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THEBIGGERPICTURE Multi-omic technologies for deep cellular andmolecular profiling frommodel organ-
isms or humans have rapidly expanded. However, existing analytical approaches are constrained by the
high dimensionality of these datasets, differences in data distributions, and the inability to generate causal
inference beyond predictive biomarkers. To address these issues, we developed a novel interpretable ma-
chine-learning framework, Essential Regression (ER). ER integrates high-dimensional multi-omic datasets
without distributional assumptions regarding the data and identifies significant latent factors and their
causal relationships with system-wide outcomes/properties of interest. ER uses higher-order relationships
encapsulated in the latent factors, rather than the individual observables, to home in on novel mechanistic
insights. Our approach outperforms a range of state-of-the-art methods in terms of prediction and gener-
ates novel immunological inferences, consistent with evidence in model organisms.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
High-dimensional cellular and molecular profiling of biological samples highlights the need for analytical
approaches that can integrate multi-omic datasets to generate prioritized causal inferences. Current
methods are limited by high dimensionality of the combined datasets, the differences in their data distri-
butions, and their integration to infer causal relationships. Here, we present Essential Regression (ER), a
novel latent-factor-regression-based interpretable machine-learning approach that addresses these prob-
lems by identifying latent factors and their likely cause-effect relationships with system-wide outcomes/
properties of interest. ER can integrate many multi-omic datasets without structural or distributional as-
sumptions regarding the data. It outperforms a range of state-of-the-art methods in terms of prediction.
ER can be coupled with probabilistic graphical modeling, thereby strengthening the causal inferences.
The utility of ER is demonstrated using multi-omic system immunology datasets to generate and validate
novel cellular and molecular inferences in a wide range of contexts including immunosenescence and
immune dysregulation.
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INTRODUCTION

Over the last decade, genomic, proteomic, metabolomic, and

other technologies for generating deep molecular profiles of tis-

sues and cells from model organisms or humans have rapidly

expanded.1–4 However, the explosion in data, especially from a

range of such ‘‘omic’’ technologies, has not been coupled to a

proportional increase in our understanding of the underlying

causal mechanisms. Existing analytical approaches have

primarily focused on individual omic datasets, with relatively

few attempts at integration of multi-omic datasets. In either

case, we5–9 and others10–12 have primarily emphasized the

delineation of predictive biomarkers with limited exploration of

putative causal factors based on prior biological knowledge (Fig-

ure 1A). A key focus of these efforts has been to overcome the

‘‘curse of dimensionality’’ (a very large number of variables being

measured in relation to a comparatively low number of samples)

and the multiplicity of predictive signatures due to multi-collinear

data, i.e., large correlated sets of variables. While there are

several methods for reliably uncovering predictive markers

from high-dimensional data, none of these analyze cause-effect

relationships in relation to the outcomes/outputs of interest. This

in turn has hampered efforts to undertake perturbative/transla-

tional experiments and/or clinical investigations that can test a

functionally prioritized set of hypotheses generated by the large

datasets.

In addition to the high dimensionality of datasets at any given

scale of organization (e.g., cellular, molecular), biological sys-

tems, particularly in humans, manifest extreme complexity in

terms of numbers of molecular components and their interaction

rules as well as their hierarchical scales of organization, which

include macromolecular complexes/condensates, organelles,

cells, tissues, and organs. Each scale of organization in such a

complex system has components and interaction rules that are

unique to its level of organization. Thus, predicting changes in

properties or behaviors of the system based on measuring com-

ponents that are operating at different scales of organization rep-

resents a formidable challenge.Methods thatmake assumptions

regarding data-generating mechanisms typically perform poorly

at multi-scale integration as there are key differences in data dis-

tributions at each scale of organization.

We propose a novel framework, Essential Regression (ER), to

address these key challenges and limitations of existing ap-

proaches by focusing on latent factors rather than observables

in high-dimensional datasets that are significantly associated

with a system-wide property or outcome that is of interest (Fig-

ure 1A). Critically, ER makes no assumptions regarding the un-

derlying data distributions, enabling principled integration of

multi-omic datasets. ER is also fundamentally different from

three kinds of modern approaches. The first kind of approaches

are designed specifically for multi-modal single-cell data,13 i.e.,

they require single-cell data as inputs. These are constrained

by structural and/or distributional requirements. ER can work

on any multi-omic datasets as there are no structural assump-

tions regarding the data; it can even combine bulk and single-

cell multi-omic datasets. The second set of approaches require

prior knowledge.14 However, ER works without the use of any

priors, making it suitable across contexts evenwhen prior knowl-

edge is weak or unavailable. The third set of approaches15,16
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provide accurate prediction (i.e., predictive markers/correlates)

from high-dimensional multi-collinear multi-omic datasets but

not meaningful inference with provable statistical guarantees.

ER uses regression on the latent factors rather than the observ-

ables, a novel statistical framework that comes with rigorous

guarantees regarding both prediction and inference.

Overall, our analytical framework derives causal latent factors

from thousands of variables from multi-omics datasets across

various scales of biological organization (Figure 1A). After identi-

fying significant latent factors, ER can be coupled with causal

graphical-model analyses to examine the connectivity of these

factors to the system-wide property or outcome of interest. In

so doing, ER generates a high-confidence and prioritized set of

latent factors comprised of known observables that are most

proximal in the causal graph network to the system property/

outcome of interest. We note that while causal discovery ap-

proaches have become popular over the last two decades,

they have been confined to low-dimensional datasets due to

the associated computational complexity. ER overcomes this

fundamental conceptual limitation by first identifying latent fac-

tors from the observables (which achieves an inherent dimen-

sionality reduction) and then identifying which latent factors are

causally linked to the outcome/system-wide property of interest.

By analyzing both simulated and real-world immunological

multi-omic datasets, we demonstrate that ER and the associ-

ated causal graphical-model analyses significantly outperform

a wide range of state-of-the-art approaches in predicting out-

comes and provide multi-scale inferences not afforded by the

existingmethods. The novel causal predictions are corroborated

by biological findings in relevant experimental systems.

RESULTS

ER: A novel data-distribution-free statistical regression
framework for inferring causal latent factors
We present ER, a novel data-distribution-free latent factor

regression approach that integrates high-dimensional multi-

omic datasets and identifies latent factors that are significantly

associated with a system property/outcome (Figures 1B and

1C; experimental procedures; Note S1). ER is a paradigm-

altering concept in regression analysis for high-dimensional da-

tasets i.e., datasets where the number of features exceeds the

number of samples. Existing regressionmethods use techniques

including regularization (e.g., L1 regularization: least absolute

selection and shrinkage operator [LASSO],15 L1 + L2 regulariza-

tion: Elastic Net), bootstrap aggregation (e.g., random forest16),

or the incorporation of pre-specified group structures (e.g.,

group LASSO) to avoid overfitting. However, biomarkers/fea-

tures identified using these approaches are merely predictive/

correlative and may have no connection with the underlying

mechanisms driving the system property/outcome of interest.

ER, on the other hand, uses a two-step approach that allows

for the identification of latent factors that can be used to infer

causal structures underlying the system property/outcome. ER

first finds latent factors in a data-dependent fashion, without

the need for a pre-specified group structure. Of all latent factors,

ER identifies a specific subset of latent factors that can be used

to infer causal associations with the property/outcome of inter-

est. Critically, ER makes no assumptions regarding the
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Figure 1. Essential Regression: A novel interpretable machine-learning approach to uncover causal latent factors from high-dimensional

multi-omic datasets
(A) Schematic illustrating the different kinds of multi-omic datasets typically used in systems analyses and the key advantages of the methods introduced in this

study over existing approaches.

(B) Schematic summarizing the steps in ER.

(C) Schematic summarizing the steps in Composite Regression.

(D–G) Comparison of the predictive performance of PLS, PFR, LASSO, and ER on simulated datasets across a range of parameter settings.
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underlying data generating mechanisms and can be broadly

used across multi-omic datasets (experimental procedures;

Note S1).

Formally, ER is a latent-factor regression model in which the

unobservable factor Z influences linearly both the response Y

and the data X. Its novelty lies in the formulation that enables

the latent factor Z to be meaningfully interpreted.

X = AZ + W

Y = b0Z + ε

Here, X is the matrix of observables and belongs to a high (p)

dimensional space (dimensionality of X is p 3 n, where n is the

number of observations/samples). X is decomposed into the

allocation matrix A of dimension p3 K, and Z is the latent-factor
matrix of dimension K 3 n, i.e., it reduces X from a p to a K

dimensional space (Note S1). The matrix Z is used to regress

to Y, i.e., the regression coefficients correspond to Zs. W and ε

are independent error terms (Note S1). This formulation helps

cluster the observables (Xs) into overlapping clusters/latent fac-

tors (Zs) in a data-dependent fashion and then identify which of

the latent factors are significantly associated with and can be

used to infer the outcome.

ER comes with two key provable statistical guarantees. The

first step is to decompose the matrix of observables X into the

latent factor matrix Z. To do this, themembershipmatrixA needs

to be identifiable, up to a K 3 K signed permutation matrix. The

first guarantee ensures this: we prove that the allocation matrix

(A) is indeed identifiable up to a K x K signed permutation matrix

under the assumption that there are at least 2 observables

anchoring each latent factor (Note S1).17 This is a reasonable
Patterns 3, 100473, May 13, 2022 3
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assumption as the model only requires each latent factor to be

defined by two observables that are not associated with other

latent factors; all other observables may or may not be associ-

ated with multiple latent factors. This allows for the identification

of a group structure from the observables entirely in a data-

dependent fashion without the need to incorporate any prior

knowledge. The second guarantee relates to the identifiability

of the regression coefficients. We also prove that the coefficient

matrix is identifiable up to a signed permutation matrix (Note

S1),18 ensuring that the model can rigorously infer significant

latent factors driving the outcome.

It is important to note that our current model assumes linearity

at 2 different levels: (1) between the observables (Xs) and the

latent factors (Zs) and (2) between the outcome/response vari-

able of interest (Y) and the latent factors (Zs). However, this

does not necessarily translate into a linearity assumption be-

tween the Xs and Y (it only translates into a linearity assumption

when X and Y are Gaussian). Thus, the current model can incor-

porate non-linear relationships between X and Y, when X and Y

are not Gaussian. Further, the linearity assumption between Y

and Z is reasonable even formoderately largeK (number of latent

factors) as K << p (p is the dimensionality of the original dataset).

Further, both our algorithm and associated theoretical guaran-

tees are still valid for a moderate and large K, even when K � n

(n = number of samples). Thus, ER is a first-in-class interpretable

machine-learning framework that can uncover significant latent

factors associated (linearly or, in many instances, non-linearly)

with any system-wide property/outcome of interest.

ER outperforms state-of-the-art approaches on
simulated high-dimensional datasets
We investigated the performance of ER on simulated data (Note

S1), comparing it with a suite of state-of-the-art approaches

including LASSO,15 partial least squares (PLS) regression,19

and principal components/factors regression (PFR).20 We evalu-

ated the performance of ER, PFR, PLS, and LASSO changes

across a range of parameters for original dimensionality (p),

reduced dimensionality of the dataset (i.e., K), and the signal-

to-noise ratio (SNR). We varied these parameters one at a time

and computed the corresponding prediction risk (mean squared

error) on data not used to build themodel (Note S1).We did a grid

search on the relevant parameters and found that the prediction

error for all four methods deteriorates as K increases or the SNR

decreases (Figures 1D–1F). This indicates that prediction be-

comes more difficult for large K and a small SNR. On the other

hand, ER, PFR, and Lasso perform better as p increases.

Among the four methods, ER systematically had the smallest

prediction error in all settings, and PLS had the worst perfor-

mance in most settings. Furthermore, PFR failed to accurately

identify K and tended to a very low and sub-optimal K in most

scenarios (Figures 1D–1F). This also indicates that, for prin-

cipal-component regression approaches, detecting K requires

a larger SNR, i.e., the other approaches are able to accurately

detect K at lower SNRs. In a moderate SNR regime, PFR has

comparable performance to ER (Figure 1D). However, as K in-

creases, the advantage of ER becomes considerable, which

supports the fact that PFR only has guarantees for fixed K (Fig-

ure 1E). Further, the performance of PFR is more sensitive to the

SNR compared with the other three methods (Figure 1F). Finally,
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when increasing the number of uninformative variables, ER has

the best performance (Figure 1G). Overall, ER worked very well

for very high p, was able to accurately identify K, and did not

have a significant reduction in performance at lower SNR re-

gimes or with a higher number of uninformative variables (Fig-

ures 1D–1G), outperforming state-of-the-art approaches on

one or more of these fronts. ER functions counterintuitively

when challenged by the curse of dimensionality (i.e., having

higher dimensionality is worse as it induces higher variance

and can lead to overfitting). The higher dimensionality of the

datasets generates more features that provide additional

information, which are used by ER to predict the latent factors

(Z) more accurately, thereby overcoming the curse of

dimensionality.

Extension of ER as composite regression enables
uncovering of observables, within significant latent
factors, that underlie outcomes
While the significant latent factors uncovered by ER provide in-

sights into the interplay of the different observables driving

outcome, in some contexts their complexity can prove chal-

lenging. In these instances, smaller sets of observables underly-

ing outcome are desirable. Currently, regularization is widely

used to identify a sparse set of observables (biomarkers). How-

ever, regularization-based approaches such as LASSOor Elastic

Net uncover predictive biomarkers that may simply be correla-

tive. Given that ER identifies latent factors significantly driving

outcome, we sought to develop an approach to identify a sparse

set of observables from the significant latent factors identified by

ER (Figure 1C). Using L1-regularization on the significant latent

factors identified by ER allows us to identify a sparse set of ob-

servables, within these factors, tied to outcome. We term this

ER-derivative-approach Composite Regression (CR) (Figure 1C).

As the sparse set of observables delineated by CR are selected

from those that lie within the significant latent factors, unlike

LASSO-based biomarkers, these are no longer simply predictive

but capture causal relationships that can be used to infer the un-

derlying mechanistic basis of outcome. Together, ER and CR

provide a highly prioritized set of significant latent factors and

associated observables, which can be used both for inference

of underlying cellular/molecular mechanisms as well as corre-

sponding biomarkers.

Inferring causal factors underlying immunosenescence
in a vaccine response
A recent studycomprehensivelyprofiledcellular andmolecular re-

sponses induced by the shingles Zostavax vaccine in a cohort

comprising both younger adults and elderly individuals.21 The

high-dimensional multi-omic analysis included immune-cell fre-

quencies and phenotypes, as well as transcriptomic, metabolo-

mic, cytokine, and antibody analyses. The vaccine induced robust

antigen-specific antibody titers as well as CD4+, but not CD8+,

T cell responses.21 Using a multi-scale, multifactorial response

network, the authors identified associations between transcrip-

tomic, metabolomic, cellular phenotypic, and cytokine datasets

thatpointed to immuneandmetabolic correlatesof vaccine immu-

nity.21 Interestingly, differences in the quality of the vaccine-

induced responses by age were also noted.21 We hypothesized

that a method based on latent factors rather than measurables
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would improve the delineation of components that underlie the

quality and magnitude of the vaccine-induced responses. If so,

then such a method would be able to leverage the differences in

vaccine-inducedresponsesandaccuratelypredict ageas thesys-

tem-wide property of interest. The latent factors identified in this

manner could then provide insights into the cellular andmolecular

basis of age-induced immunosenescence manifested by dimin-

ished responses to the Zostavax vaccine.

To explore the above formulation of immunosenescence as a

predictor of age, we first applied a suite of state-of-the-art ap-

proaches, LASSO, PLS, and PFR, on the entire spectrum of

multi-omic vaccine-induced responses (including transcrip-

tomic, metabolomic, cytokine, antibody, and cellular phenotypic

data) to predict age (Figure 2A). As most individuals in the cohort

were in 2 distinct age groups, adults under 40 and elderly people

over 60, we first sought to explore the performance of LASSO,

PLS, andPFR in predicting the two agegroups as binary categor-

ical variables, i.e., younger adults and elderly people. The predic-

tive performance of all methods was evaluated in a stringent

leave-one-out cross-validation (LOOCV) framework (experi-

mental procedures). We have previously demonstrated that on

such multi-omic datasets, cross validation is a gold standard to

evaluatemodel performancewith data held out.5,6,8 In an LOOCV

framework, we found that PFR had no predictive power (area

under the curve [AUC] <0.5), while LASSO and PLS had weak

predictive power, in predicting age as a categorical variable (Fig-

ure 2B, AUCs = 0.63 and 0.60, respectively). The receiver oper-

ating characteristic (ROC) curve for LASSO had an interesting

shape. It attained a true positive rate of �0.4 at a false positive

rate of �0.15, but beyond that it was essentially no better than

random (Figure 2B). This observation is consistentwith theobser-

vation that differences in an age-associated multiscale multifac-

torial response network (MMRN) were driven by only a subset of

elderly vaccinees.21 Thus, a purely predictivemodeling approach

like LASSO can leverage these relatively straightforward differ-

ences to accurately predict age for a subset of the vaccinees

but fails to predict age for others. We then compared these

methods with the performance of ER and CR. In a matched,

LOOCV framework, ER and CR were very accurate at predicting

age (Figure 2B, AUCs = 0.79 and 0.77, respectively, p < 0.01).

We then coupled ER to causal-inference analyses on the ER-

identified significant latent factors using directed graphical

models.22 Directed acyclic graphs (DAGs) are sometimes

referred to as causal graphs because under certain assump-

tions the learned DAGs from observational data (Markov equiv-

alence classes) asymptotically represent the true data-gener-

ating causal graph. Although these algorithms have shown

considerable success in analyzing many biological processes

and biomedical problems,23–27 including biomarker selection

and classification,28–30 scalability limits the datasets to which

they can be applied.31,32 Here, we use the causal-learning algo-

rithm for mixed data, CausalMGM,23,33 only on the significant

latent factors delineated by ER to overcome the scale limita-

tion. By applying CausalMGM only on the significant latent fac-

tors, we greatly reduce the dimensionality of the input dataset

while preserving the information of individual (correlated) vari-

ables in the latent factors. Thus, CausER (CausalMGM on the

significant latent factors from ER) prioritizes further within the

significant latent factors (experimental procedures; Note S1)
by virtue of their direct connections to the outcome in the

graphical model. Furthermore, it predicts potential cause-effect

relationships between the latent factors and the property/

outcome of interest, which leads to hypotheses generation,

while CausER was the best predictor of age as a categorical

variable (AUC = 0.86, p < 0.01). Together, these results demon-

strate that while LASSO, PLS, and PFR fail to accurately predict

age from Zostavax-induced vaccine responses, ER, CR, and

CausER can overcome this challenging problem by leveraging

non-trivial differences in latent factors comprised of discrete

sets of measurables.

Next, we evaluated whether these methods could predict

actual age as a continuous variable beyond the categorical clas-

sifiers of younger adults and elderly individuals. As before, per-

formance was measured in a rigorous cross-validation frame-

work (experimental procedures). Using the vaccine-induced

responses, PFR was not at all predictive of age (Figure 2C, Pear-

son r = �0.71; Figure S1, Spearman r = �0.82). LASSO and PLS

had poor performance in predicting age as a continuous variable

(Figure 2C, Pearson r = 0.29 and 0.13, respectively; Figure S1,

Spearman r = 0.25 and 0.09, respectively). In fact, the predictive

powers of PLS and PFR were not significantly different from

a negative control model built on permuted data (Figure 2C).

However, both ER and CR were significantly predictive of age

as a continuous variable (Pearson r = 0.48 for both, Spearman

r = 0.44 and 0.49, respectively, p < 0.01; Figures 2C and S1),

and as in the previous instance, CausER had the best

performance in predicting age as a continuous variable (Pearson

r = 0.61, Spearman r = 0.59, p < 0.01; Figures 2C and S1).

Together, these results demonstrate that while state-of-the-art

methods including LASSO, PLS, and PFR fail to predict age

either as a categorical or a continuous variable, all three of the

new approaches that are based on latent factors, ER, CR, and

CausER, are able to do so reasonably accurately based on the

multi-omic profiles of vaccine-induced responses.

We next explored the likely causal relationships among the

latent factors that lead to age-induced immunosenescence

and diminished responses to the Zostavax vaccine. Cau-

salMGM was used to construct a causal graph with all latent

factors identified in the latent-model-identification step of ER

(Figure 2D). Notably, the majority of significant latent factors

identified by ER were seen to be proximal to the outcome

variable (age) in the causal graph. Importantly, all 4 latent fac-

tors in the Markov blanket generated by CausalMGM were

also identified as significant by ER (Figure 2D). Overall, the

significant latent factors revealed by ER had significantly

lower network distances (i.e., they had stronger cause-effect

relationships) from age compared with the non-significant

latent factors (Figure 2E, p < 0.05). These results demonstrate

that the cause-effect relationships identified by ER are vali-

dated by CausalMGM. Importantly, while CausER hits are

identified via the sequential application of ER and Cau-

salMGM, respectively, the order is critical, with ER being

the key first step. Without the two-stage dimensionality

reduction (first from observables to latent factors and then

the identification of significant latent factors) afforded by

ER, running CausalMGM or other allied causal graphical

models on the initial set of observables would be computa-

tionally intractable.
Patterns 3, 100473, May 13, 2022 5
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Figure 2. Identifying causal signatures of age-induced immunosenescent responses to the Zostavax vaccine

(A) Schematic summarizing the input data and the problem of interest.

(B) ROC curves for the different methods at discriminating between elderly people and younger adults in an LOOCV framework.

(C) Pearson correlations of the different methods at predicting age as a continuous variable, as measured in an LOOCV cross-validation framework.

(D) CausalMGMon all Zs identified by ER. TheMarkov blanket is highlightedwith a blue border and bolder fonts. A directed edge X/Y indicates X is a cause of Y,

while a bidirected edge X)/Y indicates the presence of a latent confounder that is a common cause of X and Y. A partially oriented edge X o/Y indicates that

Y is not a cause of X but that either X or a latent confounder causes Y. Unoriented edge indicates directionality could not be inferred for that edge.

(E) Network distances in the causal graph generated by CausalMGM of the significant and non-significant Zs identified by ER from the outcome variable of

interest. p value calculated using a Mann-Whitney U test

(I) Mechanistic insights obtained from ER.

(F) Correlations involving the NK cell latent factor, B cell latent factor, and age. Top panels show correlations between the NK cell latent factor and age (top left),

and the B cell latent factor and age (top right). Bottom panels show correlations between the NK cell latent factor and the B cell latent factor without correcting for

age (bottom left) and after correcting for age (bottom right).

(G) Correlations between NK cells and B cells in the context of vaccination against SARS-CoV2 in a NHP model.

(H) Correlations between NK cells and B cells in the context of vaccination against SARS-CoV2 in a NHP model, after correcting for treatment (vaccination arm)

and timepoint.
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The prioritized CausER hits (Figure 2D), i.e., significant latent

factors identified by ER that are also in the Markov blanket of

the outcome variable (age) in the causal graph generated by Cau-

salMGM, comprised antigen-specific immunoglobulin G (IgG) ti-

ters (Z1), a metabolic module (Z19), and B (Z46) and natural killer

(NK; Z45) cell frequencies. CausER provides both prioritized

cause-effect relationships and directions of these relationships.

While the latter relates to mathematical conditional-indepen-
6 Patterns 3, 100473, May 13, 2022
dence relationships (experimental procedures), the former pro-

vides prioritized mechanistic insights. Notably, the discovery

and labeling of causal latent factors are completely unbiased

and not based onprior knowledge. These significant latent factors

are those that were identified as significant by ER and in the Mar-

kov blanket of outcome; neither step used any prior knowledge.

However, to evaluate the quality of these discoveries, we

examined the uncovered latent factors in light of previously
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elucidated bases of immunosenescence. The lowering of titers

with age is expected and has been previously reported,21 so

this corresponds to a recapitulation of known relationships.

However, CausER also revealed a novel cause-effect relation-

ship between altered B and NK cell numbers and immunosenes-

cence. To further dissect the nature of this relationship, we

examined correlations between NK cells, B cells, and age. We

found that NK cells significantly increased, while the numbers

of B cells significantly decreased, with age (Figure 2F). More

interestingly, there was a significant negative correlation be-

tween NK and B cells (Figure 2F), and the correlation remained

significant even after correcting for age (Figure 2F).

Notably, these causal inferences are supported by perturba-

tion experiments involving biologically relevant organisms. Our

findings relate to a previously described mechanistic linkage be-

tween NK cells and a weaker germinal center (GC) response in a

murine model34 in the context of vaccination with a model anti-

gen (NP-KLH). NK cells can inhibit CD4 T cell responses,

including those of T follicular helper cells, in a perforin-depen-

dent manner; this leads to a weaker GC response and dimin-

ished antibody titers and affinity maturation.34,35 Furthermore,

in the context of vaccination against severe acute respiratory

syndrome coronavirus 2 (SARS-CoV2) in a non-human primate

(NHP) model, we leveraged cell-subset-frequency data from a

recent study36 to examine the relationship between NK and B

cells. We found a significant negative relationship between NK

and B cells spanning multiple time points and vaccination arms

corresponding to different adjuvants (Figure 2G). These relation-

ships remained unaltered even after correcting for time point and

vaccination arm using a linearmodel (Figure 2H). Together, these

results demonstrate that a novel relationship uncovered solely

by ER and CausER, without the use of any prior knowledge,

from a human-systems vaccinology study have strong support

in vaccination studies both in mice and NHPs. Notably, these

studies use different antigens and adjuvants, suggesting that

the uncovered novel relationship between NK and B cells is high-

ly robust, and can be broadly extrapolated across vaccination

strategies. Our results suggest a novel basis of human immuno-

senescence in the context of vaccine responses (Figure 2I). This

discovery is especially striking as ER converged on this mecha-

nism without the use of any prior knowledge.

Analyzing latent factors potentially reflective of trained
immunity in a vaccine response
To testwhether ER is applicable todatasetsgeneratedusing alter-

nate technological platforms,weapplied it to analyze the temporal

dynamics of transcriptional responses (microarray data) induced

by the malaria RTS,S vaccine.37 RTS,S has a standard regimen

of 3 doses separated by a month and is currently the most

advanced malaria-vaccine candidate that has consistently

demonstrated 40%–80%protective efficacy inmalaria-naı̈ve indi-

viduals in controlled human challenge studies.5 There has been

intense interest over the last decade in uncovering molecular sig-

natures induced by the RTS,S vaccine and corresponding corre-

lates of protection.5,38,39 In a controlled human-infection setting,

differential expression of immunoproteasome genes was identi-

fied as a pre-challenge correlate of protection.37 After the third

dose, as expected, there was a striking but transitory shift in

inflammatory gene expression followed a convergence of the
majority of gene signatures back to pre-vaccination levels within

2weeksafter the thirddose.37Wereasoned thataspectsof trained

immunity inducedby the vaccinemaybe reflected in the transcrip-

tomic signatures that do not converge after 2 weeks. Thus, a sen-

sitive method such as ER would be able to discriminate between

expression profiles at the following time points, pre-vaccination

(G1), the day after the third dose (G2), and 14 days after the third

dose (G3) (Figure 3A), and reveal candidate genes and molecular

pathways that could contribute to trained immunity. In this

instance, the use of a microarray dataset also afforded the oppor-

tunity to explore how ER performs with noisier but nevertheless

valuable datasets generated using older technologies.

Asbefore, theability of thedifferentmethods todiscriminatebe-

tween G1, G2, and G3 transcriptional profiles was measured in a

rigorous cross-validation framework (experimental procedures).

We found that there were significant differences in the ability of

the different methods to discriminate between the three kinds of

expression profiles, with ER andCausER (CausalMGMon the sig-

nificant latent factors from ER) having the best performance,

significantly better than the other methods (p < 0.01, Figures 3B

and 3C). Next, we chose to focus on the ability of the different

methods to specifically distinguish the G3 profile from the other

two (Figure 3D) or just the G1 profile (Figure 3E). This constituted

the most ‘‘difficult’’ discrimination as there are broad differences

in the expression profiles between the pre- (G1) and 24-hour-

post-vaccination (G2) time points, but most of these differences

disappear by 14 days (G3).37 Consistent with expectations, in

this binary-classification setting, there was wide variability in the

performance of the methods to specifically discriminate the G3

timepoint fromtheG1andG2timepoints.WhilePFRandPLSper-

formed poorly, CausER, ER, and LASSO had significantly better

performances, with CausER being the best-performing method

(p < 0.01; Figures 3D and 3E). In terms of correctly classifying

just the true G3 profiles as G3, PLS and PFR had poor perfor-

mances while CausER had the best performance, significantly

better than other methods (p < 0.01, Figure 3F).

Next, we focused on the CausER hits, i.e., the significant latent

factors fromER in theMarkovblanket of theoutcomevariable (Fig-

ure 3G). Genes comprising these latent factors were seen to be

differentially expressed between the G1 and G3 samples (Figures

3Hand3I).Our results suggest thatbeyond the initialdivergenceof

immunoproteasome genes, there is a sustained divergence

(2 weeks post-vaccination) of genes involved in immune-meta-

bolic processes. These results complement recent findings that

suggest that targeting immunometabolism isapromisingdirection

inmodulating trained immunity.40While a vaccine induces a rapid

initial divergence in inflammatory signatures reflecting the activa-

tion of innate immune cells and their engagement with adaptive B

and T cells, it may also induce alterations in the innate immune

compartment that are discernible at later time points and

contribute to a distinct form of immune memory.40

Elucidating markers of latent and active
tuberculosis (Tb)
To explore whether ER and CausER can predict clinically impor-

tant outcomes, we applied these approaches to a dataset of

high-dimensional antibody profiles for patients with latent and

active Tb41 (Figure 4A). The high-dimensional antibody-omic da-

taset used a modern antibody-omic platform5,6,8,41 to quantify
Patterns 3, 100473, May 13, 2022 7
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Figure 3. Identifying differences in vaccine-

induced transcriptomic profiles over time

(A) Schematic summarizing the input data and the prob-

lem of interest.

(B) Ternary classification accuracy of the different

methods at discriminating among G1, G2, and G3 in a

replicated k-fold cross-validation framework.

(C) Confusion matrix summarizing the performance of the

differentmethods at discriminating amongG1, G2, andG3

in an LOOCV framework.

(D) ROC curves for the different methods at discriminating

between G3 and G1 and G2 combined in an LOOCV

framework.

(E) ROC curves for the different methods at discriminating

between G3 and G1 in an LOOCV framework.

(F) Fraction of true G3 correctly classified as G3 (as

measured in an LOOCV framework).

(G) CausER graph i.e., CausalMGM on the significant Zs

from ER. The Markov blanket is highlighted with a blue

border and bolder fonts. A directed edge X/ Y indicates

X is a cause of Y, while a bidirected edge X )/ Y in-

dicates the presence of a latent confounder that is a

common cause of X and Y. A partially oriented edge X o/

Y indicates that Y is not a cause of X but that either X or a

latent confounder causes Y. Unoriented edge indicates

directionality could not be inferred for that edge.

(H) Heatmap of genes in CausER hits (significant Zs in the

Markov blanket) for G1 and G3 samples.

(I) Heatmap of genes in CausER hits (significant Zs in the

Markov blanket) for G1, G2, and G3 samples.
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Figure 4. Elucidating markers of latent and active tuberculosis (Tb)

(A) Schematic summarizing the input data and the problem of interest.

(B) Classification accuracy of the different methods at discriminating between latent and active Tb, measured in a replicated k-fold cross-validation framework.

(C) Heatmap of features in the single CausER hit.
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functional and biophysical properties of a polyclonal pool of an-

tigen-specific antibodies. Each of these properties has its own

inherent distribution so this was an appropriate test of the ability

of ER and CausER to integrate multi-modal datasets for clinical

outcome prediction. CausER and ER along with PLS, PFR, and

LASSO were able to accurately discriminate between latent

and active Tb patients using the antibody-omic profiles (Fig-

ure 4B). Notably, only one latent factor was identified as signifi-

cant by ER and in the Markov blanket of outcome, i.e., this latent

factor was the sole CausER hit. It consisted of specific glycosyl-

ation profiles (Figure 4C), and themajority of these glycosylation-

based biomarkers were in perfect agreement with our previous

study.41 These analyses demonstrate that ER and CausER are

able to accurately predict clinically important outcomes.

Uncovering latent factors that distinguish immune-
system states of term and pre-term infants
Finally, we focused on a multi-omic longitudinal cohort that

analyzed immune-cell populations and plasma proteins in 100

newborn children during their first 3 months of life42 (Figure 5A).
Striking differences were observed in immune parameters be-

tween pre-term and term children at birth. However, the immune

trajectories appeared to achieve a stereotypic convergence

within the first 3 months of life42 (Figure 5A). We hypothesized

that ER might be able to uncover latent factors that distinguish

immune-system states of term and pre-term infants after

3 months of life and therefore reveal features that could impact

later life (Figure 5A). As expected, based on the striking differ-

ences at birth between term and pre-term children, all methods

(LASSO, PLS, PFR, ER, CR, and CausER) were able to discrim-

inate between these 2 groups using immune parameters

measured in the first week of life (Figure S2). All model perfor-

mances were measured in a rigorous cross-validation frame-

work (experimental procedures). However, given the stereotypic

convergence in the first 3 months (12 weeks) of life,42 we found

that PLS and PFR were unable to accurately discriminate be-

tween term and pre-term children using immune parameters

measured at 12 weeks of life (Figures 5B and 5C). However,

LASSO was able to accurately distinguish between term and

pre-term births using the 12-week profiles (Figures 5B and 5C),
Patterns 3, 100473, May 13, 2022 9
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suggesting that despite broad convergence, a small subset of

immune parameters still remain different in term and pre-term in-

fants at 3 months of life. More importantly, ER and CR were able

to accurately discriminate between term and pre-term births us-

ing immune profiles at 3 months of life, significantly better than

other methods (Figures 5B and 5C, p < 0.01). ER identified

only 2 significant latent factors, and based on CausalMGM ana-

lyses, one of these 2 significant latent factors was in the Markov

blanket, i.e., for this dataset, this single latent factor was the sole

CausER hit (Figure 5D).

We visualized the immune-cell populations and plasma pro-

teins in this hit (Figure 5D). These profiles had clearly remained

divergent even at 3 months of life (Figure 5D) despite the broad

stereotypic convergence of most other immune parameters. At

3 months of life, term infants had an anti-inflammatory milieu

including high interleukin (IL)-10 while pre-term infants had a

pro-inflammatory milieu including elevated IL-6 and IL-8 (Fig-

ure 5D). These findings agree with a previous study that IL-10

is highly expressed in the uterus and placenta and has a key

role in controlling inflammation-induced pre-term labor in a mu-

rine model.43 Furthermore, regulatory B cells are a key source of

IL-10 and appear to be important in sustaining pregnancy until

term.44–46 It is also known that modulation of pro- versus anti-in-

flammatory environments by relevant cytokines and chemokines

at thematernal-fetal interface (decidua) is a critical component of

the bifurcation between term and pre-term births.44 Thus, our

analyses of immune-system states of term and pre-term infants

at 3 months of life revealed that pre-term infants had a pro-in-

flammatory state while term infants had an anti-inflammatory

state (Figure 5E). These findings could have long-term implica-

tions for the health of pre-term infants.

DISCUSSION

Over the last two decades, while there have been rapid advances

in high-throughput experimental technologies to generate deep

molecular profiles, computational analyses of these high-dimen-

sional datasets have primarily focused on biomarker discov-

ery.47 This is because rigorous statistical approaches for

analyzing high-dimensional datasets, such as regularized

regression and bootstrap-aggregated classification, are focused

on uncovering predictive biomarkers, which may simply be

correlative surrogates of outcome or system-wide property but

are unrelated to the underlying causal factors. Incorrect extrap-

olation of insights derived from biomarker-based approaches

can lead to perturbation experiments with low success. Alterna-

tively, efforts to move beyond biomarkers to mechanistic in-

sights often use biological priors, which may be incomplete or

suffer from sampling/study biases.48 Furthermore, while there

have been advances in causal modeling,49 existing approaches

are difficult to apply to high-dimensional datasets due to the
Figure 5. Uncovering specific immune parameters from term and pre-

(A) Schematic summarizing the input data and the problem of interest.

(B) Classification accuracy of the different methods at discriminating between term

a replicated k-fold cross-validation framework.

(C) ROC curves for the different methods at discriminating between term and pr

(D) Heatmap of features (plasma proteins and immune cells) in the single hit (sig

(E) Mechanistic insights obtained from ER.
computational intractability of applying these approaches on22

and the multi-collinearity of the data. The methods presented

in this article address this fundamental limitation in systems

biology. ER is a first-in-class machine-learning method that

can both handle high-dimensional multi-omic datasets with co-

linear variables and prioritize cause-effect relationships between

the input features and the outcome of interest. Our framework is

also complementary to modern approaches that combine multi-

omic datasets with prior knowledge to uncover causal relation-

ships.14 ER generates mechanistic hypotheses solely based on

latent factors identified from multi-omic data without the incor-

poration of any prior knowledge. It is thus applicable in contexts

where prior knowledge is weak or unavailable and is not limited

by the nature and quality of available prior knowledge. ER is

compatible with all existing batch correction/normalization ap-

proaches as it makes no assumptions regarding data-generating

mechanisms. However, data need to be appropriately normal-

ized/batch corrected before being used as inputs to ER. Further,

ER is also able to handle complex replicate structures. Biological

and technical replicates may be pre-processed using a suitable

context-specific approach; ER does not impose any restrictions

on/is robust to how replicates are handled (which depends

entirely on the underlying biological context/question). ER works

downstream of these methods to integrate appropriately pre-

processed/normalized multi-omic datasets and uncover causal

latent factors underlying groups/outcomes of interest.

Importantly, ER is fundamentally different from classical factor

regression models used exclusively for prediction. In those

models, one first seeks a low-dimensional factor Z = XV con-

structed via some projection matrix V. Although, Z can then be

used to regress to Y, this framework can only be used for predic-

tion and not inference as Z is not uniquely identifiable and this

makes inference on the regression coefficients impossible. How-

ever, in the ER framework, the latent factors (Zs) and the corre-

sponding linear coefficients (between Y and Zs) are uniquely

identifiable, making the inference problem well-posed. Thus,

our framework addresses a key limitation of classical factor

regression models where the recovered factors have ambiguous

meaning. However, the unique identifiability of the latent factors

in the unsupervised step of ER makes inference meaningful.

Thus, we cannot simply replace it with other modern clustering

approaches with no guarantees regarding identifiability. The

identifiability criterion tied to the guarantees regarding inference

make ER a first-in-class interpretable latent-factor regression

framework for high-dimensional multi-omic datasets.

Our framework pushes the envelope on multiple key chal-

lenges in systems biology. First, it establishes a rigorous frame-

work with provable statistical guarantees that explores a large

space of higher-order relationships from high-dimensional fea-

tures and uncovers latent factors tied to the outcome variable

via directed cause-effect relationships. Second, unlike existing
term infants that do not achieve stereotypic convergence

and pre-term births using immune profiles at 3months after birth, measured in

e-term births as measured in an LOOCV framework.

nificant Z identified by ER in the Markov blanket of outcome).
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causal-reasoning approaches that are constrained by the size of

the input data, ER can be applied to modern high-dimensional

datasets. The time complexities of the different steps are essen-

tially quadratic and not exponential like some other causal-

reasoning approaches. Third, ER makes no assumptions

regarding data-generating mechanisms, and ER can integrate

multi-omic datasets to capture the interplay across a plethora

of biological processes at multiple scales of organization of the

system. Fourth, ER is able to home in on one or a few causal

latent factors of outcome comprising a small number of observ-

able features from thousands of input features, many of which

are completely uninformative. Finally, ER converges on these

causal latent factors without the use of any prior knowledge;

however, we find that the uncovered factors include both previ-

ously elucidated and novel mechanistic bases. The ability of ER

to converge on meaningful biological insights without any prior

knowledge makes it applicable in the broadest sense even in

contexts where there are weak or no priors.

An important elaboration of our framework is the sequential

use of two orthogonal methods for statistical inference, ER and

causal graphical modeling. These methods have different theo-

retical bases and assumptions, and yet the ER hits are validated

by CausalMGM, underscoring the robustness of our approach.

The order is critical, with ER being the key first step offering a

two-stage dimensionality reduction: first from observables to

latent factors, and then the identification of significant latent fac-

tors. Without these two steps, the application of causal graphical

models on the initial set of observables would be computation-

ally intractable due to the high dimensionality of the dataset.

Thus, ER solves a long-standing limitation with causal graph-

ical-modeling approaches and enables, for the first time, causal

inference on high-dimensional data. ER also has polynomial time

complexity that makes it efficient and scalable for extremely

large datasets. For all the datasets analyzed in this study, it re-

sulted in runtimes of coreminutes for each cross-validation repli-

cate, which translates into tens to hundreds of core hours after

accounting for cross-validation replicates. The datasets

included tens to hundreds of samples and up to 103–104 fea-

tures/sample. So, this all suggests that ER is extremely efficient

with modern multi-omic datasets.

ER has a number of limitations. One relates to the constraint

each latent factor is anchored by at least 2 pure variables (i.e.,

variables that belong to only that and no other latent factor).

However, this is a reasonable assumption as most observables

are allowed to be mixed, i.e., they can belong to one or more

latent factors, and each latent factor only requires 2 pure vari-

ables to anchor it. Also, in some instances, the linearity assump-

tion between Y and Z could be restrictive. For example, when the

number of latent factors is small, this restrictive assumption

could be overcome by including high-order terms of Z to predict

Y. It is also possible to extend the current framework to a more

general setting where Y and Z follow generalized linear models

with any appropriate link function, such as the logistic and probit

functions.While it is relatively straightforward to incorporate suit-

able link functions in the setting of prediction, achieving theoret-

ical guarantees for the inference of the coefficients of Z needs

more careful theoretical analyses.

The coupling of causal graphical models to ER and the infer-

ence of causality from observational data also has some
12 Patterns 3, 100473, May 13, 2022
assumptions. First, it is assumed that the structure of the

cause-effect relationships of all variables in the dataset form a

DAG. Next, the causal Markov assumption requires that theMar-

kov condition for DAGs holds for the causal graph. Finally, the

causal faithfulness assumption states that the conditional-inde-

pendence relationships in the dataset are faithful to the causal

graph. A distribution is faithful to its causal DAG when there

are no additional conditional-independence relationships that

are not entailed by theMarkov condition of the DAG. Importantly,

while some algorithms also require the assumption of causal suf-

ficiency, which states that there are no unobserved confounders

of the variables in the dataset, the fast causal inference (FCI)

algorithm used here does not have this constraint. Further, for

full identification of the causal graph, the assumptions of the

conditional-independence test, in this case linearity, must be

met, and the sample size must be asymptotically large. Thus,

the inference of true causality is constrained by these assump-

tions, which may not always hold. However, importantly,

these assumptions are tied to the causal graphical-modeling

framework. ER (without coupling to CausalMGM) can be used

to identify significant latent factors, with only very minimal as-

sumptions, as described above. Thus, while true causality

may, in some instances, be difficult to infer from observational

data, the significant latent factors identified by ER provide infer-

ence into generative processes beyond just prediction.

Here, we applied ER to diverse contexts. First, we applied ER

on simulated datasets and demonstrated that it performed bet-

ter than LASSO, PLS, and PFR across a range of parameter

settings. Next, we utilized ER on two recent human systems-

immunology studies that had generated high-dimensional

multi-omic profiles. Using ER, we were able to address key

questions that had not been the focus of the original studies,

in part because of limitations of methods used. Such questions

could now be addressed by the methodological advances of

ER over state-of-the-art approaches. We demonstrated that

ER significantly outperforms PFR and PLS across contexts

and either outperforms or matches LASSO in terms of predic-

tive performance. While we used three examples to illustrate

the superior performance of ER, these methods come with

broad theoretical guarantees to outperform PLS, PFR, and

LASSO across contexts (experimental procedures; Figure 1).

Furthermore, while the existing methods simply identify corre-

lates, without using any prior knowledge, ER provides mecha-

nistic insights. Some of these outcomes are consistent with

previous mechanistic experiments while others are novel. ER

can also be used for noisier and older datasets not generated

using state-of-the-art methods. Our findings have broad impli-

cations across domains in systems biology and are likely to

transform both computational workflows used to analyze

multi-omic datasets and downstream experiments designed

based on the insights gleaned via these analyses.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Requests for data and code used for the study should be directed to andwill be

fulfilled by the lead contact, Jishnu Das (jishnu@pitt.edu).

Materials availability

This study did not generate new unique reagents.

mailto:jishnu@pitt.edu
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Data and code availability

Detailed code, associated datasets, and documentation for ER, CR, and

CausER are available at https://github.com/jishnu-lab/ER. A corresponding

stable release can be accessed at https://doi.org/10.5281/zenodo.6178063.

Any queries regarding the code or data should be directed to the lead con-

tact, Jishnu Das (jishnu@pitt.edu).

Theoretical underpinnings of ER

We provide brief descriptions of the methods, associated tuning parameters,

cross-validation strategies, and data pre-processing in this section. Additional

theoretical details are included in Note S1.

Processing of systems-immunology datasets

For the dataset of multi-omic responses to the Zostavax vaccine, we included

the following multi-scale measurements of immune state: IgG titers, blood

transcriptional modules, metabolic clusters, CD4+ T cell populations, T follic-

ular helper (TFH) cell populations, flow-cytometry cell populations, cytokine

profiles, and IFN T cells. We used subject age as the response variable for

n = 72 subjects. We excluded features that had missing values for more

than a half of subjects. We also excluded 5 subjects that had no observed fea-

tures. The remaining datasets were merged via the unique IDs of subjects. The

final dataset contains p = 1,721 features of n = 67 subjects.

For the transcriptomic (microarray) dataset pre- and post-malaria vaccina-

tion, we had n = 116 samples with 22,277 probes. We filtered out ambiguous

probes (i.e., those that could map to multiple genes) and then averaged tech-

nical replicates (multiple probes/gene) with the limma package in R. The final

dataset comprised 116 samples and p = 12,424 genes. Y is a categorical var-

iable with 3 levels corresponding to three time points.

For the dataset of high-dimensional antibody profiles, we had n = 30 sub-

jects (20 latent Tb, 10 active Tb) with p > 100 features/subject. The features

included titers, Fc effector functions andwhole, Fab, and Fc glycan profiles (in-

dependent of antigen) as well PPD- and Ag85-specific titers and glycan

profiles.

For the dataset of term and pre-term infants, we included all available im-

mune parameters as features and only removed clinical metadata (such as

‘‘gender,’’ ‘‘mode of delivery,’’ ‘‘family,’’ etc.). The final dataset we used has

n = 183 samples and p = 282 features with 56 samples from week 1 and 46

samples from week 12. The response is binary, either ‘‘control’’ (representing

term) or ‘‘pre-term’’ (representing pre-term). We used the 5-NN to impute the

missing values.

Cross validation

Two cross-validation techniques were used to assess the predictive perfor-

mance of the different methods: (1) replicated 10-fold cross validation and 2)

LOOCV. (1) To assess the accuracy of the classifiers for the term/pre-term

immune profile, 50 replicates of nested 10-fold cross validation were per-

formed. For each replicate, we independently ran each of the methods and

assessed the predictive accuracy. For ER, the latent factors were learned

on each fold and each replicate, and the regression and final latent-factor se-

lection were repeated. For CausER, a causal model was learned over the

latent factors selected as significant by ER for each fold and replicate. The

average cross-validation accuracy across the 10-folds was calculated for

each of the 50 replicates. (2) For the datasets, we also performed LOOCV

to assess the accuracy of each method. In LOOCV, each sample in the data-

set was held out as the predictive models were trained on the remaining

samples, and then the held-out sample was predicted with the trained

models. Assessment of model performance (AUC) was done with the set

of predictions for the left-out values.

ER

The first step in ER is the estimation of all latent factors. The identification of

latent factors is unsupervised. This is done based on the empirical sample

covariance matrix using a three-step procedure. The first step involves the

identification of latent-variable structure using the sample covariance matrix.

A key component of this step is the identification of K (reduced dimensionality)

from p (original dimensionality). The second step involves inference of the

clusters: each cluster (latent factor) is anchored by at least 2 pure variables.

Variables that are associated with multiple clusters are designated mixed
variables. The third step involves determination of the overall allocation matrix

based on the cluster assignments in the earlier step. Formal descriptions of all

3 steps are provided in Note S1, Section 2.

After the identification of Zs, the regression coefficients linking the Zs to Y

are estimated using a theoretical framework we recently established for esti-

mation in latent-factor regression models.50 This is the supervised part of

the ER algorithm. A detailed description of the estimation procedure is pro-

vided in Note S1, Section 2.

CR

CR utilizes a 2-step procedure. First, it uses ER to identify significant Zs as

described above. Then, it uses LASSO on the Xs associated only with the sig-

nificant Zs to identify a sparse basis for the system-wide property/outcome of

interest. For LASSO on the significant Zs identified by ER, lambda is tuned us-

ing k-fold cross validation. The lambda tuning is specific to a given fold for a

given replicate and utilizes only the fold-specific training data.

ER coupled to CausalMGM

We implemented CausalMGM as previously described22 on all Zs for the

Zostavax dataset and only the significant Zs identified by ER for the term/

pre-term, malaria, and Tb datasets. Briefly, when constructing the causal

model, we first learned an undirected graphical model with MGM51/

GLASSO.52 The optimal regularization parameters were selected based on

graph stability using StEPS33/StARS.53 The resulting undirected graph was

then used as an initial graph for performing causal inference with the FCI al-

gorithm. To build a predictor of the outcome variable, the Markov blanket

was used. The Markov blanket was defined as the set of variables that,

when conditioned on, make the response variable independent of every

other variable in the dataset according to the structure of the causal graph.

For a DAG, this comprises the parents, children, and spouses (other parents

of the children) of the response variable.

Implementation of LASSO, PLS, and PFR

LASSO was implemented using glmnet in R with parameter tuning done in a

manner analogous to that described above for ER and CR. If no feature was

selected by LASSO in a specific fold for a given replicate, we randomly

selected 5 features (only for that fold in that replicate) and used an ordi-

nary-least-squares estimator. Thus, the feature selection in each case is spe-

cific to each fold for a given replicate; this is the most stringent and unbiased

way to evaluate model performance. PLS was implemented using the plsr

function in R with the number of components selected by the default function

selectNcomp. For PFR, which regresses Y on the first K principal compo-

nents of X, the number of principal components K is selected based on

the ratios of non-decreasing eigenvalues of X’*X/n using previously estab-

lished criteria.54

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2022.100473.
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Fig. S1 – Spearman correlations of the different methods at predicting age as a continuous 
variable, as measured in a LOOCV cross-validation framework. 
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Fig. S2 – Performance of ER in discriminating between term and pre-term births using 
immune profiles at week 1 after birth 
 
a) Classification accuracy of the different methods at discriminating between term and pre-term 
births using immune profiles at 1 week after birth, measured in a replicated k-fold cross validation 
framework 
b) ROC curves for the different methods at discriminating between term and pre-term births as 
measured in a LOOCV framework. 
 
 
  



Supplementary Note S1 

Detailed descriptions of the theoretical underpinnings, associated proofs of ER, CR and 
CausER. The file also describes details of the applications of ER, CR, CausER, LASSO, PLS 

and PFR to the different datasets of interest. 



Supplementary Note 1

1 Latent factor model formulation

We assume that the data (X,Y) ∈ (Rn×p,Rn) are i.i.d. realizations of the random vector
(X,Y ) ∈ (Rp,R) which follows the factor regression model

Y = β>Z + ε (1.1)
X = AZ +W. (1.2)

The latent, unobserved, random vector Z ∈ RK , with K < p, is independent of the mean-zero
random errors ε ∈ R and W ∈ Rp. Independence between ε and W is assumed as well. The
p×K matrix A and the K-dimensional vector β are deterministic quantities. We let E[ε2] = σ2

and assume both E[ZZ>] = ΣZ and A have rank K.

Since one of our main interests is to cluster the feature X based on its association with
the latent factor Z, the membership matrix A needs to be identifiable, up to a K ×K signed
permutation matrix. For this reason, we resort to the following conditions on A, ΣZ and Γ :=
E[WW>] (1).

Assumption 1.

(A0) ‖Aj·‖1 ≤ 1 for all j ∈ [p] := {1, 2, . . . , p}.
(A1) For every k ∈ [K], there exists at least two j 6= ` ∈ [p], such that |Aj·| = |A`·| = ek.

(A2) There exists a constant ν > 0 such that

min
1≤a<b≤K

( [ΣZ ]aa ∧ [ΣZ ]bb − |[ΣZ ]ab| ) > ν.

(A3) The covariance Γ := E[WW>] is diagonal with bounded diagonal entries.

Model (1.1) – (1.2) together with Assumption 1 is termed as the Essential Regression (ER).
Within the ER framework, (1, Theorem 2) and (2, Proposition 1) establish that the model is
identifiable. In particular, both A and β are identifiable. For the reader’s convenience, we restate
the results in Appendix A. The uniqueness of A is used to form unique clusters of X based on
their associations with Z via

Gk := {j ∈ [p] : Ajk 6= 0} , ∀k ∈ [K].

On the other hand, the coefficient β is used to select significant Z for predicting Y
To establish the identifiability results, the key condition is (A1) which assumes the existence

of at least two features X that are solely associated with each latent factor Z. These features are
termed as non-mixed variables and are collected in the set I ⊆ [p] := {1, 2, . . . , p}. We further
let I = {I1, . . . , IK} denote its partition. Mathematically, we have

Ik := {i ∈ [p] : |Aik| = 1, Aik′ = 0, for all k′ 6= k}, for 1 ≤ k ≤ K.

The existence of non-mixed variables also renders the latent factors Z interpretable as the mean-
ing of each Zk can be read off from the corresponding non-mixed features {Xi}i∈Ik .

Under the Essential Regression, our goals are two-fold:

(a) estimate β and select predictive latent factors Z;

(b) predicting Y .

In the next section, we will describe our approaches for each goal separately.
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2 Methodology under Essential Regression

2.1 Estimation of β and selection of predictive Z

2.1.1 Estimation of β

Let Σ̂ := n−1X>X denote the empirical sample covariance matrix of X. Our procedure for
estimating β is the following.

(1) Obtain estimates K̂, {Î1, · · · , ÎK̂}, ÂÎ· and Σ̂Z from Σ̂ with tuning parameter δ by using
Algorithm 1 in (1). For the reader’s convenience, the procedure is stated in Appendix B.

(2) Estimate Γ·I by Γ̂·Î with

Γ̂ii = Σ̂ii − Â>i· Σ̂ZÂi·, ∀ i ∈ Î , Γ̂ji = 0, ∀ j 6= i. (2.1)

(3) Compute

Θ̂ =
(

Σ̂·Î − Γ̂·Î

)
Â
Î·

(
Â>
Î·ÂÎ·

)−1
. (2.2)

If Θ̂>Θ̂ is non-singular, estimate β by

β̂ =
(

Θ̂>Θ̂
)−1

Θ̂>
1

n
X>Y. (2.3)

Otherwise, compute

ĥ =
1

n

(
Â>
Î
Â
Î

)−1
Â>
Î
X>
Î
Y (2.4)

and estimate β by

β̂d = arg min
β∈RK

{
‖β‖1 : ‖Σ̂Zβ − ĥ‖∞ ≤ µ1 + µ2‖β‖1

}
(2.5)

for some parameters µ1 and µ2.

Algorithm 1 in step (1) requires to choose the tuning parameter δ. Since theoretical order of δ
is
√

log(p ∨ n)/n under the sub-Gaussian assumption of Z, ε andW , we set δ = c
√

log(p ∨ n)/n
with the leading constant c chosen via the criterion in Section 5.1.1 of (1).

For β̂d, the procedure requires additional tuning parmeters: µ1 and µ2. They are all of
theoretical order

√
log(p ∨ n)/n. Our extensive simulation suggests to choose µ1 = µ2 =

0.5
√

log(p ∨ n)/n. Alternatively, they can be chosen via cross-validation by minimizing the
loss

L(β) := βT Σ̂Zβ − 2β>ĥ.

2.1.2 Selection of predictive Z

When our estimator of β is β̂, (2, Theorem 4 and Proposition 5) provides the asymptotic distri-
bution of β̂k for all 1 ≤ k ≤ K with consistent estimates of the asymptotic variances. We thus
can construct confidence intervals (CIs) for each βk, 1 ≤ k ≤ K and the obtained CIs could be
used to select the predictive latent factors Z.

When our estimator of β is the Dantzig-type estimator β̂d, as mentioned in (2, Remark 3 of
version 1), β̂d adapts to the unknown sparsity of β. We propose to directly use the support of
β̂d to select predictive Z.
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2.2 Prediction

We have two procedures for predicting Y , described separately in the following two sections.

2.2.1 Essential regression predictor

For predicting Y , we adopt the procedure in (3, Section 4.2). Specifically, let Θ̂ be constructed
from (2.2) and compute

θ̂ER := (Θ̂>X>XΘ̂)−Θ̂>X>Y

where M− denotes the Moore-Penrose inverse of any matrix M . For any new data point
(X∗, Y ∗), we predict Y ∗ by

Ŷ ∗ER = θ̂ER
>X∗. (2.6)

This predictor is termed as ER in our result.

2.2.2 Composite regression predictor

Within the Essential Regression framework, although the significant latent factors Z could be
selected, the ER predictor in (2.6) still uses all the features X to predict Y . We thus propose
a new predictor, called Composite Regression (CR), which uses only the features X that are
related with the selected significant Z.

Specifically, CR has two steps. In the first step we select the significant factors Z and let
L ⊆ [K] be the index set of the selected Z. In the second step, we first find the subset of features
X that are related with ZL, that is, the set

S̄ :=
{
j ∈ [p] : ‖ÂjL‖2 6= 0

}
where Â is estimated from (B.4) in Appendix B, the procedure proposed in (1). We then regress
Y onto XS̄ via the Lasso approach to obtain the estimated linear coefficient vector

θ̂CR := arg min
θ
‖Y −XS̄θ‖22 + λ‖θ‖1.

The estimate θ̂CR could be used to select predictive features associated with those significant
factors Z. Furthermore, we propose

Ŷ ∗CR := θ̂>CRX
∗ (2.7)

to predict Y ∗.
It is worth mentioning that the difference between CR and Lasso is that CR regresses Y

onto XS̄ based on the selected significant ZL whereas Lasso regresses Y onto all the features X.
Hence the selected features X from CR are associated with the predictive factors, a desirable
property that Lasso does not enjoy.

2.3 Prediction with Essential Regression on synthetic data

In this section1 we generate synthetic data to compare the prediction performance of ER relative
to PFR, PLS and the Lasso.

1This section is modified based on Section 5.2 in (4)
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2.3.1 Data generating mechanism

We start with the description of our data generating mechanism. We first describe how we
generate A, ΣZ , Γ, and β. Recall that A can be partitioned into AI and AJ .

To generate AI , we set |Ik| = m for each k ∈ [K] and choose AI = IK⊗1m, where ⊗ denotes
the kronecker product. Each row Aj· of AJ is generated by first randomly selecting its support
with cardinality sj drawn from {2, 3 . . . , bK/2c} and then by sampling its non-zero entries from
Nsj (0, D). The matrix D satisfies diag(D) = (1/sj , . . . , 1/sj) and Dab = ζ |i−j|/sj for any a 6= b
with given parameter ζ ∈ [0, 1]. In the end, we rescale AJ such that the `1 norm of each row is
no greater than 1.

To generate ΣZ , we set diag(ΣZ) to a K-length sequence from 2.5 to 3 with equal increments.
The off-diagonal elements of ΣZ are then chosen as [ΣZ ]ij = (−1)(i+j)([ΣZ ]ii ∧ [ΣZ ]jj)(0.3)|i−j|

for any i 6= j ∈ [K]. Finally, Γ is chosen by randomly sampling its diagonal elements from
Unif(3, 5) and the entries of β are sampled independently from Unif(0, 1).

We generate the n ×K matrix Z and the n × p noise matrix W whose rows are i.i.d. from
NK(0,ΣZ) and Np(0,Γ), respectively. Then we set X = ZAT +W and Y = Zβ+ ε where the n
components of ε are i.i.d. N(0, 1). For each setting, we repeat generating (X,Y ) 50 times and
record the corresponding results.

Below we investigate how the prediction errors of ER, PFR, PLS and Lasso change as we vary
p, K and the signal-to-noise ratio (SNR) one at a time. The performance metric is based on the
new data prediction risk. To calculate it, we independently generate a new dataset (Xnew, Ynew)
containing n i.i.d. samples drawn according to our data generating mechanism. The prediction
risk of the predictor Ŷnew is calculated as ‖Ŷnew − Znewβ‖2/n.

2.3.2 Varying p, K and SNR one at a time

To vary p and K one at a time, we first set n = 300, K = 10, m = 5 and choose p from
{200, 400, 600, 800, 1000}, then fix n = 300, p = 600, m = 5 and vary K in {10, 20, 30, 40, 50}.
Both settings use ζ = 0.5. We plot the prediction risks of the four predictors listed above.

To vary the signal-to-noise ratio ξ = λK(AΣZA
T )/λ1(Γ), we fix ΣZ and Γ, and generate AJ

by choosing ζ ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99}. We set n = 300, p = 400, K = 10 and m = 3.
For each ζ, we calculate the SNR and plot the prediction risks of each predictor.

Summary: Overall, the prediction error for all four methods deteriorates as K increases or
the SNR decreases. This indicates that prediction becomes more difficult for large K and small
SNR. On the other hand, ER, PFR and Lasso perform better as p increases. This contradicts
the classical understanding that having more features increases the degrees of freedom of the
model, hence inducing larger variance. By contrast, in our setting, increasing the number of
features provides information that can be used to predict Z more accurately. This phenomenon
has been observed in the classical factor (regression) model, see, for instance, (5–9).

Among the four candidates, ER has the smallest prediction error in all settings and PLS has
the worst performance in most of the settings. Furthermore, PFR fails to detect K and tends to
select K̂ < K in the second and third scenarios. It is clear that using K̂ < K leads to a large loss
in prediction accuracy. This also indicates that, for principal component regression approaches,
detecting K requires larger SNR than making consistent prediction with true K given. In the
first plot, we are in a moderate SNR regime and PFR has comparable performance to ER. In
the second plot, as K increases, the advantage of ER becomes considerable, which supports the
fact that PFR only has guarantees for fixed K. Finally, in the third plot, the performance of
PFR is more sensitive to the SNR comparing to the other three methods.
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2.4 Non-linearity in Essential Regression

Our current model postulates two levels of linearity: the one between the observable feature
vector X and the un-observed latent factor Z as X = AZ+W , and the one between the response
Y and Z as Y = Z>β + ε. The linearity between observable feature X and latent factor Z is
commonly assumed in the literature of factor models. Regarding the linearity between Y and Z,
one could hope that this holds approximately as the dimension of Z grows (recall that neither
Z nor its dimension K is known). This is part of the reasons why linear model is popular and
appealing for modelling high-dimensional data (the feature dimension p is large). Moreover,
both our algorithm and theoretical results are still valid for a moderate and large K, even when
K grows with the sample size n. Therefore, the linearity between Y and Z is less restrictive
when the number of latent factors is allowed to be large.

On the other hand, admittedly, linearity between Y and Z becomes restrictive in several
cases, such as when Y is a categorical or binary response. This work is the first step towards
making inference on β when Y and Z are linearly related. However, It is promising to extend
the current framework to a more general setting where Y and Z follow generalized linear models.
For example, our ongoing project studies the estimation and inference of the coefficient β when
Y and Z are linked via logistic regression as

logit [P(Y = 1|Z)] = Z>β.

When Y and Z are non-linearly related, a different procedure is needed in general.

2.5 Key methodological contributions of Essential Regression

We consider latent factor regression models, specified as

Y = Z>β + ε, X = AZ +W. (2.8)

Note that Z is the un-observed latent factor, X is the observable feature and Y is the response.
Our novel contribution is to develop valid inferential tool of the coefficient β, which can be used
to select predictive un-observed latent factors (at the Z level). This is in stark contrast with
the usual feature selection problem (for instance, studied by the Lasso) which aims to select
predictive features (at the X level). Inference at the factor level is often more appealing in the
multi-omics study than inference at the feature level to better understand the mechanism.

On the other hand, traditional factor (regression) models cannot be used to select predictive
latent factors due to the lack of identifiability of β. In fact, another our main contribution is to
establish practical conditions under which the coefficient β can be uniquely identified from the
observable quantities of Y and X. Some existing conditions in the factor literature under which
β becomes identifiable assume that the factors Z are uncorrelated, which is unrealistic in many
applications.

To the best of our knowledge, the proposed method is the first paper that studies the identi-
fiability, estimation and inference of β under model (2.8) where the latent factors Z are allowed
to be fully correlated. Finally, it is also worth mentioning that, due to the existence of non-
mixed variables, the latent factors become interpretable and their meaning can be read off from
the corresponding non-mixed features. This interpretability makes the inference at the Z level
meaningful. By contrast, the factors under existing conditions in factor model literature are not
interpretable, leading their selection to be meaningless.
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2.6 Comparison with topic models

Topic models are commonly used for learning thematic low-dimensional representations of text
data. The postulated model is a particular instance of non-negative matrix factorizations. Con-
cretely, in topic model, the observed data matrix X satisfies

X = ZA> + E

where X ∈ Rp×n, A ∈ Rp×K and Z ∈ RK×n all have non-negative entries and unit column
sums. The non-negative constraint of both the data (X) and the parameters of interest (A and
Z) renders the methods for topic models inapplicable to a more general setting where all of X,
Z and A are allowed to have negative entries. Moreover, the computationally efficient methods
for topic models, such as (10–12), all focus on the identifiability and estimation of A without
providing any inferential results.

3 Methodology under CausER

CausER is a novel method that combines the discovery of significant latent factors from Essen-
tial Regression with the causal inference implemented in CausalMGM, a method for learning
causal graphs over mixed continuous and categorical data (13). This addresses two of the largest
challenges of performing causal inference on biological datasets: high dimensionality and multi-
collinearity among variables. Highly collinear features are grouped into individual latent factors
by the LOVE algorithm B, and the significant latent factor selection performed by ER 2.1.2
reduces the dimensionality of the dataset without discarding any latent factors causally linked
to the response variable that we wish to predict or make inferences about.

3.1 Methodology under CausalMGM

3.1.1 Mixed Graphical Models

A Mixed Graphical Model (MGM) is an undirected graphical model capable of representing the
joint distribution over datasets containing both continuous and categorical variables (14). The
model is given by:

p(x, y; θ) ∝ exp

 p∑
s=1

p∑
t=1

−1

2
βstxsxt +

p∑
s=1

αsxs +

p∑
s=1

q∑
j=1

ρsj(yj)xs +

q∑
j=1

q∑
r=1

φrj(yr, yj)

,
(3.1)

where θ represents the full set of parameters, xs is the sth of p continuous variables, and yj
is the jth of q categorical variables. The parameter βst represents the edge potential between
continuous variables xs and xt, αs represents the node potential of continuous variable s, ρsj
represents the edge potential between continuous variable xs and categorical variable yj , and Φrj

represents the edge potential between categorical variables yj and yr. A non-zero edge potential
indicates the presence of an edge in the graph, and thus a pairwise conditional dependence rela-
tionship between those two variables. This model has the favorable property that the conditional
probabilities of each variable can be represented with a Gaussian linear regression and multi-
nomial logistic regression for continuous and categorical variables respectively. While learning
this model over high-dimensional datasets directly is intractable due to the computation of the
partition function, the above property enables us to learn the graphical model by minimizing the
negative log-psuedolikelihood, given by 3.2, where Θ refers to the full set of model parameters.
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˜̀(Θ | x, y) = −
p∑
s=1

log p(xs | x\s, y; Θ)−
q∑
j=1

log p(yj | x, y\j ; Θ) (3.2)

In order to ensure sparsity in the final model, we use proximal gradient descent to fit a
penalized version of the negative log-pseudolikelihood from (15), given in 3.3. We identify the
optimal values for regularization parameters λCC , λCD, and λDD using Stable Edge-specific
Penalty Selection (StEPS), a method based on model stability, as defined in (15).

minimize
Θ

`λ(Θ) = ˜̀(Θ) + λCC

p∑
s=1

s−1∑
t=1

|βst|+ λCD

p∑
s=1

q∑
j=1

||ρsj ||2 + λDD

q∑
j=1

j−1∑
r=1

||φrj||F (3.3)

The undirected MGM does not represent a causal graphical model. However, it does identify
pairwise conditional dependence relationships, and the resulting adjacencies are a superset of
the adjacencies in the underlying causal graph. In the asymptotic sample limit, MGM learns
the ’moralized graph’, which consists of all edges in the causal DAG as well as additional edges
between all spouses (nodes that share the same children) in the causal DAG. This means that the
adjacencies learned from MGM can be used as the initial set of adjacencies for constraint-based
causal inference methods, rather than a fully connected graph. This reduces the search space of
the constraint-based causal inference algorithms, resulting in faster causal inference and fewer
errors.

3.1.2 Fast Causal Inference

The FCI algorithm (16) learns a causal partial ancestral graph (PAG) from data that may
include latent variables. Similar to the PC algorithm, the FCI algorithm performs conditional
independence tests to find the skeleton of the final causal graph and orient the colliders (17).
To accommodate the possibility of latent confounders in the causally insufficient case, the FCI
algorithm must perform additional conditional independence tests that condition on some non-
adjacent variables. This is because in the causally sufficient case with no latent confounders,
if two variables are conditionally independent they are independent given some subset of their
neighbors in the causal graph. However, this is no longer true in the causally insufficient case.
The sets of variables that may cause two adjacent variables to be conditionally independent
in the presence of latent confounders is characterized as the Possible D-Sep set. During the
Possible D-Sep phase of the FCI algorithm, edges are pruned from the graph if the two variables
are conditionally independent given one of the sets of variables in the Possible D-Sep set. Finally,
all edges are reoriented to have circle endpoints, and the FCI orientation rules are applied as
given by (18). In this paper, we use a version of the FCI orientation rules known as FCI-Max,
where the initial collider orientation stage is done based on the separating set with the largest p
value, as in (13). This heuristic, based on the observation the p values increase monotonically as
the conditional dependence decreases (19), has been shown to considerably improve orientation
accuracy over the initial implementation of FCI (13).

Constraint-based causal inference algorithms such as FCI require reliable conditional inde-
pendence tests, which determine if some variables X and Y are independent given a conditioning
set S, to learn the causal graphical model. Under the null hypothesis that X and Y are inde-
pendent given S, we expect to see that P (X | Y, S) is equal to the null model, P (X | S). To
accommodate mixed datasets as in (20), we compute these conditional probabilities with either
linear regression, in the case that X and Y are continuous, or multinomial logistic regression, in
the case that X, Y , or both are categorical. In the case that the test is performed by a linear
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regression, we perform a t test on the coefficient of Y. If the p value of the test is less than the
significance threshold α, then we reject the null hypothesis of conditional independence between
X and Y given S. Alternatively, in the case that the test is performed by a multinomial logistic
regression, we perform a likelihood ratio test (LRT) to determine whether P (X | Y, S) is equal to
the null model, P (X | S). Again, if the p value of the test is less than the significance threshold
α, then we reject the null hypothesis of conditional independence between X and Y given S.
Note that the conditioning set S can contain both continuous and categorical variables, where
categorical variables are transformed into an array of binary indicator variables.

The graphical causal models learned by FCI are PAGs, which are a representation of ancestry
in causal graphs that is valid in the presence of latent confounders. Edges in this type of graph
have three different types of endpoints: (o, >, -), and each represents an ancestral relationship
between nodes in the graph. For example, X → Y indicates that X is an ancestor of Y , while
X ↔ Y indicates that a latent confounder causes both X and Y . The circular endpoint indicates
uncertainty about the true causal endpoint. Thus, X o→ Y could be either X → Y or X ↔ Y
in the true graph, meaning that the only certain knowledge according to the PAG is that Y is
not an ancestor of X. An extensive theoretical grounding of these concepts can be found in (17).

3.1.3 Markov blanket

To build a predictor of a given response variable that is informed by the causal structure of
variables in the dataset, a small subset of variables known as the Markov blanket are used.
This set of variables are the variables that, when conditioned on, make the response variable
independent of every other variable in the dataset according to the structure of the causal graph.
In the case of a DAG, this set simply contains the parents, children, and spouses (other parents
of the children) of the response variable (21). In the case of a PAG, the presence of latent
confounders complicates the issue. In addition to the parents, children, and spouses of the
response variable, we must include variables linked to the response variable or its children by
a latent confounder (X ↔ Y ) or a possible latent confounder (e.g., X o→ Y ), as well as the
parents of those variables. If there is a chain of edges denoting the presence of latent confounders
or possible latent confounders (e.g., W ↔ X ↔ Y ↔ Z) that is linked to the response variable
or its children, then the parents of each node in the chain is included in the Markov blanket (22).
However, in practice this can lead to large Markov blankets and a drop in predictive performance,
so we set the limit on the number of consecutive variables linked by latent confounders to include
to 2. In the previous chain for example, if W was the response variable or one of its children,
then X, Y , and their parents would be included in the Markov blanket.

By this definition, the Markov blanket of a response variable is the minimum set of features
that contains all of the information available in the dataset for predicting the response variable.
This can result in highly interpretable predictive models with few features and predictive perfor-
mance that typically matches or exceeds those of models built with the full dataset or variables
selected by Lasso. This has previously been successfully applied in biomedical applications, such
as predicting whether lung nodules detected in low-dose CT scans are cancerous (23).

3.2 Constructing a causal model on significant latent factors

To identify the latent factors to use in the construction of a causal model, we perform Essential
Regression on the variable of interest. In the case that K̂ is small compared to n, we learn a
causal model over all latent factors identified by LOVE, the response variable, and any categor-
ical variables that we wish to include in the model using CausalMGM. In the case that K̂ is
large compared to n, we use the Dantzig estimator β̂d in 2.5 to identify latent factors that are
significantly associated with the response variable. We then construct a causal model with the
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latent factors that have non-zero coefficients in β̂d, the response variable, and any categorical
variables we wish to include in the model using CausalMGM.

When constructing the causal model, we first learned an undirected graphical model with
MGM 3.1.1 (or GLASSO (24) if fully continuous). The optimal regularization parameters were
selected based on graph stability using StEPS (15) (or StARS (25) if fully continuous). The
resulting undirected graph was then used as an initial graph for performing causal inference with
the FCI algorithm 3.1.2. This yields a causal PAG over the significant latent factors, the response
variable, and any additional categorical variables, which can be used for the construction of
predictive models or inference about causal mechanisms.

3.3 Stability-based α threshold selection

When building predictive models, the main structural feature of interest in the causal graph
is the Markov blanket of the response variable. To select an optimal α threshold value for
the conditional independence tests performed by the FCI algorithm, we took a stability-based
approach based on StARS. While StARS was originally used for selecting the regularization
parameter to be used in GLASSO, we use the same method of subsampling, learning the graph
structure, and calculating the instability across subsamples to select an optimal α threshold
for learning the Markov blanket of the response variable. However, instead of calculating the
instability of an edge in the graph, we calculate the instability of a variable’s inclusion in the
Markov blanket.

We define θ̂j(α) as the frequency of a variable j’s membership in the Markov blanket. Using
this, we can calculate instability of a single variable j’s membership in the Markov blanket as

ξ̂j(α) = 2θ̂j(α)
(

1− θ̂j(α)
)
. (3.4)

This definition of the instability is twice the variance of the Bernoulli indicator for variable j’s
membership in the Markov blanket. Additionally, it can be interpreted as the probability of the
Markov blankets learned on any two subsamples disagreeing about variable j’s membership in
the Markov blanket. This arises from the probabilities of the two possibilities for disagreement
between subsamples: the probability that the first subsample includes variable j in the Markov
blanket and the second subsample excludes variable j can be given as θ̂j(α)

(
1− θ̂j(α)

)
, while

the reverse can be given as
(

1− θ̂j(α)
)
θ̂j(α). When summed, this gives our definition of

instability for a single variable j’s membership in the Markov blanket. With this, we define the
instability of the Markov blanket as a whole, D̂(α), as

D̂(α) =

∑
j∈MB ξ̂j(α)

m
, (3.5)

where MB is the set of variables that shows up in the Markov blanket of the response variable
in at least one subsample and at least one value of α, and m is the size of set MB. Very high
values of α will lead to very dense but also very stable graphs, which is undesirable. To avoid
this, we monotonize the instability of the Markov blanket as done in StARS, giving

D(α) = sup
0≤t≤α

D̂(t). (3.6)

As it it more difficult to test the instability of many α parameters with CausalMGM and CausER
than with the regularization λ in GLASSO, we modify the selection of the optimal α threshold
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α̂. While StARS selects the smallest value of λ with an instability less than some threshold γ,
we select the value of α with an instability closest to some threshold γ, given by

α̂ = inf
α
|D(α)− γ|. (3.7)

This method for selecting α̂ requires the selection of a threshold γ. This may make the method
seem redundant, as we require a new hyperparameter in order to select α̂. However, this thresh-
old γ has a clear interpretation in the context of the learned graph; it represents the average
probability of graphs learned on two subsamples disagreeing on the membership of a variable in
the Markov blanket. In contrast, the stability of the graph can vary considerably at the same
values of α in different datasets. Thus, by setting the threshold γ = 0.05, we are selecting the
value of α that results in Markov blanket selections where the average probability that a variable
is present in one selection but not in another is closest to 0.05.

3.4 Causally informed prediction of the response variable

Once the optimal threshold value α̂ is selected with the above method, we build a final causal
model using the full dataset and the conditional independence test threshold α̂. We then identify
the Markov blanket of the final causal model to be used as predictors in the construction of
regression models for the response variable. If the response variable is continuous, we use linear
regression, and if the response variable is categorical we use multinomial logistic regression.
Predictive performance is estimated using leave-one-out cross-validation, where we train the
model on all but one sample and then predict the value of the held out sample. This procedure
is repeated for each sample in the dataset, and the performance metric is calculated using the
predictions of the held out values.

4 Specifications of the data analysis

We provide detailed specifications of all the data analysis carried out in this paper.

4.1 Imputation of missing values

Among the datasets that we studied, there are different levels of missingness. To impute the
missing values, we use the averaged value of the 5 nearest neighbors in Euclidean distance.

4.2 Implementation of different methods

Throughout our analysis, we consider the following competitive methods:

1. CausER: CausER in Section 3.

2. ER: Essential Regression in (2.6) of Section 2.1.

3. CR: Composite Regression in (2.7) of Section 2.1. The tuning parameter of the Lasso step
uses the k-fold cross validation. We use k = 10 if there are more than 3 observations per
fold, otherwise set k = 5.

4. Lasso: The Lasso (26) from glmnet implemented in R with the tuning parameter λlasso
selected from the k-fold cross validation with k chosen according to the same rule for CR.
When Lasso selects no feature, we randomly select 5 features and use an ordinary least
squares estimator based on these 5 features.
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5. PFR: principal factor regression which regresses Y on the first K principal components of
X where K is selected based on the criterion proposed in (27, 28). Specifically, we estimate
K by

K̂ = arg max
k∈{1,2,...,K̄}

λ̂k

λ̂k+1

(4.1)

where λ̂1, λ̂2, · · · are the non-decreasing eigenvalues of X>X/n and K̄ is some prespecified
value, for instance, the largest integer that is no greater than min(n, p)− 1.

6. PLS: partial least squares regression from plsr implemented in R with the number of
components selected by the default function selectNcomp.

4.3 Cross-validated assessment of predictive performance

Two cross-validation techniques were used to assess the predictive performance of the different
methods: (1) replicated 10-fold cross-validation, and (2) leave-one-out cross-validation.

1. Replicated 10-fold cross-validation: For assessing the accuracy of the classifiers in the
RTS,S vaccine-induced transcriptomic profiles dataset and the Term / pre-term infants
stereotypic immune convergence dataset, 50 replicates of nested 10-fold cross-validation
was performed. On each fold, in each replicate, we independently ran each of the methods
in 4.2 and assessed the predictive accuracy. For ER, the latent factors were learned on each
fold and each replicate, and the regression and final latent factor selection were repeated.
For CausER, a causal model was learned over the latent factors selected as significant by
ER for each fold and replicate. The average cross-validation accuracy across the 10 folds
was calculated for each of the 50 replicates.

2. Leave-one-out cross-validation: For all three datasets, we performed leave-one-out
cross-validation to assess the accuracy of each method. In leave-one-out cross-validation,
each sample in the dataset is held out as the predictive models are trained on the remaining
n − 1 samples, and then the held out sample is predicted with the trained models. The
assessment of model performance is done with the set of predictions of the left out values.
These predictions were used to calculate Receiver Operating Characteristic (ROC) curves,
correlations between predictions and true values, and classification accuracies.

4.4 Multi-omic responses to the Zostavax vaccine dataset

To construct the dataset of multi-omic responses to the Zostavax vaccine, we included the fol-
lowing multi-scale measurements of immune state: IgG titers, blood transcriptional modules,
metabolic clusters, CD4+ T cell populations, TFH cell populations, flow cytometry cell popu-
lations, cytokine profiles, and IFNγ T cells. We used subject age as the response variable for
the n = 72 subjects. We exclude the features that have missing values for more than a half of
subjects. We also exclude 5 subjects that have no observed features. The remaining data sets
are merged via the unique id’s of subjects. The final data set contains p = 1721 features of
n = 67 subjects.

We applied ER with δ = 0.38 and obtained K̂ = 57 clusters. As K̂ is relative large comparing
to n, we used the Dantzig estimator β̂d of β in (2.5) and the non-zero support β̂d selects 18
significant factors for predicting the response.

For this dataset, which is fully continuous, the initial undirected skeleton was learned with
Graphical LASSO (GLASSO) (24) implemented in the huge package in R (29). The opti-
mal regularization parameter λ = 0.32 was selected by StARS (25). The causal model over
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the latent factors was built using FCI-Max, as implemented in the rCausalMGM package in R
(https://github.com/tyler-lovelace1/rCausalMGM). The optimal conditional independence
test significance threshold for learning the causal graph, α = 0.1, was selected as described in
3.3.

4.5 Term / pre-term infants stereotypic immune convergence dataset

For pre-processing the data, we first combine the data sets of Cell population frequencies and
Short final ComBat by removing the irrelevant features such as “gender”, “mode of delivery”,
“family” etc. Then we further exclude the control samples with row indices from 326 to 337. We
further pulled out the subdata with “Relation” equal to “child” and the final data set we use has
n = 183 samples and p = 282 features with 56 samples from week 1 and 46 samples from week
12. The response is binary, either “Control” (representing term) or “Premature” (representing
pre-term). We use the 5-NN to impute the missing values.

We perform the classification of pre-term / term by using the features collected in week 12.
We applied ER with δ = 0.15 and obtained 14 clusters. Our estimator β̂ is constructed via (2.3)
and the 95% confidence intervals select two significant factors Z5 and Z7 for predicting term
and pre-term.

For features in week 1, we used δ = 0.17 with 14 clusters and the significant factors include
Z3, Z4, Z10, Z11 and Z14.

Only week 12 data was analyzed with CausER. For this dataset, only two significant latent
factors, Z5 and Z7, were identified, making causal orientations unidentifiable in most cases (the
only exception being the graph Z5 o→ Y ← o Z7). Additionally, there are too few features
for stability-based selection of α using only the significant latent factors. However, a causal
model was constructed over all latent factors using FCI-Max, as implemented in the rCausalMGM
package in R (https://github.com/tyler-lovelace1/rCausalMGM). The optimal conditional
independence test significance threshold for learning the causal graph, α = 0.2, was selected as
described in 3.3.

4.6 RTS,S vaccine-induced transcriptomic profiles dataset

By concatenating the two gene-expression data sets, we end up with n = 116 samples with
p = 22277 probes. We filtered out the probes that could map to multiple genes, and then the
technical replicates were averaged with the limma package in R (30), giving the expression of
p = 12424 genes.

The responses Y ∈ Rn are categorical representing three time points. We applied ER to
the data set with selected δ = 0.04 and obtained K̂ = 1674 clusters. The estimator of β is the
Dantzig estimator in (2.5) which has 86 non-zero elements. This implies there are 86 significant
factors Z for predicting the response.

For this dataset, which is mixed, the initial undirected skeleton was learned with MGM,
described in 3.1.1, implemented in the rCausalMGM package in R. The optimal regularization
parameters λCC = 0.27, λCD = 0.27 (λDD was irrelevant because there is only one cate-
gorical variable) were selected by StEPS (15). The causal model over the latent factors was
built using FCI-Max, as implemented in the rCausalMGM package in R (https://github.com/
tyler-lovelace1/rCausalMGM). The optimal conditional independence test significance thresh-
old for learning the causal graph, α = 0.2, was selected as described in 3.3.
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4.7 Antibody glycosylation in active / latent tuberculosis dataset

This dataset consists of measurements of glycosylation in bulk non-antigen-specific IgG, bulk
Fc domain, bulk Fab domain, and purified protein derivative (PPD)- and Ag85A-specific IgG
from patients with latent (n = 10) and active (n = 20) tuberculosis. The dataset also contains
PPD-specific isotype, PPD-specific antibody dependent phagocytosis, cellular cytotoxicity, and
natural killer cell activation. In total, this dataset has n = 30 samples and p = 181 features and
a binary response variable representing either latent or active tuberculosis.

We applied ER with δ = 0.35 to perform the classification of active/latent tuberculosis.
We obtained 8 clusters with only one significant factor, Z7, for predicting latent vs. active
tuberculosis.

We also analyzed this dataset with CausER. For this dataset, we did not learn an initial
undirected graph due to the low dimensionality of the latent factors (K = 8) and low sample
size. Instead, we directly constructed a causal model over all latent factors and the response
variable Y using FCI-Max, as implemented in the rCausalMGM package in R (https://github.
com/tyler-lovelace1/rCausalMGM). The optimal conditional independence test significance
threshold for learning the causal graph, α = 0.1, was selected as described in 3.3.

5 Computational complexity of Essential Regression and CausER

5.1 Computational complexity for Essential Regression

The primary computational cost of ER is the feature clustering step of the algorithm. This
step requires the computation of the full covariance matrix for the features in the dataset,
and thus scales according to O(np2). The regression step of ER either uses least squares or a
K-dimensional linear program, and thus is fast for small K.

5.2 Computational complexity for learning MGM

The causal discovery algorithm used here, CausalMGM, enables causal discovery on large datasets
by first learning an undirected graphical model, MGM, through proximal gradient descent. Let
the sample size be n and the number of latent factors identified by ER be K. Then the compu-
tational complexity of the MGM algorithm scales according to O(nK2).

5.3 Computational complexity for FCI-Max

The causal discovery algorithm used here, FCI-Max, is constraint-based, and thus needs to
perform large numbers of conditional independence tests. Thus, the runtime of FCI-Max and
other constraint-based algorithms are dependent on the runtime of the conditional independence
test, and the number of conditional independence tests that needs to be performed. The number
of conditional independence tests that needs to be performed, in turn, depends on the structure
of the causal graph. Thus, we can only give an upper bound for the worst-case running time,
which will be presented here; in practice, the runtime is typically much lower than this upper
bound.

Let the sample size be n, the number of latent factors be K, and the maximal degree of the
causal graph be d. Then, in the worst case scenario, we get this upper bound on the number of
conditional independence tests:

2

(
K

2

) d∑
i=0

(
K − 1

i

)
≤ Kd+2

d!
(5.1)
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Dataset n p K ER (s) MGM (s) FCI-Max (s)
Zostavax shingles vaccine 67 1721 57 4.71 0.398 0.025

Term/Pre-term 46 274 14 0.6 N/A 0.021
RTS,S malaria vaccine 116 12424 590 75.6 0.722 0.734

Active/latent tuberculosis 30 181 8 0.433 N/A 0.003

Table 1: Wall clock runtimes (in seconds) of all three components of Essential
Regression and CausER in the four datasets analyzed here.

While this runtime is a high order polynomial, meeting the assumptions on the structure of
the graph needed to achieve the worst case is highly unlikely. Nonetheless, when combined with
the runtimes of our regression-based conditional independence tests, which are O(nd2 + d3), we
get the following upper bound on computational complexity:

O
(

(nd2 + d3)Kd+2

d!

)
(5.2)

When we learn an undirected graphical model as a skeleton, as is done with MGM here, we
can significantly reduce the worst case number of conditional independence tests and therefore
this upper bound. Let |E0| be the number of edges in the initial graph, and d0 be the maximal
degree of of the initial graph, where d ≤ d0. Under the worst case scenario, we get this upper
bound on the number of conditional independence tests:

2|E0|
d∑
i=0

(
d0

i

)
≤ 2|E0|(d0 + 1)d

d!
(5.3)

When combined with the runtimes of our regression-based conditional independence tests,
we get the following upper bound on computational complexity:

O
(

(nd2 + d3)|E0|(d0 + 1)d

d!

)
(5.4)

As mentioned above, the assumptions on the true causal graph and set of conditional inde-
pendence results required to result in the worst-case running time is highly unlikely. To meet
these assumptions in the case where no initial undirected graph is provided, every node in the
causal graph must be of the maximal degree d, and every pair of non-adjacent variables must
only be conditionally independent with conditioning sets of size d. When an initial undirected
graph is provided, in addition to the prior two conditions, every node in the undirected graph
must have the maximal degree of the initial graph, d0. Thus, runtimes in practice are typically
well below the upper bound given here, as can be seen from the empirical results of the runtimes
on the datasets studied here.
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A Identifiability results of A and β

We re-state the identifiability results of A and β from (1) and (2).

Theorem 1 (Theorems 1 & 2 (1)). Under model X = AZ + E with Assumption 1, the set of
pure variable I, its partition I = {I1, . . . , IK}2 and the number of factors are identifiable from
Σ = Cov(X).

Moreover, the matrix A is identifiable up to a K ×K signed permutation matrix.

Proposition 2 (Proposition 1 (2)). Under model (1.1) – (1.2) with Assumption 1, the coefficient
vector β is identifiable up to a signed permutation matrix.

B The LOVE algorithm

We first give the specifics of estimating I and K developed by (1).

Algorithm 1 Estimate the partition of the pure variables I by Î

1: procedure PureVar(Σ̂, δ)
2: Î ← ∅.
3: for all i ∈ [p] do
4: Î(i) ←

{
l ∈ [p] \ {i} : maxj∈[p]\{i} |Σ̂ij | ≤ |Σ̂il|+ 2δ

}
5: Pure(i)← True.
6: for all j ∈ Î(i) do
7: if

∣∣|Σ̂ij | −maxk∈[p]\{j} |Σ̂jk|
∣∣ > 2δ then

8: Pure(i)← False,
9: break

10: if Pure(i) then
11: Î(i) ← Î(i) ∪ {i}
12: Î ← Merge(Î(i), Î)
13: return Î and K̂ as the number of sets in Î

14: function Merge(Î(i), Î)
15: for all G ∈ Î do . Î is a collection of sets
16: if G ∩ Î(i) 6= ∅ then
17: G← G ∩ Î(i) . Replace G ∈ Î by G ∩ Î(i)

18: return Î
19: Î(i) ∈ Î . add Î(i) in Î
20: return Î

Next, for each a ∈ [K̂] and b ∈ [K̂] \ {a}, we compute[
Σ̂Z

]
aa

=
1

|Îa|(|Îa| − 1)

∑
i,j∈Îa,i 6=j

|Σ̂ij |,
[
Σ̂Z

]
ab

=
1

|Îa||Îb|

∑
i∈Îa,j∈Îb

ÂiaÂibΣ̂ij , (B.1)

to form the estimator Σ̂Z of ΣZ . Furthermore, we restate the estimation of AI· in (1). For each
k ∈ [K̂] and the estimated pure variable set Îk,

Pick an element i ∈ Îk at random, and set Âi· = ek; (B.2)

For the remaining j ∈ Îk \ {i}, set Âj· = sign(Σ̂ij) · ek. (B.3)
2I is identifiable up to a group permutation.
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For the estimation of AJ ·, we use the Dantzig-type estimator ÂD proposed in (1) given by

Âj· = arg min
βj

{
‖βj‖1 :

∥∥∥Σ̂Zβ
j − (Â>

Î·ÂÎ·)
−1Â>

Î·Σ̂Îj

∥∥∥
∞
≤ c
√

log(p ∨ n)/n
}

(B.4)

for any j ∈ Ĵ , with some constant c > 0. The estimator Â enjoys the optimal convergence rate
of maxj∈[p] ‖Âj· −Aj·‖q for any 1 ≤ q ≤ ∞ (1, Theorem 5).
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