Gaussian Process to Identify Hydrogel Constitutive Model
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ABSTRACT

Unlike traditional structural materials, soft solids can often sustain very large deformation before failure, and many exhibit
nonlinear viscoelastic behavior. Modeling nonlinear viscoelasticity is a challenging problem for a number of reasons. In
particular, a large number of material parameters are needed to capture material response and validation of models can be
hindered by limited amounts of experimental data available. We have developed a Gaussian Process (GP) approach to
determine the material parameters of a constitutive model describing the mechanical behavior of a soft, viscoelastic PVA
hydrogel. A large number of stress histories generated by the constitutive model constitute the training sets. The low-rank
representations of stress histories by Singular Value Decomposition (SVD) are taken to be random variables which can be
modeled via Gaussian Processes with respect to the material parameters of the constitutive model. We obtain optimal
material parameters by minimizing an objective function over the input set. We find that there are many good sets of
parameters. Further the process reveals relationships between the model parameters. Results so far show that GP has great
potential in fitting constitutive models.
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INTRODUCTION

Many materials, for example, soft solids such as rubber and gels, are viscoelastic or viscoplastic solids. These materials,
besides being rate-sensitive, can sustain very large deformation before failure. To describe their mechanical properties,
researchers have designed many complex constitutive models. However, most constitutive models contain many material
parameters that cannot be directly determined by experimental data. In addition, validating the theoretical model is hindered
by the limited amount of experimental data available. The process of fitting experimental data to theory can be extremely
tedious and time-consuming. When the number of material parameters is large, poor fitting of data can occur even if the
model captures the correct physics. To our best knowledge, it is still a great challenge to rapidly determine the parameters for
complex viscoelastic constitutive models. Here we propose a method to find the parameters for constitutive models, which
combines singular value decomposition (SVD) and machine learning tools, specifically, Gaussian process. Although our
formulation is general, we demonstrate its usage and validate our algorithm by applying it to study the mechanical behavior
of a nonlinear viscoelastic PVA hydrogel.

PVA CONSTITUTIVE MODEL

In our previous works [1], we have developed a 3D constitutive model which combines the finite strain elasticity of
elastomers with the kinetics of bond breaking and reattachment. We have also demonstrated that our model accurately
predicts results from uniaxial tension and torsion tests with complex loading histories. The constitutive model for the PVA
gel is completely determined by four material parameters pp, ap, tg and uy,,. Hence a parameter set is specified by a four-
component vector ¥ = (up, ag, ty, U¥,). According to our constitutive model, in a uniaxial tension test where the stretch
ratio A(t) is prescribed, the nominal stress o (t) corresponding to the parameter set ¥ = (up, tp, tp, U¥,.) € 2 < R*is
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The units of parameters are (up, ag, tg, uy.)~(kPa, 1, sec, kPa)

GAUSSIAN PROCESS MACHINE LEARNING

Singular value decomposition (SVD) and Gaussian process have been used by different groups of researchers to predict
material behavior or to find crucial parameters for controlling system behavior [2, 3]. Here we use these tools to help us
predict the output of our constitutive model, i.e., stress history. For a fixed strain history, we can use the constitutive model to
calculate the stress history for different parameters. If we put all those stress histories together, we can get a stress matrix and
apply singular value decomposition on it to get the basis and principal components of each stress history. Then we use the
principal components of all those stress histories to train a Gaussian process. After training, under the same strain history, this
Gaussian process can make predictions about the principal components of the stress history of any parameters it has not seen.

As aresult, we can use GP to evaluate the stress history over a large number of parameters then find the parameters that best
fit the experimental data. The flowchart of Gaussian process machine learning is shown in Figure 1.
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Figure 1: Workflow of Gaussian Process to identify constitutive model. (a) 1000 stress history curves calculated directly
from the constitutive model are decomposed into basis and projections on this basis (i.e. principal components) using SVD;
(b) the principal components of the 1000 parameter sets are taken as training set. After training, the GP can make predictions
about the principal components of any parameter set not in the training set; (c) with the predicted principal components, the
stress history of any parameter set can be predicted by applying SVD inverse transform to the predicted principal component
without calculating the constitutive model; (d) the best parameters for the experimental data can be obtained by comparing
the experimental stress history with the stress histories calculated for a large number of parameter sets.




EXPERIMENTAL METHODS

The dual-crosslink poly(vinyl alcohol) (PVA) hydrogels were prepared by incorporating ions in a chemically crosslinked
PVA gel. This hydrogel system was first introduced by Mayumi et al [4]. First a 16 wt% PVA solution was made by
dissolving PVA powder in distilled water. Then the PVA solution was chemically crosslinked by glutaraldehyde in an acidic
environment. Then the chemical gel was washed several times to neutralize the pH. Finally, the gel was soaked in

Borax/NaCl solution to form the physical bonds. The gel was soaked in the solution for at least 3 days to reach equilibrium
prior to testing.

We performed uniaxial tension tests using a single PVA hydrogel specimen with four different strain histories. Some of the
physical bonds will be broken after a test. Fortunately, the dual-crosslink PVA hydrogel has self-healing property; the bonds
can reform and the gel's mechanical properties can totally recover to their original state after 30 minutes at room temperature.

The tests were performed using a custom-built tensile tester with the samples immersed in a mineral oil bath to prevent the
specimens from drying. We conducted EXP 1, EXP 2, EXP 3 and EXP 4 sequentially, as shown in Figure 1. After each test,
we kept the specimen in the oil bath 30 minutes to let it recover to the as-prepared state.
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Figure 2: Four loading histories for PVA gels

RESULTS AND DISCUSSION

The best fitting result given by GP is illustrated in Figure 3. The agreement between experiments and theory is excellent.
These results further demonstrate that our PVA constitutive model correctly captures the mechanical behavior of PVA gels.
In addition, it shows that our machine learning algorithm is a powerful tool for determining material parameters in

constitutive models.
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Figure 3: Comparison of model prediction to experiments using the parameters given by GP



Furthermore, using our method, we discovered that there are many sets of material parameters that fit the experiments well.
The projections of those parameters on 2D subspaces are drawn in Figure 4, and these plots show that there are strong
relationships between pp and ag, as well as tz and uy,,. To understand the relationships, we use a result from our previous
work [1], which demonstrates that when strains are small, that is, when A(t) = 1 + €(t), the constitutive model becomes
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From this equation, it is clear that o(t) depends linearly on uy.,. Then uy,.tp; must be a material constant C for a specific
experiment, therefore uy,, = C/tg. And it is clear that o(t) increases with pp and ag. Therefore, to produce the same stress
history, a smaller ap must be chosen if a larger value of pp is already chosen. Figure 4 shows the machine learning
predictions are consistent with those relationships, which further demonstrates the power of our method.
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Figure 4: Distribution of 500 parameter sets which fit experiments very well.

Theoretically, all the results above can be obtained by calculating the constitutive model for 1 million parameter sets directly,
however, a prediction that would take 1.6 minutes using SVD and Gaussian process metamodel for 1 million parameter
vectors would take up to 322 hours to evaluate using the constitutive model. For more complicated constitutive models and
longer strain histories, it is impractical to calculate the stress history for millions of parameter sets. This is the main
advantage of our method over the traditional methods of data fitting.
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