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In this work we introduce semi-implicit or implicit finite difference schemes for the continuity equation
with a gradient flow structure. Examples of such equations include the linear Fokker–Planck equation
and the Keller–Segel equations. The two proposed schemes are first-order accurate in time, explicitly
solvable, and second-order and fourth-order accurate in space, which are obtained via finite difference
implementation of the classical continuous finite element method. The fully discrete schemes are proved
to be positivity preserving and energy dissipative: the second-order scheme can achieve so unconditionally
while the fourth-order scheme only requires a mild time step and mesh size constraint. In particular, the
fourth-order scheme is the first high order spatial discretization that can achieve both positivity and energy
decay properties, which is suitable for long time simulation and to obtain accurate steady state solutions.
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accuracy; implicit.

1. Introduction

In this paper we are interested in the continuity equation of the form

∂tρ = ∇ · [ρ∇(H′(ρ) + V + W ∗ ρ)], t > 0, x ∈ Ω ⊂ R
d, (1)

ρ(0, x) = ρ0(x), (2)

where ρ = ρ(t, x) ≥ 0 is the unknown density function, H(ρ) is the internal energy that is assumed
to be convex, V(x) is the external potential and W(x) is the interaction potential. The typical boundary
condition of (1) is the no-flux boundary:

∇(H′(ρ) + V + W ∗ ρ) · n = 0, x ∈ ∂Ω , (3)

where n is the outward normal. Therefore, the total mass is conserved∫
Ω

ρ(t, x) dx =
∫

Ω

ρ0(x) dx.
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2 J. HU AND X. ZHANG

Equations of the form (1) appear in various contexts, for example, in modeling of porous medium
Vazquez (2007), granular materials Carrillo et al. (2003), and collective behavior of biological and social
systems Carrillo et al. (2019). In particular, we focus on the following two cases in this paper: the linear
Fokker–Planck equation and the Keller–Segel model of chemotaxis. For both cases the internal energy
function is given by

H(ρ) = ρ log ρ − ρ. (4)

In the Fokker–Planck equation

V = V(x), W ≡ 0,

where V(x) is some given function bounded from below in Ω . In this case (1) can also be written as a
convection–diffusion equation,

∂tρ = Δρ + ∇ · (ρ∇V). (5)

In the Keller–Segel model ρ is the density of some bacteria and

V ≡ 0, W ∗ ρ = −c,

where c = c(t, x) is the density of chemical attractant satisfying an elliptic equation in Ω with a constant
α ≥ 0:

− Δc + αc = ρ. (6)

In this case (1) can be written as

∂tρ = Δρ − ∇ · (ρ∇c), (7)

which is coupled with (6) to form a system. Note that if Ω is Rd, W is the Newtonian potential when
α = 0 and the Bessel potential when α > 0. By integrating (6) in Ω we obtain

− ∇c · n
∣∣
∂Ω

+ α

∫
Ω

c dx =
∫

Ω

ρ dx.

Therefore, the boundary condition of c must be compatible with the equation above. When α = 0 the
Neumann boundary condition must satisfy the compatibility condition

− ∇c · n
∣∣
∂Ω

=
∫

Ω

ρ0 dx.

When α > 0, if we consider the homogeneous Neumann boundary ∇c · n
∣∣
∂Ω

= 0, then

α

∫
Ω

c dx =
∫

Ω

ρ0 dx,

i.e., the mass of c is also conserved.
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POSITIVITY-PRESERVING AND ENERGY-DISSIPATIVE FINITE DIFFERENCE SCHEMES 3

The equation (1) has a variational structure. It is the gradient flow, with respect to the 2-Wasserstein
metric, of the free energy functional (Villani, 2003):

E(ρ) =
∫

Ω

(
H(ρ) + Vρ + 1

2
(W ∗ ρ)ρ

)
dx. (8)

Indeed

δE
δρ

= ξ , ξ := H′(ρ) + V + W ∗ ρ,

hence

dE
dt

=
∫

Ω

δE
δρ

∂tρ dx =
∫

Ω

ξ∇ · (ρ∇ξ) dx = −
∫

Ω

ρ|∇ξ |2 dx ≤ 0. (9)

Note that for H given in (4) we can define

M = elog ρ−ξ = e−(V+W∗ρ).

With this M the equation (1) can be written equivalently as

∂tρ = ∇ ·
(
M∇

( ρ

M
))

. (10)

The boundary condition (3) becomes

∇
( ρ

M
)

· n = 0, x ∈ ∂Ω . (11)

Furthermore, the energy (8) can be written equivalently as

E(ρ) =
∫

Ω

(
ρ log

( ρ

M
)

− ρ − 1

2
(W ∗ ρ)ρ

)
dx. (12)

When written in form (10), the original continuity equation (1) can be viewed as a ‘variable coefficient’
diffusion equation, for which we are able to construct efficient positivity-preserving and energy-
dissipative schemes, i.e., the discrete analog of (12) is decreasing in time. In the literature there are
many numerical schemes for the Fokker–Planck or Keller–Segel type equations. Recently, significant
efforts have been devoted to structure-preserving discretizations to preserve, for instance, the positivity
of the solution and energy decay at the semi-discrete or fully discrete level. We summarize some
of the recent methods according to their types of time discretization. The first kind of methods are
fully explicit schemes. For a scalar convection–diffusion equation such as (3) there are quite a few
explicit positivity-preserving schemes (Zhang et al., 2013; Li et al., 2018; Srinivasan et al., 2018;
Qiu et al., 2021), however, with a small time step constraint Δt = O(Δx2), which is unacceptable
in applications requiring long time simulation. Most importantly, it is usually quite difficult to establish
energy dissipation in these positivity-preserving schemes. Some recent explicit schemes, including a
finite volume method in Carrillo et al. (2015) and discontinuous Galerkin methods in Guo et al. (2019);
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4 J. HU AND X. ZHANG

Sun et al. (2018), can indeed achieve energy dissipation, but only in the semi-discrete setting (i.e.,
the time is left as continuous). The second kind of methods are implicit or semi-implicit nonlinear
schemes. For such schemes it is possible to preserve positivity and energy dissipation in the fully
discrete setting without a small time step constraint (Almeida et al., 2019; Bailo et al., 2020; Shen
& Xu, 2020), but they often involve nonlinear systems, for which robust nonlinear system solvers are
needed. The third kind of methods are implicit or semi-implicit schemes that are explicitly solvable.
By formulating the continuity equation as in (10) and treating M explicitly one can derive a semi-
implicit scheme, in which only a linear system needs to be solved without small time-step constraint.
Note that this approach is only possible for linear diffusions (for H given by (4)) and has been used
in many previous works, for example, Jin & Yan (2011); Liu et al. (2018); Hu & Shu (2019); Hu
& Huang (2020); Hu et al. (2021). Although details vary they all use the second-order central finite
difference for spatial discretization. We use the third approach for the time discretization in this paper.
However, the proposed spatial discretization can achieve fourth-order accuracy, which is one of the
main novelties. Furthermore, we can prove the fully discrete positivity and energy decay property
for the fourth-order spatial discretization under reasonable mesh size and time step constraints. We
emphasize that the time step constraint in this paper is a lower bound, thus no small time-step constraint
like Δt = O(Δx2) is required. To the best of our knowledge, this is the first high order spatial
discretization that can achieve these properties for the linear Fokker–Planck and Keller–Segel type
equations.

The rest of this paper organized as follows. In Section 2 we introduce the finite difference schemes,
which are obtained by finite difference implementation of continuous finite element method with
the linear and quadratic polynomials. In Section 3 we show that both the second-order and fourth-
order schemes are monotone. It is well known that the second-order central difference or linear finite
element method for linear diffusion forms an M-matrix thus is monotone. The fourth-order accurate
scheme or the finite element method with quadratic polynomial basis no longer gives an M-matrix,
but monotonicity can still be proved under practical mesh size and time step constraints. In Section 4
we show that monotonicity implies positivity and fully discrete energy dissipation in these schemes.
Section 5 includes numerical tests on the Fokker–Planck equation and Keller–Segel system. Concluding
remarks are given in Section 6.

2. Finite difference schemes

In this section we introduce a simple numerical scheme for equation (10) with a first-order accurate
semi-implicit time discretization. For the spatial discretization we use second-order and fourth-order
accurate finite difference schemes, which are obtained from finite element method using linear and
quadratic polynomial bases, respectively. It is well known that a finite element method with suitable
quadrature is also a finite difference scheme. In particular, the fourth-order accurate finite difference
scheme considered here is equivalent to the Lagrangian Q2 (tensor product of polynomials of degree 2)
finite element method with 3-point Gauss–Lobatto quadrature, which is also known as the Q2 spectral
element method (Maday & Rønquist, 1990). The main novelty here is that we can prove rigorous
positivity-preserving and energy-dissipation properties for the fully discrete scheme, especially the
fourth-order spatial discretization in one and two spatial dimensions.

In this section we mainly focus on how the finite difference schemes are defined. The explicit form
of the schemes will be given in Section 3. We only consider one and two spatial dimensions in this
paper, even though one can also derive these schemes in higher dimensions.
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POSITIVITY-PRESERVING AND ENERGY-DISSIPATIVE FINITE DIFFERENCE SCHEMES 5

2.1 Time discretization

We propose the following semi-implicit discretization of (10):

ρn+1 − ρn

Δt
= ∇ ·

(
Mn∇

(
ρn+1

Mn

))
, x ∈ Ω , (13)

where

Mn = e−(V+W∗ρn).

The no-flux boundary condition (11) is imposed as

∇
(

ρn+1

Mn

)
· n = 0, x ∈ ∂Ω . (14)

Note that (13) is equivalent to

ρn+1 − ρn

Δt
= ∇ · (ρn+1∇(log ρn+1 + V + W ∗ ρn))

for discretizing the original equation (1).
We then introduce the auxiliary variables defined as

g̃n+1 := ρn+1

Mn
, gn := ρn

Mn
, (15)

and write the scheme (13) as

Mng̃n+1 − Δt∇ ·
(
Mn∇g̃n+1

)
= Mngn. (16)

Accordingly, the boundary condition (14) becomes the homogeneous Neumann boundary for the
auxiliary variable:

∇g̃n+1 · n = 0, x ∈ ∂Ω .

After multiplying a test function v ∈ H1(Ω) to (16) and integration by parts using the boundary
condition for g̃n+1, we obtain the variational form of (16): seek g̃n+1 ∈ H1(Ω) that satisfies

(Mng̃n+1, v) + Δt(Mn∇g̃n+1, ∇v) = (Mngn, v), ∀v ∈ H1(Ω),

where (v, w) := ∫
Ω

vw dx denotes the L2 inner product in Ω .
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6 J. HU AND X. ZHANG

Remark 2.1 In the Fokker–Planck equation M = exp(−V(x)) is a time-independent quantity and (13)
simplifies to a fully implicit scheme. For brevity our following presentation will focus on the Keller–
Segel equation for which Mn = exp(cn(x)). Reduction to the Fokker–Planck case will be commented
whenever necessary.

2.2 Spatial discretization

We consider a uniform rectangular mesh Ωh for the rectangular domain Ω . For any rectangle e in the
mesh Ωh let Qk be the space of tensor product polynomials of degree k. For instance, in two dimensions,

Qk(e) =
⎧⎨
⎩p(x, y) =

k∑
i=0

k∑
j=0

pijx
iyj, (x, y) ∈ e

⎫⎬
⎭ .

Let Vh be the continuous piecewise Qk polynomial space defined on Ωh:

Vh = {vh(x) ∈ C(Ω) : vh

∣∣
e ∈ Qk(e), ∀e ∈ Ωh}.

The Qk finite element method for (16) is to seek g̃n+1
h ∈ Vh satisfying

(Mng̃n+1
h , vh) + Δt(Mn∇g̃n+1

h , ∇vh) = (Mngn
h, vh), ∀vh ∈ Vh, (17)

where Mn is regarded as a given variable coefficient at time step n.
The Qk spectral element method is to replace all integrals in (17) by m-point Gauss–Lobatto

quadrature with m ≥ k + 1 in each dimension. Standard finite element method error estimates still
hold if m ≥ k + 1, i.e., the Qk spectral element method is (k + 1)th order accurate in L2-norm and kth
order accurate in H1-norm for smooth solutions of an elliptic equation, see Maday & Rønquist (1990).
We consider the simplest choice of quadrature, using (k + 1)-point Gauss–Lobatto quadrature. Then the
method is to find g̃n+1

h ∈ Vh satisfying

〈Mng̃n+1
h , vh〉 + Δt〈Mn∇g̃n+1

h , ∇vh〉 = 〈Mngn
h, vh〉, ∀vh ∈ Vh, (18)

where 〈·, ·〉 denotes that integrals are replaced by (k + 1)-point Gauss–Lobatto quadrature.
For a two-dimensional problem, a Qk polynomial on a rectangular element e can be represented as a

Lagrangian interpolation polynomial at (k + 1)× (k + 1) Gauss–Lobatto points, thus all Gauss–Lobatto
points in (18) are not only quadrature nodes but also nodes, representing all degrees of freedom. So the
Qk spectral element method (18) also becomes a finite difference scheme on all Gauss–Lobatto nodes.
For k ≥ 3 the Gauss–Lobatto points are not uniform in each element. For k ≤ 2 all Gauss–Lobatto
nodes on Ωh correspond to a uniform grid, see Fig. 1 for an illustration of the Q2 mesh. Moreover, for
k ≥ 2, such a finite difference scheme can be proved to be (k + 2)-order accurate in discrete l2-norm for
elliptic equations (Li & Zhang, 2020b) and for parabolic equations (Li et al., 2022), e.g., the Q2 spectral
element method can be regarded as a fourth-order accurate finite difference scheme.

In this paper we only consider the linear case k = 1 and quadratic case k = 2, because only in
these two cases the schemes can be proved to be positivity preserving and energy dissipative. To derive
an equivalent matrix form of the scheme (18) let φi(x) (i = 1, · · · , N) be the Qk Lagrangian basis
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POSITIVITY-PRESERVING AND ENERGY-DISSIPATIVE FINITE DIFFERENCE SCHEMES 7

at all Gauss–Lobatto points xi (i = 1, · · · , N) on Ωh. For any piecewise polynomial uh(x) ∈ Vh let

ui = uh(xi). Then uh(x) =
N∑

i=1
uiφi(x). Let u =

⎡
⎢⎣

u1
...

uN

⎤
⎥⎦ and wi be the quadrature weight at xi.

With the notation above we have

〈Mng̃n+1
h , vh〉 =

N∑
i=1

wiMn
i g̃n+1

i vi = vTWMngn+1, (19)

where W = diag{w1, · · · , wN} and Mn = diag{Mn
1, · · · ,Mn

N} are diagonal matrices. We also have

〈Mn∇g̃n+1
h , ∇vh〉 = vTSg̃n+1, (20)

where S is the stiffness matrix from the same spectral element method solving a Poisson equation −∇ ·
(Mn∇u) = f in Ω with homogeneous Neumann boundary condition ∇u ·n = 0 on ∂Ω . In other words,
S is the stiffness matrix in the scheme of seeking uh ∈ Vh satisfying

〈Mn∇uh, ∇vh〉 = 〈f , vh〉, ∀vh ∈ Vh.

We emphasize that the stiffness matrix S depends on Mn
i > 0. It is common knowledge in finite element

theory that S satisfies two properties:

1. S is real symmetric and positive semi-definite.

2. Its null space is one-dimensional and the null vector is 1.

Here for brevity we do not give the explicit form of S. The complete scheme (18) in one and two
dimensions will be given in Section 3.

Using (19) and (20) the finite difference scheme (18) can be written in the matrix form as: find g̃n+1

satisfying

vTWMng̃n+1 + ΔtvTSg̃n+1 = vTWMngn, ∀v ∈ R
N , (21)

or equivalently

WMng̃n+1 + ΔtSg̃n+1 = WMngn. (22)

Noticing (15), (22) can also be written as

Wρn+1 + ΔtS(Mn)−1ρn+1 = Wρn. (23)

Remark 2.2 Even though the scheme (23) for ρ does not involve any auxiliary variable g, the division
by Mn

i is still needed in (23). Moreover, (22) gives a symmetric positive definite linear system, but (23)
does not. In practice both can be solved by preconditioned conjugate gradient methods with efficient
inversion of Laplacian as a preconditioner, see Section 7 in Li & Zhang (2020b) for implementation
details. In our numerical tests we solve the system (22) by preconditioned conjugate gradient.
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8 J. HU AND X. ZHANG

Fig. 1. The 3×3 Gauss–Lobatto quadrature points for Q2 finite element method on a uniform mesh Ωh naturally gives a uniform
finite difference grid.

2.3 The full scheme for the Keller–Segel system

In the case of the Keller–Segel system, in addition to (22) (the discretization for (7)), one also needs to
discretize the equation (6). Here we consider α > 0 and the homogeneous Neumann boundary condition
∇c · n|∂Ω = 0. We use the same scheme as in (18): find cn

h ∈ Vh satisfying

〈∇cn
h, ∇vh〉 + α〈cn

h, vh〉 = 〈ρn, vh〉, ∀vh ∈ Vh. (24)

Similarly, as in the previous subsection (24) can be written equivalently in the finite difference or matrix
form.

In one dimension the second order scheme (k = 1) can be written as

1

h2 Kcn + αcn = ρn,

and the fourth-order scheme (k = 2) can be written as

1

h2 Hcn + αcn = ρn,

where h is the grid spacing and

K =

⎛
⎜⎜⎝

2 −2
−1 2 −1

−1 2 −1
.. .

. . .
. . .

−1 2 −1
−2 2

⎞
⎟⎟⎠

N×N

, H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

7
2 −4 1

2−1 2 −1
1
4 −2 7

2 −2 1
4−1 2 −1

.. .
. . .

. . .
1
4 −2 7

2 −2 1
4−1 2 −1

1
2 −4 7

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

N×N

.
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POSITIVITY-PRESERVING AND ENERGY-DISSIPATIVE FINITE DIFFERENCE SCHEMES 9

We emphasize that N must be odd in the matrix H for the fourth-order scheme because the grid
points are from Gauss–Lobatto nodes, see Fig. 1.

In two dimensions let c be a two-dimensional array with cij denoting (i, j) point value. Let vec(c)
be a column vector obtained by rearranging entries in c column by column. Then the second-order and
fourth-order schemes can be written, respectively, as

1

h2 (K ⊗ K)vec(cn) + αvec(cn) = ρn,

and

1

h2 (H ⊗ H)vec(cn) + αvec(cn) = ρn.

To summarize, the full finite difference scheme for the Keller–Segel system (6)–(7) is implemented
as follows:

1. At time level n, given point values ρn
i at each node xi, solve (24) to obtain cn

i , then compute point
values of Mn

i = exp(cn
i ). In multiple dimensions the linear system can be easily and efficiently

inverted by eigenvalue decomposition of K and H, see Li & Zhang (2020b) for details.

2. With point values gn
i := ρn

i
Mn

i
obtain g̃n+1

i by solving (22).

3. Update ρ by ρn+1
i := Mn

i g̃n+1
i .

Remark 2.3 The finite difference scheme for the Fokker–Planck equation (3) is simpler: at each node
xi, first define Mi = exp(−Vi).

1. At time level n, given point values ρn
i , compute gn

i := ρn
i

Mi
, then obtain g̃n+1

i by solving (22).

2. Update ρ by ρn+1
i := Mig̃

n+1
i .

2.4 Accuracy of the spatial discretization

For the Q2 finite element method with 3-point Gauss–Lobatto quadrature, it is well known that the
standard L2-norm error estimate is third order. However, when regarded as a finite difference scheme at
Gauss–Lobatto points, it can be rigorously proved that it is a fourth-order accurate scheme in the discrete
l2-norm (Li & Zhang, 2020b; Li et al., 2022). In particular, this has been proved for Dirichlet boundary
conditions in Li & Zhang (2020b). Only O(h3.5) can be proved for Neumann boundary conditions for
an operator like −∇(A(x)∇u) where A(x) is a positive definite matrix, and the one half order loss is
purely due to the mixed second-order derivatives. Nonetheless, for the equations we are interested in
here, i.e., an operator like −∇ · (a(x)∇u) with a scalar coefficient a(x), since there are no mixed second-
order derivatives involved, the same proof in Li & Zhang (2020b); Li et al. (2022) applies to show
that the fourth-order accuracy also holds for Neumann boundary conditions of elliptic equations, see
Li (2021) for a detailed proof. So for both (22) and (24) we will refer to the Q2 scheme as the fourth-
order accurate spatial discretization, i.e., it is a fourth-order accurate scheme for solving a steady state
problem.
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10 J. HU AND X. ZHANG

For the Q1 finite element method with quadrature, it is also well known that it gives the most popular
second-order central finite difference scheme. However, for the Neumann boundary condition, there is
still some subtle difference, which will be reviewed in Remark 3.3 of Section 3.

3. Monotonicity of the finite difference schemes

A matrix A is called monotone if its inverse has non-negative entries A−1 ≥ 0. In this section we discuss
the monotonicity of the matrix used in the second-order and fourth-order finite difference schemes (18),
which is the key intrinsic property implying positivity and energy dissipation.

In particular, we consider the matrix form (22), which can also be written as

(Mn + ΔtW−1S)g̃n+1 = Mngn. (25)

We will discuss the monotonicity of the matrix Mn + ΔtW−1S. For simplicity, we will drop superscript
n in M in the rest of this section.

For the second-order scheme it is well known that it forms an M-matrix thus is monotone, which
will be reviewed. For the fourth order scheme the monotonicity for Dirichlet boundary condition in two
dimensions was proved in Li & Zhang (2020a). The same results in Li & Zhang (2020a) also hold for
the Neumann boundary conditions. For completeness, in this section, we include a detailed proof for the
monotonicity of the fourth-order scheme (25) with the homogeneous Neumann boundary condition for
g̃n+1, which is equivalent to the no-flux boundary condition for ρn+1.

3.1 M-matrices

The only viable tool in the literature to prove monotonicity is to use M-matrices. Nonsingular
M-matrices are monotone matrices and there are many equivalent definitions or characterizations of
M-matrices, see Plemmons (1977). By condition K35 in Plemmons (1977) a sufficient and necessary
characterization is as follows:

Theorem 3.1 For a real square matrix A with positive diagonal entries and nonpositive off-diagonal
entries, A is a nonsingular M-matrix if and only if there exists a positive diagonal matrix D such that AD
has all positive row sums.

The following is a convenient sufficient, but not necessary characterization, of nonsingular
M-matrices Li & Zhang (2020a):

Theorem 3.2 For a real square matrix A with positive diagonal entries and nonpositive off-diagonal
entries A is a nonsingular M-matrix if all the row sums of A are nonnegative and at least one row sum is
positive.

3.2 The second-order scheme in one dimension

In the one-dimensional case assume the domain is Ω = [−L, L] and the uniform grid points are −L =
x1 < x2 < · · · < xN = L with grid spacing h. Following derivations in Section 7 of Li & Zhang (2020b),
it is straightforward to show that the linear finite element method (25) with a variable coefficient M > 0
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POSITIVITY-PRESERVING AND ENERGY-DISSIPATIVE FINITE DIFFERENCE SCHEMES 11

can be explicitly written as:

M1g̃n+1
1 + Δt

(M1 + M2)g̃
n+1
1 − (M1 + M2)g̃

n+1
2

h2 = M1gn
1;

Mig̃
n+1
i + Δt

−(Mi−1 + Mi)g̃
n+1
i−1 + (Mi−1 + 2Mi + Mi+1)g̃

n+1
i − (Mi + Mi+1)g̃

n+1
i+1

2h2

= Mig
n
i , i = 2, · · · , N − 1;

MNg̃n+1
N + Δt

−(MN−1 + MN)g̃n+1
N−1 + (MN−1 + MN)g̃n+1

N

h2 = MNgn
N .

(26)

It is easy to see that Mn + ΔtW−1S is a tridiagonal matrix satisfying Theorem 3.2, thus is a nonsingular
M-matrix and monotone.

Now for the ease of presentation of the scheme we will abuse notation by introducing ghost point
values as g̃n+1

0 := g̃n+1
2 , g̃n+1

N+1 := g̃n+1
N−1 and M0 := M2, MN+1 := MN−1. Then the scheme can be

equivalently written as

Mig̃
n+1
i + Δt

−(Mi−1 + Mi)g̃
n+1
i−1 + (Mi−1 + 2Mi + Mi+1)g̃

n+1
i − (Mi + Mi+1)g̃

n+1
i+1

2h2

= Mig
n
i , i = 1, · · · , N. (27)

We emphasize that the scheme still has a different structure at the boundary points, and here ghost points
are used only for a uniform expression of the scheme. In actual implementation there are no ghost points.

Remark 3.3 One popular finite difference method to solve (13) is to apply the central finite difference
as

ρn+1
i − ρn

i

Δt
=

Fn+1
i+ 1

2
− Fn+1

i− 1
2

h
,

with the flux term defined by

Fn+1
i+ 1

2
= 1

h

Mi + Mi+1

2

(
ρn+1

i+1

Mi+1
− ρn+1

i

Mi

)
,

which is equivalent to

g̃n+1
i − gn

i = Δt

hMi
(Gn+1

i+ 1
2

− Gn+1
i− 1

2
), Gn+1

i+ 1
2

= 1

h

Mi + Mi+1

2

(
g̃n+1

i+1 − g̃n+1
i

)
.
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12 J. HU AND X. ZHANG

For approximating no-flux boundary condition, if simply setting Gn+1
1
2

= Gn+1
N+ 1

2
= 0, then the scheme

becomes

M1g̃n+1
1 + Δt

(M1 + M2)g̃
n+1
1 − (M1 + M2)g̃

n+1
2

2h2 = M1gn
1;

Mig̃
n+1
i + Δt

−(Mi−1 + Mi)g̃
n+1
i−1 + (Mi−1 + 2Mi + Mi+1)g̃

n+1
i − (Mi + Mi+1)g̃

n+1
i+1

2h2
(28)

= Mig
n
i , i = 2, · · · , N − 1;

MNg̃n+1
N + Δt

−(MN−1 + MN)g̃n+1
N−1 + (MN−1 + MN)g̃n+1

N

2h2 = MNgn
N .

If using the same grid −L = x1 < x2 < · · · < xN = L with grid spacing h the scheme (28) is the
same as (26) at interior points. For boundary points (28) is only first-order accurate, which can be easily
verified for constant coefficient case Mi ≡ 1. If redefining gi and Mi as point values at a staggered
uniform grid −L + h

2 = x1 < x2 < · · · < xN = L − h
2 with spacing h (as has been done in most

papers in the past, e.g., Hu & Huang, 2020), the scheme (28) exhibits second-order accuracy in many
numerical tests. However, even on the staggered grid, the local truncation error of (28) at x1 = −L + h

2
and xN = L− h

2 is only first order, thus it is quite difficult to rigorously prove the second-order accuracy
of (28) by conventional finite difference analysis. On the other hand, it can be easily proved that (26) is
second-order accurate by standard finite element analysis.

3.3 The second-order scheme in multiple dimensions

In the two-dimensional case assume the domain is Ω = [−L, L] × [−L, L] with a uniform N × N grid
point with spacing h, which is a tensor product of the grid −L = x1 < x2 < · · · < xN = L. Let g be an
N × N matrix with gij denoting the point value at the (i, j) grid point.

We introduce the ghost values for i, j = 1, · · · , N as:

g̃n+1
0,j := g̃n+1

2,j , g̃n+1
N+1,j := g̃n+1

N−1,j, g̃n+1
i,0 := g̃n+1

i,2 , g̃n+1
i,N+1 := g̃n+1

i,N−1,

M0,j := M2,j, MN+1,j := MN−1,j, Mi,0 := Mi,2, Mi,N+1 := Mi,N−1.

Then the Lagrangian Q1 finite element method with 2-point Gauss–Lobatto quadrature (18) can be
explicitly expressed as

Δt
−(Mi−1,j + Mij)g̃

n+1
i−1,j + (Mi−1,j + 2Mij + Mi+1,j)g̃

n+1
ij − (Mij + Mi+1,j)g̃

n+1
i+1,j

2h2

+ Δt
−(Mi,j−1 + Mij)g̃

n+1
i,j−1 + (Mi,j−1 + 2Mij + Mi,j+1)g̃

n+1
ij − (Mij + Mi,j+1)g̃

n+1
i,j+1

2h2

+ Mijg̃
n+1
ij = Mijg

n
ij, ∀i, j = 1, · · · , N.
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POSITIVITY-PRESERVING AND ENERGY-DISSIPATIVE FINITE DIFFERENCE SCHEMES 13

It is easy to see that Mn + ΔtW−1S is a matrix satisfying Theorem 3.2, thus is a nonsingular M-matrix
and monotone.

Remark 3.4 The scheme in the three-dimensional case can be similarly written, and it is also
straightforward to verify that Mn + ΔtW−1S is a matrix satisfying Theorem 3.2, thus is a nonsingular
M-matrix and monotone.

Remark 3.5 We have seen that using the formulation (10) the second-order finite difference scheme
with a semi-implicit time discretization is unconditionally monotone, thus always positivity-preserving
and energy-dissipative (details to be given in Section 4). This is true even for blow-up solutions.
As a comparison, for the Keller–Segel equation, one can also use the formulation (7), and apply the
second–order finite difference for both convection and diffusion operators with a semi-implicit time
discretization, but the monotonicity can only be proved under a mesh constraint h‖∇c‖∞ ≤ 2. This is
one of the key advantages of solving (10) instead of (7).

3.4 Lorenz’s condition for monotonicity

For high order accurate schemes, especially for a variable coefficient problem, the stiffness matrices
are no longer M-matrices. Yet, it is possible to show that the stiffness matrix is a product of two or
more M-matrices thus still monotone (Cross & Zhang, 2020; Li & Zhang, 2020a) by using the Lorenz’s
Theorem in Lorenz (1977), which will be briefly reviewed in this subsection.

Definition 1 Let N = {1, 2, . . . , n}. For N1,N2 ⊂ N , we say a matrix A of size n × n connects N1
with N2 if

∀i0 ∈ N1, ∃ir ∈ N2, ∃i1, . . . , ir−1 ∈ N s.t. aik−1ik �= 0, k = 1, · · · , r. (29)

If perceiving A as a directed graph adjacency matrix of vertices labeled by N , then (29) simply means
that there exists a directed path from any vertex in N1 to at least one vertex in N2. In particular, if
N1 = ∅, then any matrix A connects N1 with N2.

Given a square matrix A and a column vector x we define

N 0(Ax) = {i : (Ax)i = 0}, N+(Ax) = {i : (Ax)i > 0}.

Given a matrix A = [aij] ∈ R
n×n define its diagonal, off-diagonal, positive and negative off-diagonal

parts as n × n matrices Ad, Aa, A+
a , A−

a :

(Ad)ij =
{

aii, if i = j

0, if i �= j
, Aa = A − Ad,

(A+
a )ij =

{
aij, if aij > 0, i �= j

0, otherwise.
, A−

a = Aa − A+
a .

The following two results were proved in Lorenz (1977). See also Li & Zhang (2020a) for a detailed
proof.

Theorem 3.6 If A ≤ M1M2 · · · MkL where M1, · · · , Mk are nonsingular M-matrices and La ≤ 0, and

there exists a nonzero vector e ≥ 0 such that one of the matrices M1, · · · , Mk, L connects N 0(Ae) with
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14 J. HU AND X. ZHANG

N+(Ae). Then M−1
k M−1

k−1 · · · M−1
1 A is an M-matrix, thus A is a product of k+1 nonsingular M-matrices

and A−1 ≥ 0.

Theorem 3.7 (Lorenz’s condition). If A−
a has a decomposition: A−

a = Az + As = (az
ij) + (as

ij) with
As ≤ 0 and Az ≤ 0, such that

Ad + Az is a nonsingular M-matrix, (30a)

A+
a ≤ AzA−1

d As or equivalently ∀aij > 0 with i �= j, aij ≤
n∑

k=1

az
ika−1

kk as
kj, (30b)

∃e ∈ R
n \ {0}, e ≥ 0 with Ae ≥ 0 s.t. Az or As connects N 0(Ae) with N+(Ae). (30c)

Then A is a product of two nonsingular M-matrices, thus A−1 ≥ 0.

It was proved in Cross & Zhang (2020) that

Corollary 3.8 The matrix L in Theorem 3.6 must be an M-matrix.

In practice, the condition (30c) can be difficult to verify. For the scheme we are interested in here,
the vector e can be taken as 1 consisting of all ones, then the condition (30c) can be simplified. For
the scheme (25), as long as Mi > 0, we always have A1 > 0, thus N0(A1) = ∅ and (30c) is trivially
satisfied. We summarize it as follows:

Theorem 3.9 Let A denote the matrix representation of the fourth-order finite difference scheme
obtained from Lagrangian Q2 finite element method with 3-point Gauss–Lobatto quadrature solving
−∇ · (b∇)u+ cu = f with variable coefficients b > 0 and c > 0, and homogeneous Neumann boundary
condition in a rectangular domain. Assume A−

a has a decomposition A−
a = Az + As with As ≤ 0 and

Az ≤ 0. Then A is a product of two M-matrices, thus A−1 ≥ 0, if the following are satisfied:

1. (Ad + Az)1 �= 0 and (Ad + Az)1 ≥ 0;

2. A+
a ≤ AzA−1

d As.

3.5 The fourth-order scheme in one dimension

In the one-dimension case assume the domain Ω = [−L, L] is partitioned into k uniform intervals
with cell length 2h. Then all 3-point Gauss–Lobatto points for each small interval form a uniform grid
−L = x1 < x2 < · · · < xN = L with grid spacing h and N = 2k + 1. Thus, the number of grid points
for this fourth-order scheme must be odd.

For convenience we consider an equivalent form of (25):

W−1Sg̃n+1 + 1

Δt
Mng̃n+1 = 1

Δt
Mngn. (31)

Let A = W−1S + 1
Δt M

n and A : RN×1 −→ RN×1 be the scheme operator, i.e., (31) can be written as

A(g̃n+1)i = 1
ΔtMig

n
i . Following the derivations in Li & Zhang (2020a,b), with the same ghost point

values notation in Section 3.2, the finite element method with quadratic basis and 3-point Gauss–Lobatto
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POSITIVITY-PRESERVING AND ENERGY-DISSIPATIVE FINITE DIFFERENCE SCHEMES 15

quadrature can be explicitly written as follows: for all i = 1, · · · , N, if xi is a cell end (i is odd),

A(g̃n+1)i := (3Mi−2 − 4Mi−1 + 3Mi)g̃
n+1
i−2 − (4Mi−2 + 12Mi)g̃

n+1
i−1

8h2

+ (Mi−2 + 4Mi−1 + 18Mi + 4Mi+1 + Mi+2)g̃
n+1
i

8h2

−(12Mi + 4Mi+2)g̃
n+1
i+1 + (3Mi+2 − 4Mi+1 + 3Mi)g̃

n+1
i+2

8h2
+ Mi

Δt
g̃n+1

i

= Mi

Δt
gn

i ; (32)

and if xi is a cell center (i is even),

A(g̃n+1)i := −(3Mi−1+Mi+1)g̃n+1
i−1 + 4(Mi−1+Mi+1)g̃n+1

i −(Mi−1 + 3Mi+1)g̃n+1
i+1

4h2
+Mi

Δt
g̃n+1

i = Mi

Δt
gn

i .

(33)

Next, for the matrix A, we will discuss a decomposition of its negative off-diagonal parts of
A−

a = Az + As such that Theorem 3.9 can be verified under suitable mesh and time step constraints. We
will use operator notations to represent all matrices. With the positive and negative parts for a number f
defined as:

f + = |f | + f

2
, f − = |f | − f

2
,

the linear operators Ad, A±
a are:

If xi is a cell end (i is odd),

Ad(g̃
n+1)i =

(Mi−2 + 4Mi−1 + 18Mi + 4Mi+1 + Mi+2

8h2
+ Mi

Δt

)
g̃n+1

i ;

if xiis a cell center (i is even), Ad(g̃
n+1)i =

(Mi−1 + Mi+1

h2 + Mi

Δt

)
g̃n+1

i .

If xi is a cell end (i is odd),

A+
a (g̃n+1)i = (3Mi−2 − 4Mi−1 + 3Mi)

+g̃n+1
i−2 + (3Mi+2 − 4Mi+1 + 3Mi)

+g̃n+1
i+2

8h2 ;

if xi is a cell center (i is even), A+
a (g̃n+1)i = 0.

If xi is a cell center, A−
a (g̃n+1)i = −(3Mi−1 + Mi+1)g̃

n+1
i−1 − (Mi−1 + 3Mi+1)g̃

n+1
i+1

4h2 ;

if xi is a cell end, A−
a (g̃n+1)i = −(3Mi−2 − 4Mi−1 + 3Mi)

−g̃n+1
i−2

8h2

+ −(4Mi−2 + 12Mi)g̃
n+1
i−1 − (12Mi + 4Mi+2)g̃

n+1
i+1 − (3Mi − 4Mi+1 + 3Mi+2)

−g̃n+1
i+2

8h2 .
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16 J. HU AND X. ZHANG

We can easily verify that (Ad + Az)1 > 0 for the following Az:

if xi is a cell center, Az(g̃n+1)i = 0,

if xi is an interior cell end, Az(g̃n+1)i

= −(3Mi−2 − 4Mi−1 + 3Mi)
−g̃n+1

i−2 − [4Mi−2 + 12Mi − (3Mi−2 − 4Mi−1 + 3Mi)
+]g̃n+1

i−1

8h2

+ −[12Mi + 4Mi+2 − (3Mi − 4Mi+1 + 3Mi+2)
+]g̃n+1

i+1 − (3Mi − 4Mi+1 + 3Mi+2)
−g̃n+1

i+2

8h2 .

We can also verify that As := A−
a − Az ≤ 0:

If xi is a cell center, As(g̃n+1)i = −(3Mi−1 + Mi+1)g̃
n+1
i−1 − (Mi−1 + 3Mi+1)g̃

n+1
i+1

4h2 ,

If xiis a cell end,

As(g̃n+1)i = −(3Mi−2 − 4Mi−1 + 3Mi)
+g̃n+1

i−1 − (3Mi − 4Mi+1 + 3Mi+2)
+g̃n+1

i+1

8h2 .

Now in order to verify AzA−1
d As ≥ A+

a (entrywise inequality), we only need to compare nonzero

coefficients in A+
a (g̃n+1)i and Az

(
A−1

d [As(g̃n+1)]
)

i
for xi being a cell end. When xi is a cell end,

xi±1 are cell centers, and we have

As(g̃n+1)i−1 = −(3Mi−2 + Mi)g̃
n+1
i−2 − (Mi−2 + 3Mi)g̃

n+1
i

4h2
,

As(g̃n+1)i−2 = −(3Mi−4 − 4Mi−3 + 3Mi−2)
+g̃n+1

i−3 − (3Mi−2 − 4Mi−1 + 3Mi)
+g̃n+1

i−1

8h2
,

A−1
d [As(g̃n+1)]i−1 = h2As(g̃n+1)i−1

(Mi−2 + Mi + h2Mi−1/Δt)
= −(3Mi−2 + Mi)g̃

n+1
i−2 − (Mi−2 + 3Mi)g̃

n+1
i

4(Mi−2 + Mi + h2Mi−1/Δt)
.

It suffices to focus on the coefficient of g̃n+1
i−2 in Az(A−1

d [As(g̃n+1)])i and the discussion for the

coefficient of g̃n+1
i+2 is similar. Notice that A−1

d [As(g̃n+1)]i−2 will contribute nothing to the coefficient of

g̃n+1
i−2 . So the coefficient of g̃n+1

i−2 in Az(A−1
d [As(g̃n+1)])i is

(3Mi−2 + Mi)(4Mi−2 + 12Mi − (3Mi−2 − 4Mi−1 + 3Mi)
+)

32h2(Mi−2 + Mi + h2Mi−1/Δt)
.
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POSITIVITY-PRESERVING AND ENERGY-DISSIPATIVE FINITE DIFFERENCE SCHEMES 17

Fig. 2. Three types of grid points: red cell center, blue knots and black edge centers for a Q2 finite element cell.

Thus to ensure A+
a ≤ AzA−

d As, it suffices to have the following holds for any cell end xi:

(3Mi−2 + Mi)(4Mi−2 + 12Mi − (3Mi−2 − 4Mi−1 + 3Mi)
+)

32h2(Mi−2 + Mi + h2Mi−1/Δt)
≥ (3Mi−2 − 4Mi−1 + 3Mi)

+

8h2 .

Equivalently, we need the following inequality holds for any cell center xi:

(3Mi−1+Mi+1)(4Mi−1+12Mi+1−(3Mi−1 − 4Mi + 3Mi+1)
+)

32h2(Mi−1 + Mi+1 + h2Mi/Δt)
≥ (3Mi−1−4Mi + 3Mi+1)

+

8h2
.

(34)

If 3Mi−1 −4Mi +3Mi+1 ≤ 0 then (34) holds trivially. We only need to discuss the case 3Mi−1 −
4Mi + 3Mi+1 > 0, for which (34) becomes

(3Mi−1+Mi+1)(Mi−1+4Mi + 9Mi+1)>4

(
Mi−1+Mi+1+ h2

Δt
Mi

)
(3Mi−1− 4Mi + 3Mi+1).

(35)

Let a = max{Mi−1,Mi,Mi+1} and b = min{Mi−1,Mi,Mi+1}, a convenient sufficient condition
to ensure (35) is

56b2 > 4

(
2 + h2

Δt

)
a(6a − 4b),

which is equivalent to 2 + h2

Δt < 14 b2

6a2−4ab
.

So we have proven the first result for the variable coefficient case:
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18 J. HU AND X. ZHANG

Theorem 3.10 For the scheme (31) with Mi > 0 its matrix representation A satisfies A−1 ≥ 0 if (35)
holds for any cell center xi. A sufficient condition is to have the following constraints for each finite
element cell Ii = [xi−1, xi+1] (i is even):

2 + h2

Δt
< 7

1

maxIi
M

minIi
M2

3 maxIi
M − 2 minIi

M , (36)

where

max
Ii

M := max{Mi−1,Mi,Mi+1}, min
Ii

M := min{Mi−1,Mi,Mi+1}.

Remark 3.11 Note that for a smooth function M the mesh and time step constraints (36) are possible
to achieve because the right-hand side of (36) will converge to 7 as h goes to zero. Furthermore, for
fixed h, the condition (36) gives a lower bound on Δt (not an upper bound).

3.6 The fourth-order scheme in two dimensions

Assume the domain is Ω = [−L, L] × [−L, L] with a uniform N × N grid point with spacing h,
obtained from all 3 × 3 Gauss–Lobatto points on a uniform rectangular mesh with k × k cells. Thus
N = 2k + 1. Let g be an N × N matrix with gij denoting the point value at the (i, j) grid point. For

the Q2 finite element method on uniform rectangular meshes there are three types of grid point values,
see Fig. 2.

Let A = W−1S + 1
Δt M

n and A : RN×N −→ RN×N be the scheme operator, i.e., (31) can be written

as A(g̃n+1)ij = 1
ΔtMijg

n
ij. With the same ghost point values notation as in Section 3.3, following the

derivations in Li & Zhang (2020a), the scheme can be explicitly written as:

if xij is a cell center, Ad(g̃n+1)ij =
(Mi−1,j + Mi+1,j + Mi,j−1 + Mi,j+1

h2
+ 1

Δt
Mij

)
g̃n+1

ij ;

if xij is an edge center for an edge parallel to y -axis,

Ad(g̃n+1)ij =
(

(Mi−2,j + 4Mi−1,j + 18Mij + 4Mi+1,j + Mi+2,j) + 8(Mi,j−1 + Mi,j+1)

8h2
+ 1

Δt
Mij

)
g̃n+1

ij ;

if xij is an edge center for an edge parallel to x-axis,

Ad(g̃n+1)ij =
(

(Mi,j−2 + 4Mi,j−1 + 18Mij + 4Mi,j+1 + Mi,j+2) + 8(Mi−1,j + Mi+1,j)

8h2
+ 1

Δt
Mij

)
g̃n+1

ij ;

if xij is a knot,

Ad(g̃n+1)ij =
(Mi−2,j + 4Mi−1,j + 18Mij + 4Mi+1,j + Mi+2,j

8h2

+ (Mi,j−2 + 4Mi,j−1 + 18Mij + 4Mi,j+1 + Mi,j+2)

8h2
+ 1

Δt
Mij

)
g̃n+1

ij .
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POSITIVITY-PRESERVING AND ENERGY-DISSIPATIVE FINITE DIFFERENCE SCHEMES 19

For the operator A+
a it is given as

if xij is a cell center, A+
a (g̃n+1)ij = 0;

if xij is an edge center for an edge parallel to y-axis,

A+
a (g̃n+1)ij = (3Mi−2,j − 4Mi−1,j + 3Mi,j)

+g̃n+1
i−2,j + (3Mi+2,j − 4Mi+1,j + 3Mi,j)

+g̃n+1
i+2,j

8h2 ;

if xij is an edge center for an edge parallel to x-axis,

A+
a (g̃n+1)ij = (3Mi,j−2 − 4Mi,j−1 + 3Mi,j)

+g̃n+1
i,j−2 + (3Mi,j+2 − 4Mi,j+1 + 3Mi,j)

+g̃n+1
i,j+2

8h2 ;

if xij is a knot, A+
a (g̃n+1)ij

= (3Mi−2,j − 4Mi−1,j + 3Mi,j)
+g̃n+1

i−2,j + (3Mi+2,j − 4Mi+1,j + 3Mi,j)
+g̃n+1

i+2,j

8h2

+ (3Mi,j−2 − 4Mi,j−1 + 3Mi,j)
+g̃n+1

i,j−2 + (3Mi,j+2 − 4Mi,j+1 + 3Mi,j)
+g̃n+1

i,j+2

8h2
.

We consider the following Az ≤ 0 and it is straightforward to see (Ad + Az)1 > 0:

if xij is a cell center, Az(g̃n+1)ij = 0;

if xij is an edge center for an edge parallel to y-axis, Az(g̃n+1)ij

=
−(3Mi−2,j − 4Mi−1,j + 3Mi,j)

−g̃n+1
i−2,j − [4Mi−2,j + 12Mi,j − (3Mi−2,j − 4Mi−1,j + 3Mi,j)

+]g̃n+1
i−1,j

8h2

+
−[12Mi,j + 4Mi+2,j − (3Mi+2,j − 4Mi+1,j + 3Mi,j)

+]g̃n+1
i+1,j − (3Mi+2,j − 4Mi+1,j + 3Mi,j)

−g̃n+1
i+2,j

8h2
;

if xij is an edge center for an edge parallel to x-axis,

Az(g̃n+1)ij =
−(3Mi,j−2−4Mi,j−1+3Mi,j)

−g̃n+1
i,j−2−[4Mi,j−2+12Mi,j−(3Mi,j−2−4Mi,j−1+3Mi,j)

+]g̃n+1
i,j−1

8h2

+
−[12Mi,j + 4Mi,j+2 − (3Mi,j+2 − 4Mi,j+1 + 3Mi,j)

+]g̃n+1
i,j+1 − (3Mi,j+2 − 4Mi,j+1 + 3Mi,j)

−g̃n+1
i,j+2

8h2
;

if xij is a knot, Az(g̃n+1)ij

=
−(3Mi−2,j − 4Mi−1,j + 3Mi,j)

−g̃n+1
i−2,j − [4Mi−2,j + 12Mi,j − (3Mi−2,j − 4Mi−1,j + 3Mi,j)

+]g̃n+1
i−1,j

8h2

+
−[12Mi,j + 4Mi+2,j − (3Mi+2,j − 4Mi+1,j + 3Mi,j)

+]g̃n+1
i+1,j − (3Mi+2,j − 4Mi+1,j + 3Mi,j)

−g̃n+1
i+2,j

8h2

+
−(3Mi,j−2 − 4Mi,j−1 + 3Mi,j)

−g̃n+1
i,j−2 − [4Mi,j−2 + 12Mi,j − (3Mi,j−2 − 4Mi,j−1 + 3Mi,j)

+]g̃n+1
i,j−1

8h2

+
−[12Mi,j + 4Mi,j+2 − (3Mi,j+2 − 4Mi,j+1 + 3Mi,j)

+]g̃n+1
i,j+1 − (3Mi,j+2 − 4Mi,j+1 + 3Mi,j)

−g̃n+1
i,j+2

8h2
.
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20 J. HU AND X. ZHANG

Then As = A−
a − Az is given as:

if xi is a cell center, As(g̃n+1)ij = − (3Mi−1,j + Mi+1,j)g̃
n+1
i−1,j + (Mi−1,j + 3Mi+1,j)g̃

n+1
i+1,j

4h2

− (3Mi,j−1 + Mi,j+1)g̃
n+1
i,j−1 + (Mi,j−1 + 3Mi,j+1)g̃

n+1
i,j+1

4h2 ;

if xij is an edge center for an edge parallel to y-axis, As(g̃n+1)ij

= −(3Mi−2,j − 4Mi−1,j + 3Mi,j)
+g̃n+1

i−1,j − (3Mi+2,j − 4Mi+1,j + 3Mi,j)
+g̃n+1

i+1,j

8h2

+ −(3Mi,j−1 + Mi,j+1)g̃
n+1
i,j−1 − (Mi,j−1 + 3Mi,j+1)g̃

n+1
i,j+1

4h2 ;

if xij is an edge center for an edge parallel to x-axis, As(g̃n+1)ij

= −(3Mi,j−2 − 4Mi,j−1 + 3Mi,j)
+g̃n+1

i,j−1 − (3Mi,j+2 − 4Mi,j+1 + 3Mi,j)
+g̃n+1

i,j+1

8h2

+ −(3Mi−1,j + Mi+1,j)g̃
n+1
i−1,j − (Mi−1,j + 3Mi+1,j)g̃

n+1
i+1,j

4h2 ;

if xij is a knot, As(g̃n+1)ij

= −(3Mi−2,j − 4Mi−1,j + 3Mi,j)
+g̃n+1

i−1,j − (3Mi+2,j − 4Mi+1,j + 3Mi,j)
+g̃n+1

i+1,j

8h2

+ −(3Mi,j−2 − 4Mi,j−1 + 3Mi,j)
+g̃n+1

i,j−1 − (3Mi,j+2 − 4Mi,j+1 + 3Mi,j)
+g̃n+1

i,j+1

8h2 .

For the positive off-diagonal entries A+
a (g̃n+1)ij is nonzero only for xij being an edge center or a cell

center. Thus to verify A+
a ≤ AzA−1

d As it suffices to compare Az
[
A−1

d

(
As(g̃n+1)

)]
ij

with A+
a (g̃n+1)ij

for xij being an edge center or a cell center.
If xij is an edge center for an edge parallel to y-axis then xi±1,j are cell centers. Since everything here

has a symmetric structure we only need to compare the coefficients of g̃n+1
i−2,j in Az

[
A−1

d

(
As(g̃n+1)

)]
ij

and A+
a (g̃n+1)ij, and the comparison for the coefficients of g̃n+1

i+2,j will be similar.

As(g̃n+1)i−1,j = − (3Mi−2,j + Mij)g̃
n+1
i−2,j + (Mi−2,j + 3Mi,j)g̃

n+1
i,j

4h2

− (3Mi−1,j−1 + Mi−1,j+1)g̃
n+1
i−1,j−1 + (Mi−1,j−1 + 3Mi−1,j+1)g̃

n+1
i−1,j+1

4h2 ,
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POSITIVITY-PRESERVING AND ENERGY-DISSIPATIVE FINITE DIFFERENCE SCHEMES 21

A−1
d [As(g̃n+1)]i−1,j = − (3Mi−2,j + Mij)g̃

n+1
i−2,j + (Mi−2,j + 3Mij)g̃

n+1
i,j

4(Mi−2,j + Mij + Mi−1,j+1 + Mi−1,j−1 + h2 1
ΔtMi−1,j)

− (3Mi−1,j−1 + Mi−1,j+1)g̃
n+1
i−1,j−1 + (Mi−1,j−1 + 3Mi−1,j+1)g̃

n+1
i−1,j+1

4(Mi−2,j + Mij + Mi−1,j+1 + Mi−1,j−1 + h2 1
ΔtMi−1,j)

.

Since the coefficient of g̃n+1
i−2,j in A+

a (g̃n+1)ij is (3Mi−2,j − 4Mi−1,j + 3Mij)
+/(8h2), we only

need to discuss the case 3Mi−2,j − 4Mi−1,j + 3Mij > 0, for which the coefficient of g̃n+1
i−2,j in

Az
[
A−1

d

(
As(g̃n+1)

)]
ij

becomes

Mi−2,j + 4Mi−1,j + 9Mij

8h2

(3Mi−2,j + Mij)

4(Mi−2,j + Mij + Mi−1,j+1 + Mi−1,j−1 + h2 1
ΔtMi−1,j)

.

To ensure the coefficient of g̃n+1
i−2,j in Az

[
A−1

d

(
As(g̃n+1)

)]
ij

is no less than the coefficient of g̃n+1
i−2,j in

A+
a (g̃n+1)ij, we need

(Mi−2,j + 4Mi−1,j + 9Mij)(3Mi−2,j + Mij)

32h2(Mi−2,j + Mij + Mi−1,j+1 + Mi−1,j−1 + h2 1
ΔtMi−1,j)

≥ 3Mi−2,j − 4Mi−1,j + 3Mij

8h2 .

Similar to the one-dimensional case it suffices to require

(Mi−2,j + 4Mi−1,j + 9Mij)(3Mi−2,j + Mij)

4(Mi−2,j + Mij + Mi−1,j+1 + Mi−1,j−1 + h2 1
ΔtMi−1,j)

> 3Mi−2,j − 4Mi−1,j + 3Mij.

Equivalently, we need the following inequality holds for any cell center xij:

(Mi−1,j + 4Mi,j + 9Mi+1,j)(3Mi−1,j + Mi+1,j)

4(Mi−1,j + Mi+1,j + Mi,j+1 + Mi,j−1 + h2 1
ΔtMi,j)

> 3Mi−1,j − 4Mi,j + 3Mi+1,j. (37a)

Notice that (37a) was derived for comparing Az
[
A−1

d

(
As(g̃n+1)

)]
ij

and A+
a (g̃n+1)ij for xij being an

edge center of an edge parallel to y-axis. If xij is an edge center of an edge parallel to x-axis then we can
derive a similar constraint:

(Mi,j−1 + 4Mi,j + 9Mi,j+1)(3Mi,j−1 + Mi,j+1)

4(Mi,j−1 + Mi,j+1 + Mi+1,j + Mi−1,j + h2 1
ΔtMi,j)

> 3Mi,j−1 − 4Mi,j + 3Mi,j+1. (37b)

If xij is a knot then xi±1,j are edge centers for an edge parallel to x-axis. Since everything here has a

symmetric structure we only need to compare the coefficients of g̃n+1
i−2,j in Az

[
A−1

d

(
As(g̃n+1)

)]
ij

and
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22 J. HU AND X. ZHANG

A+
a (g̃n+1)ij, and the comparison for the coefficients of g̃n+1

i+2,j, g̃n+1
i,j−2 and g̃n+1

i,j+2 will be similar.

As(g̃n+1)i−1,j = −(3Mi−2,j + Mi,j)g̃
n+1
i−2,j − (Mi−2,j + 3Mi,j)g̃

n+1
i,j

4h2

+ −(3Mi−1,j−2 − 4Mi−1,j−1 + 3Mi−1,j)
+g̃n+1

i−1,j−1 − (3Mi−1,j+2 − 4Mi−1,j+1 + 3Mi−1,j)
+g̃n+1

i−1,j+1

8h2

A−1
d [As(g̃n+1)]i−1,j

= −(3Mi−2,j + Mi,j)g̃
n+1
i−2,j − (Mi−2,j + 3Mi,j)g̃

n+1
i,j

1
2 (Mi−1,j−2+4Mi−1,j−1+18Mi−1,j+ 4Mi−1,j+1 + Mi−1,j+2) + 4(Mi−2,j + Mi,j)+4h2 1

ΔtMi−1,j

+ −(3Mi−1,j−2 − 4Mi−1,j−1 + 3Mi−1,j)
+g̃n+1

i−1,j−1 − (3Mi−1,j+2 − 4Mi−1,j+1 + 3Mi−1,j)
+g̃n+1

i−1,j+1

(Mi−1,j−2 + 4Mi−1,j−1 + 18Mi−1,j + 4Mi−1,j+1 + Mi−1,j+2)+ 8(Mi−2,j+Mi,j) + 8h2 1
ΔtMi−1,j

.

For the same reason as above we still only consider the case where 3Mi−2,j − 4Mi−1,j + 3Mij > 0. So

the coefficient of g̃n+1
i−2,j in Az

[
A−1

d

(
As(g̃n+1)

)]
ij

is

1

4h2

(Mi−2,j + 4Mi−1,j + 9Mij)(3Mi−2,j + Mi,j)

(Mi−1,j−2 + 4Mi−1,j−1 + 18Mi−1,j + 4Mi−1,j+1 + Mi−1,j+2) + 8(Mi−2,j + Mi,j) + 8 1
ΔtMi−1,jh2

.

To ensure the coefficient of g̃n+1
i−2,j in Az

[
A−1

d

(
As(g̃n+1)

)]
ij

is no less than the coefficient of g̃n+1
i−2,j in

A+
a (g̃n+1)ij, we only need

2(Mi−2,j + 4Mi−1,j + 9Mij)(3Mi−2,j + Mi,j)

(Mi−1,j−2 + 4Mi−1,j−1 + 18Mi−1,j + 4Mi−1,j+1 + Mi−1,j+2) + 8(Mi−2,j + Mi,j) + 8 1
ΔtMi−1,jh

2

> 3Mi−2,j − 4Mi−1,j + 3Mij.

Equivalently, we need the following inequality holds for any edge center xij for an edge parallel to
x-axis:

2(Mi−1,j + 4Mi,j + 9Mi+1,j)(3Mi−1,j + Mi+1,j)

(Mi,j−2 + 4Mi,j−1 + 18Mi,j + 4Mi,j+1 + Mi,j+2) + 8(Mi−1,j + Mi+1,j) + 8ci,jh
2

> 3Mi−1,j − 4Mi,j + 3Mi+1,j. (38a)

We also need the following inequality holds for any edge center xij for an edge parallel to y-axis:

2(Mi,j−1 + 4Mi,j + 9Mi,j+1)(3Mi,j−1 + Mi,j−1)

(Mi−2,j + 4Mi−1,j + 18Mi,j + 4Mi+1,j + Mi+2,j) + 8(Mi,j−1 + Mi,j+1) + 8ci,jh
2

> 3Mi,j−1 − 4Mi,j + 3Mi,j+1. (38b)
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We have a similar result to the one-dimensional case as follows:

Theorem 3.12 For the scheme (31) its matrix representation A satisfies A−1 ≥ 0 if (37) holds for any
cell center xij, (38a) holds for xij being any edge center of an edge parallel to x-axis and (38b) holds for
xij being any edge center of an edge parallel to y-axis.

Theorem 3.13 For the scheme (31) its matrix representation A satisfies A−1 ≥ 0 if the following mesh
constraint is achieved for all edge centers xij:

11

2
+ h2

Δt
< 7

1

maxJij
M

minJij
M2

3 maxJij
M − 2 minJij

M , (39)

where Jij is the union of two finite element cells: if xij is an edge center of an edge parallel to x-
axis, then Jij = [xi−1, xi+1] × [yj−2, yj+2]; if xij is an edge center of an edge parallel to y-axis, then
Jij = [xi−2, xi+2] × [yj−1, yj+1]. Here the maximum and minimum of M are those of grid point values
of M in Jij.

Remark 3.14 Similarly as the one-dimensional case, for smooth M, the constraint (39) can be satisfied
for small h.

4. Positivity and energy dissipation

In this section we prove a few properties of the proposed scheme (22), among which positivity and
energy dissipation are the most important ones. First of all we rewrite (22) as

Ag̃n+1 = gn, A := I + Δt(Mn)−1W−1S. (40)

From the previous section we know that the matrix A is invertible and A−1 ≥ 0 under suitable mesh
size and time step constraints. Specifically, the second-order scheme is always monotone A−1 ≥ 0
(entrywise inequality) for any mesh size and time step. For the fourth-order scheme, assume that the
mesh size and time step satisfy the constraints (36) and (39) in one and two dimensions, respectively,
we also have A−1 ≥ 0.

4.1 Conservation, steady state and positivity

It is straightforward to verify the following properties:

1. Mass conservation of ρ. Multiplying 1TWMn from the left on both sides of (40) and using 1TS = 0T

gives

1TWMng̃n+1 = 1TWMngn,

which is

1TWρn+1 = 1TWρn,
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24 J. HU AND X. ZHANG

or equivalently,

∑
i

wiρ
n+1
i =

∑
i

wiρ
n
i .

2. Mass conservation of c. By setting vh ≡ 1 in (24) we get α〈cn
h, 1〉 = 〈ρn

h , 1〉, thus

α
∑

i

wic
n
i =

∑
i

wiρ
n
i .

3. Steady state preserving. If gn = C1 for some constant C then using S1 = 0 it can be easily seen that
g̃n+1 = C1 is the unique solution to (40). In terms of the ρ variable this implies that

ρn
i = CMn

i , ∀i �⇒ ρn+1
i = CMn

i , ∀i.

4. Positivity of ρ. If ρn
i > 0 for every i then gn

i = ρn
i /Mn

i > 0 for every i. When A−1 ≥ 0 holds we
have g̃n+1

i > 0, consequently ρn+1
i = Mn

i g̃n+1
i > 0 for every i.

5. Positivity of c. All discussion in Section 3 applies to the scheme (24) with α > 0 and suitable
boundary conditions. Even though we only consider Neumann-type boundary condition in this paper
the results hold also for Dirichlet-type boundary conditions. In particular, the second-order scheme
is monotone. By setting M ≡ 1 and Δt = 1

α
in Theorem 3.10 and Theorem 3.13, the fourth-order

scheme is also monotone if αh2 ≤ 5 in one dimension and αh2 ≤ 3
2 in two dimensions. When

monotonicity in (24) holds positivity of c is implied by positivity of ρ.

4.2 Energy dissipation

In this subsection we show that the fully discrete scheme (40) decays energy. Following the continuous
counterpart (12) we define the discrete energy as

En :=
〈
ρn log

ρn

Mn
− ρn + 1

2
cnρn, 1

〉
=

∑
i

wi

(
ρn

i log
ρn

i

Mn
i

− ρn
i + 1

2
cn

i ρ
n
i

)
. (41)

Note that by using cn
i we consider the Keller–Segel equation directly. In the Fokker–Planck case the last

term 1
2 cn

i ρ
n
i in En is zero.

Theorem 4.1 Assume monotonicity holds for scheme (40), i.e., A−1 ≥ 0, for the energy defined in
(41) we have En+1 ≤ En.
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Proof. First of all,

En+1 − En

=
∑

i

wi

(
ρn+1

i log
ρn+1

i

Mn+1
i

− ρn+1
i + 1

2
cn+1

i ρn+1
i

)
−

∑
i

wi

(
ρn

i log
ρn

i

Mn
i

− ρn
i + 1

2
cn

i ρ
n
i

)

=
∑

i

wi

(
ρn+1

i log
ρn+1

i

Mn+1
i

+ 1

2
cn+1

i ρn+1
i

)
−

∑
i

wi

(
ρn

i log
ρn

i

Mn
i

+ 1

2
cn

i ρ
n
i

)

= I + II,

where we used mass conservation in the second equality and

I :=
∑

i

wiρ
n+1
i log

ρn+1
i

Mn
i

−
∑

i

wiρ
n
i log

ρn
i

Mn
i

,

II :=
∑

i

wi

(
ρn+1

i cn
i − 1

2
ρn+1

i cn+1
i − 1

2
ρn

i cn
i

)
.

On the other hand, it is easy to see A−11 = 1, since A1 = 1. Let aij be the entries of A−1, then∑
j aij = 1 and aij ≥ 0 for all i, j if the monotonicity holds. Furthermore, since Mn and W are diagonal

matrices, MnW = WMn, thus 1TMnWA = 1TMnW(I + Δt(Mn)−1W−1S) = 1TMnW. So we have
1TMnWA−1 = 1TMnW, which is

∑
i Mn

i wia
ij = Mn

j wj componentwise.

The above discussion implies that g̃n+1
i = ∑

j aijgn
j is a convex combination. The function x log x is

convex, so by Jensen’s inequality,

g̃n+1
i log(g̃n+1

i ) ≤
∑

j

aijgn
j log(gn

j ).

Then ∑
i

wiρ
n+1
i log(ρn+1

i /Mn
i ) =

∑
i

wiMn
i g̃n+1

i log(g̃n+1
i ) ≤

∑
i

wiMn
i

∑
j

aijgn
j log(gn

j )

=
∑

j

(∑
i

aijwiMn
i

)
gn

j log(gn
j ) =

∑
j

wjMn
j gn

j log(gn
j ) =

∑
i

wiρ
n
i log(ρn

i /Mn
i ).

We thus proved I ≤ 0. The proof is done if it is the Fokker–Planck equation.
If it is the Keller–Segel equation we still need to show II ≤ 0. Recall that we use the scheme (24)

for c:

〈∇cn
h, ∇vh〉 + α〈cn

h, vh〉 = 〈ρn, vh〉, ∀vh ∈ Vh. (42)

At tn+1 this is

〈∇cn+1
h , ∇vh〉 + α〈cn+1

h , vh〉 = 〈ρn+1, vh〉, ∀vh ∈ Vh. (43)
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Subtracting (42) from (43) gives

〈∇(cn+1
h − cn

h), ∇vh〉 + α〈cn+1
h − cn

h, vh〉 = 〈ρn+1 − ρn, vh〉, ∀vh ∈ Vh.

By setting vh = −(cn+1
h − cn

h) ∈ Vh we obtain

− 〈ρn+1 − ρn, cn+1 − cn〉 = −〈∇(cn+1 − cn), ∇(cn+1 − cn)〉 − α〈cn+1 − cn, cn+1 − cn〉 ≤ 0.

On the other hand, choosing vh = cn+1
h in (42) and vh = cn

h in (43) and subtracting both, we obtain

〈ρn, cn+1
h 〉 = 〈ρn+1, cn

h〉.

Therefore,

II = 〈ρn+1, cn
h〉 − 1

2
〈ρn, cn

h〉 − 1

2
〈ρn+1, cn+1

h 〉 = −1

2
〈ρn+1 − ρn, cn+1

h − cn
h〉 ≤ 0.

�

5. Numerical tests

In this section we provide numerical examples to demonstrate the performance of the proposed schemes.
We will mainly focus on the Keller–Segel equation as it is more challenging than the Fokker–Planck
equation. But one example about the Fokker–Planck equation will be included.

We consider the Keller–Segel system in a square domain Ω with a source term:

{
∂tρ = Δρ − ∇ · (ρ∇c) + f (x, y),

−Δc + c = ρ,

with homogeneous Neumann boundary conditions ∇ρ · n|∂Ω = ∇c · n|∂Ω = 0. It is straightforward to
verify that the system above is equivalent to

{
∂tρ = ∇ · (M∇ ρ

M ) + f (x, y), M := ec,

−Δc + c = ρ,
(44)

with boundary conditions ∇c ·n|∂Ω = 0 and ∇ ρ
M ·n|∂Ω = 0. We test the second-order and fourth-order

semi-implicit finite difference schemes for solving (44).

5.1 Accuracy test for the Keller–Segel system with a source term

The proposed semi-implicit schemes can be at most first order accurate in time. For testing the spatial
accuracy we consider an initial condition ρ(0, x, y) = 3 cos x cos y + 3, c(0, x, y) = cos x cos y + 3 on
Ω = (0, π) × (0, π) and a source term f (x, y) = −3 cos(2x) cos2 y − 3 cos2 x cos(2y), so that the exact
solution is a steady state solution. The time step is set as Δt = Δx and errors at T = 1 are given in
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Table 1 Accuracy test for the Keller–Segel system with a source term

FD Grid The second-order scheme The fourth-order scheme

l2 error Order l∞ error Order l2 error Order l∞ error Order

9 × 9 2.09E−1 – 2.51E−1 – 1.37E−2 – 1.08E−2 –
17 × 17 4.11E−2 2.34 6.82E−2 1.89 7.70E−4 4.16 1.32E−3 3.03
33 × 33 8.19E−3 2.33 1.70E−2 2.00 4.52E−5 4.09 9.72E−5 3.76
65 × 65 1.77E−3 2.21 4.29E−3 1.99 2.76E−6 4.03 6.41E−6 3.92
129 × 129 4.04E−4 2.13 1.08E−3 1.99 1.71E−7 4.01 4.09E−7 3.97

Table 1 where l2 error is defined as

√
ΔxΔy

∑
i

∑
j

|uij − u(xi, yj)|2

with uij and u(x, y) denoting the numerical and exact solutions, respectively. We observe the expected
order of spatial accuracy.

5.2 A steady state solution of the Fokker–Planck equation

We now test the second-order and fourth-order schemes for solving the following two-dimensional linear
Fokker–Planck equation on Ω = (−3, 3) × (−3, 3):

∂tρ = Δρ + ∇ · (ρ∇V), V = x2 + y2

2
. (45)

It is equivalent to

∂tρ = ∇ ·
(
M∇ ρ

M

)
, M := e− x2+y2

2 ,

with the boundary condition ∇ ρ
M · n|∂Ω = 0. This equation admits an exact solution:

ρ(t, x, y) = 1

2π(1 − e−2t)
e
− x2+y2

2(1−e−2t) .

We use ρ(1, x, y) as an initial condition and march to time T = 20 for approximating the steady state

ρ∞(x, y) = 1

2π
e− x2+y2

2 .

To demonstrate the advantages of our schemes we also compare them to the second-order spatial
discretization with fully explicit forward Euler time discretization, which can also be proven positivity
preserving and energy dissipative, but under a small time step constraint Δt = O(Δx2). In Fig. 3 we can
see that the convergence of the explicit scheme to the steady state solution is much slower. Moreover,
the small time step Δt = O(Δx2) is usually not desired in applications. The convergence to numerical
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28 J. HU AND X. ZHANG

Fig. 3. Linear Fokker–Planck equation on Ω = (−3, 3) × (−3, 3).

steady state solution of two implicit schemes is similar. On the other hand, the fourth-order scheme
produces slightly smaller errors in the numerical steady state solution.

In Fig. 3, after T = 10, steady state solution errors of both implicit schemes stay flat, and in each
time step ‖ρn+1 −ρn‖∞ is less than 10−10, which is the accuracy tolerance of preconditioned conjugate
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Fig. 4. Keller–Segel system with an initial condition below critical mass ρ(x, y, 0) = 60
1+40(x2+y2)

on Ω = (−2, 2) × (−2, 2).

The solutions at T = 2 are plotted. Both schemes are computed on a 101 × 101 grid.

gradient linear system solver. At T = 20, compared to the exact steady state, the fourth-order scheme
with implicit time stepping produces error in discrete 2-norm as 8.18 × 10−4, and the second-order
scheme with implicit time stepping produces error in discrete 2-norm 8.35 × 10−4. We emphasize both
implicit schemes are used on the same grid and the difference in computational cost is marginal, thus
this is a clear advantage of using a high order accurate spatial discretization, even if the time accuracy
is only first order.

5.3 A smooth solution of the Keller–Segel system

For the Keller–Segel system it is well known that there is a critical value for total mass in initial
conditions, below which a globally well-posed solution exists (Dolbeault & Perthame, 2004; Blanchet
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30 J. HU AND X. ZHANG

Fig. 5. Keller–Segel system with an initial condition below critical mass ρ(x, y, 0) = 60
1+40(x2+y2)

. The plotted numerical

solutions are around the time T = 13.52 when ‖ρn+1 − ρn‖∞ ≤ 10−8. Both schemes are computed on a 101 × 101 grid.
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Fig. 6. Keller–Segel system with an initial condition above critical mass ρ(x, y, 0) = 100
1+40(x2+y2)

on Ω = (−2, 2) × (−2, 2).

Both schemes are computed on a 141 × 141 grid.

et al., 2006). We solve the system (44) with f (x, y) ≡ 0 on Ω = (−2, 2) × (−2, 2) with an initial
condition ρ(0, x, y) = 60

1+40(x2+y2)
and its mass is below the critical value. See both schemes on the same

grid of 101×101 points at T = 2 in Fig. 4. For both schemes Δt = Δx is used. Then we run two schemes
for longer time until ‖ρn+1 − ρn‖∞ ≤ 10−8 is satisfied. Both schemes reach ‖ρn+1 − ρn‖∞ ≤ 10−8

around T = 13.52. See numerical solutions at T = 13.52 in Fig. 5. Note that in this case the energy as
defined in (41) reaches a constant value, which is an indicator that the system has already reached the
steady state.
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Fig. 7. Keller–Segel system with an initial condition above critical mass ρ(x, y, 0) = 100
1+40(x2+y2)

on Ω = (−2, 2) × (−2, 2).

Both schemes are computed on a 141 × 141 grid.

5.4 A blow-up solution of the Keller–Segel system

For an initial condition with total mass above the critical mass, a blow-up will emerge in finite time for
the Keller–Segel system (Dolbeault & Perthame, 2004; Blanchet et al., 2006), see also Carrillo et al.
(2019); Guo et al. (2019) for computational examples.

We test both schemes for an initial condition ρ(0, x, y) = 100
1+40(x2+y2)

with total mass above the
critical value. See solutions at T = 0.11 in Fig. 6, at T = 0.2 in Fig. 7 and at T = 0.8 in Fig. 8.
For both schemes Δt = Δx is used. Note that at T = 0.8, the solution in the fourth-order scheme is
significantly different from the second-order one, while the former is certainly more faithful due to its
higher accuracy.
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Fig. 8. Keller–Segel system with an initial condition above critical mass ρ(x, y, 0) = 100
1+40(x2+y2)

on Ω = (−2, 2) × (−2, 2).

Both schemes are computed on a 141 × 141 grid.

The energy evolution of numerical solutions is shown in Fig. 9, where the discrete energy is defined
as in (41). It should be mentioned that the mesh constraints in Section 3 for achieving monotonicity
in the fourth-order scheme will be eventually impossible to be satisfied for a blow-up solution, yet
these mesh constraints are only sufficient conditions for monotonicity. In our fourth-order numerical
solutions, it has been checked that ρ is always positive even after blow up. Therefore, the energy
dissipation is still in good faith.

6. Concluding remarks

We have constructed two finite difference schemes that are proved be positivity preserving and energy
dissipative for the Fokker–Planck and Keller–Segel type equations. The time discretization is a first-
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Fig. 9. Keller–Segel system with an initial condition above critical mass ρ(x, y, 0) = 100
1+40(x2+y2)

on Ω = (−2, 2) × (−2, 2).

Both schemes are computed on a 141 × 141 grid.

order semi-implicit or implicit scheme. The spatial discretizations include a second-order and a fourth-
order finite difference scheme, obtained via finite difference implementation of the finite element
method with linear and quadratic polynomials on uniform meshes. Under mild mesh size and time step
constraints for smooth solutions (a lower bound on time step rather than upper bound) the fourth-order
scheme is proved to be monotone, thus is positivity-preserving and decays energy, which is the first high
order spatial discretization with these properties. Numerical tests on both the Fokker–Planck equation
and Keller–Segel system are performed to verify the performance of the proposed schemes.
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