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ABSTRACT: This paper describes low-threshold lasing from
colloidal CdSe nanoplatelets (NPLs) coated on two-dimensional
plasmonic cavities composed of aluminum nanoparticles (NPs). We
designed the NP lattice to support a spectrally narrow surface lattice
resonance whose wavelength overlapped with the amplified
spontaneous emission (ASE) from CdSe NPLs. Al NP lattices
coated with CdSe NPL thin films were optically pumped and
exhibited lasing in the surface normal direction with low angular
divergence, narrow spectral line width (∼1 nm), and a threshold of
∼200 μJ/cm2. Nonlinear light emission characteristics were found to depend on the thickness of the CdSe NPL film. A minimum
thickness of 150 nm was required to observe SLR-mediated lasing, but thinner films exhibited only photoluminescence. Films above
150 nm exhibited both in-plane waveguided ASE from the CdSe NPL film and lasing action from the Al NP lattice.

■ INTRODUCTION

Semiconductor nanoplatelets (NPLs) are promising for
optoelectronic technologies such as light-emitting diodes and
compact lasers due to their scalable synthesis, facile solution
processing, narrow band-edge emission spectra, and large
optical gain coefficients.1−8 Similar to 2D quantum wells,
NPLs can be synthesized with an identical number of vertically
defined monolayers and have comparatively large lateral
dimensions for tunable, homogeneously broadened band-
edge absorption and photoluminescence.2 NPLs also offer
advantages for gain and lasing relative to zero-dimensional
quantum dots:9,10 the narrow band-edge line widths aid light
amplification, the large lateral sizes (25 nm length × 4 nm
width × 1.5 nm thickness) boost absorption cross sections by
an order of magnitude,11 and multiexciton lifetimes needed for
population inversion can exceed those of the smaller-volume
quantum dots from slower rates of Auger recombination.12−16

However, optical gain lifetimes for single-component (core-
only) NPLs are subnanoseconds, and small cavity sizes are
needed for light amplification.
Lasing action requires a cavity that provides low-loss

constructive optical feedback at one or more wavelengths
within the supported spectral profile of a population-inverted
gain medium.17 Light amplification using semiconductor
nanostructures has been demonstrated by using a wide variety
of compact cavity architectures including whispering gallery
mode resonators,18,19 distributed feedback gratings,20,21

vertical cavities,15,22 and photonic crystals.6,23 We have
reported how 2D plasmonic nanoparticle (NP) lattices can
act as nanolaser cavities for colloidal quantum dots,24,25

upconverting nanoparticles26 as well as organic dyes.27−34

Plasmonic NP lattices support two types of plasmons: (1)
localized surface plasmons (LSPs), arising from collective
electron oscillations in isolated metal NPs, and (2) surface
lattice resonances (SLRs), which are LSPs coupled to Bragg
modes defined by lattice periodicity.35−37 Several design
parameters influence SLR characteristics such as lattice
symmetry and spacing,38−40 refractive index of the substrate,
medium surrounding NPs, NP size, and materials composi-
tion.41−47 When NP lattices are of high quality, the SLRs
exhibit remarkably narrow spectral features (a few nanome-
ters)43,48 that influence laser characteristics including spectral
width,31,33 directionality of emission,25,32,49 temporal pro-
file,50,51 and polarization.24

Here we report the lasing characteristics of CdSe NPL films
on Al NP lattices. CdSe NPLs were deposited on NP lattices
with narrow SLRs (<4 nm), resulting in the formation of
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waveguide SLRs. When optically pumped, nonlinear lasing
emission from the hybrid mode was dependent on the NPL
film thickness. For NPL films at least 150 nm thick, lasing
emission in the far field exhibited small divergence (<1°), low
threshold (∼200 μJ/cm2), and ultrafast decay dynamics near
the position of the waveguide SLR. Thinner films exhibited
only photoluminescence, while thicker films produced wave-
guided ASE in addition to the surface normal lasing.

■ RESULTS AND DISCUSSION
CdSe NPLs with a thickness of 5 monolayers were synthesized
by using an established protocol15 and showed narrow band-
edge transitions (∼12 nm full width at half-maximum
(FWHM), Figure 1a and Figure S1). The flat NPL
morphology was confirmed by transmission electron micros-
copy (Figure 1b); the short and long edge dimensions were
measured to be 7.6 ± 0.9 nm and 24.7 ± 3.0 nm, respectively.
This thickness of the CdSe NPL was selected because of its
high synthetic reproducibility and slow Auger recombination
relative to thinner 3- and 4-monolayer thick NPLs.14,15 The
refractive index of close-packed CdSe NPLs was determined to
be n = 1.8 at 570 nm based on the volume fraction of CdSe (n
= 2.56) and oleic acid ligands (n = 1.46).52 NPLs drop-cast on
quartz substrates from a concentrated (∼200 mg/mL)
dispersion by using a 9:1 hexane:octane solution produced t
∼ 150 nm thick films. When pumped at 400 nm with 35 fs
pulses, the band-edge PL from single-exciton recombination
was observed at low pump intensity (<150 μJ/cm2). Increasing
the pump intensity to 170 μJ/cm2 produced spectrally
narrowed (∼7 nm FWHM) amplified spontaneous emission
(ASE) near 568 nm in the direction parallel to the plane of the
film, with a superlinear intensity dependence on pump fluence
that was distinct from the sublinear band-edge emission. The
ASE from CdSe NPLs red-shifted to longer wavelengths (566−
568 nm) relative to band-edge emission (552 nm) because of

attractive biexciton Coulombic interactions and reduced losses
from reabsorption (Figures 1c,d).
The large refractive index mismatch of the CdSe NPL film

layer (n = 1.8) and the quartz substrate (n = 1.45) results in an
optical waveguide upon light excitation.53 Hybridization
between this waveguide mode and the SLR mode from the
Al NP lattice produces waveguide surface lattice resonances
(W-SLRs).24,25 Finite-difference time-domain simulations were
used to model the properties of the NPL-NP lattice under s-
polarized white light with adjustable particle sizes, periodicity,
and refractive index environment (Supporting Information). A
calculated W-SLR that spectrally overlaps with the NPL gain
was supported by Al NPs with diameter d = 75 nm, height h =
60 nm, and lattice periodicity a0 = 400 nm on a quartz (n =
1.45) substrate (Figure S2). Aluminum was selected as the
plasmonic material of interest because of its low losses at both
the emission wavelength and the 400 nm optical pump
wavelength (Figure S3).44

Because previous reports showed that the sidebands of W-
SLR modes from colloidal quantum dots at nonzero k||
provided optical feedback for lasing,24,25 we simulated off-
normal transmission spectra to identify the W-SLR sidebands
from the NPL-NP lattice (Figure S2a). Tuning the angle of
incident light between 0° and 1° produced features that
correspond to (1,0) and (−1,0) waveguided transverse electric
SLR (WTE-SLR) modes; the (1,0) mode is the sideband lasing
mode. The experimentally measured lasing emission at 577 nm
approximately matches the spectral position of the WTE-SLR
sideband mode (587 nm) in the simulated results.
Large-area (cm2) Al NP lattices were produced using a series

of nanofabrication processes described previously (Figure
S4).54 Normal-incidence transmission spectra of the fabricated
NP lattice in an index-matched environment of n = 1.45
revealed a spectrally narrow SLR with a 4 nm FWHM at 577
nm (Figure 1e). Transmission spectra of a 150 nm thick NPL

Figure 1. Characterization of 5-monolayer CdSe NPLs on quartz and on a patterned Al NP lattice. (a) UV−vis absorption (dashed line) and
photoluminescence (solid line) spectra of 5-monolayer-thick CdSe NPLs. Absorption was measured in hexane solution, and the emission was
measured from a drop-cast film. (b) Bright-field transmission electron microscopy image of synthesized NPLs; short edge length = 7.6 ± 0.9 nm
and long edge = 24.7 ± 3.0 nm. (c) Emission from CdSe NPLs drop-cast on a quartz substrate as a function of pump fluence with an ASE threshold
of 175 μJ/cm2. (d) Emission intensity at 552 nm shows a sublinear dependence on pump intensity (log−log slope of 0.72 ± 0.003) while the ASE
maxima rises superlinearly (4.78 ± 0.11). (e) Transmission spectrum of an Al NP lattice on quartz substrate (n = 1.46 at 570 nm) surrounded by
an index-matched oil. Inset: SEM image of a square Al NP lattice. Scale bar is 400 nm. (f) Transmission spectrum of an Al NP lattice with a 150 nm
thick CdSe NPL film shows light hole (LH) and heavy hole (HH) absorption features as dips at 512 and 550 nm, respectively; WTE‑SLR modes
appear near 574 and 589 nm. Optical excitation above threshold yields narrow spectrum laser emission that overlaps with a WTE-SLR mode.
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film on the same Al NP lattice showed reduced intensity from
CdSe NPL absorption features and two WTE-SLR modes with
order (1, 0) and (−1,0) (Figure 1f). Figure 2 depicts the

fluence and angle dependence of light emission from the NPL-
NP lattices. Emission was collected by using a fiber optic
mounted on a concentric rotational stage that directed the light
into a spectrograph and CCD. Detecting at normal incidence
to the lattice, we measured NPL photoluminescence (PL) at
low fluences centered around 553 nm, and then narrowband
lasing emission at 577 nm was observed for a fluence of 200
μJ/cm2 (Figure 2a); this threshold is relatively low compared
to that from colloidal quantum dot systems.24 Emission
intensity vs pump fluence shows that the PL follows a linear
trend while the 577 nm peak attributed to lasing rises
superlinearly and narrows (Figure 2b). Time-correlated single
photon counting (TCSPC) and streak camera measurements
were used to compare the emission time scales of single-

exciton radiative recombination (nanoseconds) with the
ultrafast dynamics (picoseconds) of lasing emission (Figure
S5).50 Emission directionality was evaluated by collecting
spectra above the lasing threshold as a function of detection
angle. The surface normal direction had a divergence of less
than 1°, while both PL and ASE showed diffuse scattering
(Figures 2c,d).
An important parameter identified to control the emission

characteristics of CdSe NPL-Al NP lattices was the thickness of
the CdSe NPL film. Drop-cast films produce a “coffee ring
effect” where the film is thickest near the droplet edge from
particle transport during drying.55,56 Figure 3a shows an optical
micrograph of different NPL film thicknesses on a Al NP
lattice. Atomic force microscopy images confirmed that the
thickest region of the NPL film was t2 = 200 nm; the center of
the NP lattice and the thinnest film regions were measured to
be 150 and 110 nm, respectively (Figures S6 and S7). The
average roughness of the NPL film was determined to be 1.96
nm across a 7 μm region as calculated by the root-mean-square
method (Figure S8). These different film thicknesses showed
distinct behavior when optically pumped. Neither ASE nor
lasing was observed for the thinnest (t1 = 110 nm) NPL region
even for the highest pump fluence tested of 356 μJ/cm2

(Figure 3b). In contrast, for t2 = 200 nm areas, both ASE
and lasing were present (Figure 3c). Note that the
intermediate thickness of t = 150 nm in Figure 2a produced
lasing with ASE suppressed. Angle-resolved emission showed
that lasing signals were emitted normal to the surface (Figure
S9), while ASE was observed over a wide range of angles (0°−
30°) consistent with incoherent scattering. For thin films, the
CdSe NPL layer does not provide enough optical gain to
overcome losses of the NP lattice cavity. To determine the
minimum NPL film thickness required to observe lasing and
ASE, we drop-cast a film using a dilute (20 mg/mL) NPL
dispersion (Figure S10). In this case, no ASE was generated,
and only PL signals were detected despite exploring high
excitation fluences (>1 mJ/cm2). These three classes of
emission depend on the overall thickness of the CdSe NPL
film because the refractive index of the film governs the WTE-
SLR wavelengths.24 With an optimal film thickness of 150 nm,
the WTE‑SLR cavity mode spectrally overlaps with the NPL
emission and shows low-threshold lasing.

■ CONCLUSIONS
CdSe NPLs can function as high-performance solid-state laser
gain media and exhibit room-temperature lasing when
integrated with NP lattice nanocavities. Our findings provide

Figure 2. Light emission from a 150 nm thick CdSe NPL film on an
Al NP lattice. (a) Normal incidence emission spectra measured for
the indicated pump laser fluences show development of strong,
spectrally narrow (1 nm FWHM) lasing emission at 577 nm and
suppressed ASE at 563 nm. (b) Light emission from different optical
processes shows that laser emission grows nonlinearly compared to
PL above ∼200 μJ/cm2. (c, d) Emission spectra at different detection
angles using a pump fluence of 260 μJ/cm2 shows highly directional
emission for signals near 577 nm in contrast to PL and ASE.

Figure 3. Light emission characteristics for different CdSe NPL film thickness on an Al NP lattice. (a) Optical micrograph of a drop-cast CdSe
NPL film on an Al NP lattice. t1 and t2 denote regions with thicknesses of 110 and 200 nm, respectively. (b) Emission from the t1 (thin) region of
CdSe NPL film shows neither ASE nor lasing even at high pump fluences. (c) Emission from the t2 (thick) CdSe NPL film shows both ASE and
lasing.
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insight into how high-index colloidal semiconductor gain can
introduce waveguide effects that hybridize with plasmonic
lattices. Because NPLs are anisotropic structures, the prospects
of controlling particle orientation and thus dipole direction
could potentially enable tailoring of the far-field laser beam
profile, polarization state, and threshold. We demonstrated the
capability of using core-only CdSe NPLs as a gain medium for
lasing despite losses from nonradiative Auger recombination.
For enhancing lasing performance further, core−shell and
gradient shell approaches to growing NPL heterostructures will
be investigated to prolong multiexciton lifetimes for increased
optical gain.
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