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Abstract— With the development of sensing and communica-
tion technologies in networked cyber-physical systems (CPSs),
multi-agent reinforcement learning (MARL)-based methodolo-
gies are integrated into the control process of physical systems
and demonstrate prominent performance in a wide array of
CPS domains, such as connected autonomous vehicles (CAVs).
However, it remains challenging to mathematically characterize
the improvement of the performance of CAVs with commu-
nication and cooperation capability. When each individual
autonomous vehicle is originally self-interest, we can not assume
that all agents would cooperate naturally during the training
process. In this work, we propose to reallocate the system’s
total reward efficiently to motivate stable cooperation among
autonomous vehicles. We formally define and quantify how to
reallocate the system’s total reward to each agent under the
proposed transferable utility game, such that communication-
based cooperation among multi-agents increases the system’s
total reward. We prove that Shapley value-based reward
reallocation of MARL locates in the core if the transferable
utility game is a convex game. Hence, the cooperation is stable
and efficient and the agents should stay in the coalition or
the cooperating group. We then propose a cooperative policy
learning algorithm with Shapley value reward reallocation. In
experiments, compared with several literature algorithms, we
show the improvement of the mean episode system reward of
CAV systems using our proposed algorithm.

I. INTRODUCTION

The rapid evolution of ubiquitous sensing, communica-
tion, and computation technologies has contributed to the
revolution of cyber-physical systems (CPSs). Increasingly,
multi-agent reinforcement learning (MARL)-based method-
ologies are integrated into the control process of physical
systems and demonstrate prominent performance in a wide
array of CPS domains. Connected and autonomous vehi-
cles (CAVs) are one type of networked CPSs and multi-
agent systems, with the development of vehicle-to-everything
(V2X) communication technologies. The U.S. Department of
Transportation (DOT) has estimated that DSRC (dedicated
short-range communications) based V2V communication can
address up to 82% of all crashes in the U.S. and potentially
save thousands of lives and billions of dollars [1]. Infor-
mation sharing of basic safety messages (BSMs) benefits
CAVs coordination and control approaches in scenarios such
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as cross intersections or lane-merging [2], [3], [4], platoon
and adaptive cruise control (ACC) [5], [6], [7].

However, it remains challenging to formally characterize
the improvement of learning-based decision-making for CAV
systems with V2X connections and to reallocate the sys-
tem’s total reward efficiently to motivate stable cooperation
of individual autonomous vehicles. Existing learning-based
planning or control approaches do not utilize communication
or potential shared information for autonomous vehicles
yet [8], [9], [10], [11]. How V2X communication benefits
MARL, improves the system’s total reward, and motivates
cooperation has not been formally defined or quantified.

We propose to formally define and quantify the value of
communication-based cooperation to MARL based on Shap-
ley value [12], [13], and use it to reallocate the system’s total
reward to the individual agent to motivate the cooperation.
It will build a research foundation to formally quantify the
value of information sharing and motivate cooperation for
the CAV research society, and the results can be leveraged
to other networked CPSs to better understand the benefits of
cooperation. Our proposed approach includes the following
three major novelties and contributions.

• We formally define and quantify how to efficiently real-
locate the system’s total reward to the individual agent
to motivate information sharing and stable cooperation
among multi-agents.

• We define a transferable utility game formulation to
study the reward reallocation problem, and prove that
Shapley value-based reward reallocation is efficient in
Theorem 1. We prove that the reward reallocation
scheme is stable if the transferable utility game is a
convex game in Theorem 2. Hence, each individual
agent should cooperate to receive more rewards.

• We propose a cooperative policy learning with Shapley
value reward allocation algorithm. In experiments, we
show the improvement of the system’s total reward,
velocity, and comfort of CAV systems using the Shapley
value of the grand coalition (all agents cooperate).

II. RELATED WORK

Cooperative games attract increasing research interests
in MARL [14]. Existing works have been investigated to
encourage every agent to work collaboratively by assigning
rewards appropriately, such as a value decomposition net-
work [15], [16], subtracting a counterfactual baseline [17],
or an implicit method [18]. Multi-agent deep deterministic
policy gradient (MADDPG) applies a centralized Q-function
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to address the problem caused by the non-stationary en-
vironment [19]. Its scalability can be improved by adding
an attention mechanism to the centralized critic [20]. Dis-
tributed execution with communication among agents with
centralized critics methods and online learning with commu-
nicative actions [21], [22], [23], [24], [25], [26] have shown
performance improvement over non-communicative agents.
In all these works, agents are assumed to cooperate during
the training process, however, whether agents will cooperate
or whether the cooperative coalition is stable has not been
answered yet.

Another related line of work is coalition formation games,
where selfish and rational agents choose to participate in
coalitions to maximize their own utility. There are two
classes of coalition formation games: static and dynamic for-
mation processes. In the former class, several works employ
bargaining methods [27], [28] to achieve the agreement and
no agents would deviate from the agreement once it begins.
Besides, some works rely on concepts of cooperative game
theory to acquire stable coalitions and fair payoff distribution
methods, such as Shapley value [29], core [30], [29] and
kernel [31]. However, these methods do not apply to our
setting because we consider a dynamic process. Methods that
be used for analyzing dynamic coalition formation include
Bayesian RL and MARL [32], [33]. But these works all use
MARL as a tool to analyze the coalition formation game,
while we consider the converse - we leverage analytical tools
in cooperative game and coalition formation game for reward
reallocation design in MARL.

Shapley value [12] is one classical method to divide the
total payoff of all players in a cooperative game so that each
player receives his or her fair payment. It uniquely provides
an equitable assignment of values to agents and is also one
metric to measure the importance and marginal contribution
of each player to the system. Recent literature on learning has
developed a principled framework of “data Shapley” [34] to
address data valuation and “feature Shapley” [35] to measure
the importance of features to supervised learning algorithms.
Computing Shapley is still challenging and requires comput-
ing all the possible marginal contributions, which is exponen-
tially large in the training process. Therefore, approximation
methods to estimate the Shapley value of agents, data, and
features have been designed and are presented in the game
theory and machine learning literature [13], [36], [34], [35].
However, in this work, we leverage the exploration and
exploitation power of reinforcement learning to reduce the
computational complexity significantly by avoiding travers-
ing all possible marginal contributions.

III. PRELIMINARY

A. Convex Game
In cooperative games, a Transferable Utility game (TU

game) with n agents can be represented by a pair (N , v),
where N = {1, . . . , n} is a set of agents and v : 2n ! R is
the real-valued characteristic function [37]. More specifically,
N is the grand coalition in which all the n agents cooperate
together. For any coalition C ✓ N , v(C) measures its value.

A TU game (N, v) is a convex game if for any C,D ✓ N ,
v(C [ D) � v(C) + v(D) � v(C \ D). An outcome of any
TU game consists of two parts, a coalition structure CS
and a payoff vector x 2 Rn, denoted as a pair (CS, x).
The coalition structure CS = {C1, . . . , Ck} over N is a
possible partition of N and the corresponding payoff vector
x = (x1, . . . , xn) 2 Rn satisfies: (1) xi � 0 for each i 2 N
and (2) x(Cj)  v(Cj), where x(Cj) =

P
i2Cj xi, for any

j 2 {1, . . . , k}.

B. Solution Concepts
There are several solution concepts that identify sets of

outcomes with appealing properties, such as stability and
efficiency. In this paper, we investigate four widely used
solution concepts [37], as follows.

Definition 1 (Core and Stable Outcome). Given a TU game
(N , v), the Core is the set of all stable outcomes (CS, x) such
x(C) � v(C) for every C ✓ N , where x(C) =

P
i2C x

i.

Definition 2 (Efficient Outcome). If x(C) = v(C) for any
C 2 CS in an outcome (CS, x), then this outcome is efficient
and maximizes the social welfare.

Definition 3 (Shapley Value). Given a TU game (N , v),
the Shapley Value for each agent i 2 N is denoted by �i(v)
and is given by

�i(v) =
X

C✓N\{i}

|C|!(|N |� |C|� 1)!

|N |! (v(C [ {i})� v(C)) .

C. Multi-agent Actor-Critic
The environment’s state transition of MARL is influenced

by the policy of all agents and it is non-stationary from a
single agent’s view. To alleviate this problem and stabilize
training, MADDPG is proposed using a centralized Q-
function that has global state information [19]. The ith agent
maximizes its own expected return J(✓i) and its gradient is

r✓iJ(✓i) = (1)
Es,a⇠D

⇥
r✓i⇡i(si)raiQi(s, a1, ..., an)|ai=⇡i(si)

⇤
,

where Qi(s, a1, ..., an) is a centralized action-value function,
s is the joint state, ⇡i is the policy. The experience replay
buffer D contains (s, a1, ..., an, s0, r1, ..., rn). The central-
ized critic Qi is trained using the Bellman loss:

L(✓i) = Es,a,r,s0⇠D[y �Qi(s, a1, ..., an)]2,

y = ri + �Qi0(s0, a10, ..., an0)|aj0=⇡j(sj0), (2)

where Qi0 is the target network and � is a discount factor.
Note that this algorithm adopts the centralized training and
decentralized execution paradigm. When testing, each agent
can only access its local state to select actions.

IV. PROBLEM FORMULATION

We first formulate the connected autonomous vehicles
(CAVs) problem as a MARL problem. We consider n agents
(e.g., autonomous vehicles) in the agent set N = {1, ..., n}.
Each agent i is associated with an action ai 2 Ai and a
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state si 2 Si. The global joint state is s = (s1, ..., sn) 2
S := S1 ⇥ · · · ⇥ Sn. Similarly, the global joint action is
a = (a1, ..., an) 2 A := A1 ⇥ · · ·⇥An. Each coalition has
a stage-wise reward function R(s, a, C), where we denote
a subset of the vehicles N as a coalition C. Specially, the
N denotes the grand coalition in which all the n agents
cooperate together. Let R(s, a,N ) to represent the global
stage-wise reward under the grand coalition. For the empty
coalition ;, R(s, a, ;) := 0. In our work, we assume that all
rewards are nonnegative.

We consider each agent is associated with a localized
policy ⇡i(ai|sC) to choose a local action ai given its local
state sC . We use ⇡(a|s) to denote the joint policy. The
system’s objective is to find a policy ⇡(a|s) to maximize the
system’s discounted total reward under the grand coalition,

max
⇡(a|s)

Eat⇠⇡(a|s)

" 1X

t=0

�tRt+1(st, at,N )|s0 = s, a0 = a

#
,

where � is the discount factor. However, how to motivate
agents to form a grand coalition has not been studied yet.

The MARL problem is usually solved by the centralized
training and decentralized execution paradigm that is first
proposed in [19]. During training, there is a centralized
critic Q(s, a) that has access to the global state s and
global action a. This critic is used to train a localized
actor for decentralized execution. However, having such a
powerful centralized critic for autonomous vehicles is not
easy, especially when each vehicle is self-interested and
focuses to maximize its own reward (e.g., maximize its own
driving speed or minimize its own travel time). Vehicles
are not assumed to be fully cooperative. Therefore, the goal
of this paper is to design a better total reward reallocation
mechanism, under which agents are willing to collaborate
with each other by sharing their state and action information.

Simply using the original action value function Q(s, a) is
not guaranteed to learn a policy where agents are willing
to cooperate. In order to find a better total reward for
policy learning, we formulate and analyze the game between
CAVs using the cooperative game framework. We consider
a Transferable Utility game (TU game) G = (N , v), where
v is the characteristic function introduced in Section III-A.
Consider the entire MARL problem across all timesteps, the
value of any coalition C given the current state and action is

v(C|s, a) = E⇡(a|s)

" 1X

t=0

�tRt+1(st, at, C)|s0 = s, a0 = a

#
.

Specially, when C = N we have

v(N|s, a) = E⇡(a|s)

" 1X

t=0

�tRt+1(st, at,N )|s0 = s, a0 = a

#
.

It shows the value of the grand coalition N is exactly the
system’s total reward. Note that the characteristic function
is not the state value function V(s) used in reinforcement
learning. The characteristic function is also a function of the
coalition C in the TU game.

We want to find a stable and efficient total reward re-
allocation for this TU game such that agents can learn a
cooperative policy. In the following section, we show how
to utilize the Shapley value to solve this problem.

V. STABLE AND EFFICIENT REWARD REALLOCATION

We first define the Shaley value for the Transferable Utility
game (TU game) G = (N , v) defined in Section IV and
show that the Shaley value satisfies the axioms for a fair
reward reallocation. We then present the Shapley value is
an efficient reward reallocation in Theorem 1. Moreover, we
show the Shapley value is a stable reward reallocation if
the TU game G = (N , v) is a convex game in Theorem 2.
Then we give an example of the convex game and design
Algorithm 1. An efficient solution means the system’s total
reward is completely distributed to each agent for cooperative
policy learning. A stable solution means any agent cannot get
more payoff if they leave the coalition. For CAVs, a stable
solution means that vehicles will stay within the coalition,
communicate and cooperate with other coalition members to
optimize the coalition-level objective.

We define the Shaley value of the TU game G = (N , v)
as follows.

Definition 4 (Shapley Value). The Shapley value of the TU
game G = (N , v) is defined to be

�i(s, a) :=
X

C✓N\{i}

|C|!(n�|C|�1)!

n!
[v(C[{i}|s, a)�v(C|s, a)].

(3)

The Shaley value of the TU game G = (N , v) is
extended for the multi-agent sequential decision problem
from Definition 3. The intuition is that each agent’s total
reward is proportional to its total contribution to the entire
system. It is used to quantify the contribution of each agent
for the communication-based cooperation in MARL. Based
on the definition of �i(s, a) in (3), it is straightforward to see
that the Shaley value satisfies the axioms for a fair reward
reallocation as follows:

Proposition 1. The Shapley value of the TU game G =
(N , v) satisfies the following axiomatic characterization for
a fair reward reallocation:

1) Symmetric: if v(C[{i}|s, a) = v(C[{j}|s, a) for any
coalition C ✓ N \ {i, j}, then �i(s, a) = �j(s, a).

2) Dummy player: if v(C [ {i}|s, a) = v(C|s, a) for any
coalition C ✓ N , then �i(s, a) = 0.

3) Additivity: for any two v1 and v2, �i(s, a|v1 + v2) =
�i(s, a|v1)+�i(s, a|v2) for each i, where �i(s, a|v1+
v2) is Shapley value of the TU game (N , v1+v2) and
(v1 + v2)(C|s, a) = v1(C|s, a) + v2(C|s, a).

If a reward reallocation satisfies the axioms of symmetric,
dummy player, and additivity, it is called a fair reward
reallocation [37]. Besides fairness, we show that the outcome
({N},�) with Shaley value is an efficient outcome of the TU
game G = (N , v), where {N} is the coalition structure for
the grand coalition, and �(s, a) = (�1(s, a), ...,�n(s, a)) is
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the payoff vector for each agent given the current state s and
action a. The payoff �i(s, a) for each agent is the reallocated
total reward. It is regarded as a new action value function
after the reward reallocation.

Theorem 1. The outcome ({N},�) with Shaley value is
an efficient outcome of the TU game G = (N , v) and the
Shapley value is an efficient reward reallocation.

Proof. Note that v(;|s, a) = 0, we have
X

i2N
�i(s, a) =

X

i2N

X

C✓N\{i}

|C|!(n�|C|�1)!

n!
[v(C[{i}|s, a)

�v(C|s, a)] = n
(n� 1)!1!

n!
v(N|s, a) + n

0!(n� 1)!

n!
v(;|s, a)

+
X

C⇢N ,C 6=;,|C|=p

(p
(p� 1)!(n� p)!

n!
�

(n� p)
p!(n� p� 1)!

n!
)v(C|s, a)

= v(N|s, a). (4)

Note that the first equation is a telescoping sum where both
v(N|s, a) and v(;|s, a) appear once for each agent. The
value of coalition C with p agents appears p times with
positive sign, once for each agent in C; it also appears n� p
times with negative sign, once for each agent not in C.

Moreover, if the TU game G = (N , v) is a convex game,
we show that the Shaley value is a stable reward reallocation.
A convex game is defined as follows:

Definition 5 (Convex Game). The TU game G = (N , v) is
a convex game if for any pair of coalitions C,D ✓ N ,

v(C [D|s, a) + v(C \D|s, a) � v(C|s, a) + v(D|s, a).

For a convex game, we have the following theorem that
guarantees the core is nonempty, and there exists a stable
solution for reallocating v(N|s, a) to each individual agent
to motivate cooperation.

Theorem 2. If the TU game G = (N , v) is a convex game,
the outcome ({N},�) with Shaley value is in the core and
the Shapley value is a stable reward reallocation.

Proof. Note that the Shapley value for the TU game G =
(N , v) is

�i(s, a)=
X

C✓N\{i}

|C|!(n�|C|�1)!

n!
[v(C[{i}|s, a)�v(C|s, a)].

We then show that Shapley value allocation lies in the core
of the TU game G = (N , v).

Let the payoff vector defined by the marginal contribution
of each agent, i.e., xi = v(C[{i}|s, a)�v(C|s, a) for i 2 N .
The goal is to prove that x = (x1, . . . , xn) is in the core.
For any coalition C = {i1, i2, . . . , ik} ✓ N = {1, ..., n}, we
can write v(C) as follows by telescoping sum,

v(C|s, a) = v({i1}|s, a)� v(;|s, a) + v({i1, i2}|s, a)
� v({i1}|s, a) + · · ·+ v(C|s, a)� v(C \ {ik}|s, a). (5)

Without loss generality, we assume that i1 < i2 <
· · · < ik. Then for each j 2 {1, . . . , k}, we let D =
{1, 2, . . . , ij�1} and by the definition of convex games,

v({i1, . . . , ij�1, ij}|s, a)� v({i1, . . . , ij�1}|s, a)
 v({1, . . . , ij�1, ij}|s, a)� v({1, . . . , ij�1}|s, a)
= xij , (6)

where the last equation is based on xij = v(D[{ij}|s, a)�
v(D|s, a). By summing up (6) from j = 1 to k, we have
v(C|s, a) 

Pk
j=1 x

ij = x(C|s, a). Therefore, x is a stable
solution in the core based on Definition 1 and any coalition C
will not have incentives to deviate from the grand coalition.
Moreover, since Shapley value is a convex combination of
our constructed x, and core is a convex set, the outcome
({N},�) with Shaley value is also stable and lies in the
core.

According to Theorem 1 and Theorem 2, the outcome
({N},�) with Shaley value is a stable and efficient outcome
of the TU game G = (N , v) if G is a convex game. No
agent wants to deviate from the grand coalition in this case.
Then, using the action value function Q(s, a) for the policy
learning is not the best choice. We can reallocate the system’s
total reward to each agent using the Shaley value �i(s, a).
It is a fair, stable, and efficient total reward reallocation for
a convex game. Now, we give an example for the convex
game.

Proposition 2. When R(s, a, C) =
P

i2C R(s, a, {i}) for
any nonempty coalition C ✓ N , the TU game G = (N , v)
is a convex game.

Proof. For any nonempty coalition C ✓ N , s 2 S , and
a 2 A, we have

v(C|s, a) = Eat⇠⇡(a|s)

" 1X

t=0

�tRt+1(st, at, C)|s0 = s, a0 = a

#

=
X

i2C
Eat⇠⇡(a|s)

" 1X

t=0

�tRt+1(st, at, {i})|s0 = s, a0 = a

#

=
X

i2C
v({i}|s, a). (7)

Then we have for any pair of nonempty coalitions C,D ✓ N ,
s 2 S , and a 2 A

v(C [D|s, a) + v(C \D|s, a)
=

X

i2C[D
v({i}|s, a) +

X

i2C\D
v({i}|s, a)

=

0

@
X

i2C
v({i}|s, a) +

X

i2D\C

v({i}|s, a)

1

A+
X

i2C\D
v({i}|s, a)

=
X

i2C
v({i}|s, a) +

X

i2D
v({i}|s, a)

�v(C|s, a) + v(D|s, a). (8)
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If the pair of coalitions C,D ✓ N has at least one empty
set, it is easy to check v(C [ D|s, a) + v(C \ D|s, a) �
v(C|s, a) + v(D|s, a) considering v(;|s, a) = 0.

Proposition 2 gives us one example of the convex game.
There exits other kinds of convex games, for example, when
R(s, a, C) = �maxi2C R(s, a, {i}) [38] for any C 6= ;.

Algorithm 1: Cooperative Policy Learning with
Shapley Value Reward Reallocation

1 Randomly initialize the characteristic network v and the
actor network ⇡i for agent i. Initialize target networks
v0,⇡i0;

2 for each episode do
3 Initialize a random process X for action exploration;
4 Receive initial state s;
5 for each timestep do
6 Randomly sample a coalition C. All agents in

coalition C cooperate with each other at this time
step.

7 For each agent i, select action ai = ⇡i(sC) + X
w.r.t the current policy and exploration. Execute
actions a = (a1, ..., an) and observe the reward r
and the new state information s0. Store
(s,a, C, r, s0) in replay buffer D. Set s s0;

8 for each agent do
9 Sample a random minibatch of samples

(sk, ak, Ck, rk, s0k) from D;
10 Set yk = rCk + �v0(s0k, a0

k, Ck)|ai0=⇡i0(sC 0);
11 Update the characteristic network by

minimizing the loss
L(✓) = 1

K

P
k(yk � v(sk, ak, Ck))

2;
12 Calculate the Shapley value as

�i(s, a) :=
P

C✓N\{i}
|C|!(n�|C|�1)!

n! [v(s, a, C[
{i})�v(s, a, C)];

13 Update actor using the gradient
r✓iJ ⇡ 1

K

P
kr✓i⇡

i(sC)rai�i(sk, ak)
where ai = ⇡i(sC);

14 end
15 Update all target networks: ✓i0  ⌧✓i + (1� ⌧)✓i0.
16 end
17 end

Based on the Shapley value defined in Definition 4, we
propose the Algorithm 1 for each vehicle to learn a cooper-
ative policy. Instead of modeling the action value function,
we use a neural network to learn the characteristic function
v(s, a, C). This is used to calculate the Shapley value in
step 12. Then we use the Shaley value as the reallocated
total reward to learn a cooperative policy, as we know
the Shaley value reward reallocation is fair and efficient.
Moreover, the Shaley value reward reallocation is stable for
a convex game. This algorithm adopts centralized training
and decentralized execution paradigm that is first proposed
in [19]. The effectiveness of this algorithm is evaluated in
the following experiment section.

VI. EXPERIMENT

In this section, we use CARLA [39], an open-source sim-
ulator that supports the development, training, and validation
of autonomous driving systems, to validate our proposed
method. The host machine adopted in our experiments is a
server configured with Intel Core i9-10900X processors and

four NVIDIA Quadro RTX 6000 GPUs. Our experiments are
performed on Python 3.5.4, GCC7 7.5, openAI gym 0.10.5,
numpy 1.14.5, tensorflow 1.8.0, and CUDA 9.0.

We consider a 3-lane freeway scenario with CAVs as
shown in Fig. 1. We use Algorithm 1 for CAVs to learn a
cooperative policy for behavior planning to decide whether
to change or keep lane. For each vehicle, the action set Ai

includes {Keep Lane (KL), Change Left (CL), Change Right
(CR), Emergency Stop (ES)}. The stage-wise reward for each
vehicle involves their velocity and comfort. The comfort of
a vehicle (for passenger’s experience) is defined based on its
acceleration and action ai as follows:

comfort =

8
>>><

>>>:

3, if |acceleration| < ⇥ and ai = KL;

2, if |acceleration| � ⇥ and ai = KL;

1, if ai = CL/CR;

0, if in ES.

(9)

where ⇥ is a predefined threshold. The reward function for
vehicle i is defined as:

R(s, a, {i}) = w · velocity + comfort, (10)

where w is a trade-off weight. We randomly sample a
coalition C at each timestep. All vehicles in the coalition
C communicate and cooperate with other coalition mem-
bers. Let R(s, a, C) =

P
i2C R(s, a, {i}) to represent the

coalition’s state-wise reward. While training, we use Shapley
value to reallocate the reward to encourage communication-
based cooperation and improve the system’s total reward in
Eq. 3. As analysed in Section V, our reward reallocation
method is fair (Proposition 1), efficient (Theorem 1), and
stable (Theorem 2).

Three-lane 
freeway

Fig. 1. The example scenario of a 3-lane freeway in CARLA [39]. Vehicles
are scattered on the outer-loop of the map “Town 05”. The environment can
be mixed traffic with both autonomous and human-driven vehicles.

Each vehicle’s states include its position, velocity, ac-
celeration, image and point clouds that are captured by
the onboard camera and LIDAR sensors respectively. The
resolution of camera image is 375 ⇥ 1, 242 pixels. Each
point cloud from LIDAR is stored with the 3 coordinates (the
ego vehicle being the origin), representing forward, left, and
up respectively, and an additional reflectance value. We use
methods in [40] to process images and point clouds together,
with Ultra-Fast-Lane-Detection [41] (ResNet-18 [42] as the
backbone) and PointPillars [43] for 3D object detection.
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We assume all CAVs share their states, actions, and
environment perception with others under the agreement
constructed using Shapley value defined in Definition 4. We
use a neural network to learn the characteristic function
v(s, a, C) and then use it to calculate the Shapley value as
the reallocated total reward. Then we update the local policy
by the Shapley value as shown in Alg. 1. We use recent
advances in safe RL: model predictive shielding (MPS) that
has formal safety guarantee [44], [45] to maintain a safe
learning process.

A. Comparison with Baselines

We evaluate Algorithm 1 against the state-of-the-art meth-
ods using 30 CAVs to show how Shapley value-based reward
reallocation can be used to learn a cooperative policy to im-
prove the system’s total reward. We follow the open-source
implementations from MADDPG [19], M3DDPG [46], and
COMA [47]. For all algorithms, agents are trained for 100k
episodes with 5 random seeds and a maximum of 40 steps for
each episode. We compare the mean episode system reward
(system’s total reward averaged over every 1000 episodes)
as shown in Fig. 2. We observe that the Shapley value-based
reward reallocation outperforms the state-of-the-art methods.
This is because our method encourages more cooperation
among vehicles. Vehicles can change lanes cooperatively
to get a larger average velocity and comfort for the entire
system. We also observe that our method converges slower
because it relies on the estimation of the Shapley value
which is not accurate at the beginning. The M3DDPG is
a bit conservative because it considers the robustness to the
worst-case scenario.

Fig. 2. Comparison between our Shapley value reward reallocation method
with baselines. Our method gets larger mean episode system reward.

B. Mixed Traffic

In this section, we show that our algorithm is also effective
for CAVs in mixed traffic scenarios where the traffic includes
both CAVs and human-driven vehicles. In this set of exper-
iments, the total number of vehicles is 30. We change the
CAV ratio (the total CAV number divided by the total number
of all vehicles) from 0 to 1 as listed in Table I. We use our
Alg. 1 and COMA for CAV’s policy learning in two sets
of experiments. We use CARLA’s built-in autopilot mode
to simulate human-driven vehicles [39]. As human-driven

vehicle cannot share their states and actions, the CAVs can
only form coalitions to estimate the centralized critic using
Q⇡C (sC , aC) that only has information from agents within
coalition C. The joint policy of coalition C is ⇡C(aC |sC). In
the implementation, we simply set the missing input of the
neural network to be zero.

TABLE I
THE SYSTEM EFFICIENCY COMPARISON UNDER THE MIXED TRAFFIC.

CAV CAV human-driven average average
ratio number vehicle number velocity (mph) comfort

Algorithm Shapley Value Reward Reallocation

0 0 30 60.06 2.61
0.17 5 25 61.75 2.63
0.33 10 20 64.71 2.68
0.5 15 15 65.12 2.71

0.67 20 10 65.19 2.74
0.83 25 5 65.49 2.76

1 30 0 66.14 2.81

Algorithm COMA

0 0 30 60.06 2.61
0.17 5 25 61.19 2.62
0.33 10 20 63.15 2.65
0.5 15 15 63.44 2.68

0.67 20 10 63.48 2.69
0.83 25 5 63.69 2.71

1 30 0 64.12 2.75

We compare the average velocity and comfort for all
vehicles under different CAV ratios. The velocity and com-
fort are averaged over all the 40,000 timesteps used in the
simulation. The result in Table I shows the average velocity
and comfort of the entire mixed traffic. From the result
using Shapley value reward reallocation, we can see the
average velocity and comfort increase when the CAV ratio
gets higher. Comparing the pure CAVs’ case and the pure
human-driven vehicles’ case, the average velocity improves
10% and the average comfort improves 8%. The results also
give us insights that the penetration of the CAVs can improve
traffic in the future. Comparing with COMA, our algorithm
gets a higher system’s total reward in terms of both average
velocity and comfort.

VII. CONCLUSION

In this work, we propose a Shapley value-based method to
reallocate the system’s total reward to each agent, to motivate
cooperation among agents, for multi-agent systems such as
connected autonomous vehicles (CAVs). We prove that the
proposed Shapley value-based reward reallocation locates in
the core of the convex game. Hence, the reward reallocation
mechanism is stable and efficient, and each individual agent
should stay in the cooperating coalition to receive more
rewards. We design a cooperative policy learning algorithm
which is centralized training and distributed execution. In
experiments, we show the improvement of the system’s total
reward for CAV systems using the proposed algorithm. We
also validate the effectiveness of our method in a mixed
traffic scenario. In the future, we will leverage the results
to other networked CPS to better understand the benefits of
communication-based cooperation.
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