · S).
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where Ft is the estimate at the t-th iteration, η > 0 is the step size or learning rate, and ∇L(F ) is
the gradient of L(F ) at F . Despite a flurry of activities for understanding factored gradient descent
in the matrix setting Chi et al. (2019), this line of algorithmic thinkings has been severely under-
explored for the tensor setting, especially when it comes to provable guarantees for both sample
and computational complexities.

The closest existing theory that one comes across is Han et al. (2020) for tensor regression, which
adds regularization terms to promote the orthogonality of the factors U ,V ,W :

Lreg(F ) := L(F ) +
α

4

(
‖U>U − βIr1‖2F + ‖V >V − βIr2‖2F + ‖W>W − βIr3‖2F

)
, (3)

and perform GD on the regularized loss. Here, α, β > 0 are two parameters to be specified. While
encouraging, theoretical guarantees of this regularized GD algorithm Han et al. (2020) still fall short
of achieving computational efficiency. In truth, its convergence speed is rather slow: it takes an
order of κ2 log(1/ε) iterations to attain an ε-accurate estimate of the ground truth tensor, where
κ is a sort of condition number of X ? to be defined momentarily. Therefore, the computational
efficacy of the regularized GD is severely hampered even when X ? is moderately ill-conditioned,
a situation frequently encountered in practice. In addition, the regularization term introduces
additional parameters that may be difficult to tune optimally in practice.

Turning to tensor completion, the situation is even worse: to the best of our knowledge, there
is no provably linearly-convergent algorithm that accommodates low-rank tensor completion under
the Tucker decomposition. The question is thus:

Can we develop a factored gradient-based algorithm that converges fast even for highly ill-conditioned
tensors with near-optimal sample complexities for tensor completion and tensor regression?

In this paper, we provide an affirmative answer to the above question.

1.3 A new algorithm: scaled gradient descent

We propose a novel algorithm—dubbed scaled gradient descent (ScaledGD)—to solve the tensor
recovery problem. More specifically, at the core it performs the following iterative updates4 to
minimize the loss function (1):

Ut+1 = Ut − η∇UL(Ft)
(
Ŭ>

t Ŭt

)−1
,

Vt+1 = Vt − η∇V L(Ft)
(
V̆ >
t V̆t

)−1
,

Wt+1 = Wt − η∇WL(Ft)
(
W̆>

t W̆t

)−1
,

St+1 = St − η
(
(U>

t Ut)
−1, (V >

t Vt)
−1, (W>

t Wt)
−1
)
·∇SL(Ft),

(4)

where ∇UL(F ), ∇V L(F ), ∇WL(F ), and ∇SL(F ) are the partial derivatives of L(F ) with respect
to the corresponding variables, and

Ŭt := M1 ((Ir1 ,Vt,Wt) · St)
> = (Wt ⊗ Vt)M1(St)

>,

V̆t := M2 ((Ut, Ir2 ,Wt) · St)
> = (Wt ⊗Ut)M2(St)

>,

W̆t := M3 ((Ut,Vt, Ir3) · St)
> = (Vt ⊗Ut)M3(St)

>.

(5)

Here, Mk(S) is the matricization of the tensor S along the k-th mode (k = 1, 2, 3), and ⊗ de-
notes the Kronecker product. Inspired by its variant in the matrix setting Tong et al. (2021a),

4. The matrix inverses in ScaledGD always exist under the assumptions of our theory.
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Algorithms Sample complexity Iteration complexity Parameter space

Unfolding + nuclear norm min.
n2r log2 n polynomial tensor

Huang et al. (2015)
Tensor nuclear norm min.

n3/2r1/2 log3/2 n NP-hard tensor
Yuan and Zhang (2016)

Grassmannian GD
n3/2r7/2κ4 log7/2 n N/A factor

Xia and Yuan (2019)
ScaledGD

n3/2r5/2κ3 log3 n log 1
ε factor

(this paper)

Table 1: Comparisons of ScaledGD with existing algorithms for tensor completion when the tensor
is incoherent and low-rank under the Tucker decomposition. Here, we say that the output
X of an algorithm reaches ε-accuracy, if it satisfies ‖X −X ?‖F ≤ εσmin(X ?). Here, κ and
σmin(X ?) are the condition number and the minimum singular value of X ? (defined in
Section 2.1). For simplicity, we let n = maxk=1,2,3 nk and r = maxk=1,2,3 rk, and assume
r ∨ κ � nδ for some small constant δ to keep only terms with dominating orders of n.

the ScaledGD algorithm (4) exploits the structures of Tucker decomposition and possesses many
desirable properties:

• Low per-iteration cost: as a preconditioned GD or quasi-Newton algorithm, ScaledGD updates
the factors along the descent direction of a scaled gradient, where the preconditioners can be
viewed as the inverse of the diagonal blocks of the Hessian for the population loss (i.e. tensor
factorization). As the sizes of the preconditioners are proportional to the multilinear rank, the
matrix inverses are cheap to compute with a minimal overhead and the overall per-iteration cost
is still low and linear in the time it takes to read the input data.

• Equivariance to parameterization: one crucial property of ScaledGD is that if we reparameterize
the factors by some invertible transforms (i.e. replacing (Ut,Vt,Wt,St) by

(UtQ1,VtQ2,WtQ3, (Q
−1
1 ,Q−1

2 ,Q−1
3 ) · St)

for some invertible matrices {Qk}3k=1), the entire trajectory will go through the same reparam-
eterization, leading to an invariant sequence of low-rank tensor updates X t = (Ut,Vt,Wt) · St

regardless of the parameterization being adopted.

• Implicit balancing: ScaledGD optimizes the natural loss function (1) in an unconstrained manner
without requiring additional regularizations or orthogonalizations used in prior literature Han
et al. (2020); Frandsen and Ge (2020); Kasai and Mishra (2016), and the factors stay balanced in
an automatic manner—a feature sometimes referred to as implicit regularization Ma et al. (2021).

Theoretical guarantees. We investigate the theoretical properties of ScaledGD for both tensor
completion and tensor regression, which are notably more challenging than the matrix counterpart.
It is demonstrated that ScaledGD—when initialized properly using appropriate spectral methods
—achieves linear convergence at a rate independent of the condition number of the ground truth

5. (Luo and Zhang, 2021, Theorem 3) states the sample complexity n3/2√rκ2‖X ?‖2F/σ2
min(X ?), where

‖X ?‖2F/σ2
min(X ?) has an order of rκ2.
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Algorithms Sample complexity Iteration complexity Parameter space

Unfolding + nuclear norm min.
n2r polynomial tensor

Mu et al. (2014)
Projected GD

n2r κ2 log 1
ε tensor

Chen et al. (2019a)
Regularized GD

n3/2rκ4 κ2 log 1
ε factor

Han et al. (2020)
Riemannian Gauss-Newton

n3/2r3/2κ4 log log 1
ε tensor

Luo and Zhang (2021) (concurrent)5

ScaledGD
n3/2r3/2κ2 log 1

ε factor
(this paper)

Table 2: Comparisons of ScaledGD with existing algorithms for tensor regression when the tensor is
low-rank under the Tucker decomposition. Here, we say that the output X of an algorithm
reaches ε-accuracy, if it satisfies ‖X − X ?‖F ≤ εσmin(X ?). Here, κ and σmin(X ?) are
the condition number and minimum singular value of X ? (defined in Section 2.1). For
simplicity, we let n = maxk=1,2,3 nk, and r = maxk=1,2,3 rk, and assume r ∨ κ � nδ for
some small constant δ to keep only terms with dominating orders of n.

tensor with near-optimal sample complexities. In other words, ScaledGD needs no more than
O(log(1/ε)) iterations to reach ε-accuracy; together with its low computational and memory costs
by operating in the factor space, this makes ScaledGD a highly scalable method for a wide range
of low-rank tensor estimation tasks. More specifically, we have the following guarantees (assume
n = maxk=1,2,3 nk and r = maxk=1,2,3 rk):

• Tensor completion. Under the Bernoulli sampling model, ScaledGD (with an additional scaled
projection step) succeeds with high probability as long as the sample complexity is above the order
of n3/2r5/2κ3 log3 n. Connected to some well-reckoned conjecture on computational barriers, it
is widely believed that no polynomial-time algorithm will be successful if the sample complexity
is less than the order of n3/2 for tensor completion Barak and Moitra (2016), which suggests
the near-optimality of the sample complexity of ScaledGD. Compared with existing approaches
(cf. Table 1), ScaledGD provides the first computationally efficient algorithm with a near-linear
run time at the near-optimal sample complexity.

• Tensor regression. Under the Gaussian design, ScaledGD succeeds with high probability as long
as the sample complexity is above the order of n3/2r3/2κ2. Our analysis of local convergence
is more general, based on the tensor restricted isometry property (TRIP) Rauhut et al. (2017),
and is therefore applicable to various measurement ensembles that satisfy TRIP. Compared with
existing approaches (cf. Table 2), ScaledGD achieves competitive performance guarantees in terms
of sample and iteration complexities with a low per-iteration cost in the factor space.

Figure 1 illustrates the number of iterations needed to achieve a relative error ‖X − X ?‖F ≤
10−3‖X ?‖F for ScaledGD and regularized GD Han et al. (2020) under different condition numbers
for tensor completion under the Bernoulli sampling model (see Section 4 for experimental settings).
Clearly, the iteration complexity of GD deteriorates at a super linear rate with respect to the
condition number κ, while ScaledGD enjoys an iteration complexity that is independent of κ as
predicted by our theory. Indeed, with a seemingly small modification, ScaledGD takes merely 17
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Figure 1: The iteration complexities of ScaledGD (this paper) and regularized GD to achieve
‖X −X ?‖F ≤ 10−3‖X ?‖F with respect to different condition numbers for low-rank tensor
completion with n1 = n2 = n3 = 100, r1 = r2 = r3 = 5, and the probability of observation
p = 0.1.

iterations to achieve the desired accuracy over the entire range of κ, while GD takes thousands of
iterations even with a moderate condition number!

1.4 Additional related works

Comparison with Tong et al. (2021a). While the proposed ScaledGD algorithm is inspired by
its matrix variant in Tong et al. (2021a) by utilizing the same principle of preconditioning, the exact
form of preconditioning for tensor factorization needs to be designed carefully and is not trivially
obtainable. There are many technical novelty in our analysis compared to Tong et al. (2021a). In
the matrix case, the low-rank matrix is factorized as LR>, and only two factors are needed to be
estimated. In contrast, in the tensor case, the low-rank tensor is factorized as (U ,V ,W ) · S, and
four factors are needed to be estimated, leading to a much more complicated nonconvex landscape
than the matrix case. In fact, when specialized to matrix completion, our ScaledGD algorithm does
not degenerate to the same matrix variant in Tong et al. (2021a), due to overparamterization and
estimating four factors at once, but still maintains the near-optimal performance guarantees. In
addition, the tensor algebra possesses unique algebraic properties that requires much more delicate
treatments in the analysis. For the local convergence, we establish new concentration properties
regarding tensors, which are more challenging compared to the matrix counterparts; for spectral
initialization, we establish the effectiveness of a second-order spectral method in the Tucker setting
for the first time.

Low-rank tensor estimation with Tucker decomposition. Frandsen and Ge (2020) ana-
lyzed the landscape of Tucker decomposition for tensor factorization, and showed benign landscape
properties with suitable regularizations. Gandy et al. (2011); Mu et al. (2014) developed convex
relaxation algorithms based on minimizing the nuclear norms of unfolded tensors for tensor regres-
sion, and similar approaches were developed in Huang et al. (2015) for robust tensor completion.
However, unfolding-based approaches typically result in sub-optimal sample complexities since they
do not fully exploit the tensor structure. Yuan and Zhang (2016) studied directly minimizing the
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nuclear norm of the tensor, which regrettably is not computationally tractable. Xia and Yuan
(2019) proposed a Grassmannian gradient descent algorithm over the factors other than the core
tensor for exact tensor completion, whose iteration complexity is not characterized. The statistical
rates of tensor completion, together with a spectral method, were investigated in Zhang and Xia
(2018); Xia et al. (2021), and uncertainty quantifications were recently dealt with in Xia et al.
(2020). Besides the entrywise i.i.d. observation models for tensor completion, Zhang (2019); Kr-
ishnamurthy and Singh (2013) considered tailored or adaptive observation patterns to improve the
sample complexity. In addition, for low-rank tensor regression, Raskutti et al. (2019) proposed a
general convex optimization approach based on decomposable regularizers, and Rauhut et al. (2017)
developed an iterative hard thresholding algorithm. Chen et al. (2019a) proposed projected gra-
dient descent algorithms with respect to the tensors, which have larger computation and memory
footprints than the factored gradient descent approaches taken in this paper. Ahmed et al. (2020)
proposed a tensor regression model where the tensor is simultaneously low-rank and sparse in the
Tucker decomposition. A concurrent work Luo and Zhang (2021) proposed a Riemannian Gauss-
Newton algorithm, and obtained an impressive quadratic convergence rate for tensor regression (see
Table 2). Compared with ScaledGD, this algorithm runs in the tensor space, and the update rule
is more sophisticated with higher per-iteration cost by solving a least-squares problem and per-
forming a truncated HOSVD every iteration. Another recent work Cai et al. (2021b) studies the
Riemannian gradient descent algorithm which also achieves an iteration complexity free of condition
number, however, the initialization scheme was not studied therein. After the initial appearance of
the current paper, another work Wang et al. (2021) proposes an algorithm based again on Riem-
mannian gradient descent for low-rank tensor completion with Tucker decomposition, coming with
an appealing entrywise convergence guarantee at a constant rate.

Last but not least, many scalable algorithms for low-rank tensor estimation have been proposed
in the literature of numerical optimization Xu and Yin (2013); Goldfarb and Qin (2014), where
preconditioning has long been recognized as a key idea to accelerate convergence Kasai and Mishra
(2016); Kressner et al. (2014). In particular, if we constrain U ,V ,W to be orthonormal, i.e. on the
Grassmanian manifold, the preconditioners used in ScaledGD degenerate to the ones investigated
in Kasai and Mishra (2016), which was a Riemannian manifold gradient algorithm under a scaled
metric. On the other hand, ScaledGD does not assume orthonormality of the factors, therefore
is conceptually simpler to understand and avoids complicated manifold operations (e.g. geodesics,
retraction). Furthermore, none of the prior algorithmic developments Kasai and Mishra (2016);
Kressner et al. (2014) are endowed with the type of global performance guarantees with linear
convergence rate as developed herein.

Provable low-rank tensor estimation with other decompositions. Complementary to ours,
there have also been a growing number of algorithms proposed for estimating a low-rank tensor
adopting the CP decomposition. Examples include sum-of-squares hierarchy Barak and Moitra
(2016); Potechin and Steurer (2017), gradient descent Cai et al. (2019, 2020a); Hao et al. (2020),
alternating minimization Jain and Oh (2014); Liu and Moitra (2020), spectral methods Montanari
and Sun (2018); Chen et al. (2021); Cai et al. (2021a), atomic norm minimization Li et al. (2015);
Ghadermarzy et al. (2019), to name a few. Ge and Ma (2020) studied the optimization landscape
of overcomplete CP tensor decomposition. Beyond the CP decomposition, Zhang and Aeron (2016)
developed exact tensor completion algorithms under the so-called tensor-SVD Zhang et al. (2014),
and Liu et al. (2019); Lu et al. (2018) studied low-tubal-rank tensor recovery. We will not elaborate
further since these algorithms are not directly comparable to ours due to the difference in models.

Nonconvex optimization for statistical estimation. Our work contributes to the recent
strand of works that develop provable nonconvex methods for statistical estimation, including but

8
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not limited to low-rank matrix estimation Sun and Luo (2016); Chen and Wainwright (2015); Ma
et al. (2019); Charisopoulos et al. (2021); Ma et al. (2021); Park et al. (2017); Chen et al. (2020); Xia
and Yuan (2021), phase retrieval Candès et al. (2015); Wang et al. (2018); Chen and Candès (2017);
Zhang et al. (2017, 2016); Chen et al. (2019b), quadratic sampling Li et al. (2019b), dictionary
learning Sun et al. (2017a,b); Bai et al. (2018), neural network training Buchanan et al. (2020);
Fu et al. (2020); Hand and Voroninski (2019), and blind deconvolution Li et al. (2019a); Ma et al.
(2019); Shi and Chi (2021); the readers are referred to the overviews Chi et al. (2019); Chen and
Chi (2018); Zhang et al. (2020b) for further references.

1.5 A primer on tensor algebra and notation

We end this section with a primer on some useful tensor algebra; for a more detailed exposition,
see Kolda and Bader (2009); Sidiropoulos et al. (2017). Throughout this paper, we use boldface
calligraphic letters (e.g. X ) to denote tensors, and boldface capitalized letters (e.g. X) to denote
matrices. For any matrix M , we use σi(M) to denote its i-th largest singular value, and σmax(M)
(resp. σmin(M)) to denote its largest (resp. smallest) nonzero singular value. ‖M‖, ‖M‖F, ‖M‖2,∞,
and ‖M‖∞ stand for the spectral norm (i.e. the largest singular value), the Frobenius norm, the
`2,∞ norm (i.e. the largest `2 norm of the rows), and the entrywise `∞ norm (the largest magnitude
of all entries) of a matrix M . Let Pdiag(M) denote the projection that keeps only the diagonal
entries of M , and Poff-diag(M) = M −Pdiag(M), for a square matrix M . Let M(i, :) and M(:, j)
denote the i-th row and j-th column of M , respectively. The r × r identity matrix is denoted by
Ir. The set of invertible matrices in R

r×r is denoted by GL(r).
We define the unfolding (i.e. flattening) operations of tensors and matrices as following.

• The mode-1 matricization M1(X ) ∈ R
n1×(n2n3) of a tensor X ∈ R

n1×n2×n3 is given by [M1(X )]
(
i1, i2+

(i3 − 1)n2

)
= X (i1, i2, i3), for 1 ≤ ik ≤ nk, k = 1, 2, 3; M2(X ) and M3(X ) can be defined in a

similar manner.

• The vectorization vec(X ) ∈ R
n1n2n3 of a tensor X ∈ R

n1×n2×n3 is given by [vec(X )]
(
i1 + (i2 −

1)n1 + (i3 − 1)n1n2

)
= X (i1, i2, i3) for 1 ≤ ik ≤ nk, k = 1, 2, 3.

• The vectorization vec(M) ∈ R
n1n2 of a matrix M ∈ R

n1×n2 is given by [vec(M)]
(
i1+(i2−1)n1

)
=

M(i1, i2) for 1 ≤ ik ≤ nk, k = 1, 2.

The vectorization of a tensor is related to the Kronecker product as

vec((U ,V ,W ) · S) = vec
(
UM1(S)(W ⊗ V )>

)
= (W ⊗ V ⊗U) vec(S). (6a)

The inner product between two tensors is defined as

〈X 1,X 2〉 =
∑

i1,i2,i3

X 1(i1, i2, i3)X 2(i1, i2, i3).

A useful relation is that

〈X 1,X 2〉 = 〈Mk(X 1),Mk(X 2)〉, k = 1, 2, 3, (6b)

which allows one to move between the tensor representation and the unfolded matrix representation.
The Frobenius norm of a tensor is defined as ‖X‖F =

√
〈X ,X 〉. In addition, the following basic

relations, which follow straightforwardly from analogous matrix relations after applying matriciza-
tions, will be proven useful:

(U ,V ,W ) ·
(
(Q1,Q2,Q3) · S

)
= (UQ1,V Q2,WQ3) · S, (6c)

9
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〈(U ,V ,W ) · S,X 〉 =
〈
S, (U>,V >,W>) ·X

〉
, (6d)

‖(Q1,Q2,Q3) · S‖F ≤ ‖Q1‖‖Q2‖‖Q3‖‖S‖F, (6e)

where Qk ∈ R
rk×rk , k = 1, 2, 3. Define the `∞ norm of X as ‖X‖∞ = maxi1,i2,i3 |X (i1, i2, i3)|.

With slight abuse of terminology, denote

σmax(X ) = max
k=1,2,3

σmax(Mk(X )), and σmin(X ) = min
k=1,2,3

σmin(Mk(X ))

as the maximum and minimum nonzero singular values of X . In addition, define the spectral norm
of a tensor X as

‖X‖ = sup
uk∈R

nk : ‖uk‖2≤1
|〈X , (u1,u2,u3) · 1〉| .

Note that ‖X‖ 6= σmax(X ) in general. For a tensor X of multilinear rank at most r = (r1, r2, r3),
its spectral norm is related to the Frobenius norm as Jiang et al. (2017); Li et al. (2018)

‖X‖F ≤
√

r1r2r3
r

‖X‖, where r = max
k=1,2,3

rk. (7)

Higher-order SVD. For a general tensor X , define Hr(X ) as the top-r higher-order SVD
(HOSVD) of X with r = (r1, r2, r3), given by

Hr(X ) = (U ,V ,W ) · S, (8a)

where U is the top-r1 left singular vectors of M1(X ), V is the top-r2 left singular vectors of M2(X ),
W is the top-r3 left singular vectors of M3(X ), and S = (U>,V >,W>) ·X is the core tensor.
Equivalently, we denote

(U ,V ,W ,S) = HOSVDr(X ) (8b)

as the output to the HOSVD procedure described above with the multilinear rank r. In contrast to
the matrix case, HOSVD is not guaranteed to yield the optimal rank-r approximation of X (which
is NP-hard Hillar and Lim (2013) to find). Nevertheless, it yields a quasi-optimal approximation
Hackbusch (2012) in the sense that

‖X −Hr(X )‖F ≤
√
3 inf
X̃ : rank(Mk(X̃ ))≤rk

‖X − X̃‖F. (9)

There are many variants or alternatives of HOSVD in the literature, e.g. successive HOSVD, alter-
nating least squares (ALS), higher-order orthogonal iteration (HOOI) De Lathauwer et al. (2000b,a),
etc. These methods compute truncated singular value decompositions in successive or alternating
manners, to either reduce the computational costs or pursue a better (but still quasi-optimal) ap-
proximation. We will not delve into the details of these variants; interested readers can consult
Hackbusch (2012).

Additional notation. Let a ∨ b = max{a, b} and a ∧ b = min{a, b}. Throughout, f(n) .

g(n) or f(n) = O(g(n)) means |f(n)|/|g(n)| ≤ C for some constant C > 0, f(n) & g(n) means
|f(n)|/|g(n)| ≥ C for some constant C > 0, and f(n) � g(n) means C1 ≤ |f(n)|/|g(n)| ≤ C2 for
some constants C1, C2 > 0. Additionally, f(n) � g(n) indicates |f(n)|/|g(n)| ≤ c for some sufficient
small constant c > 0, and f(n) � g(n) indicates |f(n)|/|g(n)| ≥ C for some sufficient large constant
C > 0. We use C,C1, C2, c, c1, c2 . . . to represent positive constants, whose values may differ from
line to line. Last but not least, we use the terminology “with overwhelming probability” to denote
the event happens with probability at least 1− c1n

−c2 .

10
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2. Main Results

2.1 Models and assumptions

We assume the ground truth tensor X ? = [X ?(i1, i2, i3)] ∈ R
n1×n2×n3 admits the following Tucker

decomposition

X ?(i1, i2, i3) =

r1∑

j1=1

r2∑

j2=1

r3∑

j3=1

U?(i1, j1)V?(i2, j2)W?(i3, j3)S?(j1, j2, j3), 1 ≤ ik ≤ nk, (10)

or more compactly,

X ? = (U?,V?,W?) · S?, (11)

where S? = [S?(j1, j2, j3)] ∈ R
r1×r2×r3 is the core tensor of multilinear rank r = (r1, r2, r3), and

U? = [U?(i1, j1)] ∈ R
n1×r1 , V? = [V?(i2, j2)] ∈ R

n2×r2 , W? = [W?(i3, j3)] ∈ R
n3×r3 are the factor

matrices of each mode. Let Mk(X ?) be the mode-k matricization of X ?, we have

M1(X ?) = U?M1(S?)(W? ⊗ V?)
>, (12a)

M2(X ?) = V?M2(S?)(W? ⊗U?)
>, (12b)

M3(X ?) = W?M3(S?)(V? ⊗U?)
>. (12c)

It is straightforward to see that the Tucker decomposition is not uniquely specified: for any invertible
matrices Qk ∈ R

rk×rk , k = 1, 2, 3, one has

(U?,V?,W?) · S? = (U?Q1,V?Q2,W?Q3) ·((Q
−1
1 ,Q−1

2 ,Q−1
3 ) · S?).

We shall fix the ground truth factors such that U?, V? and W? are orthonormal matrices consisting
of left singular vectors in each mode. Furthermore, the core tensor S? is related to the singular
values in each mode as

Mk(S?)Mk(S?)
> = Σ

2
?,k, k = 1, 2, 3, (13)

where Σ?,k := diag[σ1(Mk(X ?)), . . . , σrk(Mk(X ?))] is a diagonal matrix where the diagonal el-
ements are composed of the nonzero singular values of Mk(X ?) and rk = rank(Mk(X ?)) for
k = 1, 2, 3.

Key parameters. Of particular interest is a sort of condition number of X ?, which plays an
important role in governing the computational efficiency of first-order algorithms.

Definition 1 (Condition number) The condition number of X ? is defined as

κ :=
σmax(X ?)

σmin(X ?)
=

maxk=1,2,3 σ1(Mk(X ?))

mink=1,2,3 σrk(Mk(X ?))
. (14)

Another parameter is the incoherence parameter, which plays an important role in governing
the well-posedness of low-rank tensor completion.

Definition 2 (Incoherence) The incoherence parameter of X ? is defined as

µ := max

{
n1

r1
‖U?‖22,∞,

n2

r2
‖V?‖22,∞,

n3

r3
‖W?‖22,∞

}
. (15)

Roughly speaking, a small incoherence parameter ensures that the energy of the tensor is evenly
distributed across its entries, so that a small random subset of its elements still reveals substantial
information about the latent structure of the entire tensor.

11
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2.2 ScaledGD for tensor completion

Assume that we have observed a subset of entries in X ?, given as Y = PΩ(X ?), where PΩ :
R
n1×n2×n3 7→ R

n1×n2×n3 is a projection such that

[PΩ(X ?)](i1, i2, i3) =

{
X ?(i1, i2, i3), if (i1, i2, i3) ∈ Ω,

0, otherwise.
(16)

Here, Ω is generated according to the Bernoulli observation model in the sense that

(i1, i2, i3) ∈ Ω independently with probability p ∈ (0, 1]. (17)

The goal of tensor completion is to recover the tensor X ? from its partial observation PΩ(X ?),
which can be achieved by minimizing the loss function

min
F=(U ,V ,W ,S)

L(F ) :=
1

2p

∥∥PΩ

(
(U ,V ,W ) · S

)
−Y

∥∥2
F
. (18)

Preparation: a scaled projection operator. To guarantee faithful recovery from partial ob-
servations, the underlying low-rank tensor X ? needs to be incoherent (cf. Definition 2) to avoid
ill-posedness. One typical strategy, frequently employed in the matrix setting, to ensure the inco-
herence condition is to trim the rows of the factors Chen and Wainwright (2015) after the gradient
update. For ScaledGD, this needs to be done in a careful manner to preserve the equivariance
with respect to invertible transforms. Motivated by Tong et al. (2021a), we introduce the scaled
projection as follows,

(U ,V ,W ,S) = PB(U+,V+,W+,S+), (19)

where B > 0 is the projection radius, and

U(i1, :) =

(
1 ∧ B

√
n1‖U+(i1, :)Ŭ>

+ ‖2

)
U+(i1, :), 1 ≤ i1 ≤ n1;

V (i2, :) =

(
1 ∧ B

√
n2‖V+(i2, :)V̆ >

+ ‖2

)
V+(i2, :), 1 ≤ i2 ≤ n2;

W (i3, :) =

(
1 ∧ B

√
n3‖W+(i3, :)W̆>

+ ‖2

)
W+(i3, :), 1 ≤ i3 ≤ n3;

S = S+.

Here, we recall Ŭ+, V̆+, W̆+ are analogously defined in (5) using (U+,V+,W+,S+). As can be
seen, each row of U+ (resp. V+ and W+) is scaled by a scalar based on the row `2 norms of U+Ŭ

>
+

(resp. V+V̆
>
+ and W+W̆

>
+ ), which is the mode-1 (resp. mode-2 and mode-3) matricization of the

tensor (U+,V+,W+) · S+. It is a straightforward observation that the projection can be computed
efficiently.

Algorithm description. With the scaled projection PB(·) defined in hand, we are in a position
to describe the details of the proposed ScaledGD algorithm, summarized in Algorithm 1. It consists
of two stages: spectral initialization followed by iterative refinements using the scaled projected
gradient updates in (20). It is worth emphasizing that all the factors are updated simultaneously,
which can be achieved in a parallel manner to accelerate computation run time.
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Algorithm 1 ScaledGD for low-rank tensor completion
Input parameters: step size η, multilinear rank r = (r1, r2, r3), probability of observation p,
projection radius B.
Spectral initialization: Let U+ be the top-r1 eigenvectors of Poff-diag(p

−2M1(Y)M1(Y)>),
and similarly for V+,W+, and S+ = p−1(U>

+ ,V >
+ ,W>

+ ) · Y . Set (U0,V0,W0,S0) =
PB

(
U+,V+,W+,S+

)
.

Scaled projected gradient updates: for t = 0, 1, 2, . . . , T − 1 do

Ut+ = Ut −
η

p
M1

(
PΩ

(
(Ut,Vt,Wt) · St

)
−Y

)
Ŭt

(
Ŭ>

t Ŭt

)−1
,

Vt+ = Vt −
η

p
M2

(
PΩ

(
(Ut,Vt,Wt) · St

)
−Y

)
V̆t

(
V̆ >
t V̆t

)−1
,

Wt+ = Wt −
η

p
M3

(
PΩ

(
(Ut,Vt,Wt) · St

)
−Y

)
W̆t

(
W̆>

t W̆t

)−1
,

St+ = St −
η

p

(
(U>

t Ut)
−1U>

t , (V >
t Vt)

−1V >
t , (W>

t Wt)
−1W>

t

)
·
(
PΩ

(
(Ut,Vt,Wt) · St

)
−Y

)
,

(20)

where Ŭt, V̆t, and W̆t are defined in (5). Set (Ut+1,Vt+1,Wt+1,St+1) = PB(Ut+,Vt+,Wt+,St+).

For the spectral initialization, we take advantage of the subspace estimators proposed in Cai et al.
(2021a); Xia et al. (2021) for highly unbalanced matrices. Specifically, we estimate the subspace
spanned by U? by that spanned by top-r1 eigenvectors U+ of the diagonally-deleted Gram matrix
of p−1M1(Y), denoted as

Poff-diag(p
−2M1(Y)M1(Y)>),

and the other two factors V+ and W+ are estimated similarly. The core tensor is then estimated as

S+ = p−1(U>
+ ,V >

+ ,W>
+ ) · Y ,

which is consistent with its estimation in the HOSVD procedure. To ensure the initialization is
incoherent, we pass it through the scaled projection operator to obtain the final initial estimate:

(U0,V0,W0,S0) = PB

(
U+,V+,W+,S+

)
.

Theoretical guarantees. The following theorem establishes the performance guarantee of ScaledGD
for tensor completion, as soon as the sample size is sufficiently large.

Theorem 1 (ScaledGD for tensor completion) Let n = maxk=1,2,3 nk and r = maxk=1,2,3 rk.

Suppose that X ? is µ-incoherent, nk & ε−1
0 µr

3/2
k κ2 for k = 1, 2, 3, and that p satisfies

pn1n2n3 & ε−1
0

√
n1n2n3µ

3/2r5/2κ3 log3 n+ ε−2
0 nµ3r4κ6 log5 n

for some small constant ε0 > 0. Set the projection radius as B = CB
√
µrσmax(X ?) for some

constant CB ≥ (1+ ε0)
3. If the step size obeys 0 < η ≤ 2/5, then with probability at least 1− c1n

−c2

for universal constants c1, c2 > 0, for all t ≥ 0, the iterates of Algorithm 1 satisfy

‖(Ut,Vt,Wt) · St −X ?‖F ≤ 3ε0(1− 0.6η)tσmin(X ?).
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Theorem 1 ensures that ScaledGD finds an ε-accurate estimate, i.e. ‖(Ut,Vt,Wt) · St −X ?‖F ≤
εσmin(X ?), in at most O(log(1/ε)) iterations, which is independent of the condition number of X ?,
as long as the sample complexity is large enough. Assuming that µ = O(1) and r∨κ � nδ for some
small constant δ to keep only terms with dominating orders of n, the sample complexity simplifies
to

pn1n2n3 & n3/2r5/2κ3 log3 n,

which is near-optimal in view of the conjecture that no polynomial-time algorithm will be successful
if the sample complexity is less than the order of n3/2 for tensor completion Barak and Moitra
(2016). Compared with existing algorithms collected in Table 1, ScaledGD is the first algorithm that
simultaneously achieves a near-optimal sample complexity and a near-linear run time complexity
in a provable manner. In particular, while Yuan and Zhang (2016); Xia and Yuan (2019) achieve a
sample complexity comparable to ours, the tensor nuclear norm minimization algorithm in Yuan and
Zhang (2016) is NP-hard to compute, and the Grassmannian GD in Xia and Yuan (2019) does not
offer an explicit iteration complexity, except that each iteration can be computed in a polynomial
time.

2.3 ScaledGD for tensor regression

Now we move on to another tensor recovery problem—tensor regression with Gaussian design.
Assume that we have access to a set of observations given as

yi = 〈Ai,X ?〉, i = 1, . . . ,m, or concisely, y = A(X ?), (21)

where Ai ∈ R
n1×n2×n3 is the i-th measurement tensor composed of i.i.d. Gaussian entries drawn

from N (0, 1/m), and A(X ) = {〈Ai,X 〉}mi=1 is a linear map from R
n1×n2×n3 to R

m, whose adjoint
operator is given by A∗(y) =

∑m
i=1 yiAi. The goal of tensor regression is to recover X ? from y,

by leveraging the low-rank structure of X ?. This can be achieved by minimizing the following loss
function

min
F=(U ,V ,W ,S)

L(F ) :=
1

2
‖A((U ,V ,W ) · S)− y‖22 . (22)

The proposed ScaledGD algorithm to minimize (22) is described in Algorithm 2, where the
algorithm is initialized by applying HOSVD to A∗(y), followed by scaled gradient updates given in
(23).

Theoretical guarantees. Encouragingly, we can guarantee that ScaledGD provably recovers the
ground truth tensor as long as the sample size is sufficiently large, which is given in the following
theorem.

Theorem 2 (ScaledGD for tensor regression) Let n = maxk=1,2,3 nk and r = maxk=1,2,3 rk.
For tensor regression with Gaussian design, suppose that m satisfies

m & ε−1
0

√
n1n2n3r

3/2κ2 + ε−2
0 (nr2κ4 log n+ r4κ2)

for some small constant ε0 > 0. If the step size obeys 0 < η ≤ 2/5, then with probability at least
1− c1n

−c2 for universal constants c1, c2 > 0, for all t ≥ 0, the iterates of Algorithm 2 satisfy

‖(Ut,Vt,Wt) · St −X ?‖F ≤ 3ε0(1− 0.6η)tσmin(X ?).
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Algorithm 2 ScaledGD for low-rank tensor regression
Input parameters: step size η, multilinear rank r = (r1, r2, r3).
Spectral initialization: Let (U0,V0,W0,S0) = HOSVDr(A∗(y)) defined in (8b).
Scaled gradient updates: for t = 0, 1, 2, . . . , T − 1

Ut+1 = Ut − ηM1 (A∗(A((Ut,Vt,Wt) · St)− y)) Ŭ>
t

(
Ŭ>

t Ŭt

)−1
,

Vt+1 = Vt − ηM2 (A∗(A((Ut,Vt,Wt) · St)− y)) V̆ >
t

(
V̆ >
t V̆t

)−1
,

Wt+1 = Wt − ηM3 (A∗(A((Ut,Vt,Wt) · St)− y)) W̆>
t

(
W̆>

t W̆t

)−1
,

St+1 = St − η
(
(U>

t Ut)
−1U>

t , (V >
t Vt)

−1V >
t , (W>

t Wt)
−1W>

t

)
·A∗(A((Ut,Vt,Wt) · St)− y),

(23)

where Ŭt, V̆t, and W̆t are defined in (5).

Theorem 2 ensures that ScaledGD finds an ε-accurate estimate, i.e. ‖(Ut,Vt,Wt) · St −X ?‖F ≤
εσmin(X ?), in at most O(log(1/ε)) iterations, which is independent of the condition number of X ?,
as long as the sample complexity satisfies

m & n3/2r3/2κ2,

where again we keep only terms with dominating orders of n. Compared with the regularized
GD Han et al. (2020), ScaledGD achieves a low computation complexity with robustness to ill-
conditioning, improving its iteration complexity by a factor of κ2, and does not require any explicit
regularization.

3. Analysis

In this section, we provide some intuitions and sketch the proof of our main theorems. Before
continuing, we highlight an important property of ScaledGD: if starting from an equivalent estimate

Ũt = UtQ1, Ṽt = VtQ2, W̃t = WtQ3, S̃t = (Q−1
1 ,Q−1

2 ,Q−1
3 ) · St

for some invertible matrices Qk ∈ GL(rk) (i.e. replacing Ut by UtQ1, and so on), by plugging the
above estimate in (4) it is easy to check that the next iterate of ScaledGD is covariant with respect
to invertible transforms, meaning

Ũt+1 = Ut+1Q1, Ṽt+1 = Vt+1Q2, W̃t+1 = Wt+1Q3, S̃t+1 = (Q−1
1 ,Q−1

2 ,Q−1
3 ) · St+1.

In other words, ScaledGD produces an invariant sequence of low-rank tensor estimates

X t = (Ut,Vt,Wt) · St = (Ũt, Ṽt, W̃t) · S̃t

regardless of the representation of the tensor factors with respect to the underlying symmetry group.
This is one of the key reasons behind the insensitivity of ScaledGD to ill-conditioning and factor
imbalance.

A key scaled distance metric. To track the progress of ScaledGD throughout the entire tra-
jectory, one needs a distance metric that properly takes account of the factor ambiguity due to
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invertible transforms, as well as the effect of scaling. To that end, we define the scaled distance
between factor quadruples F = (U ,V ,W ,S) and F? = (U?,V?,W?,S?) as

dist2(F ,F?) := inf
Qk∈GL(rk)

‖(UQ1 −U?)Σ?,1‖2F + ‖(V Q2 − V?)Σ?,2‖2F + ‖(WQ3 −W?)Σ?,3‖2F

+
∥∥(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S − S?

∥∥2
F
. (24)

The distance is closely related to the `2 distances between the corresponding tensors. In fact, it can
be shown that as long as F and F? are not too far apart, i.e. dist(F ,F?) ≤ 0.2σmin(X ?), it holds
that dist(F ,F?) � ‖(U ,V ,W ) · S −X ?‖F in the sense that (see Appendix A.1 for proofs):

1
3 ‖(U ,V ,W ) · S −X ?‖F ≤ dist(F ,F?) ≤ (

√
2 + 1)3/2 ‖(U ,V ,W ) · S −X ?‖F .

3.1 A warm-up case: ScaledGD for tensor factorization

To shed light on the design insights as well as the proof techniques, we now introduce the ScaledGD
algorithm for the tensor factorization problem, which aims to minimize the following loss function:

L(F ) :=
1

2
‖(U ,V ,W ) · S −X ?‖2F =

1

2
‖Mk ((U ,V ,W ) · S −X ?) ‖2F, k = 1, 2, 3, (25)

where the last equality follows from (6b). Recalling the update rule (4), ScaledGD proceeds as

Ut+1 = Ut − ηM1 (X t −X ?) Ŭ
>
t

(
Ŭ>

t Ŭt

)−1
,

Vt+1 = Vt − ηM2 (X t −X ?) V̆
>
t

(
V̆ >
t V̆t

)−1
,

Wt+1 = Wt − ηM3 (X t −X ?) W̆
>
t

(
W̆>

t W̆t

)−1
,

St+1 = St − η
(
(U>

t Ut)
−1U>

t , (V >
t Vt)

−1V >
t , (W>

t Wt)
−1W>

t

)
· (X t −X ?) ,

(26)

where X t = (Ut,Vt,Wt) · St, with Ŭt, V̆t, and W̆t defined in (5).

ScaledGD as a quasi-Newton algorithm. One way to think of ScaledGD is through the lens
of quasi-Newton methods, by equivalently rewriting the ScaledGD update (26) as

vec(Ft+1) = vec(Ft)− ηH−1
t ∇vec(F )L(Ft), (27)

where Ht := diag
[
∇2

vec(U),vec(U)L(Ft), ∇2
vec(V ),vec(V )L(Ft), ∇2

vec(W ),vec(W )L(Ft), ∇2
vec(S),vec(S)L(Ft)

]
.

To see this, it is straightforward to check that the diagonal blocks of the Hessian of the loss function
(25) are given precisely as

∇2
vec(U),vec(U)L(Ft) = (Ŭ>

t Ŭt)⊗ In1
,

∇2
vec(V ),vec(V )L(Ft) = (V̆ >

t V̆t)⊗ In2
,

∇2
vec(W ),vec(W )L(Ft) = (W̆>

t W̆t)⊗ In3
,

∇2
vec(S),vec(S)L(Ft) = (W>

t Wt)⊗ (V >
t Vt)⊗ (U>

t Ut).

(28)

Therefore, by vectorization of (26), ScaledGD can be regarded as a quasi-Newton method where
the preconditioner is designed as the inverse of the diagonal approximation of the Hessian.
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Guarantees for tensor factorization. Fortunately, ScaledGD admits a κ-independent conver-
gence rate for tensor factorization, as long as the initialization is not too far from the ground truth.
This is summarized in Theorem 3, whose proof can be found in Appendix B.

Theorem 3 For tensor factorization (25), suppose that the initialization satisfies dist(F0,F?) ≤
ε0σmin(X ?) for some small constant ε0 > 0, then for all t ≥ 0, the iterates of ScaledGD in (26)
satisfy

dist(Ft,F?) ≤ (1− 0.7η)tε0σmin(X ?), and ‖(Ut,Vt,Wt) · St −X ?‖F ≤ 3ε0(1− 0.7η)tσmin(X ?),

as long as the step size satisfies 0 < η ≤ 2/5.

Intuition of the proof. Let us provide some intuitions to facilitate understanding by examining
a toy case, where all factors become scalars, and the loss function with respect to the factor f =
[u, v, w, s]> becomes

L(f) = 1

2
(uvws− u?v?w?s?)

2 =
1

2
(uvws− s?)

2,

where u? = v? = w? = 1, and the ground truth is f? = [1, 1, 1, s?]
>. The gradient and the diagonal

entries of the Hessian are given respectively as

∇L(f) = (uvws− s?)[vws, uws, uvs, uvw]
>,

Pdiag(∇2L(f)) = diag[(vws)2, (uws)2, (uvs)2, (uvw)2].

Moreover, the Hessian matrix at the ground truth is given by

∇2L(f?) = [s?, s?, s?, 1]
>[s?, s?, s?, 1].

With these in mind, the ScaledGD update rule in (26) and the scaled distance in (24) reduce
respectively to

ft+1 = ft − ηPdiag
−1(∇2L(ft))∇L(ft),

dist(f ,f?) = inf
Q=diag[q1,q2,q3,(q1q2q3)−1]

∥∥∥Pdiag
1/2(∇2L(f?))(Qf − f?)

∥∥∥
2
.

Consequently, we can bound the distance between ft+1 and f? as

dist(ft+1,f?)
(i)

≤
∥∥∥Pdiag

1/2(∇2L(f?))
(
Qt

(
ft − ηPdiag

−1(∇2L(ft))∇L(ft)
)
− f?

)∥∥∥
2

(ii)
=
∥∥∥Pdiag

1/2(∇2L(f?))
(
Qtft − ηPdiag

−1(∇2L(Qtft))∇L(Qtft)− f?
)∥∥∥

2

(iii)
≈
∥∥∥
(
I − ηPdiag

−1/2(∇2L(f?))∇2L(f?)Pdiag
−1/2(∇2L(f?))

)
Pdiag

1/2(∇2L(f?))(Qtft − f?)
∥∥∥
2

(iv)
=
∥∥∥(I − η11>)Pdiag

1/2(∇2L(f?))(Qtft − f?)
∥∥∥
2

where (i) follows from replacing Q by the optimal alignment matrix Qt between ft and f?, (ii)
follows from the scaling invariance of the iterates, and (iii) holds approximately as long as Qtft is
sufficiently close to f?, which is made precise in the formal proof. The last line (iv) follows from
that the scaled Hessian matrix obeys

Pdiag
−1/2(∇2L(f?))∇2L(f?)Pdiag

−1/2(∇2L(f?)) = 11
>.

By the optimality condition for Qt (see Lemma 7), it follows that Pdiag
1/2(∇2L(f?))(Qtft − f?) is

approximately parallel to 1. Thus, dist(ft+1,f?) contracts at a constant rate as long as the step
size η is set as a small constant obeying 0 < η ≤ 2/5.
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3.2 Proof outline for tensor completion (Theorem 1)

Armed with the insights from the tensor factorization case, we now provide a proof outline of
our main theorems on tensor completion and tensor regression, both of which can be viewed as
perturbations of tensor factorization with incomplete measurements, combined with properly de-
signed initialization schemes. We start with the guarantee for the spectral initialization for tensor
completion.

Lemma 1 (Initialization for tensor completion) Suppose that X ? is µ-incoherent, nk & ε−1
0 µr

3/2
k κ2

for k = 1, 2, 3, and that p satisfies

pn1n2n3 & ε−1
0

√
n1n2n3µ

3/2r5/2κ2 log3 n+ ε−2
0 nµ2r4κ4 log5 n

for some small constant ε0 > 0. Then with overwhelming probability (i.e. at least 1 − c1n
−c2), the

spectral initialization before projection F+ = (U+,V+,W+,S+) for low-rank tensor completion in
Algorithm 1 satisfies

dist(F+,F?) ≤ ε0σmin(X ?).

Under a suitable sample size condition, Lemma 1 guarantees that dist(F+,F?) ≤ ε0σmin(X ?) for
some small constant ε0. To proceed, we need to know what would happen for the spectral estimate
F0 = PB

(
F+

)
after projection. In fact, the scaled projection is non-expansive w.r.t. the scaled

distance. More importantly, the output is guaranteed to be incoherent. Both properties are stated
in the following lemma.

Lemma 2 (Properties of scaled projection) Suppose that X ? is µ-incoherent, and dist(F+,F?) ≤
εσmin(X ?) for some ε < 1. Set B = CB

√
µrσmax(X ?) for some constant CB ≥ (1 + ε)3, then

F = (U ,V ,W ,S) := PB(F+) satisfies the non-expansiveness property

dist(F ,F?) ≤ dist(F+,F?),

and the incoherence condition
√
n1‖UŬ>‖2,∞ ∨√

n2‖V V̆ >‖2,∞ ∨√
n3‖WW̆>‖2,∞ ≤ B. (29)

Now we are ready to state the following lemma that ensures the linear contraction of the iterative
refinements given by the ScaledGD updates.

Lemma 3 (Local refinements for tensor completion) Suppose that X ? is µ-incoherent, and
that p satisfies

pn1n2n3 &
√
n1n2n3µ

3/2r2κ3 log3 n+ nµ3r4κ6 log5 n.

Under an event E which happens with overwhelming probability, for all t ≥ 0, if the t-th iterate
satisfies dist(Ft,F?) ≤ εσmin(X ?) for some small constant ε, then ‖(Ut,Vt,Wt) · St − X ?‖F ≤
3 dist(Ft,F?). In addition, if the t-th iterate satisfies the incoherence condition

√
n1‖UtŬ

>
t ‖2,∞ ∨√

n2‖VtV̆
>
t ‖2,∞ ∨√

n3‖WtW̆
>
t ‖2,∞ ≤ B,

with B = CB
√
µrσmax(X ?) for some constant CB ≥ (1+ε)3, then the (t+1)-th iterate of Algorithm 1

satisfies

dist(Ft+1,F?) ≤ (1− 0.6η) dist(Ft,F?),

and the incoherence condition
√
n1‖Ut+1Ŭ

>
t+1‖2,∞ ∨√

n2‖Vt+1V̆
>
t+1‖2,∞ ∨√

n3‖Wt+1W̆
>
t+1‖2,∞ ≤ B.
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By combining Lemma 1 and Lemma 2, we can ensure that the spectral initialization F0 =
PB(F+) satisfies the conditions required in Lemma 3, which further enables us to repetitively apply
Lemma 3 to finish the proof of Theorem 1. The proofs of the above three lemmas are provided in
Appendix C.

3.3 Proof outline for tensor regression (Theorem 2)

Now we turn to the proof outline for tensor regression (cf. Theorem 2). To begin with, we show
that the local linear convergence of ScaledGD can be guaranteed more generally, as long as the
measurement operator A(·) satisfies the so-called tensor restricted isometry property (TRIP), which
is formally defined as follows.

Definition 3 (TRIP Rauhut et al. (2017)) The linear map A : Rn1×n2×n3 7→ R
m is said to

obey the rank-r TRIP with δr ∈ (0, 1), if for all tensor X ∈ R
n1×n2×n3 of multilinear rank at most

r = (r1, r2, r3), one has

(1− δr)‖X‖2F ≤ ‖A(X )‖2F ≤ (1 + δr)‖X‖2F.

If A(·) satisfies rank-2r TRIP with δ2r ∈ (0, 1), then for any two tensors X 1,X 2 ∈ R
n1×n2×n3 of

multilinear rank at most r = (r1, r2, r3), we have

(1− δ2r)‖X 1 −X 2‖2F ≤ ‖A(X 1 −X 2)‖2F ≤ (1 + δ2r)‖X 1 −X 2‖2F.
In other words, the distance between any pair of rank-r tensors X 1 and X 2 is approximately
preserved after the linear map A(·). The TRIP has been investigated extensively, where (Rauhut
et al., 2017, Theorem 2) stated that if Ai’s are composed of i.i.d. sub-Gaussian entries, TRIP
holds with high probability provided that m & δ−2

r (nr + r3). TRIP also holds for more structured
measurement ensembles such as the random Fourier mapping Rauhut et al. (2017). With the TRIP
of A(·) in hand, we have the following theorem regarding the local linear convergence of ScaledGD
as long as the iterates are close to the ground truth.

Lemma 4 (Local refinements for tensor regression) Suppose that A(·) obeys the 2r-TRIP
with a small constant δ2r . 1. If the t-th iterate satisfies dist(Ft,F?) ≤ εσmin(X ?) for some
small constant ε, then ‖(Ut,Vt,Wt) · St −X ?‖F ≤ 3 dist(Ft,F?). In addition, if the step size obeys
0 < η < 2/5, then the (t+ 1)-th iterate of Algorithm 2 satisfies

dist(Ft+1,F?) ≤ (1− 0.6η) dist(Ft,F?).

Therefore, ScaledGD converges linearly as long as the sample size m & nr + r3 under the
Gaussian design, when initialized properly. Unfortunately, obtaining a desired initialization turns
out to be a major roadblock and requires a substantially higher sample size, which has been studied
extensively for tensor regression Luo and Zhang (2021); Han et al. (2020); Zhang et al. (2020a).
Under the Gaussian design, we have the following guarantee for the spectral initialization scheme
that invokes HOSVD in Algorithm 2.

Lemma 5 (Initialization for tensor regression) Suppose that {Ai}mi=1 are composed of i.i.d. N (0, 1/m)
entries, and that m satisfies

m & ε−1
0

√
n1n2n3r

3/2κ2 + ε−2
0 (nr2κ4 log n+ r4κ2)

for some small constant ε0 > 0. Then with overwhelming probability, the spectral initialization for
low-rank tensor regression in Algorithm 2 satisfies

dist(F0,F?) ≤ ε0σmin(X ?).

19



Tong, Ma, Prater-Bennette, Tripp, Chi

Combining Lemma 4 and Lemma 5 finishes the proof of Theorem 2. Their proofs can be found
in Appendix D.

4. Numerical Experiments

In this section, we provide numerical experiments to corroborate our theoretical findings, with the
codes available at

https://github.com/Titan-Tong/ScaledGD.

The simulations are performed in Matlab with a 3.6 GHz Intel Xeon Gold 6244 CPU.
We illustrate the numerical performance of ScaledGD for tensor completion to corroborate our

findings, especially its computational advantage over the regularized GD algorithm Han et al. (2020)
that is closest to our design. Their algorithm was originally proposed for tensor regression, nev-
ertheless, it naturally applies to tensor completion and exhibits similar results. Since the scaled
projection does not visibly impact the performance, we implement ScaledGD without performing
the projection. Also, we empirically find that the regularization used in Han et al. (2020) has
no visible benefits, hence we implement GD without the regularization. For simplicity, we set
n1 = n2 = n3 = n, and r1 = r2 = r3 = r. Each entry of the tensor is observed i.i.d. with probability
p ∈ (0, 1].

Phase transition of ScaledGD. We construct the ground truth tensor X ? = (U?,V?,W?) · S?

by generating U?, V? and W? as random orthonormal matrices, and the core tensor S? composed
of i.i.d. standard Gaussian entries, i.e. S?(j1, j2, j3) ∼ N (0, 1) for 1 ≤ jk ≤ r, k = 1, 2, 3. For
each set of parameters, we run 100 random tests and count the success rate, where the recovery
is regarded as successful if the recovered tensor has a relative error ‖X T − X ?‖F/‖X ?‖F ≤ 10−3.
Figure 2 illustrates the success rate with respect to the (scaled) sample size for different tensor sizes
n, which implies that the recovery is successful when the sample size is moderately large.

10 20 30 40 50 60 70 80

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: The success rate of ScaledGD with respect to the scaled sample size for tensor completion
with r = 5, when the core tensor is composed of i.i.d. standard Gaussian entries, for
various tensor size n.
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Comparison with GD. We next compare the performance of ScaledGD with GD. For a fair
comparison, both ScaledGD and GD start from the same spectral initialization, and we use the
following update rule of GD as

Ut+1 = Ut − ησ−2
max(X ?)∇UL(Ft),

Vt+1 = Vt − ησ−2
max(X ?)∇V L(Ft),

Wt+1 = Wt − ησ−2
max(X ?)∇WL(Ft),

St+1 = St − η∇SL(Ft).

(30)

Throughout the experiments, we used the ground truth value σmax(X ?) in running (30), while
in practice, this parameter needs to estimated; to put it differently, the step size of GD is not
scale-invariant, whereas the step size of ScaledGD is.

To ensure the ground truth tensor X ? = (U?,V?,W?) · S? has a prescribed condition number
κ, we generate the core tensor S? ∈ R

r×r×r according to S?(j1, j2, j3) = σj1/
√
r if j1 + j2 + j3 ≡ 0

(mod r) and 0 otherwise, where {σj1}1≤j1≤r take values spaced equally from 1 to 1/κ. It then
follows that σmax(X ?) = 1, σmin(X ?) = 1/κ, and the condition number of X ? is exactly κ.
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Figure 3: The relative errors of ScaledGD and GD after 80 iterations with respect to different step
sizes η from 0.1 to 0.9 for tensor completion with n = 100, r = 5, p = 0.1.

Figure 3 illustrates the convergence speed of ScaledGD and GD under different step sizes, where
we plot the relative error after at most 80 iterations (the algorithm is terminated if the relative
error exceeds 102 following an excessive step size). It can be seen that ScaledGD outperforms GD
quite significantly even when the step size of GD is optimized for its performance. Hence, we will fix
η = 0.3 for the rest of the comparisons for both ScaledGD and GD without hurting the conclusions.

Figure 4 compares the relative errors of ScaledGD and GD for tensor completion with respect to
the iteration count and run time (in seconds) under different condition numbers κ = 1, 2, 5, 10. This
experiment verifies that ScaledGD converges rapidly at a rate independent of the condition number,
and matches the fastest rate of GD with perfect conditioning κ = 1. In contrast, the convergence
rate of GD deteriorates quickly with the increase of κ even at a moderate level. The advantage
of ScaledGD carries over to the run time as well, since the scaled gradient only adds a negligible
overhead to the gradient computation.

We next examine the performance of ScaledGD and GD when randomly initialized. Here,
we initialize U0,V0,W0 composed of i.i.d. entries sampled from N (0, 1/n), and S0 composed of
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Figure 4: The relative errors of ScaledGD and GD with respect to (a) the iteration count and (b) run
time (in seconds) under different condition numbers κ = 1, 2, 5, 10 for tensor completion
with n = 100, r = 5, and p = 0.1.
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Figure 5: The relative errors of random-initialized ScaledGD and GD with respect to the iteration
count under different condition numbers κ = 1, 2, 5, 10 for tensor completion with n = 100,
r = 5, p = 0.1.

i.i.d. entries sampled from N (0, ‖Y‖2F/(pr3)). Figure 5 plots the relative errors of ScaledGD and GD
under different condition numbers κ = 1, 2, 5, 10, using the same random initialization. Surprisingly,
while GD gets stuck in a flat region before entering the phase of linear convergence, ScaledGD seems
to be quite insensitive to the choice of initialization, and converges almost in the same fashion as
the case with spectral initialization.

Finally, we examine the performance of ScaledGD when the observations are corrupted by
additive noise, where we assume the noisy observations are given by Y = PΩ(X ? + W), with
W(i1, i2, i3) ∼ N (0, σ2

w) composed of i.i.d. Gaussian entries. Denote the signal-to-noise ratio as
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Figure 6: The relative errors of ScaledGD and GD with respect to the iteration count under signal-
to-noise ratios SNR = 40, 60, 80dB for tensor completion with n = 100, r = 5, and
p = 0.1.

SNR := 10 log10
‖X ?‖2F
n3σ2

w
in dB. Figure 6 demonstrates the robustness of ScaledGD, by plotting the

relative errors with respect to the iteration count under SNR = 40, 60, 80dB. Here, the ground
truth tensor X ? is constructed in the same manner as Figure 2, where its condition number is
approximately κ ≈ 2.6. It can been seen that ScaledGD reaches the same statistical error as GD,
but at a much faster rate. In addition, the convergence speeds are not impacted by the noise levels.

5. Discussions

This paper develops a scaled gradient descent algorithm over the factor space for low-rank tensor
estimation (i.e. completion and regression) with provable sample and computational guarantees,
leading to a highly scalable approach especially when the ground truth tensor is ill-conditioned and
high-dimensional. There are several future directions that are worth exploring, which we briefly
discuss below.

• Preconditioning for other tensor decompositions. The use of preconditioning will likely also accel-
erate vanilla gradient descent for low-rank tensor estimation using other decomposition models,
such as CP decomposition Cai et al. (2019), which is worth investigating.

• Entrywise error control for tensor completion. In this paper, we focused on controlling the `2
error of the reconstructed tensor in tensor completion, whereas another strong form of statistical
guarantees deals with the `∞ error, as done in Ma et al. (2019) for matrix completion and in Cai
et al. (2019) for tensor completion with CP decomposition. It is hence of interest to develop similar
strong entrywise error guarantees of ScaledGD for tensor completion with Tucker decomposition.

• Stable and robust low-rank tensor estimation. In practice, the observations are corrupted by noise
and even outliers Li et al. (2020), therefore, it is necessary to examine the stability and robustness
of ScaledGD in more depths; see some initial efforts in Tong et al. (2022) on extending the scaled
subgradient algorithm Tong et al. (2021b) for robust low-rank tensor regression, and in Dong
et al. (2022) on tensor robust principal component analysis.
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• Random initialization? As evident from the numerical experiment in Figure 5, ScaledGD works
remarkably well even from a random initialization, which requires us to go beyond the local ge-
ometry and pursue a further understanding of the global landscape of the optimization geometry.
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Appendix A. Preliminaries

This section gathers several technical lemmas that will be used later in the proof. More specifically,
Section A.1 is devoted to understanding the scaled distance defined in the equation (24), and in
Section A.2, we derive several useful perturbation bounds related to the tensor factors and the
tensor itself. All the proofs are collected in the end of each subsection.

A.1 Understanding the scaled distance

To begin, recall the scaled distance between F = (U ,V ,W ,S) and F? = (U?,V?,W?,S?):

dist2(F ,F?) := inf
Qk∈GL(rk)

‖(UQ1 −U?)Σ?,1‖2F + ‖(V Q2 − V?)Σ?,2‖2F + ‖(WQ3 −W?)Σ?,3‖2F

+
∥∥(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S − S?

∥∥2
F
, (31)

where we call the matrices {Qk}k=1,2,3 (if exist) that attain the infimum the optimal alignment
matrices between F and F?; in particular, F and F? are said to be aligned if the optimal alignment
matrices are identity matrices.

In what follows, we provide several useful lemmas whose proof can be found at the end of this
subsection. We start with a lemma that ensures the attainability of the infimum in the definition (31)
as long as dist(F ,F?) is sufficiently small.

Lemma 6 Fix any factor quadruple F = (U ,V ,W ,S). Suppose that dist(F ,F?) < σmin(X ?),
then the infimum of (31) is attained at some Qk ∈ GL(rk), i.e. the alignment matrices between F

and F? exist.

With the existence of the optimal alignment matrices in place, the following lemma delineates
the optimality conditions they need to satisfy.

Lemma 7 The optimal alignment matrices {Qk}k=1,2,3 between F and F?, if exist, must satisfy

(UQ1)
>(UQ1 −U?)Σ

2
?,1 = M1

(
(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S − S?

)
M1

(
(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S
)>

,

(V Q2)
>(V Q2 − V?)Σ

2
?,2 = M2

(
(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S − S?

)
M2

(
(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S
)>

,

(WQ3)
>(WQ3 −W?)Σ

2
?,3 = M3

(
(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S − S?

)
M3

(
(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S
)>

.
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The next lemma relates the scaled distance between the factors to the Euclidean distance between
the tensors.

Lemma 8 For any factor quadruple F = (U ,V ,W ,S), the scaled distance (31) satisfies

dist(F ,F?) ≤ (
√
2 + 1)3/2 ‖(U ,V ,W ) · S −X ?‖F .

A.1.1 Proof of Lemma 6

This proof mimics that of (Tong et al., 2021a, Lemma 9). The high level idea is to translate
the optimization problem (31) into an equivalent continuous optimization problem over a compact
set. Then an application of the Weierstrass extreme value theorem ensures the existence of the
minimizer.

Under the condition dist(F ,F?) < σmin(X ?), one knows that there exist matrices Q̄k ∈ GL(rk)
such that

(∥∥(UQ̄1 −U?)Σ?,1

∥∥2
F
+
∥∥(V Q̄2 − V?)Σ?,2

∥∥2
F
+
∥∥(WQ̄3 −W?)Σ?,3

∥∥2
F

+
∥∥(Q̄−1

1 , Q̄−1
2 , Q̄−1

3 ) · S − S?

∥∥2
F

)1/2
≤ εσmin(X ?),

for some ε obeying 0 < ε < 1. The above relation further implies that

∥∥UQ̄1 −U?

∥∥ ∨
∥∥V Q̄2 − V?

∥∥ ∨
∥∥WQ̄3 −W?

∥∥ ∨
∥∥∥(Q̄−1

3 ⊗ Q̄−1
2 )M1(S)>Q̄−>

1 Σ
−1
?,1 −M1(S?)

>
Σ

−1
?,1

∥∥∥ ≤ ε.

Invoke Weyl’s inequality, and use the fact that U?,V?,W?,M1(S?)
>
Σ

−1
?,1 have orthonormal columns

to obtain

σmin(UQ̄1) ∧ σmin(V Q̄2) ∧ σmin(WQ̄3) ∧ σmin

(
(Q̄−1

3 ⊗ Q̄−1
2 )M1(S)>Q̄−>

1 Σ
−1
?,1

)
≥ 1− ε. (32)

In addition, it is straightforward to see that the minimization problem on the right hand side of
(31) is equivalent to

inf
Hk∈GL(rk)

∥∥(UQ̄1H1 −U?)Σ?,1

∥∥2
F
+
∥∥(V Q̄2H2 − V?)Σ?,2

∥∥2
F
+
∥∥(WQ̄3H3 −W?)Σ?,3

∥∥2
F

+
∥∥(H−1

1 Q̄−1
1 ,H−1

2 Q̄−1
2 ,H−1

3 Q̄−1
3

)
· S − S?

∥∥2
F
. (33)

Therefore, it suffices to establish the infimum is attainable for the above problem instead. By the
optimality of Q̄kHk over Q̄k, to yield a smaller distance than Q̄k, Hk must obey

(∥∥(UQ̄1H1 −U?)Σ?,1

∥∥2
F
+
∥∥(V Q̄2H2 − V?)Σ?,2

∥∥2
F
+
∥∥(WQ̄3H3 −W?)Σ?,3

∥∥2
F

+
∥∥(H−1

1 Q̄−1
1 ,H−1

2 Q̄−1
2 ,H−1

3 Q̄−1
3

)
· S − S?

∥∥2
F

)1/2
≤ εσmin(X ?).

Follow similar reasoning and invoke Weyl’s inequality again to obtain

σmax(UQ̄1H1) ∨ σmax(V Q̄2H2) ∨ σmax(WQ̄3H3)

∨ σmax

(
(H−1

3 ⊗H−1
2 )(Q̄−1

3 ⊗ Q̄−1
2 )M1(S)>Q̄−>

1 H−>
1 Σ

−1
?,1

)
≤ 1 + ε.
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Use the relation σmin(A)σmax(B) ≤ σmax(AB), combined with (32), to further obtain

σmax(Hk) ≤
1 + ε

1− ε
, k = 1, 2, 3,

σmax

(
Σ?,1H

−>
1 Σ

−1
?,1

)
σmax(H

−1
2 )σmax(H

−1
3 ) ≤ 1 + ε

1− ε
=⇒ σmin

(
Σ?,1H1Σ

−1
?,1

)
σmin(H2)σmin(H3) ≥

1− ε

1 + ε
.

As a result, the minimization problem (33) is equivalent to the constrained problem:

min
Hk∈GL(rk)

∥∥(UQ̄1H1 −U?)Σ?,1

∥∥2
F
+
∥∥(V Q̄2H2 − V?)Σ?,2

∥∥2
F
+
∥∥(WQ̄3H3 −W?)Σ?,3

∥∥2
F

+
∥∥(H−1

1 Q̄−1
1 ,H−1

2 Q̄−1
2 ,H−1

3 Q̄−1
3

)
· S − S?

∥∥2
F

s.t. σmax(Hk) ≤
1 + ε

1− ε
, σmin

(
Σ?,1H1Σ

−1
?,1

)
σmin(H2)σmin(H3) ≥

1− ε

1 + ε
, k = 1, 2, 3.

Since this is a continuous optimization problem over a compact set, applying the Weierstrass extreme
value theorem finishes the proof.

A.1.2 Proof of Lemma 7

Set the gradient of the expression on the right hand side of (31) with respect to Q1 as zero to see

U>(UQ1 −U?)Σ
2
?,1 −Q−>

1 M1

(
(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S − S?

)
M1

(
(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S
)>

= 0.

We conclude the proof by similarly setting the gradient with respect to Q2 or Q3 to zero.

A.1.3 Proof of Lemma 8

We first state a lemma from (Tong et al., 2021a, Lemma 11), which will be used repeatedly for
matricization over different modes.

Lemma 9 (Tong et al. (2021a)) Suppose that X? ∈ R
n1×n2 has the compact rank-r SVD X? =

U?Σ?V
>
? . For any L ∈ R

n1×r and R ∈ R
n2×r, one has

inf
Q∈GL(r)

∥∥∥LQΣ
1/2
? −U?Σ?

∥∥∥
2

F
+
∥∥∥RQ−>

Σ
1/2
? − V?Σ?

∥∥∥
2

F
≤ (

√
2 + 1)‖LR> −X?‖2F.

We begin by applying the mode-1 matricization (see (12)), and invoking Lemma 9 with L := U ,
R := (W ⊗ V )M1(S)>, X? := U?M1(S?)(W? ⊗ V?)

> to arrive at

‖(U ,V ,W ) · S −X ?‖2F =
∥∥∥UM1(S)(W ⊗ V )> −U?M1(S?)(W? ⊗ V?)

>
∥∥∥
2

F

≥ (
√
2− 1) inf

Q∈GL(r1)

∥∥∥UQΣ
1/2
?,1 −U?Σ?,1

∥∥∥
2

F
+
∥∥∥(W ⊗ V )M1(S)>Q−>

Σ
1/2
?,1 − (W? ⊗ V?)M1(S?)

>
∥∥∥
2

F

= (
√
2− 1) inf

Q1∈GL(r1)
‖(UQ1 −U?)Σ?,1‖2F +

∥∥∥(W ⊗ V )M1(S)>Q−>
1 − (W? ⊗ V?)M1(S?)

>
∥∥∥
2

F

= (
√
2− 1) inf

Q1∈GL(r1)
‖(UQ1 −U?)Σ?,1‖2F +

∥∥(Q−1
1 ,V ,W ) · S − (Ir1 ,V?,W?) · S?

∥∥2
F
,

where we have applied a change-of-variable as Q1 = QΣ
−1/2
?,1 in the third line, and converted back to

the tensor space in the last line. Continue in a similar manner, by applying the mode-2 matricization
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to the second term (see (12)), and invoke Lemma 9 with L := V , R := (W ⊗ Q−1
1 )M2(S)>,

X? := V?M2(S?)(W? ⊗ Ir1)
> to arrive at

∥∥(Q−1
1 ,V ,W ) · S − (Ir1 ,V?,W?) · S?

∥∥2
F
=
∥∥∥V M2(S)(W ⊗Q−1

1 )> − V?M2(S?)(W? ⊗ Ir1)
>
∥∥∥
2

F

≥ (
√
2− 1) inf

Q∈GL(r2)

∥∥∥V QΣ
1/2
?,2 − V?Σ?,2

∥∥∥
2

F
+
∥∥∥(W ⊗Q−1

1 )M2(S)>Q−>
Σ

1/2
?,2 − (W? ⊗ Ir1)M2(S?)

>
∥∥∥
2

F

= (
√
2− 1) inf

Q2∈GL(r2)
‖(V Q2 − V?)Σ?,2‖2F +

∥∥(Q−1
1 ,Q−1

2 ,W ) · S − (Ir1 , Ir2 ,W?) · S?

∥∥2
F
.

where we have applied a change-of-variable as Q2 = QΣ
−1/2
?,2 as well as tensorization in the last

line. Repeating the same argument by applying the mode-3 matricization to the second term, we
obtain

∥∥(Q−1
1 ,Q−1

2 ,W ) · S − (Ir1 , Ir2 ,W?) · S?

∥∥2
F
=
∥∥∥WM3(S)(Q−1

2 ⊗Q−1
1 )> −W?M3(S?)

∥∥∥
2

F

≥ (
√
2− 1) inf

Q3∈GL(r3)
‖(WQ3 −W?)Σ?,3‖2F +

∥∥(Q−1
1 ,Q−1

2 ,Q−1
3 ) · S − S?

∥∥2
F
.

Finally, combine these results to conclude

‖(U ,V ,W ) · S −X ?‖2F ≥ inf
Qk∈GL(rk)

(
√
2− 1) ‖(UQ1 −U?)Σ?,1‖2F + (

√
2− 1)2 ‖(V Q2 − V?)Σ?,2‖2F

+ (
√
2− 1)3 ‖(WQ3 −W?)Σ?,3‖2F + (

√
2− 1)3

∥∥(Q−1
1 ,Q−1

2 ,Q−1
3 ) · S − S?

∥∥2
F

≥ (
√
2− 1)3 dist2(F ,F?),

where the last relation uses the definition of dist2(F ,F?).

A.2 Several perturbation bounds

We now collect several perturbation bounds that will be used repeatedly in the proof. Without loss
of generality, assume that F = (U ,V ,W ,S) and F? = (U?,V?,W?,S?) are aligned, and introduce
the following notation that will be used repeatedly:

∆U := U −U?, ∆V := V − V?, ∆W := W −W?, ∆S := S − S?,

Ŭ := (W ⊗ V )M1(S)>, V̆ := (W ⊗U)M2(S)>, W̆ := (V ⊗U)M3(S)>,

Ŭ? := (W? ⊗ V?)M1(S?)
>, V̆? := (W? ⊗U?)M2(S?)

>, W̆? := (V? ⊗U?)M3(S?)
>,

(34)

T U := (U>
? ∆U , Ir2 , Ir3) · S?, T V := (Ir1 ,V

>
? ∆V , Ir3) · S?, T W := (Ir1 , Ir2 ,W

>
? ∆W ) · S?,

DU := (U>U)−1/2U>
∆UΣ?,1, DV := (V >V )−1/2V >

∆V Σ?,2, DW := (W>W )−1/2W>
∆WΣ?,3.

Now we are ready to state the lemma on perturbation bounds.

Lemma 10 Suppose F = (U ,V ,W ,S) and F? = (U?,V?,W?,S?) are aligned and satisfy dist(F ,F?) ≤
εσmin(X ?) for some ε < 1. Then the following bounds hold regarding the spectral norm:

‖∆U‖ ∨ ‖∆V ‖ ∨ ‖∆W ‖ ∨ ‖Mk(∆S)
>
Σ

−1
?,k‖ ≤ ε, k = 1, 2, 3; (35a)

‖U(U>U)−1‖ ≤ (1− ε)−1; (35b)
∥∥∥U(U>U)−1 −U?

∥∥∥ ≤
√
2ε

1− ε
; (35c)
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∥∥∥(U>U)−1
∥∥∥ ≤ (1− ε)−2; (35d)

∥∥∥(Ŭ − Ŭ?)Σ
−1
?,1

∥∥∥ ≤ 3ε+ 3ε2 + ε3; (35e)
∥∥∥Ŭ(Ŭ>Ŭ)−1

Σ?,1

∥∥∥ ≤ (1− ε)−3; (35f)

∥∥∥Ŭ(Ŭ>Ŭ)−1
Σ?,1 − Ŭ?Σ

−1
?,1

∥∥∥ ≤
√
2(3ε+ 3ε2 + ε3)

(1− ε)3
; (35g)

∥∥∥Σ?,1(Ŭ
>Ŭ)−1

Σ?,1

∥∥∥ ≤ (1− ε)−6; (35h)
∥∥∥Σ?,1(Ŭ

>Ŭ)−1M1(S)
∥∥∥ ≤ (1− ε)−5. (35i)

By symmetry, a corresponding set of bounds holds for V , V̆ and W , W̆ .

In addition, the following bounds hold regarding the Frobenius norm:

‖(U ,V ,W ) · S −X ?‖F ≤ (1 +
3

2
ε+ ε2 +

ε3

4
) (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) ;

(36a)

‖(U ,V ,W ) · S? −X ?‖F ≤ (1 + ε+
ε2

3
) (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F) ; (36b)

∥∥∥Ŭ − Ŭ?

∥∥∥
F
≤ (1 + ε+

ε2

3
) (‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) . (36c)

As a straightforward consequence of (36a), the following important relation holds when ε ≤ 0.2:

‖(U ,V ,W ) · S −X ?‖F ≤ 2(1 +
3

2
ε+ ε2 +

ε3

4
) dist(F ,F?) ≤ 3 dist(F ,F?). (37)

Hence, the scaled distance serves as a metric to gauge the quality of the tensor recovery.

A.2.1 Proof of Lemma 10

Proof of spectral norm perturbation bounds. To begin, recalling the notation in (34), (35a)
follows directly from the definition

dist(Ft,F?) =
√
‖∆UΣ?,1‖2F + ‖∆V Σ?,2‖2F + ‖∆WΣ?,3‖2F + ‖∆S‖2F ≤ εσmin(X ?)

together with the relation ‖AB‖F ≥ ‖A‖Fσmin(B).
For (35b), Weyl’s inequality tells σmin(U) ≥ σmin(U?)− ‖∆U‖ ≥ 1− ε, and use that

∥∥∥U(U>U)−1
∥∥∥ =

1

σmin(U)
≤ 1

1− ε
.

For (35c), decompose

U(U>U)−1 −U? = −U(U>U)−1
∆

>
UU? +

(
In1

−U(U>U)−1U>
)
∆U ,

and use that the two terms are orthogonal to obtain

∥∥∥U(U>U)−1 −U?

∥∥∥
2
≤
∥∥∥U(U>U)−1

∆
>
UU?

∥∥∥
2
+
∥∥∥
(
In1

−U(U>U)−1U>
)
∆U

∥∥∥
2
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≤ ‖U(U>U)−1‖2‖∆U‖2 + ‖∆U‖2

≤
(
(1− ε)−2 + 1

)
ε2.

It follows from ε < 1 that

∥∥∥U(U>U)−1 −U?

∥∥∥ ≤
√
2ε

1− ε
.

For (35d), recognizing that

(U>U)−1 = (U(U>U)−1)>U(U>U)−1 =⇒ ‖(U>U)−1‖ = ‖U(U>U)−1‖2 ≤ 1

(1− ε)2
,

where the last inequality follows from (35b).
For (35e), we first expand the expression as

Ŭ − Ŭ? = (W ⊗ V )M1(S)> − (W? ⊗ V?)M1(S?)
>

= (W ⊗ V −W? ⊗ V?)M1(S?)
> + (W ⊗ V )M1(S)> − (W ⊗ V )M1(S?)

>

= (W ⊗∆V +∆W ⊗ V?)M1(S?)
> + (W ⊗ V )M1(∆S)

>. (38)

Apply the triangle inequality to obtain

‖(Ŭ − Ŭ?)Σ
−1
?,1‖ ≤

∥∥∥(W ⊗∆V +∆W ⊗ V?)M1(S?)
>
Σ

−1
?,1

∥∥∥ +
∥∥∥(W ⊗ V )M1(∆S)

>
Σ

−1
?,1

∥∥∥

≤ (‖W ‖‖∆V ‖ + ‖∆W ‖‖V?‖) ‖M1(S?)
>
Σ

−1
?,1‖ + ‖W ‖‖V ‖‖M1(∆S)

>
Σ

−1
?,1‖

≤ (1 + ε)ε+ ε+ (1 + ε)2ε = 3ε+ 3ε2 + ε3,

where we have used (35a) and the fact ‖M1(S?)
>
Σ

−1
?,1‖ = 1 (see (13)) in the last line.

(35f) follows from combining

σmin

(
ŬΣ

−1
?,1

)
≥ σmin(V )σmin(W )σmin

(
M1(S)Σ−1

?,1

)
≥ (1− ε)3,

and
∥∥∥Ŭ(Ŭ>Ŭ)−1

Σ?,1

∥∥∥ =
1

σmin

(
ŬΣ

−1
?,1

) ≤ 1

(1− ε)3
.

With regard to (35g), repeat the same proof as (35c), decompose

Ŭ(Ŭ>Ŭ)−1
Σ?,1 − Ŭ?Σ

−1
?,1

= −Ŭ(Ŭ>Ŭ)−1(Ŭ − Ŭ?)
>Ŭ?Σ

−1
?,1 +

(
In2n3

− Ŭ(Ŭ>Ŭ)−1Ŭ>
)
(Ŭ − Ŭ?)Σ

−1
?,1,

and use that the two terms are orthogonal to obtain

∥∥∥Ŭ(Ŭ>Ŭ)−1
Σ?,1 − Ŭ?Σ

−1
?,1

∥∥∥
2

≤
∥∥∥Ŭ(Ŭ>Ŭ)−1(Ŭ − Ŭ?)

>Ŭ?Σ
−1
?,1

∥∥∥
2
+
∥∥∥
(
In2n3

− Ŭ(Ŭ>Ŭ)−1Ŭ>
)
(Ŭ − Ŭ?)Σ

−1
?,1

∥∥∥
2

≤ ‖Ŭ(Ŭ>Ŭ)−1
Σ?,1‖2‖(Ŭ − Ŭ?)Σ

−1
?,1‖2 + ‖(Ŭ − Ŭ?)Σ

−1
?,1‖2

≤
(
(1− ε)−6 + 1

)
(3ε+ 3ε2 + ε3)2.
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It follows from ε < 1 that

∥∥∥Ŭ(Ŭ>Ŭ)−1
Σ?,1 − Ŭ?Σ

−1
?,1

∥∥∥ ≤
√
2(3ε+ 3ε2 + ε3)

(1− ε)3
.

The relation (35h) follows from (35f) and the relation:

∥∥∥Σ?,1(Ŭ
>Ŭ)−1

Σ?,1

∥∥∥ =
∥∥∥Σ?,1(Ŭ

>Ŭ)−1Ŭ>Ŭ(Ŭ>Ŭ)−1
Σ?,1

∥∥∥ =
∥∥∥Ŭ(Ŭ>Ŭ)−1

Σ?,1

∥∥∥
2
.

With regard to (35i), we have
∥∥∥Σ?,1(Ŭ

>Ŭ)−1M1(S)
∥∥∥ =

∥∥∥Σ?,1(Ŭ
>Ŭ)−1Ŭ>

(
W (W>W )−1 ⊗ V (V >V )−1

)∥∥∥

≤
∥∥∥Ŭ(Ŭ>Ŭ)−1

Σ?,1

∥∥∥
∥∥∥W (W>W )−1

∥∥∥
∥∥∥V (V >V )−1

∥∥∥

≤ (1− ε)−5,

where the first line follows from

Ŭ> = M1(S)(W ⊗ V )> =⇒ M1(S) = Ŭ>
(
W (W>W )−1 ⊗ V (V >V )−1

)
, (39)

and the last inequality uses (35c) and (35f).

Proof of Frobenius norm perturbation bounds. We proceed to prove the perturbation
bounds regarding the Frobenius norm. For (36a), we begin with the following decomposition

(U ,V ,W ) · S −X ? = (U ,V ,W ) · S − (U?,V?,W?) · S?

= (U ,V ,W ) ·∆S + (∆U ,V ,W ) · S? + (U?,∆V ,W ) · S? + (U?,V?,∆W ) · S?.
(40)

Apply the triangle inequality, together with the invariance of the Frobenius norm to matricization,
to obtain

‖(U ,V ,W ) · S −X ?‖F ≤ ‖(U ,V ,W ) ·∆S‖F +
∥∥∥∆UM1(S?)(W ⊗ V )>

∥∥∥
F

+
∥∥∥∆V M2(S?)(W ⊗U?)

>
∥∥∥
F
+
∥∥∥∆WM3(S?)(V? ⊗U?)

>
∥∥∥
F

≤ ‖U‖‖V ‖‖W ‖‖∆S‖F + ‖∆UM1(S?)‖F‖W ‖‖V ‖
+ ‖∆V M2(S?)‖F‖W ‖‖U?‖ + ‖∆WM3(S?)‖F‖V?‖‖U?‖

≤ (1 + ε)3‖∆S‖F + (1 + ε)2‖∆UΣ?,1‖F + (1 + ε)‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F,

where the second inequality follows from (6e), and the last inequality follows from (13) and (35a).
By symmetry, one can permute the occurrence of ∆U ,∆V ,∆W ,∆S in the decomposition (40). For
example, invoking another viable decomposition of (U ,V ,W ) · S −X ? as

(U ,V ,W ) · S −X ? = (U ,∆V ,W ) · S + (U ,V?,∆W ) · S + (U ,V?,W?) ·∆S + (∆U ,V?,W?) · S?

leads to the perturbation bound

‖(U ,V ,W ) · S −X ?‖F ≤ (1 + ε)3‖∆V Σ?,2‖F + (1 + ε)2‖∆WΣ?,3‖F + (1 + ε)‖∆S‖F + ‖∆UΣ?,1‖F.
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To complete the proof of (36a), we take an average of all viable bounds from 4! = 24 permutations
to balance their coefficients as

1

4

(
(1 + ε)3 + (1 + ε)2 + (1 + ε) + 1

)
= 1 +

3

2
ε+ ε2 +

1

4
ε3,

thus we obtain

‖(U ,V ,W ) · S −X ?‖F ≤ (1 +
3

2
ε+ ε2 +

1

4
ε3)
(
‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F

)
.

The relation (36b) can be proved in a similar fashion; for the sake of brevity, we omit its proof.
Turning to (36c), apply the triangle inequality to (38) to obtain

‖Ŭ − Ŭ?‖F ≤
∥∥∥(W ⊗∆V )M1(S?)

>
∥∥∥
F
+
∥∥∥(∆W ⊗ V?)M1(S?)

>
∥∥∥
F
+ ‖(W ⊗ V )M1(∆S)‖F .

(41)

To bound the first term, change the mode of matricization (see (12)) to arrive at
∥∥∥(W ⊗∆V )M1(S?)

>
∥∥∥
F
= ‖(Ir1 ,∆V ,W ) · S?‖F =

∥∥∥∆V M2(S?)(W ⊗ Ir1)
>
∥∥∥
F

≤ ‖∆V M2(S?)‖F‖W ‖ ≤ (1 + ε)‖∆V M2(S?)‖F,
where the last inequality uses (35a). Similarly, the last two terms in (41) can be bounded as
∥∥∥(∆W ⊗ V?)M1(S?)

>
∥∥∥
F
≤ ‖∆WM3(S?)‖F, and ‖(W ⊗ V )M1(∆S)‖F ≤ (1 + ε)2‖∆S‖F.

Plugging the above bounds back to (41), we have

‖Ŭ − Ŭ?‖F ≤ (1 + ε)‖∆V M2(S?)‖F + ‖∆WM3(S?)‖F + (1 + ε)2‖∆S‖F.
Using a similar symmetrization trick as earlier, by permuting the occurrences of ∆V ,∆W ,∆S in
the decomposition (38), we arrive at the final advertised bound (36c).

Appendix B. Proof for Tensor Factorization (Theorem 3)

We prove Theorem 3 via induction. Suppose that for some t ≥ 0, one has dist(Ft,F?) ≤ εσmin(X ?)
for some sufficiently small ε whose size will be specified later in the proof. Our goal is to bound the
scaled distance from the ground truth to the next iterate, i.e. dist(Ft+1,F?).

Since dist(Ft,F?) ≤ εσmin(X ?), Lemma 6 ensures that the optimal alignment matrices {Qt,k}k=1,2,3

between Ft and F? exist. Therefore, in view of the definition of dist(Ft+1,F?), one has

dist2(Ft+1,F?) ≤ ‖(Ut+1Qt,1 −U?)Σ?,1‖2F + ‖(Vt+1Qt,2 − V?)Σ?,2‖2F + ‖(Wt+1Qt,3 −W?)Σ?,3‖2F
+
∥∥∥(Q−1

t,1 ,Q
−1
t,2 ,Q

−1
t,3 ) · St+1 − S?

∥∥∥
2

F
. (42)

To avoid notational clutter, we denote F := (U ,V ,W ,S) with

U := UtQt,1, V := VtQt,2, W := WtQt,3, S := (Q−1
t,1 ,Q

−1
t,2 ,Q

−1
t,3 ) · St, (43)

and adopt the set of notation defined in (34) for the rest of the proof. Clearly, F is aligned with
F?. With these notation, we can rephrase the consequences of Lemma 7 as:

U>
∆UΣ

2
?,1 = M1(∆S)M1(S)>,

V >
∆V Σ

2
?,2 = M2(∆S)M2(S)>,

W>
∆WΣ

2
?,3 = M3(∆S)M3(S)>.

(44)
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We aim to establish the following bounds for the four terms in (42) as long as η < 1:

‖(Ut+1Qt,1 −U?)Σ?,1‖2F ≤ (1− η)2‖∆UΣ?,1‖2F
− 2η(1− η) 〈T U ,T U + T V + T W 〉+ η2 ‖T U + T V + T W ‖2F
+ 2η(1− η)C1ε dist

2(Ft,F?) + η2C2ε dist
2(Ft,F?); (45a)

‖(Vt+1Qt,2 − V?)Σ?,2‖2F ≤ (1− η)2‖∆V Σ?,2‖2F
− 2η(1− η) 〈T V ,T U + T V + T W 〉+ η2 ‖T U + T V + T W ‖2F
+ 2η(1− η)C1ε dist

2(Ft,F?) + η2C2ε dist
2(Ft,F?); (45b)

‖(Wt+1Qt,3 −W?)Σ?,3‖2F ≤ (1− η)2‖∆WΣ?,3‖2F
− 2η(1− η) 〈T W ,T U + T V + T W 〉+ η2 ‖T U + T V + T W ‖2F
+ 2η(1− η)C1ε dist

2(Ft,F?) + η2C2ε dist
2(Ft,F?); (45c)

∥∥∥(Q−1
t,1 ,Q

−1
t,2 ,Q

−1
t,3 ) · St+1 − S?

∥∥∥
2

F
≤ (1− η)2‖∆S‖2F − η(2− 5η)

(
‖DU‖2F + ‖DV ‖2F + ‖DW ‖2F

)

+ 2η(1− η)C1ε dist
2(Ft,F?) + η2C2ε dist

2(Ft,F?), (45d)

where C1, C2 > 1 are two universal constants. Suppose for the moment that the four bounds (45)
hold. We can then combine them all to deduce

dist2(Ft+1,F?) ≤ (1− η)2
(
‖∆UΣ?,1‖2F + ‖∆V Σ?,2‖2F + ‖∆WΣ?,3‖2F + ‖∆S‖2F

)

− η(2− 5η) ‖T U + T V + T W ‖2F − η(2− 5η)
(
‖DU‖2F + ‖DV ‖2F + ‖DW ‖2F

)

+ 2η(1− η)Cε dist2(Ft,F?) + η2Cε dist2(Ft,F?). (46)

Here C := 4(C1 ∨ C2). As long as η ≤ 2/5 and ε ≤ 0.2/C, one has

dist2(Ft+1,F?) ≤
(
(1− η)2 + 2η(1− η)Cε+ η2Cε

)
dist2(Ft,F?) ≤ (1− 0.7η)2 dist2(Ft,F?),

and therefore we arrive at the conclusion that dist(Ft+1,F?) ≤ (1− 0.7η) dist(Ft,F?). In addition,
the relation (37) in Lemma 10 guarantees that ‖(Ut,Vt,Wt) · St −X ?‖F ≤ 3 dist(Ft,F?).

It then boils down to demonstrating the four bounds (45). Due to the symmetry among U ,V
and W , we will focus on proving the bounds (45a) and (45d), omitting the proofs for the other two.

Proof of (45a). Utilize the ScaledGD update rule (26) to write

(Ut+1Qt,1 −U?)Σ?,1 =
(
U − ηM1 ((U ,V ,W ) · S −X ?) Ŭ(Ŭ>Ŭ)−1 −U?

)
Σ?,1

= (1− η)∆UΣ?,1 − ηU?(Ŭ − Ŭ?)
>Ŭ(Ŭ>Ŭ)−1

Σ?,1, (47)

where we use the decomposition of the mode-1 matricization

M1 ((U ,V ,W ) · S −X ?) = UM1(S)(W ⊗ V )> −U?M1(S?)(W? ⊗ V?)
>

= ∆UM1(S)(W ⊗ V )> +U?

(
M1(S)(W ⊗ V )> −M1(S?)(W? ⊗ V?)

>
)

= ∆U Ŭ
> +U?(Ŭ − Ŭ?)

>.

Take the squared norm of both sides of the identity (47) to obtain

‖(Ut+1Qt,1 −U?)Σ?,1‖2F = (1− η)2‖∆UΣ?,1‖2F − 2η(1− η)
〈
∆UΣ?,1,U?(Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1
Σ?,1

〉
︸ ︷︷ ︸

=:U1
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+ η2
∥∥U?(Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1
Σ?,1

∥∥2
F︸ ︷︷ ︸

=:U2

.

The following two claims bound the two terms U1 and U2, whose proofs can be found in Ap-
pendix B.1 and Appendix B.2, respectively.

Claim 1 U1 ≥ 〈T U ,T U + T V + T W 〉 − C1ε dist
2(Ft,F?).

Claim 2 U2 ≤ ‖T U + T V + T W ‖2F + C2ε dist
2(Ft,F?).

We can combine the above two claims to obtain that

‖(Ut+1Qt,1 −U?)Σ?,1‖2F ≤ (1− η)2‖∆UΣ?,1‖2F − 2η(1− η) 〈T U ,T U + T V + T W 〉
+ η2 ‖T U + T V + T W ‖2F + 2η(1− η)C1ε dist

2(Ft,F?) + η2C2ε dist
2(Ft,F?),

as long as η < 1. This proves the bound (45a).

Proof of (45d). Again, we use the ScaledGD update rule (26) and the decomposition S = ∆S+S?

to obtain

(Q−1
t,1 ,Q

−1
t,2 ,Q

−1
t,3 ) · St+1 − S?

= S − η
(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
·
(
(U ,V ,W ) · S −X ?

)
− S?

= (1− η)∆S − η
(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
·
(
(U ,V ,W ) · S? −X ?

)
,

(48)

where we used (6c) in the last line. Expand the squared norm of both sides to reach
∥∥∥(Q−1

t,1 ,Q
−1
t,2 ,Q

−1
t,3 ) · St+1 − S?

∥∥∥
2

F
= (1− η)2‖∆S‖2F

− 2η(1− η)
〈
∆S ,

(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
· ((U ,V ,W ) · S? −X ?)

〉

︸ ︷︷ ︸
=:S1

+ η2
∥∥∥
(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
· ((U ,V ,W ) · S? −X ?)

∥∥∥
2

F︸ ︷︷ ︸
=:S2

.

We collect the bounds of the two relevant terms S1 and S2 in the following two claims, whose
proofs can be found in Appendix B.3 and Appendix B.4, respectively.

Claim 3 S1 ≥ ‖DU‖2F + ‖DV ‖2F + ‖DW ‖2F − C1ε dist
2(Ft,F?).

Claim 4 S2 ≤ 3
(
‖DU‖2F + ‖DV ‖2F + ‖DW ‖2F

)
+ C2ε dist

2(Ft,F?).

Take the bounds on S1 and S2 collectively to reach
∥∥∥(Q−1

t,1 ,Q
−1
t,2 ,Q

−1
t,3 ) · St+1 − S?

∥∥∥
2

F
≤ (1− η)2‖∆S‖2F − η(2− 5η)

(
‖DU‖2F + ‖DV ‖2F + ‖DW ‖2F

)

+ 2η(1− η)C1ε dist
2(Ft,F?) + η2C2ε dist

2(Ft,F?)

as long as η < 1. This recovers the bound (45d).
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B.1 Proof of Claim 1

Use the relation (38) to decompose U1 as

U1 =
〈
U>

? ∆UΣ?,1, (Ŭ − Ŭ?)
>Ŭ(Ŭ>Ŭ)−1

Σ?,1

〉

=
〈
U>

? ∆UΣ?,1,M1(S?)(W ⊗∆V +∆W ⊗ V?)
>Ŭ(Ŭ>Ŭ)−1

Σ?,1

〉
︸ ︷︷ ︸

=:U1,1

+
〈
U>

? ∆UΣ?,1,M1(∆S)(W ⊗ V )>Ŭ(Ŭ>Ŭ)−1
Σ?,1

〉
︸ ︷︷ ︸

=:U1,2

.

In what follows, we bound U1,1 and U1,2 separately.

Step 1: tackling U1,1. We can further decompose U1,1 into the following four terms

U1,1 =
〈
U>

? ∆UΣ?,1,M1(S?)(W? ⊗∆V +∆W ⊗ V?)
>Ŭ?Σ

−1
?,1

〉

︸ ︷︷ ︸
=:Um

1,1

+
〈
U>

? ∆UΣ?,1,M1(S?)(W? ⊗∆V )
>
(
Ŭ(Ŭ>Ŭ)−1

Σ?,1 − Ŭ?Σ
−1
?,1

)〉

︸ ︷︷ ︸
=:Up,1

1,1

+
〈
U>

? ∆UΣ?,1,M1(S?)(∆W ⊗ V?)
>
(
Ŭ(Ŭ>Ŭ)−1

Σ?,1 − Ŭ?Σ
−1
?,1

)〉

︸ ︷︷ ︸
=:Up,2

1,1

+
〈
U>

? ∆UΣ?,1,M1(S?)(∆W ⊗∆V )
>Ŭ(Ŭ>Ŭ)−1

Σ?,1

〉

︸ ︷︷ ︸
=:Up,3

1,1

,

where Um
1,1 denotes the main term and the remaining ones are perturbation terms.

Utilizing the definition of Ŭ? in (34) and the relation (12), the main term Um
1,1 can be rewritten

as an inner product in the tensor space:

Um
1,1 =

〈
U>

? ∆UM1(S?),M1(S?)(Ir3 ⊗∆
>
V V? +∆

>
WW? ⊗ Ir2)

〉

= 〈T U ,T V + T W 〉 .
To control the other three perturbation terms, Lemma 10 turns out to be extremely useful. For
instance, the perturbation term U

p,1
1,1 is bounded by

|Up,1
1,1 | ≤

∥∥∥U>
? ∆UΣ?,1

∥∥∥
F

∥∥∥M1(S?)(W? ⊗∆V )
>
∥∥∥
F

∥∥∥Ŭ(Ŭ>Ŭ)−1
Σ?,1 − Ŭ?Σ

−1
?,1

∥∥∥

≤
√
2(3ε+ 3ε2 + ε3)

(1− ε)3
‖∆UΣ?,1‖F‖∆V Σ?,2‖F.

Here in the last inequality, we used the upper bound (35g) and changed the matricization mode to
obtain
∥∥∥M1(S?)(W? ⊗∆V )

>
∥∥∥
F
= ‖(Ir1 ,∆V ,W?) · S?‖F =

∥∥∥∆V M2(S?)(W? ⊗ Ir1)
>
∥∥∥
F
≤ ‖∆V Σ?,2‖F.

Similarly, the remaining two perturbation terms U
p,2
1,1 and U

p,3
1,1 obey

|Up,2
1,1 | ≤

√
2(3ε+ 3ε2 + ε3)

(1− ε)3
‖∆UΣ?,1‖F‖∆WΣ?,3‖F,
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|Up,3
1,1 | ≤

ε

(1− ε)3
‖∆UΣ?,1‖F‖∆V Σ?,2‖F.

Step 2: tackling U1,2. Now we move on to U1,2, which can be decomposed as

U1,2 =
〈
U>

? ∆UΣ?,1,M1(∆S)M1(S?)
>
Σ

−1
?,1

〉

+
〈
U>

? ∆UΣ?,1,M1(∆S)(W? ⊗ V?)
>
(
Ŭ(Ŭ>Ŭ)−1

Σ?,1 − Ŭ?Σ
−1
?,1

)〉

︸ ︷︷ ︸
=:Up,1

1,2

+
〈
U>

? ∆UΣ?,1,M1(∆S)(W ⊗ V −W? ⊗ V?)
>Ŭ(Ŭ>Ŭ)−1

Σ?,1

〉

︸ ︷︷ ︸
=:Up,2

1,2

=
〈
U>

? ∆UΣ?,1,M1(∆S)M1(S)>Σ−1
?,1

〉
−
〈
U>

? ∆UΣ?,1,M1(∆S)M1(∆S)
>
Σ

−1
?,1

〉

︸ ︷︷ ︸
=:Up,3

1,2

+U
p,1
1,2 + U

p,2
1,2

=
〈
U>

? ∆UΣ?,1,U
>
∆UΣ?,1

〉
+ U

p,1
1,2 + U

p,2
1,2 + U

p,3
1,2

= ‖T U‖2F + U
p,1
1,2 + U

p,2
1,2 + U

p,3
1,2 +

〈
U>

? ∆UΣ?,1,∆
>
U∆UΣ?,1

〉

︸ ︷︷ ︸
=:Up,4

1,2

,

where in the penultimate identity we have applied the identity (44) to replace M1(∆S)M1(S)>.
Again, by Lemma 10, the perturbation term U

p,1
1,2 is bounded by

|Up,1
1,2 | ≤

∥∥∥U>
? ∆UΣ?,1

∥∥∥
F

∥∥∥M1(∆S)(W? ⊗ V?)
>
∥∥∥
F

∥∥Ŭ(Ŭ>Ŭ)−1
Σ?,1 − Ŭ?Σ

−1
?,1

∥∥

≤
√
2(3ε+ 3ε2 + ε3)

(1− ε)3
‖∆UΣ?,1‖F‖∆S‖F.

In addition, Up,2
1,2 is bounded by

|Up,2
1,2 | ≤

∥∥∥U>
? ∆UΣ?,1

∥∥∥
F
‖M1(∆S)‖F ‖W ⊗ V −W? ⊗ V?‖

∥∥Ŭ(Ŭ>Ŭ)−1
Σ?,1

∥∥

≤ 2ε+ ε2

(1− ε)3
‖∆UΣ?,1‖F‖∆S‖F,

where we have used

‖W ⊗ V −W? ⊗ V?‖ ≤ ‖∆W ⊗ V?‖ + ‖W? ⊗∆V ‖ + ‖∆W ⊗∆V ‖
≤ ‖∆W ‖ + ‖∆V ‖ + ‖∆V ‖‖∆W ‖ ≤ 2ε+ ε2.

Following similar arguments (i.e. repeatedly using Lemma 10), we can bound U
p,3
1,2 and U

p,4
1,2 as

|Up,3
1,2 | ≤

∥∥∥U>
? ∆UΣ?,1

∥∥∥
F
‖M1(∆S)‖F

∥∥∥M1(∆S)
>
Σ

−1
?,1

∥∥∥ ≤ ε‖∆UΣ?,1‖F‖∆S‖F;

|Up,4
1,2 | ≤

∥∥∥U>
? ∆UΣ?,1

∥∥∥
F
‖∆U‖‖∆UΣ?,1‖F ≤ ε‖∆UΣ?,1‖2F.
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Step 3: putting the bound together. Combine these results on U1,1 and U1,2 to see

U1 = 〈T U ,T U + T V + T W 〉+ U
p
1 ,

where the perturbation term U
p
1 :=

∑3
i=1 U

p,i
1,1 +

∑4
i=1 U

p,i
1,2 obeys

|Up
1 | ≤ ε‖∆UΣ?,1‖F

(
‖∆UΣ?,1‖F +

1 +
√
2(3 + 3ε+ ε2)

(1− ε)3
‖∆V Σ?,2‖F +

√
2(3 + 3ε+ ε2)

(1− ε)3
‖∆WΣ?,3‖F

+ (1 +
2 + ε+

√
2(3 + 3ε+ ε2)

(1− ε)3
)‖∆S‖F

)
.

Using the Cauchy–Schwarz inequality, we can further simplify it as |Up
1| ≤ C1ε dist

2(Ft,F?) for some
universal constant C1 > 1.

B.2 Proof of Claim 2

Note that

U2 =
∥∥(Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1
Σ?,1

∥∥2
F

≤
∥∥(Ŭ − Ŭ?)

>ŬΣ
−1
?,1

∥∥2
F

∥∥Σ?,1(Ŭ
>Ŭ)−1

Σ?,1

∥∥2

≤
∥∥(Ŭ − Ŭ?)

>ŬΣ
−1
?,1

∥∥2
F
(1− ε)−12, (49)

where the last relation arises from the bound (35h) in Lemma 10. We can then use the decomposi-
tion (38) to obtain

∥∥(Ŭ − Ŭ?)
>ŬΣ

−1
?,1

∥∥
F

=
∥∥∥
(
M1(S?)(W ⊗∆V +∆W ⊗ V?)

> +M1(∆S)(W ⊗ V )>
)
(W ⊗ V )M1(S)>Σ−1

?,1

∥∥∥
F

≤
∥∥∥M1(S?)

(
Ir3 ⊗∆

>
V V? +∆

>
WW? ⊗ Ir2

)
M1(S?)

>
Σ

−1
?,1 +M1(∆S)M1(S)>Σ−1

?,1

∥∥∥
F︸ ︷︷ ︸

=:Um
2

+
∥∥∥M1(S?)

(
W>W ⊗∆

>
V V − Ir3 ⊗∆

>
V V?

)
M1(S?)

>
Σ

−1
?,1

∥∥∥
F︸ ︷︷ ︸

=:Up,1
2

+
∥∥∥M1(S?)

(
∆

>
WW ⊗ V >

? V −∆
>
WW? ⊗ Ir2

)
M1(S?)

>
Σ

−1
?,1

∥∥∥
F︸ ︷︷ ︸

=:Up,2
2

+
∥∥∥M1(S?)

(
W>W ⊗∆

>
V V +∆

>
WW ⊗ V >

? V
)
M1(∆S)

>
Σ

−1
?,1

∥∥∥
F︸ ︷︷ ︸

=:Up,3
2

+
∥∥∥M1(∆S)

(
W>W ⊗ V >V − Ir3 ⊗ Ir2

)
M1(S)>Σ−1

?,1

∥∥∥
F︸ ︷︷ ︸

=:Up,4
2

.

Here, Um
2 is the main term while the remaining four are perturbation terms. Use the relation (44)

again to replace M1(∆S)M1(S)> in the main term Um
2 and see

Um
2 =

∥∥∥
(
M1(S?)(Ir3 ⊗∆

>
V V? +∆

>
WW? ⊗ Ir2) +U>

? ∆UM1(S?)
)
M1(S?)

>
Σ

−1
?,1

∥∥∥
F
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≤
∥∥∥M1(S?)(Ir3 ⊗∆

>
V V? +∆

>
WW? ⊗ Ir2) +U>

? ∆UM1(S?)
∥∥∥
F
‖M1(S?)

>
Σ

−1
?,1‖

= ‖T U + T V + T W ‖F ,

where the last equality uses ‖M1(S?)
>
Σ

−1
?,1‖ = 1. The perturbation terms are bounded by

U
p,1
2 ≤ ((1 + ε)3 − 1)‖∆V Σ?,2‖F;

U
p,2
2 ≤ ((1 + ε)2 − 1)‖∆WΣ?,3‖F;

U
p,3
2 ≤ ε(1 + ε)3‖∆V Σ?,2‖F + ε(1 + ε)2‖∆WΣ?,3‖F;

U
p,4
2 ≤ ((1 + ε)4 − 1)(1 + ε)‖∆S‖F.

They follow from similar calculations as those in bounding U1 with the aid of Lemma 10; hence we
omit the details for brevity. Combine these results to see

∥∥(Ŭ − Ŭ?)
>ŬΣ

−1
?,1

∥∥
F
≤ ‖T U + T V + T W ‖F + U

p
2 ,

with U
p
2 :=

∑4
i=1 U

p,i
2 obeying

U
p
2 ≤ ((1 + ε)4 − 1)‖∆V Σ?,2‖F + ((1 + ε)3 − 1)‖∆WΣ?,3‖F + ((1 + ε)4 − 1)(1 + ε)‖∆S‖F
. ε
(
‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F

)
. ε dist(Ft,F?).

Next take the square to obtain
∥∥(Ŭ − Ŭ?)

>ŬΣ
−1
?,1

∥∥2
F
≤ ‖T U + T V + T W ‖2F + 2Up

2 ‖T U + T V + T W ‖F + (Up
2)

2.

Finally plug this back into (49) to conclude

U2 ≤ (1− ε)−12 ‖T U + T V + T W ‖2F + 2(1− ε)−12U
p
2 ‖T U + T V + T W ‖F + (1− ε)−12(Up

2)
2

≤ ‖T U + T V + T W ‖2F +
(
(1− ε)−12 − 1

)
(‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F)2

+ 2(1− ε)−12U
p
2 (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F) + (1− ε)−12(Up

2)
2

≤ ‖T U + T V + T W ‖2F + C2ε dist
2(Ft,F?),

for some universal constant C2 > 1. Here in the second inequality, we use the fact that ‖T U‖F ≤
‖∆UΣ?,1‖F, ‖T V ‖F ≤ ‖∆V Σ?,2‖F, and ‖T W ‖F ≤ ‖∆WΣ?,3‖F. This finishes the proof of the claim.

B.3 Proof of Claim 3

Use the decomposition

(U ,V ,W ) · S? −X ? = (∆U ,V ,W ) · S? + (U?,∆V ,W ) · S? + (U?,V?,∆W ) · S? (50)

to rewrite S1 as

S1 =
〈
∆S , ((U

>U)−1U>
∆U , Ir2 , Ir3) · S?

〉

︸ ︷︷ ︸
=:S1,1

+
〈
∆S , ((U

>U)−1U>U?, (V
>V )−1V >

∆V , Ir3) · S?

〉

︸ ︷︷ ︸
=:S1,2

+
〈
∆S , ((U

>U)−1U>U?, (V
>V )−1V >V?, (W

>W )−1W>
∆W ) · S?

〉

︸ ︷︷ ︸
=:S1,3

.
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Step 1: tackling S1,1. Translating the inner product from the tensor space to the matrix space
via the mode-1 matricization yields

S1,1 =
〈
M1(∆S), (U

>U)−1U>
∆UM1(S?)

〉

=
〈
M1(∆S), (U

>U)−1U>
∆UM1(S)

〉

︸ ︷︷ ︸
=:Sm

1,1

−
〈
M1(∆S), (U

>U)−1U>
∆UM1(∆S)

〉

︸ ︷︷ ︸
=:Sp

1,1

.

Again, the identity (44) is helpful in characterizing the main term Sm
1,1:

Sm
1,1 =

〈
U>

∆UΣ
2
?,1, (U

>U)−1U>
∆U

〉
=
∥∥(U>U)−1/2U>

∆UΣ?,1

∥∥2
F
.

The perturbation term S
p
1,1 is bounded by

|Sp
1,1| ≤ ‖M1(∆S)‖F

∥∥∥U(U>U)−1
∥∥∥ ‖∆U‖‖M1(∆S)‖F ≤ ε(1− ε)−1‖∆S‖2F,

which follows directly from Lemma 10.

Step 2: tackling S1,2. Following the same recipe as above, we can apply the mode-2 matricization
to S1,2 to see

S1,2 =
〈
M2(∆S), (V

>V )−1V >
∆V M2(S?)

(
Ir3 ⊗U>

? U(U>U)−1
)〉

=
〈
M2(∆S), (V

>V )−1V >
∆V M2(S)

〉

︸ ︷︷ ︸
=:Sm

1,2

−
〈
M2(∆S), (V

>V )−1V >
∆V M2(∆S)

〉

︸ ︷︷ ︸
=:Sp,1

1,2

+
〈
M2(∆S), (V

>V )−1V >
∆V M2(S?)

(
Ir3 ⊗ (U>

? U(U>U)−1 − Ir1)
)〉

︸ ︷︷ ︸
=:Sp,2

1,2

.

In view of the relation (44), we can rewrite the main term Sm
1,2 as

Sm
1,2 =

∥∥∥(V >V )−1/2V >
∆V Σ?,2

∥∥∥
2

F
.

In addition, for the perturbation terms, Lemma 10 allows us to obtain

|Sp,1
1,2 | ≤ ‖M2(∆S)‖F

∥∥∥V (V >V )−1
∥∥∥ ‖∆V ‖‖M2(∆S)‖F ≤ ε(1− ε)−1‖∆S‖2F.

Moreover, we can write U>
? U(U>U)−1 − Ir1 = −∆

>
UU(U>U)−1, and bound S

p,2
1,2 as

|Sp,2
1,2 | ≤ ‖M2(∆S)‖F‖V (V >V )−1‖‖∆V M2(S?)‖F‖∆U‖‖U(U>U)−1‖

≤ ε(1− ε)−2‖∆S‖F‖∆V Σ?,2‖F.

Step 3: tackling S1,3. Similar to before, we rewrite S1,3 by applying the mode-3 matricization
as

S1,3 =
〈
M3(∆S), (W

>W )−1W>
∆WM3(S?)

(
V >
? V (V >V )−1 ⊗U>

? U(U>U)−1
)〉
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=
〈
M3(∆S), (W

>W )−1W>
∆WM3(S)

〉

︸ ︷︷ ︸
=:Sm

1,3

−
〈
M3(∆S), (W

>W )−1W>
∆WM3(∆S)

〉

︸ ︷︷ ︸
=:Sp,1

1,3

+
〈
M3(∆S), (W

>W )−1W>
∆WM3(S?)

(
V >
? V (V >V )−1 ⊗U>

? U(U>U)−1 − Ir2 ⊗ Ir1

)〉

︸ ︷︷ ︸
=:Sp,2

1,3

.

The main term obeys (thanks again to the identity (44))

Sm
1,3 =

∥∥(W>W )−1/2W>
∆WΣ?,3

∥∥2
F
.

As the same time, the perturbation term S
p,1
1,3 can be bounded by

|Sp,1
1,3 | ≤ ‖M3(∆S)‖F

∥∥∥W (W>W )−1
∥∥∥ ‖∆W ‖‖M3(∆S)‖F ≤ ε(1− ε)−1‖∆S‖2F.

Similarly, we have

|Sp,2
1,3 | ≤ ‖M3(∆S)‖F‖W (W>W )−1‖‖∆WM3(S?)‖F

∥∥∥V >
? V (V >V )−1 ⊗U>

? U(U>U)−1 − Ir2 ⊗ Ir1

∥∥∥

≤ 2ε+ ε2

(1− ε)3
‖∆S‖F‖∆WΣ?,3‖F,

where we use the decomposition

V >
? V (V >V )−1 ⊗U>

? U(U>U)−1 − Ir2 ⊗ Ir1 = (V? ⊗U? − V ⊗U)>
(
V (V >V )−1 ⊗U(U>U)−1

)

and its immediate consequence
∥∥∥V >

? V (V >V )−1 ⊗U>
? U(U>U)−1 − Ir2 ⊗ Ir1

∥∥∥ ≤ ‖V? ⊗U? − V ⊗U‖
∥∥∥V (V >V )−1

∥∥∥
∥∥∥U(U>U)−1

∥∥∥

≤ 2ε+ ε2

(1− ε)2
.

Step 4: putting all pieces together. Combine results of S1,1,S1,2,S1,3 to see

S1 =
∥∥(U>U)−1/2U>

∆UΣ?,1

∥∥2
F
+
∥∥(V >V )−1/2V >

∆V Σ?,2

∥∥2
F
+
∥∥(W>W )−1/2W>

∆WΣ?,3

∥∥2
F
+S1,p,

where the aggregated perturbation term S
p
1 obeys

|Sp
1 | ≤ ε‖∆S‖F

(
(1− ε)−2‖∆V Σ?,2‖F + (2 + ε)(1− ε)−3‖∆WΣ?,3‖F + 3(1− ε)−1‖∆S‖F

)
.

It is straightforward to check that |Sp
1 | ≤ C1ε dist

2(Ft,F?) for some absolute constant C1 > 1.

B.4 Proof of Claim 4

Reuse the decomposition (50) and the elementary inequality (a+ b+ c)2 ≤ 3(a2+ b2+ c2) to obtain

S2 ≤ 3
∥∥∥((U>U)−1U>

∆U , Ir2 , Ir3) · S?

∥∥∥
2

F︸ ︷︷ ︸
=:S2,1

+3
∥∥∥((U>U)−1U>U?, (V

>V )−1V >
∆V , Ir3) · S?

∥∥∥
2

F︸ ︷︷ ︸
=:S2,2
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+ 3
∥∥∥((U>U)−1U>U?, (V

>V )−1V >V?, (W
>W )−1W>

∆W ) · S?

∥∥∥
2

F︸ ︷︷ ︸
=:S2,3

.

Apply the mode-1 matricization and Lemma 10 to S2,1 to see

S2,1 =
∥∥∥(U>U)−1U>

∆UM1(S?)
∥∥∥
2

F

≤ ‖(U>U)−1‖
∥∥(U>U)−1/2U>

∆UM1(S?)
∥∥2
F

≤ (1− ε)−2
∥∥(U>U)−1/2U>

∆UΣ?,1

∥∥2
F
.

Similarly, apply the mode-2 (resp. mode-3) matricization to S2,2 (resp. S2,3) to see

S2,2 =
∥∥∥(V >V )−1V >

∆V M2(S?)
(
Ir3 ⊗U>

? U(U>U)−1
)∥∥∥

2

F

≤ ‖(V >V )−1‖
∥∥(V >V )−1/2V >

∆V M2(S?)
∥∥2
F
‖U(U>U)−1‖2

≤ (1− ε)−4
∥∥(V >V )−1/2V >

∆V Σ?,2

∥∥2
F
,

and

S2,3 =
∥∥∥(W>W )−1W>

∆WM3(S?)
(
V >
? V (V >V )−1 ⊗U>

? U(U>U)−1
)∥∥∥

2

F

≤ ‖(W>W )−1‖
∥∥(W>W )−1/2W>

∆WM3(S?)
∥∥2
F
‖U(U>U)−1‖2‖V (V >V )−1‖2

≤ (1− ε)−6
∥∥(W>W )−1/2W>

∆WΣ?,3

∥∥2
F
.

Combine the bounds on S2,1,S2,2,S2,3 to write S2 as

S2 ≤ 3(1− ε)−2
∥∥(U>U)−1/2U>

∆UΣ?,1

∥∥2
F
+ 3(1− ε)−4

∥∥(V >V )−1/2V >
∆V Σ?,2

∥∥2
F

+ 3(1− ε)−6
∥∥(W>W )−1/2W>

∆WΣ?,3

∥∥2
F
.

By symmetry, one can permute ∆U ,∆V ,∆W , and take the average to balance their coefficients
and reach the conclusion that

S2 ≤ 3
(∥∥(U>U)−1/2U>

∆UΣ?,1

∥∥2
F
+
∥∥(V >V )−1/2V >

∆V Σ?,2

∥∥2
F
+
∥∥(W>W )−1/2W>

∆WΣ?,3

∥∥2
F

)
+S

p
2 ,

where the perturbation term S
p
2 obeys

S
p
2 ≤

(
(1− ε)−2 + (1− ε)−4 + (1− ε)−6 − 3

) (
‖∆UΣ?,1‖2F + ‖∆V Σ?,2‖2F + ‖∆WΣ?,3‖2F

)
.

A bit simplification yields S
p
2 ≤ C2ε dist

2(Ft,F?).

Appendix C. Proof for Tensor Completion

This section is devoted to the proofs of claims related to tensor completion. To begin with, we state
several bounds regarding the `2,∞ norm that will be repeatedly used throughout this section.

Lemma 11 Suppose that X ? is µ-incoherent, and that F = (U ,V ,W ,S) satisfies dist(F ,F?) ≤
εσmin(X ?) for ε < 1 and the incoherence condition (29). Then one has the following bounds regarding
the `2,∞ norm:

√
n1‖UM1(S)‖2,∞ ≤ (1− ε)−2CB

√
µrσmax(X ?); (51a)
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√
n1‖UM1(S?)‖2,∞ =

√
n1‖UΣ?,1‖2,∞ ≤ (1− ε)−3CB

√
µrσmax(X ?); (51b)

√
n1‖U‖2,∞ ≤ (1− ε)−3CBκ

√
µr. (51c)

By symmetry, a corresponding set of bounds hold for V , V̆ and W , W̆ .

Proof For (51a), we have

‖UM1(S)‖2,∞ =
∥∥UŬ>

(
W (W>W )−1 ⊗ V (V >V )−1

)∥∥
2,∞

≤ ‖UŬ>‖2,∞
∥∥∥W (W>W )−1

∥∥∥
∥∥∥V (V >V )−1

∥∥∥

≤ ‖UŬ>‖2,∞(1− ε)−2,

where the first line uses (39), the second line follows from ‖AB‖2,∞ ≤ ‖A‖2,∞‖B‖, and the last
inequality uses (35c). This combined with condition (29) leads to the declared bound.

Similarly for (51b), we have

‖UΣ?,1‖2,∞ =
∥∥UŬ>Ŭ(Ŭ>Ŭ)−1

Σ?,1

∥∥
2,∞

≤ ‖UŬ>‖2,∞
∥∥∥Ŭ(Ŭ>Ŭ)−1

Σ?,1

∥∥∥

≤ ‖UŬ>‖2,∞(1− ε)−3,

where the last line follows from (35f).
Finally, observe that

‖UΣ?,1‖2,∞ ≥ ‖U‖2,∞σmin(Σ?,1) ≥ ‖U‖2,∞σmin(X ?).

Combining the above inequality with (51b), we reach the bound (51c).

C.1 Proof of Lemma 2

A crucial operation, which aims to preserve the desirable incoherence property with respect to
the scaled distance, is the scaled projection F = PB(F+) defined in (19). For the purpose of
understanding, it is instructive to view F as the solution to the following optimization problems:

U = argmin
U

∥∥(U −U+)Ŭ
>
+

∥∥2
F

s.t.
√
n1‖UŬ>

+ ‖2,∞ ≤ B,

V = argmin
V

∥∥(V − V+)V̆
>
+

∥∥2
F

s.t.
√
n2‖V V̆ >

+ ‖2,∞ ≤ B,

W = argmin
W

∥∥(W −W+)W̆
>
+

∥∥2
F

s.t.
√
n3‖WW̆>

+ ‖2,∞ ≤ B.

(52)

The remaining proof follows similar arguments as ?. To begin, we collect a useful claim as
follows.

Claim 5 ((?, Claim 5)) For vectors u,u? ∈ R
n and λ ≥ ‖u?‖2/‖u‖2, it holds that

‖(1 ∧ λ)u− u?‖2 ≤ ‖u− u?‖2.
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Proof of the non-expansive property. We begin with proving the non-expansive property.
Denote the optimal alignment matrices between F+ and F? as {Q+,k}k=1,2,3, whose existence is
guaranteed by Lemma 6. Assume for now (which shall be established at the end of the proof) that
for any 1 ≤ i1 ≤ n1, we have

B
√
n1

∥∥U+(i1, :)Ŭ>
+

∥∥
2

≥
∥∥U?(i1, :)Σ?,1

∥∥
2∥∥U+(i1, :)Q+,1Σ?,1

∥∥
2

. (53)

This taken together with Claim 5 immediately implies

∥∥U(i1, :)Q+,1Σ?,1 −U?(i1, :)Σ?,1

∥∥
2
≤
∥∥U+(i1, :)Q+,1Σ?,1 −U?(i1, :)Σ?,1

∥∥
2
, 1 ≤ i1 ≤ n1,

=⇒
∥∥(UQ+,1 −U?)Σ?,1

∥∥
F
≤
∥∥(U+Q+,1 −U?)Σ?,1

∥∥
F
.

Repeating similar arguments for the other two factors, we obtain

∥∥(V Q+,2 − V?)Σ?,2

∥∥
F
≤
∥∥(V+Q+,2 − V?)Σ?,2

∥∥
F
,
∥∥(WQ+,3 −W?)Σ?,3

∥∥
F
≤
∥∥(W+Q+,3 −W?)Σ?,3

∥∥
F
.

Combining the above bounds, we have

dist2(F ,F?) ≤ ‖(UQ+,1 −U?)Σ?,1‖2F + ‖(V Q+,2 − V?)Σ?,2‖2F
+ ‖(WQ+,3 −W?)Σ?,3‖2F +

∥∥∥(Q−1
+,1,Q

−1
+,2,Q

−1
+,3) · S − S?

∥∥∥
2

F
= dist2(F+,F?).

Proof of the incoherence condition. Turning to the incoherence condition, it follows that for
any 1 ≤ i1 ≤ n1,

∥∥U(i1, :)Ŭ
>
∥∥2
2
=

n2∑

i2=1

n3∑

i3=1

〈
U(i1, :)M1(S),W (i3, :)⊗ V (i2, :)

〉2

(i)
=

n2∑

i2=1

n3∑

i3=1

〈
U(i1, :)M1(S),W+(i3, :)⊗ V+(i2, :)

〉2
(
1 ∧ B

√
n3‖W+(i3, :)W̆>

+ ‖2

)2(
1 ∧ B

√
n2‖V+(i2, :)V̆ >

+ ‖2

)2

(ii)

≤
n2∑

i2=1

n3∑

i3=1

〈
U(i1, :)M1(S),W+(i3, :)⊗ V+(i2, :)

〉2

(iii)
=

n2∑

i2=1

n3∑

i3=1

(
1 ∧ B

√
n1‖U+(i1, :)Ŭ>

+ ‖2

)2 〈
U+(i1, :)M1(S+),W+(i3, :)⊗ V+(i2, :)

〉2

=

(
1 ∧ B

√
n1‖U+(i1, :)Ŭ>

+ ‖2

)2 ∥∥U+(i1, :)Ŭ
>
+

∥∥2
2

(iv)

≤ B2

n1
.

Here, (i) and (iii) follow from the definition of the scaled projection (19), (ii) and (iv) follow from
the basic relations a ∧ b ≤ a and a ∧ b ≤ b. By symmetry, one has

√
n1‖UŬ>‖2,∞ ∨√

n2‖V V̆ >‖2,∞ ∨√
n3‖WW̆>‖2,∞ ≤ B.

The proof is then finished once we prove inequality (53).
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Proof of (53). Under the condition dist(F+,F?) ≤ εσmin(X ?), invoke (35a) in Lemma 10 on the

factor quadruple
(
U+Q+,1,V+Q+,2,W+Q+,3, (Q

−1
+,1,Q

−1
+,2,Q

−1
+,3) · S+

)
to see

‖V+Q+,2‖ ∨ ‖W+Q+,3‖ ∨
∥∥∥∥M1

(
(Q−1

+,1,Q
−1
+,2,Q

−1
+,3) · S+

)>
Σ

−1
?,1

∥∥∥∥ ≤ 1 + ε,

which further implies that

∥∥Ŭ+Q
−>
+,1Σ

−1
?,1

∥∥ ≤ ‖V+Q+,2‖‖W+Q+,3‖
∥∥∥∥M1

(
(Q−1

+,1,Q
−1
+,2,Q

−1
+,3) · S+

)>
Σ

−1
?,1

∥∥∥∥ ≤ (1 + ε)3. (54)

For any 1 ≤ i1 ≤ n1, one has
∥∥U+(i1, :)Ŭ

>
+

∥∥
2
≤ ‖U+(i1, :)Q+,1Σ?,1‖2

∥∥Ŭ+Q
−>
+,1Σ

−1
?,1

∥∥

≤ ‖U+(i1, :)Q+,1Σ?,1‖2 (1 + ε)3,

where the second line follows from the bound (54). In addition, the incoherence assumption of X ?

(15) implies that

√
n1

∥∥U?(i1, :)Σ?,1

∥∥
2
≤ √

n1

∥∥U?(i1, :)
∥∥
2

∥∥Σ?,1

∥∥ ≤ √
µrσmax(X ?) ≤ B(1 + ε)−3,

where the last inequality follows from the choice of B. Take the above two relations collectively to
reach the advertised bound (53).

C.2 Concentration inequalities

We gather several useful concentration inequalities regarding the partial observation operator PΩ(·)
for the Bernoulli observation model (17).

Lemma 12 Suppose that X ? is µ-incoherent, and that pn1n2n3 & nµ2r2 log n. With overwhelming
probability, one has

∣∣〈(p−1PΩ − I)(XA),XB

〉∣∣ ≤ CT

√
nµ2r2 log n

pn1n2n3
‖XA‖F‖XB‖F

simultaneously for all tensors XA,XB ∈ R
n1×n2×n3 in the form of

XA = (UA,V?,W?) · SA,1 + (U?,VA,W?) · SA,2 + (U?,V?,WA) · SA,3,

XB = (UB,V?,W?) · SB,1 + (U?,VB,W?) · SB,2 + (U?,V?,WB) · SB,3,

where UA,UB ∈ R
n1×r1 , VA,VB ∈ R

n2×r2 , WA,WB ∈ R
n3×r3 , and SA,k,SB,k ∈ R

r1×r2×r3 are
arbitrary factors, and CT > 0 is some universal constant.

Lemma 13 ((Cai et al., 2019, Lemma D.2)) For any fixed X ∈ R
n1×n2×n3 , with overwhelming

probability, one has

∥∥(p−1PΩ − I)(X )
∥∥ ≤ CY

(
p−1 log3 n‖X‖∞ +

√
p−1 log5 n max

k=1,2,3
‖Mk(X )>‖2,∞

)
,

where CY > 0 is some universal constant.
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Lemma 14 With overwhelming probability, one has

∣∣〈(p−1PΩ − I)((UA,VA,WA) · SA), (UB,VB,WB) · SB

〉∣∣ ≤ CY

(
p−1 log3 n+

√
p−1n log5 n

)
N,

simultaneously for all tensors (UA,VA,WA) · SA and (UB,VB,WB) · SB, where the quantity N

obeys

N ≤
(
‖UAM1(SA)‖2,∞‖UBM1(SB)‖F ∧ ‖UAM1(SA)‖F‖UBM1(SB)‖2,∞

)
(
‖VA‖2,∞‖VB‖F ∧ ‖VA‖F‖VB‖2,∞

)(
‖WA‖2,∞‖WB‖F ∧ ‖WA‖F‖WB‖2,∞

)
.

By symmetry, the above bound continues to hold if permuting the occurrences of U , V , and W .

Lemma 15 ((?, Lemma 3.24),(Cai et al., 2021a, Lemma 1)) For any fixed X ∈ R
n1×n2×n3 ,

k = 1, 2, 3, with overwhelming probability, one has

∥∥∥Poff-diag

(
p−2Mk(PΩ(X ))Mk(PΩ(X ))>

)
−Mk(X )Mk(X )>

∥∥∥

≤ CM

(
p−1
√

log n‖Mk(X )‖2,∞‖Mk(X )>‖2,∞ +
√
p−1 log n σmax(Mk(X ))‖Mk(X )>‖2,∞

)

+ CM

(
p−1 log n‖X‖∞ +

√
p−1 log n‖Mk(X )>‖2,∞

)2
log n+ ‖Mk(X )‖22,∞,

where CM > 0 is some universal constant.

C.2.1 Proof of Lemma 12

This lemma is essentially (Yuan and Zhang, 2016, Lemma 5) under the Bernoulli observation model.
Here, we provide a simpler proof based on the matrix Bernstein inequality. Let E i1,i2,i3 be the tensor
with only the (i1, i2, i3)-th entry as 1 and all the other entries as 0, and let δi1,i2,i3 ∼ Bernoulli(p)
be an i.i.d. Bernoulli random variable for 1 ≤ ik ≤ nk, k = 1, 2, 3. Define an operator PT :
R
n1×n2×n3 7→ R

n1×n2×n3 as

PT (X ) = (In1
,V?V

>
? ,W?W

>
? ) ·X + (U?U

>
? ,V?⊥V

>
?⊥,W?W

>
? ) ·X + (U?U

>
? ,V?V

>
? ,W?⊥W

>
?⊥) ·X ,

where V?⊥,W?⊥ denote the orthogonal complements of V?,W?. It is straightforward to verify that
PT (·) defines a projection, and that

XA = (UA,V?,W?) · SA,1 + (U?,VA,W?) · SA,2 + (U?,V?,WA) · SA,3

= PT ((UA,V?,W?) · SA,1) + PT ((U?,VA,W?) · SA,2) + PT ((U?,V?,WA) · SA,3)

= PT (XA) =
∑

i1,i2,i3

〈PT (XA),E i1,i2,i3〉E i1,i2,i3 =
∑

i1,i2,i3

〈XA,PT (E i1,i2,i3)〉E i1,i2,i3 .

A similar expression holds for XB. Hence, we have

∣∣〈(p−1PΩ − I)(XA),XB

〉∣∣ =

∣∣∣∣∣∣

∑

i1,i2,i3

(
p−1δi1,i2,i3 − 1

)
〈XA,PT (E i1,i2,i3)〉 〈XB,PT (E i1,i2,i3)〉

∣∣∣∣∣∣

=

∣∣∣∣∣∣

〈
vec(XA),

∑

i1,i2,i3

(p−1δi1,i2,i3 − 1) vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))
> vec(XB)

〉
∣∣∣∣∣∣
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≤ ‖XA‖F‖XB‖F

∥∥∥∥∥∥

∑

i1,i2,i3

(p−1δi1,i2,i3 − 1) vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))
>

∥∥∥∥∥∥
.

Therefore it suffices to bound the last term in the above inequality, which we resort to the matrix
Bernstein inequality: with overwhelming probability, one has
∥∥∥∥∥∥

∑

i1,i2,i3

(p−1δi1,i2,i3 − 1) vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))
>

∥∥∥∥∥∥
.

(
nµ2r2 log n

pn1n2n3
+

√
nµ2r2 log n

pn1n2n3

)

(55)

.

√
nµ2r2 log n

pn1n2n3
,

where the second line holds as long as pn1n2n3 & nµ2r2 log n. Plugging the above bound (which
will be proved at the end) in the previous one, we immediately arrive at the desired result:

∣∣〈(p−1PΩ − I)(XA),XB

〉∣∣ .
√

nµ2r2 log n

pn1n2n3
‖XA‖F‖XB‖F.

Proof of (55). By standard matrix Bernstein inequality, we have
∥∥∥∥∥∥

∑

i1,i2,i3

(p−1δi1,i2,i3 − 1) vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))
>

∥∥∥∥∥∥
. L log n+ σ

√
log n,

where

L = max
i1,i2,i3

∥∥∥(p−1δi1,i2,i3 − 1) vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))
>
∥∥∥ ,

σ2 =

∥∥∥∥∥∥

∑

i1,i2,i3

E(p−1δi1,i2,i3 − 1)2 vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))
> vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))

>

∥∥∥∥∥∥
.

• Here, L obeys

L = max
i1,i2,i3

∥∥∥(p−1δi1,i2,i3 − 1) vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))
>
∥∥∥ ≤ p−1 max

i1,i2,i3
‖PT (E i1,i2,i3)‖2F ,

where the last inequality uses |(p−1δi1,i2,i3 − 1)| ≤ p−1. To proceed, first notice that the three
terms in PT (E i1,i2,i3) are mutually orthogonal, which allows

‖PT (E i1,i2,i3)‖2F =
∥∥∥(In1

,V?V
>
? ,W?W

>
? ) · E i1,i2,i3

∥∥∥
2

F
+
∥∥∥(U?U

>
? ,V?⊥V

>
?⊥,W?W

>
? ) · E i1,i2,i3

∥∥∥
2

F

+
∥∥∥(U?U

>
? ,V?V

>
? ,W?⊥W

>
?⊥) · E i1,i2,i3

∥∥∥
2

F
.

Since U?,V?,W? have orthonormal columns, it is straightforward to see
∥∥∥(In1

,V?V
>
? ,W?W

>
? ) · E i1,i2,i3

∥∥∥
2

F
= ‖In1

(i1, :)‖22
∥∥∥V?(i2, :)V

>
?

∥∥∥
2

2

∥∥∥W?(i3, :)W
>
?

∥∥∥
2

2

≤ ‖V?‖22,∞‖W?‖22,∞;

45



Tong, Ma, Prater-Bennette, Tripp, Chi

∥∥∥(U?U
>
? ,V?⊥V

>
?⊥,W?W

>
? ) · E i1,i2,i3

∥∥∥
2

F
=
∥∥∥U?(i1, :)U

>
?

∥∥∥
2

2

∥∥∥V?⊥(i2, :)V
>
?⊥

∥∥∥
2

2

∥∥∥W?(i3, :)W
>
?

∥∥∥
2

2

≤ ‖U?‖22,∞‖W?‖22,∞;
∥∥∥(U?U

>
? ,V?V

>
? ,W?⊥W

>
?⊥) · E i1,i2,i3

∥∥∥
2

F
=
∥∥∥U?(i1, :)U

>
?

∥∥∥
2

2

∥∥∥V?(i2, :)V
>
?

∥∥∥
2

2

∥∥∥W?⊥(i3, :)W
>
?⊥

∥∥∥
2

2

≤ ‖U?‖22,∞‖V?‖22,∞.

Finally use the definition of incoherence (cf. Definition 2) to conclude

L ≤ p−1
(
‖V?‖22,∞‖W?‖22,∞ + ‖U?‖22,∞‖W?‖22,∞ + ‖U?‖22,∞‖V?‖22,∞

)
≤ 3nµ2r2

pn1n2n3
.

• In addition, σ2 obeys

σ2 ≤ p−1 max
i1,i2,i3

‖PT (E i1,i2,i3)‖2F

∥∥∥∥∥∥

∑

i1,i2,i3

vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))
>

∥∥∥∥∥∥
≤ 3nµ2r2

pn1n2n3
,

where we have used the variational representation to conclude
∥∥∥∥∥∥

∑

i1,i2,i3

vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))
>

∥∥∥∥∥∥
= sup

X̃ :‖X̃‖F≤1

∑

i1,i2,i3

〈X̃ ,PT (E i1,i2,i3)〉2

= sup
X̃ :‖X̃‖F≤1

‖PT (X̃ )‖2F ≤ 1.

Plugging the expressions of L and σ leads to the advertised bound (55).

C.2.2 Proof of Lemma 14

This lemma generalizes (Chen and Li, 2019, Lemma 8) to the tensor setting, which is a powerful
tool in the analysis of matrix completion Chen et al. (2020); Tong et al. (2021a). We begin by
decomposing (UA,VA,WA) · SA into a sum of r2r3 rank-1 tensors:

(UA,VA,WA) · SA =

r2∑

a2=1

r3∑

a3=1

(ua2,a3 ,va2 ,wa3) · 1,

where we denote the column vectors ua2,a3 := [UAM1(SA)](:, (r3−1)a2+a3), va2 := VA(:, a2), and
wa3 := WA(:, a3) for notational convenience. Similarly, we can decompose (UB,VB,WB) · SB as

(UB,VB,WB) · SB =

r2∑

b2=1

r3∑

b3=1

(ub2,b3 ,vb2 ,wb3) · 1,

with ub2,b3 , vb2 and wb3 defined analogously. We further denote J ∈ R
n1×n2×n3 as the tensor with

all-one entries, i.e. J (i1, i2, i3) = 1 for all 1 ≤ ik ≤ nk, k = 1, 2, 3. With these preparation in hand,
by the triangle inequality we have

∣∣〈(p−1PΩ − I)((UA,VA,WA) · SA), (UB,VB,WB) · SB

〉∣∣

≤
r2∑

a2,b2=1

r3∑

a3,b3=1

∣∣〈(p−1PΩ − I)((ua2,a3 ,va2 ,wa3) · 1), (ub2,b3 ,vb2 ,wb3) · 1
〉∣∣
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=

r2∑

a2,b2=1

r3∑

a3,b3=1

∣∣〈(p−1PΩ − I)(J ), (ua2,a3 � ub2,b3 ,va2 � vb2 ,wa3 �wb3) · 1
〉∣∣

≤
r2∑

a2,b2=1

r3∑

a3,b3=1

‖(p−1PΩ − I)(J )‖‖ua2,a3 � ub2,b3‖2‖va2 � vb2‖2‖wa3 �wb3‖2

= ‖(p−1PΩ − I)(J )‖N,

where � denotes the Hadamard (entrywise) product, and

N :=

r2∑

a2,b2=1

r3∑

a3,b3=1

‖ua2,a3 � ub2,b3‖2‖va2 � vb2‖2‖wa3 �wb3‖2.

Therefore, it boils down to controlling ‖(p−1PΩ − I)(J )‖ and N.

• Regarding ‖(p−1PΩ−I)(J )‖, Lemma 13 tells that, with overwhelming probability, it is bounded
by

‖(p−1PΩ − I)(J )‖ ≤ CY

(
p−1 log3 n+

√
p−1n log5 n

)
,

where we use the fact ‖J ‖∞ = 1 and maxk=1,2,3 ‖Mk(J )>‖2,∞ ≤ √
n.

• Turning to N, applying the Cauchy-Schwarz inequality we have

N ≤

√√√√
r2∑

a2,b2=1

r3∑

a3,b3=1

‖ua2,a3 � ub2,b3‖22

√√√√
r2∑

a2,b2=1

‖va2 � vb2‖22
r3∑

a3,b3=1

‖wa3 �wb3‖22

=

√√√√
n1∑

i1=1

‖UA(i1, :)M1(SA)‖22‖UB(i1, :)M1(SB)‖22
√√√√

n2∑

i2=1

‖VA(i2, :)‖22‖VB(i2, :)‖22

√√√√
n3∑

i3=1

‖WA(i3, :)‖22‖WB(i3, :)‖22

≤
(
‖UAM1(SA)‖2,∞‖UBM1(SB)‖F ∧ ‖UAM1(SA)‖F‖UBM1(SB)‖2,∞

)
(
‖VA‖2,∞‖VB‖F ∧ ‖VA‖F‖VB‖2,∞

)(
‖WA‖2,∞‖WB‖F ∧ ‖WA‖F‖WB‖2,∞

)
.

The proof is complete by combining the above two bounds.

C.3 Proof of spectral initialization (Lemma 1)

In view of Lemma 8, we start by relating dist(F+,F?) to ‖(U+,V+,W+) · S+ −X ?‖F as

dist(F+,F?) ≤ (
√
2 + 1)3/2 ‖(U+,V+,W+) · S+ −X ?‖F .

With this bound in mind, it suffices to control ‖(U+,V+,W+) · S+ −X ?‖F. To proceed, define
PU := U+U

>
+ as the projection matrix onto the column space of U+, PU⊥

:= In1
− PU as its

orthogonal complement, and define PV ,PV⊥
,PW ,PW⊥

analogously. We have the decomposition

X ? = (PU ,PV ,PW ) ·X ? + (PU⊥
,PV ,PW ) ·X ? + (In1

,PV⊥
,PW ) ·X ? + (In1

, In2
,PW⊥

) ·X ?.

47



Tong, Ma, Prater-Bennette, Tripp, Chi

Expand the following squared norm and use that the four terms are mutually orthogonal to see

‖(U+,V+,W+) · S+ −X ?‖2F =
∥∥(PU ,PV ,PW ) ·(p−1Y)−X ?

∥∥2
F

=
∥∥(PU ,PV ,PW ) ·(p−1Y −X ?)− (PU⊥

,PV ,PW ) ·X ? − (In1
,PV⊥

,PW ) ·X ? − (In1
, In2

,PW⊥
) ·X ?

∥∥2
F

=
∥∥(PU ,PV ,PW ) ·(p−1Y −X ?)

∥∥2
F
+ ‖(PU⊥

,PV ,PW ) ·X ?‖2F + ‖(In1
,PV⊥

,PW ) ·X ?‖2F
+ ‖(In1

, In2
,PW⊥

) ·X ?‖2F
≤
∥∥(PU ,PV ,PW ) ·(p−1Y −X ?)

∥∥2
F
+ ‖PU⊥

M1(X ?)‖2F + ‖PV⊥
M2(X ?)‖2F + ‖PW⊥

M3(X ?)‖2F .
(56)

We next control the terms in (56) one by one.

Bounding ‖(PU ,PV ,PW ) ·(Y −X ?)‖F. For the first term in (56), since (PU ,PV ,PW ) ·(p−1Y −
X ?) has a multilinear rank of at most r, applying the relation (7) leads to
∥∥(PU ,PV ,PW ) ·(p−1Y −X ?)

∥∥
F
≤ r

∥∥(PU ,PV ,PW ) ·(p−1Y −X ?)
∥∥ ≤ r

∥∥(p−1PΩ − I)(X ?)
∥∥ .

Therefore, it comes down to control
∥∥(p−1PΩ − I)(X ?)

∥∥. Lemma 13 tells with overwhelming prob-
ability that

∥∥(p−1PΩ − I)(X ?)
∥∥ .

(
p−1 log3 n‖X ?‖∞ +

√
p−1 log5 n max

k=1,2,3
‖Mk(X ?)

>‖2,∞
)

.


µ3/2r3/2 log3 n

p
√
n1n2n3

+

√
nµ2r2 log5 n

pn1n2n3


σmax(X?),

where the second line follows from the following relations in view of the incoherence property of X ?

(cf. Definition 2):

‖X ?‖∞ ≤ σmax(X ?)‖U?‖2,∞‖V?‖2,∞‖W?‖2,∞ ≤ σmax(X ?)

√
µ3r3

n1n2n3
;

‖M1(X ?)
>‖2,∞ ≤ ‖U?M1(S?)‖‖W?‖2,∞‖V?‖2,∞ ≤ σmax(X ?)

√
µ2r2

n2n3
;

‖M2(X ?)
>‖2,∞ ≤ ‖V?M2(S?)‖‖W?‖2,∞‖U?‖2,∞ ≤ σmax(X ?)

√
µ2r2

n1n3
;

‖M3(X ?)
>‖2,∞ ≤ ‖W?M3(S?)‖‖V?‖2,∞‖U?‖2,∞ ≤ σmax(X ?)

√
µ2r2

n1n2
.

(57)

In total, the first term in (56) is bounded by

∥∥(PU ,PV ,PW ) ·(p−1Y −X ?)
∥∥
F
.


µ3/2r3/2 log3 n

p
√
n1n2n3

+

√
nµ2r2 log5 n

pn1n2n3


 rκσmin(X?).

Bounding ‖PU⊥
M1(X ?)‖F. For the second term in (56), first bound it by

‖PU⊥
M1(X ?)‖F ≤

√
r1

σmin(X ?)

∥∥∥PU⊥
M1(X ?)M1(X ?)

>
∥∥∥ ,
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where we use the facts that PU⊥
M1(X ?) has rank at most r1 and ‖AB‖ ≥ ‖A‖σmin(B). For

notation simplicity, we abbreviate

G := Poff-diag(p
−2M1(Y)M1(Y)>), and G? := M1(X ?)M1(X ?)

>.

Invoke Lemma 15 together with incoherence conditions (57) as well as

‖M1(X ?)‖2,∞ ≤ ‖U?‖2,∞
∥∥∥M1(S?)(W? ⊗ V?)

>
∥∥∥ ≤ σmax(X ?)

√
µr1
n1

to conclude with overwhelming probability that

‖G−G?‖ .

(
µ3/2r3/2

√
log n

p
√
n1n2n3

+

√
nµ2r2 log n

pn1n2n3
+

µ3r3 log3 n

p2n1n2n3
+

nµ2r2 log2 n

pn1n2n3
+

µr1
n1

)
σ2
max(X ?).

Under the conditions n1 & ε−1
0 µr

3/2
1 κ2 and

pn1n2n3 & ε−1
0

√
n1n2n3µ

3/2r5/2κ2 log3 n+ ε−2
0 nµ2r4κ4 log5 n

for some small constant ε0 > 0, we have ‖G−G?‖ ≤ ε0σ
2
min(X ?), which implies that G is positive

semi-definite, and therefore ‖PU⊥
G‖ = σr1+1(G). By the triangle inequality, we obtain

‖PU⊥
G?‖ ≤ ‖PU⊥

(G−G?)‖ + ‖PU⊥
G‖ ≤ ‖G−G?‖ + σr1+1 (G)

≤ ‖G−G?‖ + σr1+1 (G?) + ‖G−G?‖ = 2 ‖G−G?‖ ,

where the second line follows from Weyl’s inequality and that G? has rank r1. In total, the second
term of (56) is bounded by

‖PU⊥
M1(X ?)‖F ≤ 2

√
r1

σmin(X ?)
‖G−G?‖

.

(
µ3/2r2

√
log n

p
√
n1n2n3

+

√
nµ2r3 log n

pn1n2n3
+

µ3r7/2 log3 n

p2n1n2n3
+

nµ2r5/2 log2 n

pn1n2n3
+

µr
3/2
1

n1

)
κ2σmin(X ?).

Completing the proof. The third and fourth terms in (56) can be bounded similarly. In all, we
conclude that

dist(F+,F?) ≤ (
√
2 + 1)3/2 ‖(U+,V+,W+) · S+ −X ?‖F ≤ ε0σmin(X ?).

C.4 Proof of local convergence (Lemma 3)

Define the event E as the intersection of the events that Lemmas 12 and 14 hold, which happens
with overwhelming probability. The rest of the proof is then performed under the event that E
holds.

Given that dist(Ft,F?) ≤ εσmin(X ?), the conclusion ‖(Ut,Vt,Wt) · St −X ?‖F ≤ 3 dist(Ft,F?)
follows from the relation (37) in Lemma 10. As in the proof of Theorem 3, we reuse the notations
in (34) and (43). By the definition of dist(Ft+,F?), where Ft+ is the update before projection, one
has

dist2(Ft+,F?) ≤ ‖(Ut+Qt,1 −U?)Σ?,1‖2F + ‖(Vt+Qt,2 − V?)Σ?,2‖2F + ‖(Wt+Qt,3 −W?)Σ?,3‖2F
+
∥∥∥(Q−1

t,1 ,Q
−1
t,2 ,Q

−1
t,3 ) · St+ − S?

∥∥∥
2

F
. (58)
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In the sequel, we shall bound each square on the right hand side of equation (58) separately. After
a long journey of computation, the final result is

dist2(Ft+,F?) ≤ (1− η)2
(
‖∆UΣ?,1‖2F + ‖∆V Σ?,2‖2F + ‖∆WΣ?,3‖2F + ‖∆S‖2F

)

− η(2− 5η) ‖T U + T V + T W ‖2F − η(2− 5η)
(
‖DU‖2F + ‖DV ‖2F + ‖DW ‖2F

)

+ 2η(1− η)C(ε+ δ + δ2) dist2(Ft,F?) + η2C(ε+ δ + δ2) dist2(Ft,F?), (59)

where C > 1 is some universal constant, and δ is defined as

δ := CT

√
nµ2r2 log n

pn1n2n3
+ CY

(
p−1 log3 n+

√
p−1n log5 n

)√
µ3r4

n1n2n3
C3
Bκ

3. (60)

Under the condition

pn1n2n3 &
√
n1n2n3µ

3/2r2κ3 log3 n+ nµ3r4κ6 log5 n,

δ is a sufficiently small constant. As long as η ≤ 2/5 and ε is small, one has dist(Ft+,F?) ≤ (1 −
0.6η) dist(Ft,F?). Finally Lemma 2 implies dist(Ft+1,F?) ≤ dist(Ft+,F?) ≤ (1− 0.6η) dist(Ft,F?)
and the incoherence condition.

It then boils down to expanding and bounding the four terms in (58). As before, we omit the
control of the terms pertaining to V and W .

C.4.1 Bounding the term related to U

The first term in (58) is related to

(Ut+Qt,1 −U?)Σ?,1 =
(
U − ηM1

(
p−1PΩ((U ,V ,W ) · S −X ?)

)
Ŭ(Ŭ>Ŭ)−1 −U?

)
Σ?,1

= (1− η)∆UΣ?,1 − ηU?(Ŭ − Ŭ?)
>Ŭ(Ŭ>Ŭ)−1

Σ?,1

− ηM1

(
(p−1PΩ − I)((U ,V ,W ) · S −X ?)

)
Ŭ(Ŭ>Ŭ)−1

Σ?,1.

Take the squared norm of both sides to reach

‖(Ut+Qt,1 −U?)Σ?,1‖2F =
∥∥∥(1− η)∆UΣ?,1 − ηU?(Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1
Σ?,1

∥∥∥
2

F︸ ︷︷ ︸
=:Pm

U

− 2η(1− η)
〈
∆UΣ?,1,M1

(
(p−1PΩ − I)((U ,V ,W ) · S −X ?)

)
Ŭ(Ŭ>Ŭ)−1

Σ?,1

〉

︸ ︷︷ ︸
=:Pp,1

U

+ 2η2
〈
U?(Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1
Σ?,1,M1

(
(p−1PΩ − I)((U ,V ,W ) · S −X ?)

)
Ŭ(Ŭ>Ŭ)−1

Σ?,1

〉

︸ ︷︷ ︸
=:Pp,2

U

+ η2
∥∥∥M1

(
(p−1PΩ − I)((U ,V ,W ) · S −X ?)

)
Ŭ(Ŭ>Ŭ)−1

Σ?,1

∥∥∥
2

F︸ ︷︷ ︸
=:Pp,3

U

.

As before, the main term Pm
U has been handled in the tensor factorization problem in Section B;

see (47) and the bound (45a). Hence we shall focus on the perturbation terms.
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Step 1: bounding P
p,1
U . First, rewrite P

p,1
U as the inner product in the tensor space:

P
p,1
U =

〈(
∆UΣ

2
?,1(Ŭ

>Ŭ)−1,V ,W
)
· S, (p−1PΩ − I)((U ,V ,W ) · S −X ?)

〉
.

Apply the decomposition

(U ,V ,W ) · S −X ? = (U ,∆V ,W ) · S + (U ,V?,∆W ) · S + (U ,V?,W?) · S − (U?,V?,W?) · S?

= (U ,∆V ,W ) · S + (U ,V?,∆W ) · S + (U ,V?,W?) ·∆S + (∆U ,V?,W?) · S?

(61)

to further expand P
p,1
U as

P
p,1
U =

〈(
∆UΣ

2
?,1(Ŭ

>Ŭ)−1,V?,W?

)
· S, (p−1PΩ − I) ((U ,V?,W?) ·∆S + (∆U ,V?,W?) · S?)

〉

︸ ︷︷ ︸
=:Pp,1,1

U

+

〈(
∆UΣ

2
?,1(Ŭ

>Ŭ)−1,∆V ,W
)
· S +

(
∆UΣ

2
?,1(Ŭ

>Ŭ)−1,V?,∆W

)
· S,

(p−1PΩ − I) ((U ,V?,W?) · S − (U?,V?,W?) · S?)
〉

︸ ︷︷ ︸
=:Pp,1,2

U

+
〈(

∆UΣ
2
?,1(Ŭ

>Ŭ)−1,V ,W
)
· S, (p−1PΩ − I) ((U ,∆V ,W ) · S + (U ,V?,∆W ) · S)

〉

︸ ︷︷ ︸
=:Pp,1,3

U

.

We shall bound each term in the sequel.

• For the first term P
p,1,1
U , we resort to Lemma 12, which leads to

|Pp,1,1
U | ≤ CT

√
nµ2r2 log n

pn1n2n3

∥∥∥
(
∆UΣ

2
?,1(Ŭ

>Ŭ)−1,V?,W?

)
· S

∥∥∥
F
‖(U ,V?,W?) ·∆S + (∆U ,V?,W?) · S?‖F .

Further use (35i) to bound that
∥∥∥
(
∆UΣ

2
?,1(Ŭ

>Ŭ)−1,V?,W?

)
· S

∥∥∥
F
=
∥∥∥∆UΣ

2
?,1(Ŭ

>Ŭ)−1M1(S)(W? ⊗ V?)
>
∥∥∥
F

≤ ‖∆UΣ?,1‖F
∥∥∥Σ?,1(Ŭ

>Ŭ)−1M1(S)
∥∥∥

≤ ‖∆UΣ?,1‖F(1− ε)−5,

and that

‖(U ,V?,W?) ·∆S‖F ≤ ‖UM1(∆S)‖F ≤ (1 + ε)‖∆S‖F;
‖(∆U ,V?,W?) · S?‖F ≤ ‖∆UΣ?,1‖F.

Combine the preceding bounds to see

|Pp,1,1
U | ≤ CT

√
nµ2r2 log n

pn1n2n3

‖∆UΣ?,1‖F
(1− ε)5

(‖∆UΣ?,1‖F + (1 + ε)‖∆S‖F) .
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• For the second term P
p,1,2
U , our main hammer is Lemma 14, which implies

|Pp,1,2
U | ≤ CY

(
p−1 log3 n+

√
p−1n log5 n

)∥∥∥∆UΣ
2
?,1(Ŭ

>Ŭ)−1M1(S)
∥∥∥
F(

‖UM1(S)‖2,∞ + ‖U?M1(S?)‖2,∞
)
(‖∆V ‖F‖W ‖F + ‖V?‖F‖∆W ‖F) ‖V?‖2,∞‖W?‖2,∞.

Use results in Lemma 11, together with the bounds

‖∆V ‖F ≤ ‖∆V Σ?,2‖F
σmin(Σ?,2)

≤ ‖∆V Σ?,2‖F
σmin(X ?)

; ‖∆W ‖F ≤ ‖∆WΣ?,3‖F
σmin(X ?)

;

‖W ‖F ≤ √
r3‖W ‖ ≤ √

r3(1 + ε); ‖V?‖F =
√
r2;

‖U?M1(S?)‖2,∞ ≤ ‖U?‖2,∞‖M1(S?)‖ ≤
√

µr

n1
σmax(X ?); ‖V?‖2,∞ ≤

√
µr

n2
; ‖W?‖2,∞ ≤

√
µr

n3
,

to arrive at the conclusion that

|Pp,1,2
U | ≤ CY

(
p−1 log3 n+

√
p−1n log5 n

) ‖∆UΣ?,1‖F
(1− ε)5

(
(1− ε)−2CB + 1

)√µr

n1
σmax(X ?)

(‖∆V Σ?,2‖F
σmin(X ?)

√
r(1 + ε) +

√
r
‖∆WΣ?,3‖F
σmin(X ?)

)√
µr

n2

√
µr

n3

= CY

(
p−1 log3 n+

√
p−1n log5 n

)√
µ3r4

n1n2n3

(1− ε)−2CB + 1

(1− ε)5
κ

‖∆UΣ?,1‖F ((1 + ε)‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F) .

• Repeat similar arguments, we can obtain the bound on P
p,1,3
U :

|Pp,1,3
U | ≤ CY

(
p−1 log3 n+

√
p−1n log5 n

)∥∥∥∆UΣ
2
?,1(Ŭ

>Ŭ)−1M1(S)
∥∥∥
F
‖UM1(S)‖2,∞

‖V ‖2,∞‖W ‖2,∞(‖∆V ‖F‖W ‖F + ‖V?‖F‖∆W ‖F)

≤ CY

(
p−1 log3 n+

√
p−1n log5 n

) ‖∆UΣ?,1‖F
(1− ε)5

CB

(1− ε)2

√
µr

n1
σmax(X ?)

CBκ

(1− ε)3

√
µr

n2

CBκ

(1− ε)3

√
µr

n3

(‖∆V Σ?,2‖F
σmin(X ?)

√
r(1 + ε) +

√
r
‖∆WΣ?,3‖F
σmin(X ?)

)

≤ CY

(
p−1 log3 n+

√
p−1n log5 n

)√
µ3r4

n1n2n3

C3
Bκ

3

(1− ε)13

‖∆UΣ?,1‖F ((1 + ε)‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F) .

In total, we have

|Pp,1
U | ≤ |Pp,1,1

U |+ |Pp,1,2
U |+ |Pp,1,3

U | . δ dist2(Ft,F?),

where we recall the definition of δ in (60).
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Step 2: bounding P
p,2
U . We begin by rewriting P

p,2
U as

P
p,2
U =

〈(
U?(Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1
Σ

2
?,1(Ŭ

>Ŭ)−1,V ,W
)
· S, (p−1PΩ − I)((U ,V ,W ) · S −X ?)

〉
.

Compared to P
p,1
U , the only difference is that the leading term ∆UΣ?,1 in the first argument of the

inner product is replaced by U?(Ŭ − Ŭ?)
>Ŭ(Ŭ>Ŭ)−1

Σ?,1. Note that
∥∥∥U?(Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1
Σ?,1

∥∥∥
F
≤
∥∥∥Ŭ − Ŭ?

∥∥∥
F

∥∥∥Ŭ(Ŭ>Ŭ)−1
Σ?,1

∥∥∥
F

≤ 1 + ε+ 1
3ε

2

(1− ε)3
(‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) .

Omitting the somewhat tedious details, we can go through the same argument as bounding P
p,1
U

and arrive at

|Pp,2
U | ≤ CT

√
nµ2r2 log n

pn1n2n3

1 + ε+ 1
3ε

2

(1− ε)8
(‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) (‖∆UΣ?,1‖F + (1 + ε)‖∆S‖F)

+ CY

(
p−1 log3 n+

√
p−1n log5 n

)√
µ3r4

n1n2n3

(1 + ε+ 1
3ε

2)((1− ε)−2CB + 1)

(1− ε)8
κ

(‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) ((1 + ε)‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F)

+ CY

(
p−1 log3 n+

√
p−1n log5 n

)√
µ3r4

n1n2n3

(1 + ε+ 1
3ε

2)C3
Bκ

3

(1− ε)16

(‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) ((1 + ε)‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F)
. δ dist2(Ft,F?).

Step 3: bounding P
p,3
U . Use the variational representation of the Frobenius norm to write

√
P

p,3
U =

〈(
ŨΣ?,1(Ŭ

>Ŭ)−1,V ,W
)
· S, (p−1PΩ − I)((U ,V ,W ) · S −X ?)

〉

for some Ũ ∈ R
n1×r1 obeying ‖Ũ‖F = 1. Repeat the same argument as bounding P

p,1
U with proper

modifications to yield

√
P

p,3
U ≤ CT

√
nµ2r2 log n

pn1n2n3
(1− ε)−5 (‖∆UΣ?,1‖F + (1 + ε)‖∆S‖F)

+ CY

(
p−1 log3 n+

√
p−1n log5 n

)√
µ3r4

n1n2n3

(1− ε)−2CB + 1

(1− ε)5
κ ((1 + ε)‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F)

+ CY

(
p−1 log3 n+

√
p−1n log5 n

)√
µ3r4

n1n2n3

C3
Bκ

3

(1− ε)13
((1 + ε)‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F)

. δ dist(Ft,F?).

Then take the square of both sides to see

P
p,3
U . δ2 dist2(Ft,F?).
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C.4.2 Bounding the term related to S

The last term of (58) is related to

(Q−1
t,1 ,Q

−1
t,2 ,Q

−1
t,3 ) · St+ − S?

= S − η
(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
· p−1PΩ ((U ,V ,W ) · S −X ?)− S?

= (1− η)∆S − η
(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
· ((U ,V ,W ) · S? −X ?)

− η
(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
·(p−1PΩ − I)((U ,V ,W ) · S −X ?).

Expand its squared norm to obtain

∥∥∥(Q−1
t,1 ,Q

−1
t,2 ,Q

−1
t,3 ) · St+ − S?

∥∥∥
2

F

=
∥∥∥(1− η)∆S − η

(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
· ((U ,V ,W ) · S? −X ?)

∥∥∥
2

F︸ ︷︷ ︸
=:Pm

S

− 2η(1− η)
〈
∆S ,

(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
·(p−1PΩ − I)((U ,V ,W ) · S −X ?)

〉

︸ ︷︷ ︸
=:Pp,1

S

+ 2η2

〈(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
· ((U ,V ,W ) · S? −X ?) ,

(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
·(p−1PΩ − I)((U ,V ,W ) · S −X ?

〉

︸ ︷︷ ︸
=:Pp,2

S

+ η2
∥∥∥
(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
·(p−1PΩ − I)((U ,V ,W ) · S −X ?)

∥∥∥
2

F︸ ︷︷ ︸
=:Pp,3

S

.

Recall that the main term Pm
S has been controlled in Section B; see (48) and the bound (45d). We

therefore concentrate on the remaining perturbation terms.

Step 1: bounding P
p,1
S . Write P

p,1
S as

P
p,1
S =

〈(
U(U>U)−1,V (V >V )−1,W (W>W )−1

)
·∆S , (p

−1PΩ − I)((U ,V ,W ) · S −X ?)
〉
.

Use the decomposition (61) to further obtain

P
p,1
S

=
〈(

U(U>U)−1,V?(V
>V )−1,W?(W

>W )−1
)
·∆S , (p

−1PΩ − I) ((U ,V?,W?) ·∆S + (∆U ,V?,W?) · S?)
〉

︸ ︷︷ ︸
=:Pp,1,1

S

+

〈(
U(U>U)−1,∆V (V

>V )−1,W (W>W )−1
)
·∆S +

(
U(U>U)−1,V?(V

>V )−1,∆W (W>W )−1
)
·∆S ,

(p−1PΩ − I) ((U ,V?,W?) · S − (U?,V?,W?) · S?)
〉

︸ ︷︷ ︸
=:Pp,1,2

S
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+
〈(

U(U>U)−1,V (V >V )−1,W (W>W )−1
)
·∆S , (p

−1PΩ − I) ((U ,∆V ,W ) · S + (U ,V?,∆W ) · S)
〉

︸ ︷︷ ︸
=:Pp,1,3

S

.

We then bound each term in sequel.

• Regarding the first term P
p,1,1
S , we can apply Lemma 12 to see

|Pp,1,1
S | ≤ CT

√
nµ2r2 log n

pn1n2n3

∥∥∥
(
U(U>U)−1,V?(V

>V )−1,W?(W
>W )−1

)
·∆S

∥∥∥
F

‖(U ,V?,W?) ·∆S + (∆U ,V?,W?) · S?‖F .

In addition, notice that
∥∥∥
(
U(U>U)−1,V?(V

>V )−1,W?(W
>W )−1

)
·∆S

∥∥∥
F

≤
∥∥∥U(U>U)−1

∥∥∥
∥∥∥(V >V )−1

∥∥∥
∥∥∥(W>W )−1

∥∥∥ ‖∆S‖F
≤ (1− ε)−5‖∆S‖F,

which further implies

|Pp,1,1
S | ≤ CT

√
nµ2r2 log n

pn1n2n3
(1− ε)−5‖∆S‖F (‖∆UΣ?,1‖F + (1 + ε)‖∆S‖F) .

• Now we turn to the second term P
p,1,2
S , for which Lemma 14 yields

|Pp,1,2
S | ≤ CY

(
p−1 log3 n+

√
p−1n log5 n

)∥∥∥U(U>U)−1M1(∆S)
∥∥∥
F

(
‖UM1(S)‖2,∞ + ‖U?M1(S?)‖2,∞

)

(∥∥∥∆V (V
>V )−1

∥∥∥
F

∥∥∥W (W>W )−1
∥∥∥
F
+
∥∥∥V?(V

>V )−1
∥∥∥
F

∥∥∥∆W (W>W )−1
∥∥∥
F

)
‖V?‖2,∞‖W?‖2,∞.

The results in Lemma 11 together with the bounds

∥∥∥∆V (V
>V )−1

∥∥∥
F
≤ ‖∆V ‖F

∥∥∥(V >V )−1
∥∥∥ ≤ (1− ε)−2‖∆V ‖F ≤ ‖∆V Σ?,2‖F

(1− ε)2σmin(X ?)
;

∥∥∥W (W>W )−1
∥∥∥
F
≤ √

r3

∥∥∥W (W>W )−1
∥∥∥ ≤ √

r3(1− ε)−1;
∥∥∥V?(V

>V )−1
∥∥∥
F
≤ ‖V?‖F

∥∥∥(V >V )−1
∥∥∥ ≤ √

r2(1− ε)−2;

∥∥∥∆W (W>W )−1
∥∥∥
F
≤ ‖∆W ‖F

∥∥∥(W>W )−1
∥∥∥ ≤ ‖∆W ‖F(1− ε)−2 ≤ ‖∆WΣ?,3‖F

(1− ε)2σmin(X ?)
,

allow us to continue the bound

|Pp,1,2
S | ≤ CY

(
p−1 log3 n+

√
p−1n log5 n

)√
µ3r4

n1n2n3

(1− ε)−2CB + 1

(1− ε)5
κ‖∆S‖F

((1− ε)‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F) .
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• A similar strategy bounds P
p,1,3
S as

|Pp,1,3
S | ≤ CY

(
p−1 log3 n+

√
p−1n log5 n

)∥∥∥U(U>U)−1M1(∆S)
∥∥∥
F
‖UM1(S)‖2,∞

∥∥∥V (V >V )−1
∥∥∥
2,∞

∥∥∥W (W>W )−1
∥∥∥
2,∞

(‖∆V ‖F‖W ‖F + ‖V?‖F‖∆W ‖F) .

Further combine (51c) and (35d) to see

∥∥∥V (V >V )−1
∥∥∥
2,∞

≤ ‖V ‖2,∞
∥∥∥(V >V )−1

∥∥∥ ≤ (1− ε)−5CB

√
µr

n2
κ;

∥∥∥W (W>W )−1
∥∥∥
2,∞

≤ ‖W ‖2,∞
∥∥∥(W>W )−1

∥∥∥ ≤ (1− ε)−5CB

√
µr

n3
κ.

These taken collectively with the results in Lemma 11 yield

|Pp,1,3
S | ≤ CY

(
p−1 log3 n+

√
p−1n log5 n

)√
µ3r4

n1n2n3

C3
Bκ

3

(1− ε)13
‖∆S‖F ((1 + ε)‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F) .

In the end, we conclude that

|Pp,1
S | ≤ |Pp,1,1

S |+ |Pp,1,2
S |+ |Pp,1,3

S | . δ dist2(Ft,F?),

where we recall the definition of δ in (60).

Step 2: bounding P
p,2
S . Write P

p,2
S as

P
p,2
S =

〈(
U(U>U)−2U>,V (V >V )−2V >,W (W>W )−2W>

)
· ((U ,V ,W ) · S? −X ?) ,

(p−1PΩ − I)((U ,V ,W ) · S −X ?)
〉
.

Compared to P
p,1
S , the only difference is that the quantity ∆S in the first argument of the inner

product is replaced by
(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
· ((U ,V ,W ) · S? −X ?) ,

whose Frobenius norm can be bounded by
∥∥∥
(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
· ((U ,V ,W ) · S? −X ?)

∥∥∥
F

≤
∥∥∥U(U>U)−1

∥∥∥
F

∥∥∥V (V >V )−1
∥∥∥
F

∥∥∥W (W>W )−1
∥∥∥
F
‖(U ,V ,W ) · S? −X ?‖F

≤ 1 + ε+ 1
3ε

2

(1− ε)3
(‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F) .

We can then repeat the same argument as bounding P
p,1
S to obtain

|Pp,2
S | . δ dist2(Ft,F?).

For the sake of space, we omit the details.
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Step 3: bounding P
p,3
S . Use the variational representation of the Frobenius norm to write

√
P

p,3
S =

〈(
U(U>U)−1,V (V >V )−1,W (W>W )−1

)
· S̃, (p−1PΩ − I)((U ,V ,W ) · S −X ?)

〉

for some S̃ ∈ R
n1×n2×n3 obeying ‖S̃‖F = 1. Repeating the same argument as bounding P

p,1
S with

proper modifications to yield the bound

P
p,3
S . δ2 dist2(Ft,F?)

then complete the proof.

Appendix D. Proof for Tensor Regression

Before embarking on the proof, we state a useful lemma regarding TRIP (cf. Definition 3).

Lemma 16 ((Han et al., 2020, Lemma E.7)) Suppose that A(·) obeys the 2r-TRIP with a con-
stant δ2r. Then for all X 1,X 2 ∈ R

n1×n2×n3 of multilinear rank at most r, one has

∣∣〈A(X 1),A(X 2)〉 − 〈X 1,X 2〉
∣∣ ≤ δ2r‖X 1‖F‖X 2‖F,

or equivalently,

∣∣〈(A∗A− I)(X 1),X 2〉
∣∣ ≤ δ2r‖X 1‖F‖X 2‖F.

D.1 Proof of local convergence (Lemma 4)

Given that dist(Ft,F?) ≤ εσmin(X ?), the conclusion ‖(Ut,Vt,Wt) · St − X ?‖F ≤ 3 dist(Ft,F?)
directly follows from the relation (37) in Lemma 10. Hence we will focus on controlling dist(Ft,F?).

As in the proof of Theorem 3, we reuse the notations in (34) and (43), and the definition of
dist(Ft+1,F?) to obtain

dist2(Ft+1,F?) ≤ ‖(Ut+1Qt,1 −U?)Σ?,1‖2F + ‖(Vt+1Qt,2 − V?)Σ?,2‖2F + ‖(Wt+1Qt,3 −W?)Σ?,3‖2F
+
∥∥∥(Q−1

t,1 ,Q
−1
t,2 ,Q

−1
t,3 ) · St+1 − S?

∥∥∥
2

F
. (62)

We shall bound each square in the right hand side of the bound (62) separately. The final result is

dist2(Ft+1,F?) ≤ (1− η)2
(
‖∆UΣ?,1‖2F + ‖∆V Σ?,2‖2F + ‖∆WΣ?,3‖2F + ‖∆S‖2F

)

− η(2− 5η) ‖T U + T V + T W ‖2F − η(2− 5η)
(
‖DU‖2F + ‖DV ‖2F + ‖DW ‖2F

)

+ 2η(1− η)C(ε+ δ2r + δ22r) dist
2(Ft,F?) + η2C(ε+ δ2r + δ22r) dist

2(Ft,F?),
(63)

where C > 1 is some universal constant. As long as η ≤ 2/5, and ε, δ2r are sufficiently small
constants, one reaches the desired conclusion dist(Ft+1,F?) ≤ (1− 0.6η) dist(Ft,F?).

In the following subsections, we provide bounds on the four terms in the right hand side of
(62). In a nutshell, the bounds that are sought after are reminiscent of those established in (45),
with additional perturbation terms introduced due to incomplete measurements, manifested via
the TRIP parameter δ2r. Once established, the claimed bound (63) easily follows. In light of the
symmetry among U ,V , and W , we omit the control of the terms pertaining to V and W .
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D.1.1 Bounding the term pertaining to U

The first term in (62) is given by

(Ut+1Qt,1 −U?)Σ?,1 =
(
U − ηM1 (A∗A((U ,V ,W ) · S −X ?)) Ŭ(Ŭ>Ŭ)−1 −U?

)
Σ?,1

= (1− η)∆UΣ?,1 − ηU?(Ŭ − Ŭ?)
>Ŭ(Ŭ>Ŭ)−1

Σ?,1

− ηM1 ((A∗A− I)((U ,V ,W ) · S −X ?)) Ŭ(Ŭ>Ŭ)−1
Σ?,1,

where we separate the population term from the perturbation term. Take the squared norm of both
sides to see

‖(Ut+1Qt,1 −U?)Σ?,1‖2F =
∥∥∥(1− η)∆UΣ?,1 − ηU?(Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1
Σ?,1

∥∥∥
2

F︸ ︷︷ ︸
=:Rm

U

− 2η(1− η)
〈
∆UΣ?,1,M1 ((A∗A− I)((U ,V ,W ) · S −X ?)) Ŭ(Ŭ>Ŭ)−1

Σ?,1

〉

︸ ︷︷ ︸
=:Rp,1

U

+ 2η2
〈
U?(Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1
Σ?,1,M1 ((A∗A− I)((U ,V ,W ) · S −X ?)) Ŭ(Ŭ>Ŭ)−1

Σ?,1

〉

︸ ︷︷ ︸
=:Rp,2

U

+ η2
∥∥∥M1 ((A∗A− I)((U ,V ,W ) · S −X ?)) Ŭ(Ŭ>Ŭ)−1

Σ?,1

∥∥∥
2

F︸ ︷︷ ︸
=:Rp,3

U

.

The main term Rm
U has been handled in Section B; see (47) and the bound (45a). In the sequel, we

shall bound the three perturbation terms.

Step 1: bounding R
p,1
U . Use the definition of Ŭ , we can translate the inner product in the

matrix space to that in the tensor space

R
p,1
U =

〈(
∆UΣ

2
?,1(Ŭ

>Ŭ)−1,V ,W
)
· S, (A∗A− I)((U ,V ,W ) · S −X ?)

〉

=
〈(

∆UΣ
2
?,1(Ŭ

>Ŭ)−1,V ,W
)
· S, (A∗A− I)((U ,V ,W ) ·∆S)

〉

+
〈(

∆UΣ
2
?,1(Ŭ

>Ŭ)−1,V ,W
)
· S, (A∗A− I)((∆U ,V ,W ) · S?)

〉

+
〈(

∆UΣ
2
?,1(Ŭ

>Ŭ)−1,V ,W
)
· S, (A∗A− I)((U?,∆V ,W ) · S?)

〉

+
〈(

∆UΣ
2
?,1(Ŭ

>Ŭ)−1,V ,W
)
· S, (A∗A− I)((U?,V?,∆W ) · S?)

〉
,

where the second relation uses the decomposition (40). Apply Lemma 16 to each of the four terms
to obtain

|Rp,1
U | ≤ δ2r

∥∥∥
(
∆UΣ

2
?,1(Ŭ

>Ŭ)−1,V ,W
)
· S

∥∥∥
F

(‖(U ,V ,W ) ·∆S)‖F + ‖(∆U ,V ,W ) · S?)‖F + ‖(U?,∆V ,W ) · S?)‖F + ‖(U?,V?,∆W ) · S?)‖F) .

For the prefactor, we have
∥∥∥
(
∆UΣ

2
?,1(Ŭ

>Ŭ)−1,V ,W
)
· S

∥∥∥
F
=
∥∥∥∆UΣ

2
?,1(Ŭ

>Ŭ)−1Ŭ>
∥∥∥
F
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≤ ‖∆UΣ?,1‖F
∥∥∥Ŭ(Ŭ>Ŭ)−1

Σ?,1

∥∥∥

≤ ‖∆UΣ?,1‖F(1− ε)−3,

where the last step arises from Lemma 10. In addition, the same argument as in (36a) yields

‖(U ,V ,W ) ·∆S)‖F + ‖(∆U ,V ,W ) · S?)‖F + ‖(U?,∆V ,W ) · S?)‖F + ‖(U?,V?,∆W ) · S?)‖F
≤ (1 +

3

2
ε+ ε2 +

1

4
ε3) (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) .

Take the previous two bounds collectively to arrive at

|RU,p1| ≤ δ2r
1 + 3

2ε+ ε2 + 1
4ε

3

(1− ε)3
‖∆UΣ?,1‖F (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)

. δ2r dist
2(Ft,F?),

with the proviso that ε is small enough.

Step 2: bounding R
p,2
U . Rewrite the inner product in the tensor space to see

R
p,2
U =

〈(
U?(Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1
Σ

2
?,1(Ŭ

>Ŭ)−1,V ,W
)
· S, (A∗A− I)((U ,V ,W ) · S −X ?)

〉
.

Similar to the control of Rp,1
U , we have

|Rp,2
U | ≤ δ2r

∥∥∥U?(Ŭ − Ŭ?)
>Ŭ(Ŭ>Ŭ)−1

Σ
2
?,1(Ŭ

>Ŭ)−1Ŭ>
∥∥∥
F

(1 +
3

2
ε+ ε2 +

1

4
ε3) (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) .

For the prefactor, we can use (35f) and (36c) to obtain

∥∥∥U?(Ŭ − Ŭ?)
>Ŭ(Ŭ>Ŭ)−1

Σ
2
?,1(Ŭ

>Ŭ)−1Ŭ>
∥∥∥
F
≤ ‖Ŭ − Ŭ?‖F

∥∥∥Ŭ(Ŭ>Ŭ)−1
Σ?,1

∥∥∥
2

≤ 1 + ε+ 1
3ε

2

(1− ε)6
(‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) ,

which further implies

|Rp,2
U | ≤ δ2r

(1 + 3
2ε+ ε2 + 1

4ε
3)(1 + ε+ 1

3ε
2)

(1− ε)6
(‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)

(‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)
. δ2r dist

2(Ft,F?),

as long as ε is sufficiently small.

Step 3: bounding R
p,3
U . The last perturbation term needs special care. We first use the varia-

tional representation of the Frobenius norm to write
√

R
p,3
U =

〈(
ŨΣ?,1(Ŭ

>Ŭ)−1,V ,W
)
· S, (A∗A− I)((U ,V ,W ) · S −X ?)

〉
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for some Ũ ∈ R
n1×r1 obeying ‖Ũ‖F = 1. Repeat the same argument as used in controlling R

p,1
U to

see
√
R

p,3
U ≤ δ2r

∥∥∥ŨΣ?,1(Ŭ
>Ŭ)−1Ŭ>

∥∥∥
F
(1 +

3

2
ε+ ε2 +

1

4
ε3) (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)

≤ δ2r
1 + 3

2ε+ ε2 + 1
4ε

3

(1− ε)3
(‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) ,

where the last line uses the bound (35f) in Lemma 10. Then take the square on both sides to
conclude

R
p,3
U ≤ δ22r

(1 + 3
2ε+ ε2 + 1

4ε
3)2

(1− ε)6
(‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)2

. δ22r dist
2(Ft,F?)

as long as ε is sufficiently small.

D.1.2 Bounding the term pertaining to S

The last term of (62) can be rewritten as

(Q−1
t,1 ,Q

−1
t,2 ,Q

−1
t,3 ) · St+1 − S?

= S − η
(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
·A∗A ((U ,V ,W ) · S −X ?)− S?

= (1− η)∆S − η
(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
· ((U ,V ,W ) · S? −X ?)

− η
(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
·(A∗A− I)((U ,V ,W ) · S −X ?),

which further gives

∥∥∥(Q−1
t,1 ,Q

−1
t,2 ,Q

−1
t,3 ) · St+1 − S?

∥∥∥
2

F

=
∥∥∥(1− η)∆S − η

(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
· ((U ,V ,W ) · S? −X ?)

∥∥∥
2

F︸ ︷︷ ︸
=:Rm

S

− 2η(1− η)
〈
∆S ,

(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
·(A∗A− I)((U ,V ,W ) · S −X ?)

〉

︸ ︷︷ ︸
=:Rp,1

S

+ 2η2

〈(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
· ((U ,V ,W ) · S? −X ?) ,

(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
·(A∗A− I)((U ,V ,W ) · S −X ?)

〉

︸ ︷︷ ︸
=:Rp,2

S

+ η2
∥∥∥
(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
·(A∗A− I)((U ,V ,W ) · S −X ?)

∥∥∥
2

F︸ ︷︷ ︸
=:Rp,3

S

.

Note that the main term Rm
S has already been characterized in Section B; see (48) and the

bound (45d). Therefore we concentrate on the remaining perturbation terms.
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Step 1: bounding R
p,1
S . Use the property (6d) to write R

p,1
S as

R
p,1
S =

〈(
U(U>U)−1,V (V >V )−1,W (W>W )−1

)
·∆S , (A∗A− I)((U ,V ,W ) · S −X ?)

〉
.

We can use the decomposition (40) and Lemma 16 to derive

|Rp,1
S | ≤ δ2r

∥∥∥
(
U(U>U)−1,V (V >V )−1,W (W>W )−1

)
·∆S

∥∥∥
F

(1 +
3

2
ε+ ε2 +

1

4
ε3) (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) .

In addition, Lemma 10 tells us that
∥∥∥
(
U(U>U)−1,V (V >V )−1,W (W>W )−1

)
·∆S

∥∥∥
F

≤
∥∥∥U(U>U)−1

∥∥∥
∥∥∥V (V >V )−1

∥∥∥
∥∥∥W (W>W )−1

∥∥∥ ‖∆S‖F ≤ (1− ε)−3‖∆S‖F.

Combine the above two bounds to reach

|Rp,1
S | ≤ δ2r

1 + 3
2ε+ ε2 + 1

4ε
3

(1− ε)3
‖∆S‖F (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)

. δ2r dist
2(Ft,F?)

as long as ε is a sufficiently small constant.

Step 2: bounding R
p,2
S . Similarly, we can bound R

p,2
S by

|Rp,2
S | ≤ δ2r

∥∥∥
(
U(U>U)−2U>,V (V >V )−2V >,W (W>W )−2W>

)
· ((U ,V ,W ) · S? −X ?)

∥∥∥
F

(1 +
3

2
ε+ ε2 +

1

4
ε3) (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)

≤ δ2r
(1 + ε+ 1

3ε
2)(1 + 3

2ε+ ε2 + 1
4ε

3)

(1− ε)6
(‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F)

(‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)
. δ2r dist

2(Ft,F?).

Step 3: bounding R
p,3
S . Apply the variational representation of the Frobenius norm to write

√
R

p,3
S =

〈(
U(U>U)−1,V (V >V )−1,W (W>W )−1

)
· S̃, (A∗A− I)((U ,V ,W ) · S −X ?)

〉

for some S̃ ∈ R
r1×r2×r3 obeying ‖S̃‖F = 1. Repeat the same argument as in bounding R

p,3
U to see

√
R

p,3
S ≤ δ2r

∥∥∥
(
U(U>U)−1,V (V >V )−1,W (W>W )−1

)
· S̃

∥∥∥
F

(1 +
3

2
ε+ ε2 +

1

4
ε3) (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)

≤ δ2r
1 + 3

2ε+ ε2 + 1
4ε

3

(1− ε)3
(‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) .

Then take the square on both sides to conclude

R
p,3
S ≤ δ22r

(1 + 3
2ε+ ε2 + 1

4ε
3)2

(1− ε)6
(‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)2

. δ22r dist
2(Ft,F?).
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D.2 Proof of spectral initialization (Lemma 5)

In view of Lemma 8, we can relate dist(F0,F?) to ‖(U0,V0,W0) · S0 −X ?‖F as

dist(F0,F?) ≤ (
√
2 + 1)3/2 ‖(U0,V0,W0) · S0 −X ?‖F .

To proceed, we need to control ‖(U0,V0,W0) · S0 −X ?‖F, where (U0,V0,W0) · S0 is the output
of HOSVD. Similar results have been established in Luo and Zhang (2021); Han et al. (2020);
Zhang et al. (2020a), which involve sophisticated subspace perturbation bounds. For conciseness
and completeness, we provide an alternative proof directly tackling the distance.

Define PU := U0U
>
0 as the projection matrix onto the column space of U0, PU⊥

:= In1
−PU as

the projection onto its orthogonal complement, and define PV ,PV⊥
,PW ,PW⊥

analogously. Similar
to (56), we have the decomposition

‖(U0,V0,W0) · S0 −X ?‖2F
≤ ‖(PU ,PV ,PW ) ·(Y −X ?)‖2F + ‖PU⊥

M1(X ?)‖2F + ‖PV⊥
M2(X ?)‖2F + ‖PW⊥

M3(X ?)‖2F .
(64)

Below we bound the terms on the right hand side of (64) in order.

Bounding ‖(PU ,PV ,PW ) ·(Y −X ?)‖F. For the first term in the upper bound (64), apply the
variational representation of the Frobenius norm to write

‖(PU ,PV ,PW ) ·(Y −X ?)‖F =
〈
(PU ,PV ,PW ) ·(Y −X ?), T̃

〉
=
〈
(A∗A− I)X ?, (PU ,PV ,PW ) · T̃

〉
,

for some T̃ ∈ R
n1×n3×n3 obeying

∥∥T̃
∥∥
F
= 1, where the last equality follows from (6d). Under the

Gaussian design, we know from (Rauhut et al., 2017, Theorem 2) that A(·) obeys 2r-TRIP with a

constant δ2r �
√

nr+r3

m . Therefore we can apply Lemma 16 to obtain

‖(PU ,PV ,PW ) ·(Y −X ?)‖F ≤ δ2r‖X ?‖F
∥∥(PU ,PV ,PW ) · T̃

∥∥
F
≤ δ2r‖X ?‖F

.

√
nr + r3

m
‖X ?‖F ≤

√
nr2 + r4

m
κσmin(X ?).

Bounding ‖PU⊥
M1(X ?)‖F. For the second term in (64), first bound it by

‖PU⊥
M1(X ?)‖F ≤

√
r1

σmin(X ?)

∥∥∥PU⊥
M1(X ?)M1(X ?)

>
∥∥∥ ,

where we use the facts that PU⊥
M1(X ?) has rank at most r1 and ‖AB‖ ≥ ‖A‖σmin(B). For

notation simplicity, we abbreviate

G := M1(A∗(y))M1(A∗(y))> − ‖y‖22
m

(n2n3 − r1)In1
, and G? := M1(X ?)M1(X ?)

>.

We claim for the moment that with overwhelming probability that

‖G−G?‖ .

√
n1n2n3 + n log n

m
‖X ?‖2F +

√
n log n

m
‖X ?‖Fσmax(X ?), (65)

whose proof is deferred to Appendix D.2.1. Under the sample size condition

m & ε−1
0

√
n1n2n3r

3/2κ2 + ε−2
0 (nr2κ4 log n+ r4κ2)
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for some small constant ε0, we have ‖G − G?‖ ≤ ε0σ
2
min(X ?), which implies that G is positive

semi-definite. Therefore, the top-r1 eigenvectors of G coincide with U0, the top-r1 left singular
vectors of M1(A∗(y)), which implies ‖PU⊥

G‖ = σr1+1(G). By the triangle inequality, we obtain

‖PU⊥
G?‖ ≤ ‖PU⊥

(G−G?)‖ + ‖PU⊥
G‖ ≤ ‖G−G?‖ + σr1+1(G)

≤ ‖G−G?‖ + σr1+1(G?) + ‖G−G?‖ = 2 ‖G−G?‖ ,

where the second line follows from Weyl’s inequality and that G? has rank r1. In total, the second
term of (64) is bounded by

‖PU⊥
M1(X ?)‖F ≤ 2

√
r1

σmin(X ?)
‖G−G?‖ .

(
(
√
n1n2n3 + n log n)r3/2

m
+

√
nr2 log n

m

)
κ2σmin(X ?).

Completing the proof. The third and fourth terms of (64) can be bounded similarly. In all, we
conclude that

dist(F0,F?) ≤ (
√
2 + 1)3/2 ‖(U0,V0,W0) · S0 −X ?‖F ≤ ε0σmin(X ?)

under the assumed sample size.

D.2.1 Proof of (65)

We start with stating a few useful concentration inequalities.

Lemma 17 Suppose that Ai ∈ R
n1×n2 has i.i.d. N (0, 1/m) entries, and yi = 〈Ai,X〉 for a fixed

X ∈ R
n1×n2 , i = 1, . . . ,m. Further suppose that B ∈ R

n1×n2 has i.i.d. N (0, σ2) entries. Then there
exists a universal constant C > 0 such that for any t > 0, the following concentration inequalities
hold:

1. Gaussian ensemble (Zhang et al., 2020a, Lemma 4):

P

(∥∥∥
m∑

i=1

yiAi −X

∥∥∥ ≥ C‖X‖F
√
n1 + n2

(√
log(n1 + n2) + t

m
+

log(n1 + n2) + t

m

))
≤ exp(−t).

(66)

2. Chi-square upper tail (Laurent and Massart, 2000, Lemma 1):

P

(
‖y‖22 ≥ ‖X‖2F

m+ 2
√
mt+ 2t

m

)
≤ exp(−t). (67)

3. Gaussian covariance (Cai et al., 2020b, Theorem 5):

P

(∥∥∥BB> − E[BB>]
∥∥∥ ≥ Cσ2

(
(
√
n1 +

√
n2 +

√
log(n1 ∧ n2) +

√
t)2 − n2

))
≤ exp(−t). (68)

We now proceed to prove (65). In what follows, we take t � log n, and assume m & log n to
keep only the dominant terms when invoking the concentration inequalities in Lemma 17.

Let M1(X ?) = U?Σ?,1R
>
? be its rank-r1 SVD, with R? ∈ R

n2n3×r1 containing right singular
vectors. Denote R?⊥ as the orthogonal complement of R?. We have the following decomposition

M1(A∗(y))M1(A∗(y))> = M1(A∗(y))R?R
>
? M1(A∗(y))> +M1(A∗(y))R?⊥R

>
?⊥M1(A∗(y))>.
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By the triangle inequality, we bound

‖G−G?‖ ≤
∥∥∥M1(A∗(y))R?R

>
? M1(A∗(y))> −M1(X ?)M1(X ?)

>
∥∥∥

+

∥∥∥∥M1(A∗(y))R?⊥R
>
?⊥M1(A∗(y))> − ‖y‖22

m
(n2n3 − r1)In1

∥∥∥∥
︸ ︷︷ ︸

=:A2

≤ ‖M1(A∗(y))R? −U?Σ?,1‖2︸ ︷︷ ︸
=(A1)2

+2 ‖M1(A∗(y))R? −U?Σ?,1‖︸ ︷︷ ︸
=:A1

σmax(X ?) + A2. (69)

Here, the second line follows by applying the triangle inequality to the relation

M1(A∗(y))R?R
>
? M1(A∗(y))> −M1(X ?)M1(X ?)

> = M1(A∗(y))R?R
>
? M1(A∗(y))> −U?Σ

2
?,1U

>
?

= (M1(A∗(y))R? −U?Σ?,1) (M1(A∗(y))R? −U?Σ?,1)
> +U?Σ?,1 (M1(A∗(y))R? −U?Σ?,1)

>

+ (M1(A∗(y))R? −U?Σ?,1) (U?Σ?,1)
> .

We proceed to bound the terms in (69) separately.

• For the first term A1, we can expand

M1(A∗(y))R? =

m∑

i=1

yiM1(Ai)R?,

where M1(Ai)R? ∈ R
n1×r1 has i.i.d. N (0, 1/m) entries, and

yi = 〈M1(Ai)R?,U?Σ?,1〉 ∼ N (0, ‖X ?‖2F/m).

Apply inequality (66) in Lemma 17 to obtain with overwhelming probability that

A1 =

∥∥∥∥∥

m∑

i=1

yiM1(Ai)R? −U?Σ?,1

∥∥∥∥∥ .

√
n log n

m
‖X ?‖F. (70)

• Regarding the second term A2, one has

M1(A∗(y))R?⊥ =

m∑

i=1

yiM1(Ai)R?⊥.

By construction, yi is independent of M1(Ai)R?⊥. Therefore, conditioned on y, M1(A∗(y))R?⊥ ∈
R
n1×(n2n3−r1) is a random matrix with i.i.d. N (0, ‖y‖22/m) entries. We can apply inequality (68)

in Lemma 17 to obtain with overwhelming probability that

A2 .
‖y‖22
m

(
(
√
n1 +

√
n2n3 − r1 + c

√
log n)2 − (n2n3 − r1)

)

.
‖y‖22
m

(√
n1n2n3 + n

√
log n

)
.

Inequality (67) in Lemma 17 tells that ‖y‖22 . ‖X ?‖2F with overwhelming probability, which
implies

A2 .

√
n1n2n3 + n

√
log n

m
‖X ?‖2F. (71)

Finally, plug the bounds (70) and (71) into (69) to conclude

‖G−G?‖ .

√
n1n2n3 + n log n

m
‖X ?‖2F +

√
n log n

m
‖X ?‖Fσmax(X ?).
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