
Gaussian Process to Identify Hydrogel Constitutive Model 

Jikun Wang, Tianjiao Li, Chung-Yuen Hui, Jingjie Yeo, Alan Zehnder 

 
 Mechanical and Aerospace Engineering 

Cornell University 
Ithaca NY  14853 

ABSTRACT 
Unlike traditional structural materials, soft solids can often sustain very large deformation before failure, and many exhibit 
nonlinear viscoelastic behavior.  Modeling nonlinear viscoelasticity is a challenging problem for a number of reasons. In 
particular, a large number of material parameters are needed to capture material response and validation of models can be 
hindered by limited amounts of experimental data available. We have developed a Gaussian Process (GP) approach to 
determine the material parameters of a constitutive model describing the mechanical behavior of a soft, viscoelastic PVA 
hydrogel. A large number of stress histories generated by the constitutive model constitute the training sets. The low-rank 
representations of stress histories by Singular Value Decomposition (SVD) are taken to be random variables which can be 
modeled via Gaussian Processes with respect to the material parameters of the constitutive model. We obtain optimal 
material parameters by minimizing an objective function over the input set. We find that there are many good sets of 
parameters. Further the process reveals relationships between the model parameters. Results so far show that GP has great 
potential in fitting constitutive models.   
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INTRODUCTION 
Many materials, for example, soft solids such as rubber and gels, are viscoelastic or viscoplastic solids. These materials, 
besides being rate-sensitive, can sustain very large deformation before failure. To describe their mechanical properties, 
researchers have designed many complex constitutive models. However, most constitutive models contain many material 
parameters that cannot be directly determined by experimental data. In addition, validating the theoretical model is hindered 
by the limited amount of experimental data available. The process of fitting experimental data to theory can be extremely 
tedious and time-consuming. When the number of material parameters is large, poor fitting of data can occur even if the 
model captures the correct physics. To our best knowledge, it is still a great challenge to rapidly determine the parameters for 
complex viscoelastic constitutive models.  Here we propose a method to find the parameters for constitutive models, which 
combines singular value decomposition (SVD) and machine learning tools, specifically, Gaussian process. Although our 
formulation is general, we demonstrate its usage and validate our algorithm by applying it to study the mechanical behavior 
of a nonlinear viscoelastic PVA hydrogel. 

PVA CONSTITUTIVE MODEL 

In our previous works [1], we have developed a 3D constitutive model which combines the finite strain elasticity of 
elastomers with the kinetics of bond breaking and reattachment.   We have also demonstrated that our model accurately 
predicts results from uniaxial tension and torsion tests with complex loading histories.  The constitutive model for the PVA 
gel is completely determined by four material parameters 𝜇𝜇𝜇𝜇,𝛼𝛼𝐵𝐵, 𝑡𝑡𝐵𝐵 and 𝜇𝜇𝛾̄𝛾∞.   Hence a parameter set is specified by a four-
component vector 𝑥⃗𝑥 = (𝜇𝜇𝜇𝜇,𝛼𝛼𝐵𝐵, 𝑡𝑡𝐵𝐵,𝜇𝜇𝛾̄𝛾∞).  According to our constitutive model, in a uniaxial tension test where the stretch 
ratio 𝜆𝜆(𝑡𝑡) is prescribed, the nominal stress 𝜎𝜎(𝑡𝑡) corresponding to the parameter set 𝑥⃗𝑥 ≡ (𝜇𝜇𝜌𝜌, 𝑡𝑡𝐵𝐵, 𝑡𝑡𝐵𝐵, 𝜇𝜇𝛾̄𝛾∞) ∈ 𝛺𝛺 ⊂ ℝ4 is  
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The units of parameters are (𝜇𝜇𝜇𝜇,𝛼𝛼𝐵𝐵, 𝑡𝑡𝐵𝐵,𝜇𝜇𝛾̄𝛾∞)~(𝑘𝑘𝑘𝑘𝑘𝑘, 1, 𝑠𝑠𝑠𝑠𝑠𝑠,   𝑘𝑘𝑘𝑘𝑘𝑘) 

GAUSSIAN PROCESS MACHINE LEARNING 
Singular value decomposition (SVD) and Gaussian process have been used by different groups of researchers to predict 
material behavior or to find crucial parameters for controlling system behavior [2, 3]. Here we use these tools to help us 
predict the output of our constitutive model, i.e., stress history. For a fixed strain history, we can use the constitutive model to 
calculate the stress history for different parameters. If we put all those stress histories together, we can get a stress matrix and 
apply singular value decomposition on it to get the basis and principal components of each stress history. Then we use the 
principal components of all those stress histories to train a Gaussian process. After training, under the same strain history, this 
Gaussian process can make predictions about the principal components of the stress history of any parameters it has not seen. 
As a result, we can use GP to evaluate the stress history over a large number of parameters then find the parameters that best 
fit the experimental data. The flowchart of Gaussian process machine learning is shown in Figure 1. 

 

Figure 1: Workflow of Gaussian Process to identify constitutive model.  (a) 1000 stress history curves calculated directly 
from the constitutive model are decomposed into basis and projections on this basis (i.e. principal components) using SVD; 
(b) the principal components of the 1000 parameter sets are taken as training set. After training, the GP can make predictions 
about the principal components of any parameter set not in the training set; (c) with the predicted principal components, the 
stress history of any parameter set can be predicted by applying SVD inverse transform to the predicted principal component 
without calculating the constitutive model; (d) the best parameters for the experimental data can be obtained by comparing 
the experimental stress history with the stress histories calculated for a large number of parameter sets. 



EXPERIMENTAL METHODS 
The dual-crosslink poly(vinyl alcohol) (PVA) hydrogels were prepared by incorporating ions in a chemically crosslinked 
PVA gel. This hydrogel system was first introduced by Mayumi et al [4]. First a 16 wt% PVA solution was made by 
dissolving PVA powder in distilled water. Then the PVA solution was chemically crosslinked by glutaraldehyde in an acidic 
environment. Then the chemical gel was washed several times to neutralize the pH. Finally, the gel was soaked in 
Borax/NaCl solution to form the physical bonds. The gel was soaked in the solution for at least 3 days to reach equilibrium 
prior to testing.  

We performed uniaxial tension tests using a single PVA hydrogel specimen with four different strain histories. Some of the 
physical bonds will be broken after a test. Fortunately, the dual-crosslink PVA hydrogel has self-healing property; the bonds 
can reform and the gel's mechanical properties can totally recover to their original state after 30 minutes at room temperature. 
 
The tests were performed using a custom-built tensile tester with the samples immersed in a mineral oil bath to prevent the 
specimens from drying. We conducted EXP 1, EXP 2, EXP 3 and EXP 4 sequentially, as shown in Figure 1. After each test, 
we kept the specimen in the oil bath 30 minutes to let it recover to the as-prepared state. 

 
Figure 2: Four loading histories for PVA gels 

RESULTS AND DISCUSSION 
The best fitting result given by GP is illustrated in Figure 3. The agreement between experiments and theory is excellent. 
These results further demonstrate that our PVA constitutive model correctly captures the mechanical behavior of PVA gels. 
In addition, it shows that our machine learning algorithm is a powerful tool for determining material parameters in 
constitutive models.  

 
Figure 3: Comparison of model prediction to experiments using the parameters given by GP 

 



Furthermore, using our method, we discovered that there are many sets of material parameters that fit the experiments well. 
The projections of those parameters on 2D subspaces are drawn in Figure 4, and these plots show that there are strong 
relationships between 𝜇𝜇𝜇𝜇 and 𝛼𝛼𝐵𝐵, as well as 𝑡𝑡𝐵𝐵 and 𝜇𝜇𝛾̄𝛾∞.  To understand the relationships, we use a result from our previous 
work [1], which demonstrates that when strains are small, that is, when 𝜆𝜆(𝑡𝑡) ≈ 1 +  𝜖𝜖(𝑡𝑡), the constitutive model becomes 
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From this equation, it is clear that 𝜎𝜎(𝑡𝑡) depends linearly on 𝜇𝜇𝛾̄𝛾∞. Then 𝜇𝜇𝛾̄𝛾∞𝑡𝑡𝐵𝐵 must be a material constant 𝐶𝐶 for a specific 
experiment, therefore 𝜇𝜇𝛾̄𝛾∞ = 𝐶𝐶/𝑡𝑡𝐵𝐵. And it is clear that 𝜎𝜎(𝑡𝑡) increases with 𝜇𝜇𝜇𝜇 and 𝛼𝛼𝐵𝐵. Therefore, to produce the same stress 
history, a smaller 𝛼𝛼𝐵𝐵 must be chosen if a larger value of 𝜇𝜇𝜇𝜇 is already chosen. Figure 4 shows the machine learning 
predictions are consistent with those relationships, which further demonstrates the power of our method.  

 
Figure 4: Distribution of 500 parameter sets which fit experiments very well.  

Theoretically, all the results above can be obtained by calculating the constitutive model for 1 million parameter sets directly, 
however, a prediction that would take 1.6 minutes using SVD and Gaussian process metamodel for 1 million parameter 
vectors would take up to 322 hours to evaluate using the constitutive model. For more complicated constitutive models and 
longer strain histories, it is impractical to calculate the stress history for millions of parameter sets. This is the main 
advantage of our method over the traditional methods of data fitting. 
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