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ABSTRACT

Communication of model updates between client nodes
and the central aggregating server is a major bottleneck in
federated learning, especially in bandwidth-limited settings
and high-dimensional models. Gradient quantization is an ef-
fective way of reducing the number of bits required to com-
municate each model update, albeit at the cost of having a
higher error floor due to the higher variance of the stochastic
gradients. In this work, we propose an adaptive quantization
strategy called AdaQuantFL that aims to achieve communi-
cation efficiency as well as a low error floor by changing the
number of quantization levels during the course of training.
Experiments on training deep neural networks show that our
method can converge in much fewer communicated bits as
compared to fixed quantization level setups, with little or no
impact on training and test accuracy.

Index Terms— distributed optimization, federated learn-
ing, adaptive quantization

1. INTRODUCTION

Distributed machine learning training, which was typically
done in the data center setting, is rapidly transitioning to the
Federated Learning (FL) setting [1] [2], where data is spread
across a large number of mobile client devices. Due to privacy
concerns, the FL clients perform on-device training and only
share model updates with a central server. A major challenge
in FL is the communication bottleneck due to the limited up-
link bandwidth available to the clients.

Recent work tackling this problem has taken two major
directions. The first approach reduces the load on the com-
munication channel by allowing each client to perform mul-
tiple local updates [1, 3, 4, 5, 6], thus reducing the com-
munication frequency between clients and server. However,
this optimization may not be enough due to the large size
of model updates for high dimensional models, like neural
networks. The second approach deals with this problem by
using compression methods to reduce the size of the model
update being communicated by the clients at an update step
[7, 8,9, 10, 11, 12, 13]. However, such compression meth-
ods usually add to the error floor of the training objective as
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they increase the variance of the updates. Thus, one needs to
carefully choose the number of quantization levels in order to
strike the best error-communication trade-off.

In this work we propose AdaQuantFL, a strategy to auto-
matically adapt the number of quantization levels used to rep-
resent a model update and achieve a low error floor as well as
communication efficiency. The key idea behind our approach
is that we bound the convergence of training error in terms
of the number of bits communicated, unlike traditional ap-
proaches which bound error with respect to number of train-
ing rounds (see Fig. 1). We use this convergence analysis to
adapt the number of quantization levels during training based
on the current training loss. Our approach can be considered
orthogonal to other proposed methods of adaptive compres-
sion such as varying the spacing between quantization levels
[14] and reusing outdated gradients [15]. In [16], the authors
propose an adaptive method for tuning the number of local up-
dates or the communication frequency. AdaQuantFL is a sim-
ilar strategy, but for tuning the number of bits communicated
per round. Our experiments on distributed training of deep
neural networks verify that AdaQuantFL is able to achieve a
given target training loss using much fewer bits compared to
fixed quantization methods.

2. SYSTEM MODEL

Consider a system of n clients and a central aggregating
server. Each client ¢ has a dataset D; of size m; consisting
of labeled samples fj(.l) = (xy),y]@) for j = 1,...,m,.
The goal is to train a common global model, represented by
the parameter vector w € R?, by minimizing the following
objective function:

m;

i, |1(9) = Sopifiw) = o> ewie]”)|
i=1 i=1 Zj:l

weRd
(1

where p; = —<+— is the fraction of data held at the i-th

i=1 "

client and f;(w) is the empirical risk at the i-th client for a
possibly non-convex loss function ¢(w; & J(z)).
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Fig. 1: Viewing training in terms of bits communicated.

Quantized Local SGD. The model is trained iteratively using
the local stochastic gradient descent (local SGD) algorithm,
proposed in [6, 3]. In local SGD, the entire training process
is divided into rounds consisting of 7 local updates at each
client. At the beginning of the k-th round, each client reads
the current global model wy, from the central server and up-

dates it by performing 7 local SGD steps fort =0,--- ,7—1
as follows:
Wil = Wil = ngi(wih, €9), @)

where Wl(f,)o = wy, and gi(w,(j’)t, €1) is the stochastic gradient

computed using a mini-batch ¢(*) sampled uniformly at ran-
dom from the ¢-th client local dataset D;. After completing 7
steps of local SGD, each client sends its update for the k-th
round denoted by Aw,(;) = W,(:)T — w,(;)o, to the central server.
In order to save on bits communicated over the bandwidth-
limited uplink channel, each client only sends a quantized
update Q(Aw,(;')), where ()(-) represents a stochastic quan-
tization operator over R%. Once the server has received the
quantized updates from all the clients, the global model is up-
dated as follows.

Wii1 = Wi + ZpiQ(AW,(f)). 3)
i=1

Stochastic Uniform Quantizer. In this work we consider the
commonly used [7, 17, 18] stochastic uniform quantization
operator (Q4(w), which is parameterized by the number of
quantization levels s € N = {1,2,...}. For each dimension

of a d-dimensional parameter vector w = [wy, . .., w4,
Qs(wi) = [|wll2sign(w;)Gi(w, s), Q)
where (;(w, s) is a random variable given as,
I+1 . e ‘wi‘
= with probabilit s—1
Gi(w,s) = {zs PO Tl 5)
< otherwise.
Here, [ € {0,1,2,..s — 1} is an integer such that I\lella €
[L, B1). For w = 0, we define Q,(w) = 0.
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Given Q;(w;), we need 1 bit to represent sign(w;) and
[logy(s + 1)] bits to represent (;(w,s). The scalar |w]||2
is usually represented with full precision, which we assume
to be 32 bits. Thus, the number of bits communicated by a
client to the central server per round, which we denote by Cj,
is given by

Cs = d[logy(s +1)] +d + 32. (6)

It can be shown from the work of [7, 18] that while Qs(w) re-
mains unbiased for all s, i.e., E[Qs(W)|w] = w, the variance
of Qs(w) decreases with s because of the following variance
upper bound:

d
E[|Qs(w) — wl3|w] < Sﬁ\IWH% ™

From (6) and (7), we see that varying s results in a trade-
off between the total number of bits communicated C and the
variance upper bound — C increases with s while the vari-
ance upper bound in (7) decreases with s. Building on this
observation, in the next section, we analyze the effect of s on
the error convergence speed and use it to design a strategy to
adapt s during the course of training.

3. TRADE-OFF BETWEEN ERROR AND THE
NUMBER OF BITS COMMUNICATED

The motivation behind adapting the number of quantization
levels s during training can be understood through the illus-
tration in Fig. 1. In the left plot, we see that a smaller s, that is,
coarser quantization, results in worse convergence of training
loss versus the number of training rounds. However, a smaller
s reduces the number of bits Cs communicated per round. To
account for this communication reduction, we change the x-
axis to the number of bits communicated in the right plot of
Fig. 1. This plot reveals that smaller s enables us to perform
more rounds for the same number of bits communicated, lead-
ing to a faster initial drop in training loss. The intuition be-
hind our adaptive algorithm is to start with a small s and then
gradually increase s as training progresses to reach a lower er-
ror floor. To formalize this, we provide below a convergence
bound on the training loss versus the number of bits commu-
nicated for any given s.

Convergence Bound in terms of Error versus Number of
Bits Communicated. For a non-convex objective function
f(w), it is common to look at the expected squared norm
of the gradient of the objective function as the error metric
we want to bound [19]. We analyze this quantity under the
following standard assumptions.

Assumption 1. The stochastic quantization operator Q(.) is
unbiased and its variance is at most some positive constant
q times the squared {3 norm of its argument, i.e. Y w € R4,

E[Q(w)|w] = w and E[[|Q(w) — w[3|w] < q[[w]3.
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Assumption 2. The local objective functions f; are L—smooth,
ie. Vw,w € R |Vfi(w) = Vfi(w)|2 < L|w — w|a.

Assumption 3. The stochastic gradients computed at the
clients are unbiased and their variance is bounded, that is, for
all w € RY, Elg;(w, )] = V fi(w) and E[||g;(w, D) —
Vfi(w)l3] < o

Assumption 4. Each client i has a dataset D; of m samples
drawn independently from the same distribution (i.i.d data).

Under these assumptions, the authors in [17] recently
derived a convergence bound for the FL setup described
in Section 2 for non-convex £(-;-). We use this result for
AdaQuantFL, however in practice our algorithm can also be
successfully applied without Assumption 4 (non-i.i.d data) as
seen in our experiments Section 5. Also while the existing
result [17] studies the error convergence with respect to the
number of training rounds, we bound the same error in terms
of number of bits communicated, defined as follows.

Definition 1 (Number of Bits Communicated, B). The total
number of bits that have been communicated by a client to the
central server until a given time instant is denoted by B.

Since all clients participate in a training round and follow
the same quantization protocol, B is same for all clients at
any instant. We also note that the stochastic uniform quantizer
having s quantization levels, satisfies Assumption 1 with ¢ =
S% [7, 18]. Now using this definition of B and our earlier
definition of C in (6) we get the following theorem:

Theorem 1. Under Assumptions 1-4, take Q(.) to be the
stochastic uniform quantizer with s quantization levels. If the
learning rate satisfies 1 —nL(1+ 32) —2n*L2r (1 —1) > 0,
then we have the following error upper bound in terms of B:

C (B/Cs)—1r1-1
C S S Bl (el <
k=0  t=0
Aa
Ay logy(4s) + 2z As. ®)

Here, Wy, = %Z:—;l Wl(f?s denotes the averaged model
across all clients at each step, and
2 - f* Ldo?
A, = 2 wo) = fd -, nldo”
nBT n
202(r — 1) L% (n+1 Lo? d+ 32
gy = PPV Y ake? A

and wy is a random point of initialization and f* is the mini-
mum value of our objective.

The proof of Theorem 1 can be found in Appendix A
of the full version of our paper [20]. This error bound al-
lows us to see the trade-off between coarse and aggressive
quantization seen in Section 3, for different values of s. As
we decrease s, the value of the first term in our error bound
(A1 log,(4s)) decreases but it also adds to the variance of our
quantized updates which increases the second term (A5 /s?).

4. PROPOSED ADAQUANTFL STRATEGY

Our proposed algorithm aims at adaptively changing the num-
ber of quantization levels s in the stochastic uniform quantizer
such that the error upper bound in Theorem 1 is minimized at
every value B. To do so, we discretize the entire training pro-
cess into uniform communication intervals, where in each in-
terval we communicate B bits (see Fig. 1). We now discuss
how to find the optimal s for each such interval.

Finding optimal s for each communication interval. We
propose selecting an s at any B (assuming wq as the point
of initialization) by setting the derivative of our error upper
bound in (8) to zero. Doing so, we get a closed form solution
of an optimal s as:

o n?2Lo2TB loge(2). (10)
n(f(wo) — f*)

Now at the beginning of the k-th communication interval

clients can be viewed as restarting training at a new initializa-

tion point wg = wy. Using (10) we see that the optimal s for

communicating the next B bits is given by,

. \/7]2LO'2TB0 log,.(2) (11

TN Tl we) — )

As f(wy) becomes smaller the value of s} increases which
supports our intuition that we should increase s as training
progresses. However, in practice, parameters such as L, o2
and f* are unknown. Hence, in order to obtain a practically
usable schedule for s}, we assume f* = 0 and divide s} by
s; to get the approximate adaptive rule:

st (12)

The value of sg can be found via grid search (we found s; = 2
to be a good choice in our experiments).

Variable Learning Rate. Our analysis so far assumed the
existence of a fixed learning rate 7. In practice, we may want
to decrease the learning rate as training progresses for bet-
ter convergence. By extending the above analysis, we get an
adaptive schedule of s for a given learning rate schedule:

Tlﬁf(wo)s

AdaQuantFL: s} ~ (13)

Here, 7 is the initial learning rate and 7y, is the learning rate
in the k-th interval. In terms of the number of bits used to
represent each element in the model update, in the k-th inter-
val, AdaQuantFL uses b, = [log, (s} + 1)] bits (excluding
the sign bit).

3112

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 31,2022 at 19:18:47 UTC from IEEE Xplore. Restrictions apply.



T T T T
Ry —— AdaQuantFL | o —— AdaQuantFL | 10’ S —— AdaQuantFL
————— 2-bit ----- 2:bit N == 2bit
S
@ === 4-bit ] } === 4-bit @ . N — == 4-bit
S 8-bit 1 S 8-bit 1 8" 8-bit
él) —== 16-bit !éb ——= 16-bit %D —== 16-bit
=, 2 0 g - '
B=B0 3= =80
- - -
= = =
10°
10° 0
0.0 0.5 1.0 1.5 20 0.0 0.5 1.0 1.5 20 0.0 0.5 1.0 15 2.0
NEE A ———— - V| T 1 75 = i
bk 50 AU \ v bl: 30 f bl: 50 My
25 _,'_rr 25 o 25 Jf
0.0 0.5 1.0 1.5 20 0.0 0.5 1.0 1.5 20 0.0 0.5 1.0 1.5 2.0
Bits Communicated (Gb) Bits Communicated (Gb) Bits Communicated (Gb)

(a) ResNet-18 with fixed LR, i.i.d data

(b) ResNet-18 variable LR, i.i.d data

(c) ResNet-18 with fixed LR, non-i.i.d data

Fig. 2: AdaQuantFL on ResNet-18 requires a fewer bits to reach a lower loss threshold, in (a) AdaQuantFL reaches a loss of
0.02 in 0.3Gb while the 2-bit method takes 1.8Gb. Here b}, = [log, (s} + 1)] (defined in Section 4).
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Fig. 3: For the Vanilla CNN, AdaQuantFL is able to achieve the lowest error floor of 0.02 for the non-i.i.d data distribution,
while other methods converge at a higher error floor. Here b}, = [logy (s} + 1)] (defined in Section 4).

5. EXPERIMENTAL RESULTS

We evaluate the performance of AdaQuantFL against fixed
quantization schemes using b = {2,4, 8, 16} bits respectively
to represent each element of the model update (excluding the
sign bit) using the stochastic uniform quantizer. The perfor-
mance is measured on classification of the CIFAR-10 [21]
and Fashion MNIST [22] datasets using ResNet-18 [23] and
a Vanilla CNN architecture [1] (referred as CNN here on) re-
spectively. For all our experiments we set the number of local
updates to be 7 = 10, n = 0.1 and train our algorithm over
4 clients for the ResNet-18 and 8 clients for the CNN. For
the variable learning rate setting, we reduce the learning rate
by a factor of 0.9 every 100 training rounds. We run our ex-
periments on both i.i.d and non-i.i.d distributions of data over
clients. Our experimental results verify that AdaQuantFL is
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able to reach an error floor using much fewer bits in most
cases as seen in Fig. 2 and Fig. 3. Additional details and fig-
ures, including test accuracy plots can be found in Appendix
D of [20].

6. CONCLUSION

In this paper we present AdaQuantFL, a strategy to adapt the
number of quantization levels used to represent compressed
model updates in federated learning. AdaQuantFL is based
on a rigorous error vs bits convergence analysis. Our experi-
ments show that AdaQuantFL requires fewer bits to converge
during training. A natural extension of AdaQuantFL would
be using other quantizers such as the stochastic rotated quan-
tizer [18] and the universal vector quantizer [9].

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 31,2022 at 19:18:47 UTC from IEEE Xplore. Restrictions apply.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

7. REFERENCES

H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aggura y Arcas, ‘“Communication-
Efficient Learning of Deep Networks from Decentralized
Data,” International Conference on Artificial Intelligenece and
Statistics (AISTATS), Apr. 2017.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien
Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Keith Bonawitz,
Zachary Charles, Graham Cormode, Rachel Cummings, et al.,
“Advances and open problems in federated learning,” arXiv
preprint arXiv:1912.04977, 2019.

Jianyu Wang and Gauri Joshi, “Cooperative SGD: Unifying
Temporal and Spatial Strategies for Communication-Efficient
Distributed SGD,” arXiv preprint arXiv:1808.07576, 2018.

Jianyu Wang, Hao Liang, and Gauri Joshi, “Overlap local-
SGD: An algorithmic approach to hide communication delays
in distributed SGD,” arXiv preprint arXiv:2002.09539, 2020.

Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad
Mahdavi, and Viveck Cadambe, “Local sgd with periodic aver-
aging: Tighter analysis and adaptive synchronization,” in Ad-
vances in Neural Information Processing Systems 32, H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox,
and R. Garnett, Eds., pp. 11082-11094. Curran Associates,
Inc., 2019.

Sebastian U Stich, “Local sgd converges fast and communi-
cates little,” arXiv preprint arXiv:1805.09767, 2018.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and
Milan Vojnovic, “Qsgd: Communication-efficient sgd via gra-
dient quantization and encoding,” in Advances in Neural Infor-
mation Processing Systems, 2017, pp. 1709-1720.

Jakub Kone¢ny, H Brendan McMahan, Daniel Ramage, and
Peter Richtdrik, “Federated optimization: Distributed ma-
chine learning for on-device intelligence,” arXiv preprint
arXiv:1610.02527, 2016.

Nir Shlezinger, Mingzhe Chen, Yonina C Eldar, H Vincent
Poor, and Shuguang Cui, “Uveqfed: Universal vector quantiza-
tion for federated learning,” arXiv preprint arXiv:2006.03262,
2020.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang,
Yiran Chen, and Hai Li, “Terngrad: Ternary gradients to
reduce communication in distributed deep learning,” arXiv
preprint arXiv:1705.07878, May 2017.

Venkata Gandikota, Daniel Kane, Raj Kumar Maity, and Arya
Mazumdar, “vgsgd: Vector quantized stochastic gradient de-
scent,” 2019.

Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary Charles,
Dimitris Papailiopoulos, and Stephen Wright,  “Atomo:
Communication-efficient learning via atomic sparsification,”
in Advances in Neural Information Processing Systems, 2018,
pp. 9850-9861.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi,
“Powersgd: Practical low-rank gradient compression for dis-
tributed optimization,” in Advances in Neural Information Pro-
cessing Systems, 2019, pp. 14259-14268.

3114

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

(23]

Fartash Faghri, Iman Tabrizian, Ilia Markov, Dan Alistarh,
Daniel Roy, and Ali Ramezani-Kebrya,  “Adaptive gra-
dient quantization for data-parallel sgd,” arXiv preprint
arXiv:2010.12460, 2020.

Jun Sun, Tianyi Chen, Georgios B Giannakis, and Zaiyue
Yang, “Communication-efficient distributed learning via
lazily aggregated quantized gradients,” arXiv preprint
arXiv:1909.07588, 2019.

Jianyu Wang and Gauri Joshi, “Adaptive Communi-
cation Strategies for Best Error-Runtime Trade-offs in
Communication-Efficient Distributed SGD,” in Proceedings
of the SysML Conference, Apr. 2019.

Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Has-
sani, Ali Jadbabaie, and Ramtin Pedarsani, “Fedpaq: A
communication-efficient federated learning method with peri-
odic averaging and quantization,” in International Conference
on Artificial Intelligence and Statistics, 2020, pp. 2021-2031.

Ananda Theertha Suresh, X Yu Felix, Sanjiv Kumar, and
H Brendan McMahan, “Distributed mean estimation with lim-
ited communication,” in International Conference on Machine
Learning, 2017, pp. 3329-3337.

Léon Bottou, Frank E Curtis, and Jorge Nocedal, “Optimiza-
tion methods for large-scale machine learning,” arXiv preprint
arXiv:1606.04838, Feb. 2018.

Divyansh Jhunjhunwala, Advait Gadhikar, Gauri Joshi, and
Yonina C. Eldar, “Adaptive quantization of model updates for
communication-efficient federated learning,” arXiv preprint
arXiv:2102.04487, 2021.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton, “Cifar-10
(canadian institute for advanced research),” .
Han Xiao, Kashif Rasul, and Roland Vollgraf, “Fashion-mnist:

a novel image dataset for benchmarking machine learning al-
gorithms,” arXiv preprint arXiv:1708.07747, 2017.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 770-778.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 31,2022 at 19:18:47 UTC from IEEE Xplore. Restrictions apply.



		2021-04-27T08:10:35-0400
	Preflight Ticket Signature




