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1. Introduction

The compressible Euler equations and Navier-Stokes equations are the most popular continuum equations in the mod-
eling and analysis of gas dynamics problems. The positivity of density and pressure are crucial to robustness of numerical
simulations, in many applications such as aerospace, meteorology, oceanography, hydraulic engineering, chemical engineer-
ing, etc. It is often necessary to preserve the positivity of density and pressure for constructing robust high order numerical
schemes solving demanding gas dynamics problems, especially for problems involving both shocks and low density and low
pressure.

In the past decade, quite a few successful positivity-preserving high-order schemes for solving compressible Euler equa-
tions have been constructed, including positivity-preserving discontinuous Galerkin (DG) scheme proposed by Zhang and
Shu in [28,29], the positivity-preserving finite difference Weighted Essential Non-oscillatory (WENO) schemes in [8,25,30],
as well as positivity-preserving finite volume WENO schemes in [7,8]. On the other hand, the positivity-preserving prop-
erty in these high order methods for compressible Euler equations does not hold for the additional diffusion term in the
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compressible Navier-Stokes equations. Even though many popular high order accurate schemes can be rendered positivity-
preserving for a pure convection problem such as compressible Euler equations, it is challenging to extend these methods
to a convection diffusion problem. For popular linear schemes including conventional finite volume methods and most
DG schemes for solving scalar diffusion equations, positivity-preserving or bound-preserving can be enforced in the same
fashion as in positivity-preserving high order schemes for compressible Euler equations, up to at most second order accu-
racy [26,31]. Though there are a few bound-preserving linear higher order accurate schemes for scalar diffusion equations
[4,5,10,27], it is quite difficult to extend these methods to the complicated compressible Navier-Stokes system. In gen-
eral, for solving compressible Navier-Stokes equations, it is nontrivial to adopt the bound-preserving discretization of scalar
diffusion operators or positivity-preserving techniques for compressible Euler system. In [26], Zhang first constructed a uni-
formly high order accurate positivity-preserving DG scheme for solving compressible Navier-Stokes equations, which can
be easily and efficiently implemented in multiple dimensions. The key ingredients include a nonlinear diffusion flux and a
positivity-preserving limiter, which also applies to finite volume schemes.

The finite volume (FV) Hermite WENO (HWENO) schemes were first proposed by Qiu and Shu in [18] and initially
used as a limiter for stabilizing Runge-Kutta DG methods. Since then, many HWENO schemes have been developed to solve
hyperbolic conservation laws and related problems, including FV HWENO schemes in [2,3,22,23,37] and FD HWENO schemes
in [11,12] for hyperbolic conservation law, as a limiter for DG methods in [15-17,19,38,42], applications for the Hamilton-
Jacobi equation in [20,24,34-36,39-41], Vlasov equations in [1], KdV equation in [14], etc. Compared to WENO schemes,
the major advantages of HWENO schemes include more compact stencil thus easier treatment of the boundary conditions,
and higher resolution in numerical solutions for schemes of the same order. However, in practicce HWENO schemes are
less robust than WENO schemes, with higher computational cost due to the additional derivative equation. To improve
robustness and computational efficiency, Zhao and Qiu proposed a high order FV hybrid HWENO schemes in [32,33], in
which the Hermite type reconstruction is based on zeroth-order moment, i.e., the cell averages, and first-order moment
reconstruction. Here hybrid refers to the hybridization of nonlinear and linear reconstructions, i.e., the nonlinear HWENO
reconstruction is only used on troubled cells defined by some discontinuity detector and linear reconstruction is used
on the other cells. Such hybrid schemes can save computational cost since linear reconstructions are more efficient than
nonlinear ones. In [32,33], an additional limiter suppressing oscillations is applied on the first-order moment, coupled with
the HWENO reconstruction, thus such a hybrid HWENO scheme is also more robust than the original HWENO scheme, but
it is still unstable for many low density and low pressure problems.

In this paper, we design a positivity-preserving high order FV hybrid HWENO scheme, based on the work in [26,32],
to solve compressible Navier-Stokes equations. When the Reynolds number is infinity and the viscous term disappears, it
also reduces a positivity-preserving high order scheme for compressible Euler equations. The positivity-preserving finite
volume HWENO scheme for solving compressible Euler equations in [2] was based on the reconstruction of the function
cell averages and derivative cell averages, where two sets of stencil are used to approximate the function point values and
derivative point values for spatial reconstruction. The positivity-preserving high order FV hybrid HWENO scheme in this
paper is based on zeroth-order moment and first-order moment reconstruction, with only one set of stencil for spatial
reconstruction. Compared with the reconstruction in [2], the hybrid HWENO scheme in this paper has less computational
cost due to the hybridization techniques using only linear reconstruction for smooth regions.

The rest of the paper is organized as follows. In Section 2, we briefly describe the hybrid HWENO schemes for solving
compressible Navier-Stokes equations. In Section 3, we introduce the positivity-preserving finite volume hybrid HWENO
scheme for one-dimensional and two-dimensional compressible Navier-Stokes equations. Numerical tests are given in Sec-
tion 4. Concluding remarks are given by Section 5.

2. Finite volume hybrid Hermite WENO schemes
The dimensionless compressible Navier-Stokes equations for ideal gases in [26] in conservative form can be written as

U+ V- FU,S) =0, 2.1)

where U = (p, pu, E)T are conservative variables with the velocity u = (u, v, w), p is the density, E is the total energy
and the superscript T denotes transpose of a vector. Let S = VU denote the derivative. The flux function F(U, S) = F* — F¢
consists of the advection and the diffusion fluxes:

ou 0
F=|pugu+pl | F= T , (2.2)
(E+ p)u u-7—q

where p is pressure, I is the unit tensor, the dimensionless stress tensor is given by T = % (Vu—l— Vo)T — %(V-u)]l)
with the Reynolds number Re, and q = —k VT denotes the heat diffusion flux with the thermal conductivity coefficient «

proportional to % in molecular theory. Assuming the specific heat at constant pressure cp, is a constant, the dimensionless

quantity Prandtl number Pr = % is a constant. For the ideal gas, the total energy E = % pllul|? + pe where e denotes
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the internal energy, p=(y — 1)pe and T = Ci where the specific heat capacity ¢, and ratio of specific heats y = E—’v’ are

constants. We will use y =1.4 and Pr=0.72 for air.
After multiplying (2.1) by the test function ¢(x) and integration by part on a rectangular cell K, we can obtain the
following integral form

5 | V& D9 (dx =~ / (F- )¢ (x)ds + / (F- V)dx, (2.3)
K

K K
where n represents the outward unit vector normal to the boundary of the cell dK. In the one dimensional case, the cell K

is an interval [x,_% i1 ] and the test function ¢ (x) is taken as and (XA_;)JZ In the two dimensional case, the cell K is a

rectangle [x;_1 ,xl+1] X [y] 1Yl 1] and the test function ¢ (x) is taken as AxlAy, (A);;ZXiAy and Ai'(;y;)z. The line integral in

H

S
(2.3) can be approximated by a L-points Gauss quadrature on each edge of K = [ 9K

s=1

S L
/ (F-m)¢x)ds ~ Y 10Ks| Y w[FU(Gse, 1), SUse, 1)) - mlg (Gsr) (2.4)

9K s=1 =1

where Gg¢ and wg are Gauss quadrature points on the edge dK;s and normalized weights respectively. The flux
F(U(Gge, t),S(Uge, t)) - n at Gauss quadrature points should be replaced by a numerical flux which will be discussed in
the next section. Both the Hermite interpolation approximation of the function U and its derivative S are needed in
the finite volume scheme. The procedures of FV hybrid Hermite WENO reconstruction of U*(Gg,t) can be found in
[32] and the reconstructions of its derivatives S are given in Appendix A. Let Uy = fK Ux, t)¢p(x)dx and L(U,S)x =
— faK(F -n)¢ (x)ds + fK (F- V¢)dx, the semi-discrete HWENO scheme (2.3) can be written as:

d_—
— =L(U,S 2.5
dtUK LU, S)k. (2.5)

The ODE (2.5) is discretized in time by the third order strong stability preserving (SSP) Runge-Kutta method:

ul =uy+ Atc(a’;)

2 3 1 1
0y =y @+ Ay (26)
s W —(2) +(2)

Uy 3UK+ (UK +AtLUK))

3. A positivity-preserving high order finite volume hybrid HWENO scheme

In this section, we construct a positivity-preserving high order finite volume hybrid HWENO scheme for solving com-
pressible Navier-Stokes equations by combining the hybrid Hermite WENO schemes in [32] with the positivity-preserving
high order method in [26].

3.1. One-dimensional case

Consider the one-dimensional dimensionless compressible Navier-Stokes equation in conservative form

U; +FU,S)x=0, (3.1)

where U= (p, m, E)T are the conservative variables and the superscript T denotes transpose of a vector. The flux function
F(U,S) = F* — F¢ with S = Uy, and advection and diffusion fluxes are given respectively as F¢ = (pu pu? +p, (E +p)u)T,
=(0,7,ut —q)7, where 7 = " <Ux is the shear stress tensor and q = —;’ Reex denotes the heat diffusion flux with e =
E/p—u?/2,p=(y —1)pe, Where p is the density, m = pu is the momentum, u denotes the velocity, E is the total energy,
e denotes the internal energy, p is the pressure, Re, y and Pr are positive constants and n =4/3.
The test function ¢ (x) is taken AX and ("A ’;’2 and the cell K is the interval I; = [x;_; ,xH_]] in (2.3) in one-dimensional
case, then the semi-discrete hybrid HWENO scheme (2.5) can be written as

du;(¢) :_i |:F(U S| _FU.S)| ]
dt AX T Xin

W __ 1 [F (U.S) |y, +FU.S) | ]+ L / F(U, S)dx o2
dt C2Ax +3 (Ax)? ’ ’

i
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where the zeroth-order moment U;(t) = A f, U(x, t)dx and the first order moment V;(t) = AX f, U(x t)dx in I;. After
replacing the flux function at the interface of cell I; by the numerical flux, and using the Gauss- Lobatto quadrature to
approximate the integral f,i F(U, S)dx, we can obtain the first order Euler forward time discretization finite volume hybrid
HWENO scheme

U =0 - R —F ),
Ax Tz 172
(3.3)
VTH-] =N At ~ = At
i =Vi _E(Fl+%+F1*%)+EFI’
where ’ﬁ +1 is the numerical flux to approximate the value of the flux F(U,S) at the interface point x; ;. We use the
positivity-preserving numerical flux in [26] defined by
= = - — + +
Fi+% _F<Ui+%,Sl+% e S]+2>
(3.4)
:l F S+ — B 1 Ut , —-u”
2 +" i +1’ i+ \ Uit i+3
By > max [|u|+2 - (/p 42 +2p%lT - p|2+p|q|>} (35)
U 1 S 1
ity ity
and F; is approximated by a four-point Gauss-Lobatto quadrature formula
4
1 N
Fi=— f F(U.S)dx~ ) @aFUR.0). SR 1), (3.6)
AX ot
i =

where the weights are W1 = 64 = 11—2 and @y = w3 = 12, and the Gauss-Lobatto quadrature points on the cell I; are x1 =

X; ,xlz_x fs,xl_xwﬁ X =x 1 With Xip =xi +aAx.

i-1

Our goal is to design the conservative schemes that are positivity-preserving of density and internal energy or pressure.
Here we consider the positivity of internal energy instead of pressure. For ideal gas, the equation of state is p = (y — 1)pe
which satisfies p > 0 < e > 0 under the density p > 0. So if the density p > 0, positivity of pressure is equivalent to
positivity of internal energy, which is also mentioned in [26]. However, the other equation of state does not have this
conclusion such as Jones-Wilkins-Lee (JWL) equation of state for explosive products in [6]. Define the set of admissible
states by

P 1 m?
G=qU=|m]:p>0, pe)=(y-1DE-z-—)>0;. (3.7)
E 2p

It is straightforward to check that pe is a concave function of U if p > 0. Thus it satisfies the Jensen’s inequality: YUy, U; € G,
VA1,A2>0,A1 +22 =1,

pe(A1Uq + 2Up) > A1 pe(Uq) + Az pe(Ua). (3.8)

Therefore, G is a convex set. Let N = [(k + 3)/27, namely, N is smallest integer satisfying 2N — 3 > k and k the degree
of reconstruction polynomial. So a N-point Legendre Gauss-Lobatto quadrature formula on the interval [; = [x 1,X;

i—5° H——
is exact for integrals of polynomlals of degree up to 2N — 3. Denote these quadrature points as {A? o _1 2,..,N} =
{x;_ 1 =xLR2, - RTLRN = 1} and let @, be the normalized quadrature weights on the interval [—1, 1] such that

ZHZ] wy = 1. Let Pij(x) = (pi(x), mi(x), Ei(x))T be the reconstruction polynomials of degree k in the scheme (3.3) on the

interval I; with cell average ﬁ? and nodal values Ul;] and UJr | at two endpoints of the cell I;, then
2

N —
a1 - ~
U = A—X/Pi(x)dx= Zwapi )= X_: DoP; (RY) +@1U L TN (3.9)
By the mean value theorem for (3.9), there exist some points x; ,xlz, xl3, in cell I; such that
=i ] o~ + -~ —
N—1 ~ U, —woU"™ | —wNU;
T o, i i1 il
1 2 3 o o 2 2
i(xh), mi(x?), Ei(x; ) =) ——2 _p(¥)= 2 ) (3.10)
(pix), mid), Ei o) ;1—w1—w,v  (%%) 5
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Then we have the following sufficient condition for positivity of cell averages, which can be easily enforced to preserve
positivity of density and pressure without constructing the polynomials P;(x).

Theorem 1. A sufficient condition for ﬁ?“ € G in the scheme (3.3) with reconstruction polynomials P;(x) = (p;(x), m;i(x), E; ()" of
degree k is

Ut e, R €G, Vi (3.11)

where @ denote the smallest weight in @y, i.e., ® = @1 = ON.

Proof. By plugging (3.4), (3.9

—n—+1 (A 1 At

(3.10) into the first equation of scheme (3.3), we obtain
1
2 axlic [ 112

A_
Gy 1AL 1At (. 1At ‘1FU, -
s T2\ T2 ah 4 i
1At - -1 S 1 At + -1 + ot
+5 5P [Ui_% —i—ﬂi_%F<Ui_%,Si_%>}+§§ﬂi+% [Ui+% —BLLF(U) ST

+(1— o1 — Wn)

U; 1— =

\_/ ~— Q.

(3.13)

First we set

2 _nl2
By =, M [|u|+2p2 (\/p g +2p2elt — p| +p|q|)}

. 9. 1,Y. .
i+5 iy ity ity

-1
Then under the CFL condition 4% max; B, | <@, we have 7 AL (@ — 3B %) < ,3;11 . By the Lemma 6 in [26], we have
7

+ _g1p(utr . s+
U:+2 €G :>Ui+% ’31+% Ui+%’si+%
t

Uf, eG=U"

U, eG=Ur, + 5] 1F U8, 1>ec,
2

1

2
-1

U, eG=U" _1&(5) _1atg ) F(u-,.s- G.

i1 €= E T oA (N 2 axPir} i+17%1 ) €

Moreover, (3.13) is a convex combination under the same CFL condition (3.12). Thus we get ﬁ?“ € G for the scheme
(33). O

To enforce the condition (3.12) in Theorem 1, we use the simplified scaling limiter for HWENO schemes in [29]. For
convenience, assume there is a vector of reconstructed polynomials P;(x) = (p;(x), m;(x), Ei(x))T on the interval I; with the

cell average P; = (,0,, m;i, ,) Define pe; = pe(P;) =E; — 2ﬁz/ﬁ, Assume P; has positive density and energy, i.e., p; >0,

E; > 0. We seek polynomials P;(x) with the same cell averages so that P; (\1) Pl(\N) Za o To5= ng,C“) € G. The following
procedure can be applied to enforce the sufficient condition (3.11) for each cell I;:
1. To keep the positivity of density, we modify firstly density by

~ — _ . pi—¢€

Pi(x) =06, (pi(x) — pi) + pi, szmm{l,_’i} (3.14)
Pi — Pmin

where ¢ is a small positive number as the desired lower bound for density, e.g., € = 10713, ppin = min{pi(;?}), pi()??’), pi()?f)}

with pi(R)) = =55 (i — D1piR}) — DN pEiRY)) and 6, € [0, 1]. Since p; = DPiR}) + @piR}) + (1 = 2w)pi(x}), we have

5
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pi = min{p; &), pi&N), pi(X)}, thus 6, € [0, 1]. Moreover, it's straightforward to check that p;®}) > 0, p;R)) > 0 and
Pi(x{) = 0. Then p, ] =6p (p.‘ 1 —)51‘) + pi, pi ] =6p (p ] /51’) + 0i.

Let Pl(x) = (pi(x), m;(x), E;(x))T. The convex combination Za DT ZwP,O?“) is equal to (pl(x ) rﬁ,(x* 2) f (x* 3))T by
the mean value theorem, Where x*] x?‘z x:‘3 are three different pomts on the cell I;. We abuse the notation by using P, (™)
to denote the vector (p;(x;" ),ml(xi 2, E,(xi 3\, then P,(x;**) = 5P — wlPlC}) — wNPszV))-

2. For enforcing the positivity of internal energy, we perform the following procedure

pei—¢ }

i — PCmin ’
where ¢ is a small positive number as the desired lower bound for internal energy, e.g, & = 10~ 13 pemin =
min {pe(P, (])) pe(P,CN))pe(P, (**))} and Qe [0, 1]. Since the cell average of P, (x) is still P;, we have the convex com-
bination P; = @1 P; &) + @nPiR) + (1 — 20)Pi(x"), s0 pe(Py) = @1 pe (BR)) + dnpe (PiEY)) + (1 - 2@) pe (Pi(x™)) by
the Jensen’s inequality, thus 6, € [0, 1]. It’s straightforward to check PIC ), P,(\f\’ )€ G and P, (x7*) € G. Therefore, we get the
polynomial P;(x) satisfying the condition (3.11).

In fact, we only need to obtain the point values fll?'; P( %) in a finite volume scheme. For simplicity, denote
2

(3.15)

Pi(x) =0, @i(x) —P)+P;, 6 :min{l,

i—5 i+ .
q =P, =@_ a) q = Pﬂ—(p e i1,Efl)Tandq3=+.Fork=1,2,3,nfpe@‘)<s,

i+3 7 ity :+1
k pe(@)—e > k — - 1 42 43
then set ty = e —pe @) ;if pe(*) ¢, then set t{ = 1. Take 0, = min{t,, tz, t7}, then

c
+

I
=

i(X_1) = 0e (ﬁJr 1 —E‘) +P;,
2 i-1

u- 1 zﬁi(xi+%)=99 <i;7 1 —I_)i> +P;.
2

Finally, use U 1,I~J,_ , instead of U ,,U” , in the scheme (3.3).

i—3" it i-3’ it
Remark 3.1. It is needed to emphasize that we mainly introduce the design and implementation of positivity-preserving
property of one-dimensional FV hybrid HWENO scheme. ﬁ? and V? in (3.2) are applied to HWENO interpolation for the
approximation of the function U and its derivative S in Gauss-Labotto points, and the detailed procedures of FV hybrid
HWENO interpolation in one dimensional case are given in the appendix A.

Remark 3.2. To obtain processed point value Ui P we only need cell average U; and point values UjE | ,Ui ; in the limiter

2
(3.14) and (3.15). The reconstruction polynomlals P;(x) are not needed in implementation. It is a hlgh order accurate and

conservative limiter [26].
3.2. Two-dimensional case

Consider the two-dimensional dimensionless compressible Navier-Stokes equation in conservative form

U+ V-FU,S) =0 (3.16)

where U = (p, pu, E)T are the conservative variables with the velocity u = (u, v),S = VU and the flux function F(U,S) =
F? — F? with advection and diffusion fluxes as

ol 8) 0
F=|puU+pl |, F= T , (317)
(E+p)u u-7T—q

where p is the density, m and n are the momentas given by m = pu and n = pv, u and v denotes the velocity, E is the total
energy, e denotes the internal energy, p is the pressure and I is the unit tensor. The shear stress tensor and heat diffusion
flux are

1 Txx  Txy 1y T
T=— , = ——(ex, 3.18
Re ( Tyx Tyy 9 Re Pr (ex. &y) ( )
with
E 1, 2
=——5(u +v9), p=(y —1)pe (3.19)
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and

—Vy,
3y

The equation (3.16) can be written as

4
Txngux— Txy = Tyx = Uy + Vy,

U; +F(U,S), +G(U,S), =0
with

pu

u2 + Txx
FU.5) = ppuvgm
(E+ p)u—

pv
,ouv _
Re

GU,S) = oV

(E+p)yv—

The test function ¢ (x, y) is taken as AxlAy

X—Xj

Journal of Computational Physics 445 (2021) 110596

4
fyy = §Vy _ §ux.

(3.20)

Re (TaxU + TyxV + %ex)

= (Tt + fyy" + fey)

d y—Yj

T (AX)2Ay

AxAy)? and cell K is a rectangular [x;_ 1,xH_1] X [y] 1, yj+1]

in (2.3) in two-dimensional case. Then the semi-discrete hybrid HWENO scheme (2.5) can be written as

Y. 1

CNE!
— Vi
dwyo 1 f Y—JYj
dt AXAy Ay
Vi1

B 2AxAy

X. 1
=32

X 1Y
i+5 ]+2

where

= i+l
du;;(¢) 1
=- F(U,S _F(U,S d
de AxAy / ©.5) |Xi+%’y (G |Xl-_%,y y
Y %
xi+%
Y f [G(U, S)lxy,,, ~G(U.S) |x,yji%}dx,
Xi,l
2
= Vvl
dvi;(0) 1
== F(U,S F(U,S d
dt ZAXAy / ( )Ixi,% y +F( )lX 1.y |ay
yj,%
Xl
1 oy
_ / X —Xj GWU.S) |xy , —GU,S) |xy , |dx
AxAy AX Vil Vi
X1
=2
(3.21)
Xied Viv]

(Ax)sz/ /F(U S)dxdy,

[F(U,S) lx,_, .y —F(U,S) |x_, ,1dy
2 2

/ [G(U, $) by, y +6WU.S) ey, s } dx

+Ax(Ay)2f /G(U S)dxdy,



C. Fan, X. Zhang and J. Qiu Journal of Computational Physics 445 (2021) 110596

— 1
Uj(t) = AxAy / U(x, y, t)dxdy,

Vi = —— [y, 0 axd
ij(f) = AXAy Y, x Y,
K
o y—-J;
W;i(t) = U(x, y, t)———=dxdy.
ij () A (x,y,0) Ay y
K
The integral in (3.21) can be approximated by quadrature with sufficient accuracy. Assume {x’s B = ., L} and
{yf B= ., L} denote the Gauss quadrature points on the interval [x;_ 1,x1+1] and [yj 1, yH]] respectlvely, wg are
the correspondmg weights of the Gauss quadrature on interval [—— —] satisfing Z,s e 1 For example, (x;_ 1,yj) are
the Gauss quadrature points on the left edge of the cell I;;, where the subscrlpt B denotes the values at the Gauss quadra-
ture points, for instance, u;r 1 5= ulf 1 j(y]’?). Denote A1 = % and 1, = Usmg the numerical flux to approximate the
37 -7

value of the flux at the interface of the cell (i, j) and Gauss quadrature to approx1mate the integral terms in (3.21), then we
can obtain the first order Euler forward time discretization finite volume hybrid HWENO scheme

L L
—n+1 =n - ~ ~
Uy =Tyt ) sy —Fiy )22 0pCy 1y =Gy )
p=1 p=1
" Py L L L
on =n -~ =~
v =V,-,-—7Zwﬁ<Fi+%,ﬁ+Fi_%,ﬂ)+MZZme(U(x{’,y?),S(x{},y,Y))
p=1 p=1y=1
L Xg — Xi
Cx o~ _
— A2 Za)ﬂ Ax (Gﬁ,j_,_% _Gﬂ,]’_%) (3.22)
1 A2 L
Sl on = -~ =
W, _WU—MZw l+%7ﬂ—Fi_%’5)—?Zwﬂ(cﬂﬁ%+Gﬂ’j_%)
B=1
L L
+AZZZwﬁwyG(U(xf,y,Y),S(x{’,y?)),
p=1y=1

where f it1.p and Eﬂ 1 are the numerical flux to approximate the value of the flux F(U,S) and G(U,S) at the point

(%, 1 yj) and (xl ,y]+1) respectively, defined by

- + -+
Fl+ ﬁ_F<U1+ B’ 'S, ,ﬂ’Ui+%,ﬂ’Si+%,ﬁ>

g U, .S +F(U", sJr -1 (U, —u”
2 i+1.8"Yi+1.8 i+1.8° i3 \Ciedp T Cirlp )| (3.23)
1 2
Biyy1> | max [Iwnil+m(\/p2|q~n;|2+2p2ellr~ni—pn,-T|| +p|q~ni|)],
U1+ ﬂ 1+%,ﬁ
¢ —clu- - + +
Cpjrs = (Uﬂ,j+%’sﬁ,j+%’uﬂ i+1738. J+2>
1
_2 - + + _ 5 + _u-
T2 [G<Uﬁ1+§’sﬁ +%>+G(Uﬁ1+§’sﬁ1+z) Pivy (Uf’*”% Uﬁ’f‘%ﬂ (3.24)
1 2 2 2 T|?
ﬂjJr%>Ui masi |u-nj|+2p—ze( p?|q-nj|”+2p th-nj—pnjH +p|q-nj|)
ity B+l

with n; =(1,0) and nj = (0, 1).
Our goal is to design the conservative schemes that are positivity-preserving of density and internal energy. Here we still
consider the positivity of internal energy instead of pressure. Define the set of admissible states by
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1 m?
E_ 2 +n?
2

:p>0, pelU)= >0

ms 3D

We will use Gauss-Lobatto quadrature rule on (i, j) cell, denote {&?,a =1,..,

interval [x;_1,x;, 1] and Jfa=1,.

sume that we have a vector of approximation polynomials of degree k at time ¢, H;j(x,y) =
Eij(x, y))T with the cell average

S
U;; = (o35, mij, nyj, Eij)”

lij= [X,',% , Xi+%] X [yji% s yH%] with approximation polynomials #;;(x, y). Denote jt1 = )»;\Tlxz’ Ua =

=N

f Hij (x, y)dxdy + -2 2y / Hij (x, y)dxdy

0= AxA
Iij Lij
L N L N
=1 33 wpdaHy R, yﬁ?) 2 Y D wpldaHixf, I%)
B=1ua=1 B=1a=1
L N-1
ﬂ:l a=2
L
+};a)5w1 I:Ml(U +U_ ﬁ)+M2(U+' 1 +U_ 1)i|

By the mean value theorem for (3.26), there exist some points (x, ,yj*) (x, ,y]*) (xl ,y]*), (x;‘*,

that

T
(pu(xl LYF Mo, ¥, g 06, y I, B, v ))
L N-1

—Zzwﬁl_

p=1a=2

(MHU(X, ,y,)+quu(xl V5 ))

Substituting (3.23), (3.24), (3.26) and (3.27) into the first equation of scheme (3.22), we have

+1 T
U = (1= dr — o) (P, v}, my G, y2), my (e, y3), B (6, y4)

L _

a)ﬂ)q +
+/321 2 ﬂi+%ui+

1=(U+

LSty ) A

FU_, .S~
15 TFU L o if%’ﬂ)]

MM MM

_A A — 1 — —_
+Za)ﬂM1 (wN_mﬂiJr%)(UiJr%,ﬂ_ﬂ( w1 — mﬂHz) F(U:+ ﬂSl+%’ﬂ)>i|

L -
+ﬂZ=lwﬂM1 _(67)1 - %ﬂi_%) (U,-Jr_%,ﬁ + %(@1 - %ﬂi_%)*lF(U:r_%‘ﬂ,slf_%ﬁ))}

L wghy [ n - B B
+ﬂ§ 2 |Pi+iYiey FU, 1Sy ) +A30, —i—F(Uﬁ’ji%,sﬁ’ji%)}

L Mo A2 _ A A N -
+;a)ﬂli2 _(CUN - %ﬂ]qr%) (Uﬂ,j+% - %(an — E,3”1) F(Uﬂ +}’Sﬂ +;)>]

L L o )
+;wﬂﬂ2 (0)1——l3 _1)< 1.8 +%(a)1—ﬁﬁ._1) (Uﬁ,j—%’sﬁ,j_%))]
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(3.25)

N} as the Gauss-Lobatto points on the
., N} as the Gauss-Lobatto points on the interval [yjf%,yH%]. For simplicity, as-
(pij(x, ¥), mij(x, ¥), nij(x, y),
Consider the quadrature rule for Uj;(x, y) on the rectangle

prEws +/\z then

(3.26)

yj?*) in cell (i, j) such

(3.27)

(3.28)

Starting from (3.22) to (3.28) and following the same line as in the proof of Theorem 1, we can easily prove the following

result.
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Theorem 2. For the finite volume HWENO scheme (3.22) with approximation polynomials H;j(x, y) =
Eij(x, y)T. Assume ﬁ?j eG foralli, j, if

T
(P, v 1) mi 0, 25, mi 06, 39, By, ¥49) €6,

ut Ui JUF o uE e,
Byt 1B TR 1 X 1B
then U?jﬂ € G under the CFL condition
At ! + ! max{B B 1}<® !
—_— —_— . s . < =
Ax Ay ) i Wity Pitg N(N-1)

To enforce the condition (3.29) in Theorem 2, the following limiter can be used for each cell (i, j).
1. We first modify density by
pij — & }
Pij — Pmin '

Pij (%) =0, (pij(x) — pij) + pij,  0p = min {1

Journal of Computational Physics 445 (2021) 110596

(0ij(x, ), mij(x, ¥), njj(x, y),

(3.29)

(3.30)

(3.31)

where 6, € [0, 1], Pmin = min {pﬁjil Vo 5 p;]¢1 , plfFl g P y})} and € = 1013, then the modified density is given
JE3 2 J¥2 2
by
o+ — + _ A AN = — - _ Al AN
Po.j—y =P <pﬂ,1—% pU) TP Py = <pﬂ,j+% pU) A
~t _ + __ AN ~n ~ _ - __an ~n
pi_%,ﬁ—ep (pi—%ﬁ Pij)‘f‘/oij, Pi+%!ﬂ—9p <pi+%f3 'Oij>+'0ij'
5 ~ T
Let Hij(x, y) = (Bij(x, ¥). mij(x, ¥), njj(x, ¥), Eij(x, y)) . Denote
~1 _ 47 =2 _q ~3 _ 47 —~4 _ar
WMy B T Wy T Ty
~5 _ 47 —~6 a7 ~7 _ A7 -8 Ay
WMy B My W opgp G T Mgy
and
T
(sz(X, YT my (8, Y3, ng (6 ,y] ), Eij (™, v ))
—n L o~ S+ A —
Ul]_Zkzla)ka)l[ (Hl+1k+,H )+ Z(Hk1+1+H 1)]
B 1— 20)1 ‘
vy m12 i i ij (X, 2
Define pe;; = Ejj — %ﬁ_xj - 1—’ and let pe(Uyj(x, y)) = Eij(x, y) — 1% %%

2. To enforce the posit1v1ty of internal energy, we modify the internal energy by

pejj—¢&

6. =min{ 1, l
oe; — min | pe(q.
pey — min {ped)]

ﬁij (%,¥) =0, (ﬁij *x, y) — Uj) + Uy,

_'Hi

where 6, € [0, 1] and peé,;, = l:r{li{lg {/’)\e(@%)} Actually we only need to obtain the point value Ui N

zﬂ

(3.32)

Uj:
B, FFZ

ﬁ;jq:l' we define the internal energy function as ¥(U) = E — fmTf - %% ForI=1,--.,9, if \L’(pe(c}ij)) < g, then set
JF3
WO —¢ e (o nl , 0
= W= . if \Il(pe(q,.)) > ¢, then set t;, = 1. Take 6, mm{t t7}, then
& W(Uij)*\ll(ﬁe(lﬁgj)) ij e — £
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Uy =Ty =0 (R = 0) 0
=7, ﬁ_ee<“1+_%qﬁ _ﬁij) i
ﬁ;,jJr% :ﬁ;,ﬁ% =0e (A;H% —U,-,-) +Ujj,
ﬁ;jf% :ﬁ;r’ji% =0e <ﬁ;]~,% —ﬁij> +Uj;.

,Ui ., in the scheme (3.22).

Finally, use Uii;% Ut , instead of Uij;%,ﬂ 5wl

B BTy

Remark 3.3. Notice that we mainly introduce the design and implementation of positivity-preserving property of two-
dimensional FV hybrid HWENO scheme. Ul"] \_f:] and WZ in (3.21) are applied to HWENO interpolation for the approximation
of the function U and its partial derivative S in Gauss-Labotto points, and the detailed procedures of FV hybrid HWENO
interpolation in two dimensional case are given in the appendix A.

Remark 3.4. Similar to the one-dimensional case, the approximation polynomials are not needed for implementing the
limiter (3.31) and (3.32). And it is a high order accurate and conservative limiter, see [26].

3.3. Implementation of CFL constraints

In this paper, we use (2.6) for high order time discretization. Since strong stability preserving (SSP) Runge-Kutta time
discretization is a convex combination of forward Euler steps and G is convex, Theorem 1 and Theorem 2 still hold for (2.6)
if the CFL is one third of (3.12) and (3.30). However, the CFL constraints (3.12) and (3.30) should not be used directly for

at least two reasons. First, since |u| + 2;29 (\/pzq2 +2p2e|t — p|2 + plg|) = 0(1) for a smooth solution, the CFL constraints

(3.12) and (3.30) give At = ©O(Ax) which do not necessarily satisfy the linear stability constraints At = @(ReAx?) for any
explicit time discretizations. In other words, the time step should also satisfy At = O(ReAx?) besides (3.12) and (3.30).
Second, the time step constraints (3.12) and (3.30) is a sufficient condition but may not be a necessary condition for
U’;(H € G, thus in practice it should not be used directly for the sake of efficiency.

To this end, we can use the same simple time marching strategy in [26]. The positivity preserving limiter should be used
for each stage in (2.6) and we can implement the positivity-preserving high order finite volume hybrid HWENO scheme
with the third order SSP Runge-Kutta (2.6) for equation (2.1) as follows:

Step 1. At time level n, for the given 27,1< € G. Compute the wave speed «o; = |u;| + /%. Let a* = max; |«;| taken over

IK|
lek|

all edges, Ax = ming and ek is the longest edge in cell K set the time step

1
At = min {a;Ax, bReAxZ} , (3.33)

where the two parameters are set as a = % and b =0.001 for compressible Navies-Stokes equations. For compressible Euler

equations, it is replaced by At = 1 Ax since Re = oo.

— —(1 .1
Step2. Compute the first stage, denoted by ujﬁ ). If the cell average uﬁ() € G, then proceed to next step. Otherwise Z/l;<)
has negative density or pressure, then recompute the first stage with a time step halved.

Step3. For the given UfQ ) e G, compute the second stage, denoted by H}?. If the cell average H;?) € G, then proceed to

L2 . . . . .
next step. Otherwise Z/{§<) has negative density or pressure, then return the Step2 and restart the computation with a time
step halved.

—(n+1) —(n+1)

. —(2 . .
Step4. For the given L{§<) € G, compute the U . If the cell average Uy € G, then the computation to time step

. .=+l . . . .
n+1 is done. Otherwise u}? D has negative density or pressure, then return the Step2 and restart the computation with a

time step halved.
Theorem 1 and Theorem 2 imply that the implementation above will not result in any infinite loops and the restarting
is ensured to stop when time step constraints (3.12) and (3.30) are met for each stage.

4. Numerical tests
In this section, we test the positivity-preserving (PP) high order finite volume hybrid HWENO scheme with the third
order SSP Runge-Kutta method on several demanding examples. For HWENO reconstruction, quintic polynomial reconstruc-

tion is used in one dimension, and cubic polynomial reconstruction is used in two dimensions. The hybrid HWENO scheme

11
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Table 4.1
Accuracy test of the PP hybrid HWENO scheme for one-dimensional and two-dimensional compressible Navier-Stokes equations with Re = 100, the L and
Lo errors are showed.

Mesh Loo Error Lo Order Ly Error Ly Order
20 1.21 E-2 - 5.90 E-3 -
40 2.23 E-3 2.44 6.65 E-4 3.15
80 5.58 E-5 532 1.44 E-5 5.53
160 1.10 E-6 5.66 2.46 E-7 5.87
320 2.25 E-8 5.61 7.13 E-9 511
640 6.35 E-10 515 2.14 E-10 5.06
10 x 10 1.08E-3 - 2.25E-4 -
20 x 20 1.32E-4 3.04 1.73E-5 3.70
40 x 40 1.05E-5 3.65 1.24E-6 3.80
80 x 80 6.07E-7 411 7.71E-8 4.01
160 x 160 2.93E-8 437 4.53E-9 4.09
320 x 320 1.54E-9 4.25 2.70E-10 4,07

in [32] will blow up for Examples 4.3-4.7 for compressible Euler equations due to loss of positivity. The same positivity-
preserving methods in Section 3 also apply to the HWENO scheme without any hybridization, which is also tested. The CPU
time of the PP hybrid FV HWENO scheme and the PP FV HWENO scheme is listed in Table 4.2. The only difference in these
two schemes is in the reconstruction step: the HWENO scheme uses nonlinear HWENO reconstruction in all cells, whereas
the hybrid HWENO scheme uses the nonlinear HWENO reconstruction only in troubled cells and uses linear reconstruction
in other cells, e.g., smooth regions. Moreover, on troubled cells, the hybrid HWENO scheme uses one more non-oscillatory
limiter on the first-order moment variables, as a preprocessing step before the HWENO reconstruction, see [32] for details
of the troubled cell indicator and the non-oscillatory limiter on the first-order moment.

Example 4.1. Accuracy test. We test the accuracy of the PP hybrid HWENO scheme for compressible Navier-Stokes equations
in one and two dimensions with Re = 100. For one-dimensional equation (3.1), the initial condition is p =1, u=0, E =
% + %exp(—4(cos(x/2))2) on the interval [0, 27r]. For two-dimensional equation (3.16), the initial condition is p =1,u =
v=0,E= y1—f1 + % exp(—4(cos(x/2))% — 4(cos(y/2))?) on the rectangle domain [0, 277] x [0, 27r]. The boundary condition is
periodic. The reference solution was generated by a Fourier collocation spectral method using 1280 points and a 1280 x 1280
mesh in one and two dimensions respectively. The reconstruction polynomial has degree four in one dimension and, degree
three in two dimensions. The errors in Table 4.1 verify the accuracy of the diffusion flux and the limiter.

We can see that the PP hybrid HWENO scheme achieves fifth order accuracy in one dimension and fourth order accuracy
in two dimensions, which is consistent with the designed order of accuracy of the HWENO scheme.

Example 4.2. The Lax problem. The initial condition is

(0.445,0.698,3.528,1.4), x [0, 5)

Uu,p,y)= 4.1
.4 2.7) (0.5,0,0.571,1.4), x€[0,5]. 1)

The final computing time is T = 1.3. See [26] for how the reference solution can be generated. See Fig. 4.1 for results of
the HWENO scheme without hybridization of linear reconstruction and the positivity-preserving limiter. Even though the
HWENO scheme produces non-oscillatory solutions for Re = 100 in Fig. 4.1, oscillations will emerge and stability will be lost
for larger Reynolds number. The oscillations can be observed for the numerical solutions of compressible Euler equations,
namely Re = oo in Fig. 4.1. This indicates that, for the HWNEO scheme based on the reconstruction of the zero-order and
first-order moment without modifying the first order moment in troubled cell, itself is unstable.

See Fig. 4.2 for the results of the PP hybrid HWENO scheme, which produces non-oscillatory solutions with a good
resolution. About 2.43% and 2.68% cells are troubled cells for Re = 1000 and oo respectively. For other cells, a linear ap-
proximation is used thus the PP hybrid HWENO scheme saves about 77.68% and 75.08% computational time compared to
the PP HWENO scheme as shown in Table 4.2. Notice that PP limiter was not triggered in the PP hybrid HWENO scheme in
this test as shown in Table 4.2, which is due to the additional non-oscillatory limiter on the first-order moment in troubled
cells. In other words, the hybrid HWENO scheme without any PP limiter is already very stable, for the Lax problem. In
addition, there is a little dent in the plot of the velocity (the left figure of the second row of Fig. 4.2). This is indeed a
numerical artifact in PP hybrid HWENO scheme. For example, the numerical solution velocity of the FV WENO scheme in
[13] showed a similar dent.

From the bottom row of Fig. 4.2, we observe that there are less troubled cells for the case Re = 1000 thus the non-
oscillatory first-order moment limiter is used on less cells, compared to the case Re = co. Roughly speaking, the non-
oscillatory first-order moment limiter simply induces artificial viscosity. For this reason, the numerical results of PP hybrid
HWENO scheme for Re = 1000 have slightly better resolution at the discontinuity than the numerical results of PP hybrid
HWENO scheme for Re = co. This phenomenon is also observed in other numerical tests.
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Fig. 4.1. The Lax shock tube problem. T = 1.3. Solid line: the reference solution; squares: the results of the HWENO scheme on uniform 200 cells. (For
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 4.2

CPU time: the total computing time in seconds for the PP hybrid HWENO scheme and the PP HWENO scheme to solve compressible NS equations; Time
saving ratios: the CPU time saving ratios of the total CPU time by the PP hybrid HWENO scheme over the PP HWENO scheme on the same numerical
example; PP limiter ratio: the ratio of PP limiter triggered (either 6, <1 or 6, < 1) cells over the total cells.

Numerical example PP hybrid HWENO scheme PP HWENO scheme Time saving
CPU time PP limiter CPU time PP limiter ratios
Re = o0
4.2 1D Lax problem 2.45 0.00% 8.16 0.00% 69.98%
4.3 Double rarefraction problem 1.63 10.00% 3.98 10.00% 59.05%
4.4 1D Sedov problem 17.61 3.00% 56.55 3.00% 68.86%
4.5 Leblanc problem 71.77 0.25% 628.86 0.25% 88.59%
4.6 2D Sedov problem 9611.84 1.09% 25726.30 1.09% 62.64%
4.7 Shock-diffraction problem 13776.48 0.23% 38014.60 0.23% 63.76%
Re = 1000
4.2 1D Lax problem 2.20 0.00% 7.64 0.00% 71.20%
4.3 Double rarefraction problem 9.88 10.00% 30.25 10.00% 67.34%
4.4 1D Sedov problem 21.56 3.00% 69.59 3.00% 69.02%
4.5 Leblanc problem 96.97 0.25% 935.99 0.25% 89.64%
4.6 2D Sedov problem 11764.44 1.09% 32355.45 1.09% 63.64%
4.7 Shock-diffraction problem 17183.64 0.23% 48318.10 0.23% 64.45%

Example 4.3. The 1D double rarefaction problem. This test case has the low pressure and low density region. Negative
density or pressure can be easily produced in many high order numerical schemes, resulting in blow up of the computation.
The initial condition is

13



C. Fan, X. Zhang and J. Qiu

velocity

25

pressure
N

0.5

0.8

0.6

04

0.2

0.4

velocity

25

pressure
N

0.5

0.8

0.6

0.4

0.2

Journal of Computational Physics 445 (2021) 110596

Fig. 4.2. The Lax problem. T =1.3 for Re = oo (Left) and 1000 (Right). From top to bottom: density, velocity, pressure, time history of troubled cells in the
PP hybrid HWENO scheme. Solid line: the reference solution; squares: PP hybrid HWENO scheme on uniform 200 cells.
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(7,-1,0.2,1.4), xe[-1,0),

,u, p, = 4.2
(p. .. ¥) (7,1,0.2,1.4), xe]0,1]. (42)

The final computing time is T = 0.6. The left and right boundary conditions are inflow and outflow respectively. The nu-
merical results of PP hybrid HWENO scheme are shown in Fig. 4.3 for Re = 1000 and oo. About 11.30% and 19.57% cells are
troubled cells for Re = 1000 and Re = co. The PP hybrid HWENO scheme saves 67.34% and 59.05% CPU time compared to
the PP HWENO scheme respectively.

Example 4.4. The 1D Sedov problem. This test involves both very low density and strong shocks. The exact solution for
Euler equation is specified in [9,21]. The computational domain is [—2, 2] and initial conditions are that the density is 1, the
velocity is 0, the total energy is 10~12 everywhere except in the center cell, which is a constant Eg/Ax with Eq = 3200000,
with y = 1.4. The inlet and outlet conditions are imposed on the left and right boundaries, respectively. The final compute
time is T = 0.001 and computational results of the PP hybrid HWENO scheme are presented in Fig. 4.4. About 14.50%
cells are troubled cells, and 68.86% CPU time is saved compared to HWENO scheme for compressible Euler equations. For
compressible Navier-Stokes equations, there are 11.92% troubled cells, and 69.02% CPU time is saved compared to the PP
HWENO scheme.

Example 4.5. The Leblanc problem. The initial condition is

(2,0,10°,1.4), xe[—10,0),
(Io7u7 p, V): (43)
(0.001,0,1,1.4), xe[0,10].

The inlet and outlet conditions are imposed on the left and right boundaries, respectively. The computational results of the
PP hybrid HWENO scheme at the final time T = 0.0001 are presented in Fig. 4.5. About 0.97% and 1.35% cells are troubled
cells for Re = 1000 and oo respectively, and about 89.64% and 88.59% computational time is saved compared to the PP
HWENO scheme.

Example 4.6. The 2D Sedov problem. The computational domain is a square of [0, 1.1] x [0, 1.1]. For the initial condition,
similar to the 1D case, the density is 1, the velocity is 0, the total energy is 10~12 everywhere except in the lower left corner
is the constant Oiif;s and y = 1.4. The numerical boundary on the left and bottom edges is reflective. The numerical
boundary on the right and top is outflow. The results at the final time T =1 of the PP hybrid HWENO schemes are shown
in the Fig. 4.6. About 13.82% and 14.62% cells are troubled cells for Re = 1000 and oo, and 63.64% and 62.64% computational

time is saved compared to the PP HWENO scheme.

Example 4.7. The shock diffraction problem. The computational domain is the union of [0, 1] x [6,11] and [1, 13] x [0, 11].
The initial condition is a pure right-moving shock of Mach number 5.09, initially located at x=0.5 and 6 <y < 11, moving
into undisturbed air ahead of the shock with a density of 1.4 and a pressure of 1. The boundary conditions are inflow
at x=0,6 <y <11, outflow at x=13,0<y <11,1<x <13,y =0 and 0 <x <13,y =11, and reflective at the walls
0<x<1,y=6and at x=1,0 < y <6. The final computing time T = 2.3. It is well known that the diffraction of high
speed shock waves at sharp angles leads to low density and low pressure. See Fig. 4.7 for the results. For compressible
Euler equations, about 5.07% cells are troubled cells, and 63.76% CPU time is saved compared to the PP HWENO scheme.
For compressible Navier-Stokes equations, about 4.39% cells are troubled cells, and 64.45% CPU time is saved compared to
the PP HWENO scheme.

5. Concluding remarks

In this paper, we have constructed the positivity-preserving FV hybrid HWENO scheme for solving compressible NS
equations, based on the work in [26,32]. For compressible Euler equations, the scheme is much more robust than hybrid
HWENO schemes in [32]. For both Euler and Navier-Stokes equations, it performs well on representative challenging low
density and low pressure problems. Thanks to hybridization techniques, it is not only more efficient than conventional
HWENO schemes, but also produces better resolution for high Reynolds number flows due to less artificial viscosity. Nu-
merical tests have demonstrated the robustness and the efficiency of the scheme. Future work includes the extension of
the positivity-preserving FV hybrid HWENO scheme to unstructured meshes and the positivity-preserving finite difference
WENO scheme for compressible Navier-Stokes equations.
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Fig. 4.3. The Double Rarefaction problem. T = 0.6. From top to bottom: density, velocity, pressure, and time history of troubled cells. Re = co (right) and
1000 (left). Solid line: the exact solution; squares: PP hybrid HWENO scheme on uniform 200 cells.
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history of troubled cells. Solid line: the reference solution; squares: PP hybrid HWENO scheme on uniform 3200 cells.
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Fig. 4.6. The 2D Sedov problem. T = 1.0 for Re = oo (Left) and 1000 (Right). Top row: 30 equally spaced contour lines from 0.95 to 5 for density. Bottom
row: troubled cells at final time. The PP hybrid HWENO scheme with mesh size Ax= Ay =1.1/160.
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Appendix A

The hybrid HWENO reconstruction for function values u(x, y) at the specific points based on the zeros-order and first-
order moment can be found in [32]. To implement the scheme in this paper, we still need a reconstruction of gradients
Vu(x, y). Here we describe the hybrid HWENO reconstruction for derivative uy(x) and the partial derivatives uy(x, y) and

uy(x, y).
A.1. One-dimensional case

We consider the reconstruction procedure for derivative values (ux);f|E1 and (u,()ii\/g/10 from {u;, vi}. Here uj(t) =
2

ﬁ f,l_ u(x, t)dx is the zeroth order moment and v;(t) = ALX f,i u(x, t)x;—;"'dx is the first order moment in I;. Given the sten-

cils S1,S2, S3 and Sy, similar to hybrid HWENO reconstruction of (u)jﬁil and (u)ii\/g/10 in [32], first identify the troubled
2

cell and modify the first order moment in the troubled cell as in [32]. If one of the cells in stencil Sp is identified as a
troubled cell, then apply the HWENO method described in Step A.1 to reconstruct (ux)fi, ; otherwise we use the linear re-
2
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Fig. 4.7. The Shock Diffraction problem. T =2.3 for Re = oo(Left) and 1000 (Right). From top to bottom: density 20 equally spaced contour lines from
0.066227 to 7.0668, pressure 40 equally spaced contour lines from 0.091 to 37, and the troubled cells at the final time. The PP hybrid HWENO scheme
with mesh size Ax=Ay =1/32.

construction method described in Step A.2 to reconstruct (u,()?Eil . We use linear reconstruction for (uy);, 5710 O0 all cells,
2

as described in Step A.3.
StepA.1. The HWENO reconstruction of (ux)fil.
2
In [32], the reconstruction procedure involves the Hermite cubic polynomials pq(x), p2(x), p3(x) in the small stencils
S1,S2, S3 and a Hermite quintic polynomial po(x) in a large stencil So. Now, we need the derivative of these polynomial at
cell boundary x;, 1 in terms of the averages, which can be written as:

_5 9 L 19 1 97 . _ 62
T36Ax ' 4Ax T oax TP I8Ax TN T 18Ax T 9ax TE

20

/
pO(xH_%)
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e 21 21, 51 99,
P i+3’ 7 2Ax Ui-1 arx T 2Ax VT oAx "
L(X 1) = > i LY S
P2 ) = oAt T AT 2aAx T T T1ax
L(Xia 1) = — ol i1 — T — S,
Py ) = 7 aax T T aax i T 2ax T T 2ax T

3 s . 11 44 124
By p{)(x”%) =3 n y,{p;(xi+%). we obtain linear weights y| = 755, V5 = 765, V3 = 135

tors for the reconstruction of derivatives as

Z/A X294 1<3 p"(x)> dx, n=1,2,3, (A1)

o:21

and define the smoothness indica-

then
, 1 _ _ _ _ 5 975 _ _ _ _ 9
B =Z (15uj_1 — 15u; + 66v;_1 + 114v;)“ + a (Uj—1 —u; +6vi_1 +6v))~,

_ 975 _ _
B = (Ui—1 — 200 + biy1)% + 1 (fi—1 — i1 + 24V,

o1 o, 95 o,
B3 =2 (15u; — 15U;41 + 66Vi11)” + e (W — Ujp1 +6Vi +6Vip1)”.

Wn : = Vn/ — - H
TR with @, = —(e+ﬁ,’1)2’n =1, 2, 3. The final HWENO reconstruction of

The nonlinear weights are computed as wj, =
(ux)i_+l is given by (ux)i_+l = Zi:] w{]p;(xi+%). Similarly, we can obtain the HWENO reconstruction of (ux);:l
2 2
StepA.2. The linear reconstruction of (ux)l,j_jcl
2

If no cells in Sy are identified as troubled cells, then we simply use upwind linear reconstruction for (”x)?;l
2

ot , =t ( ): 19wy | 9 5w 62viq 97vi | 11Vig
-3 o\%i-3 9AX 4Ax  36Ax 9AX 18Ax 18Ax ’

(Ux) —p < >= 5uj_q _ 9u; 19uiy1 11vi4 _ 97v; 62Viyq
+5 7 T0UH3) T 36Ax  4Ax | 9AX 18Ax  18Ax = 9Ax

StepA.3. The linear reconstruction of (uy);, J5/10°

w e (x B 99[Jr i +11f 99v5 1)
Wies TPo\ %oy ) T 7\ 360ax T 72 ) Y T 20ax " T\ 360 72 ) M

2145 1\ . 1069+/5 _ 215 11\ ._
—(ZOAX+—)V1—1+7V1'—( arreudl RASSE

180Ax 90AXx 20Ax ' 180AX

wo. o —p (x (995 1 o 11[ N 99J§+1 i
Dipys TPo\ i ) T\ 360ax ~ 72 )T T 20ax " T\ 360 T 72 ) i

2145 11 ) 1069+/5 _ 21[ 11 )
+ Vit + —————Vi Viy1

20Ax  180Ax 90ax 1T\ T 20ax T 180Ax

A.2. Two-dimensional case

Similar to the one-dimensional case, firstly, we first identify the troubled cells and modify the first order moment in the
troubled cells, see in [32] for detail. Then, we use the HWENO reconstruction in StepA.4 to reconstruct uy(Gg) and uy(Gy)
only when Gy is in the interior of a troubled cell I; ;. For all other cases, we use the linear reconstruction in StepA.5.

StepA.4. Suppose we have constructed the eight Hermite cubic polynomials pi(x, y),..., ps(x, y) in the small stencil
and have the explicit expression of these polynomials in [32]. Then we can get the values of the partial derivative of these
polynomial at the specific points. To combine the polynomials to obtain third-order approximation to uy and uy at the point
Gy, we choose the linear weights denoted by y)flk), s y)fg) yjf’;), . ,y(? such that

8 k 8 k
UG =Y van P (G, B (G =5y Vo' 2:Pn (Gi) (A2)
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which are valid for any quadratic polynomial u. Then we can obtain third-order approximations to uy and uy at the point G
for all sufficiently smooth functions u. Notice that p,(x, y) is an incomplete Hermite cubic reconstruction polynomial, (A.2)

holds for any polynomial u which is a linear combination of 1, x, y, X%, xy, y2, x3, y* if ¥5_, y® =1 and if 3°8_, y)f’f,) =
respectively. There are two other constraints on each of the groups of linear weights yx(f), y,fg) and y;’;), }f’g) for (A.2)
to hold for u = x?y, xy? respectively. This leaves 5 free parameters in determining each group of the linear weights, obtained

8 8
uniquely by the least square methodology on )" (yx(,f))2 and ) ()/)f’,‘,))2 respectively.

n=1 n=1
Similar to the one dimensional case, if Gy is in the interior of a cell I; ; we use linear reconstruction to get ux(G,) and
uy(Gy). Only when G, is located on the cell boundary of a troubled cell I; ;, we use HWENO reconstruction procedures as

follows. We compute the smoothness indicator, denoted by Sy

3 1) 2
_ a1 9 _
Bo=>_ || / (axhaylz Pn(x, y)) dxdy, n=1,...8, (A3)
[£]=2 .
ij
where ¢ = (€1, £3), |£| = £1 + £2. Computing the nonlinear weights:
O_ a8 —wo_ vy O _ a8 —wo_ vy _
Wxn = TP i wyn—myka _W’ k,¢=1,.--,8. (A4)

Wy = :
ool kT e

The HWENO reconstruction to u,(Gx) and uy, (Gk) given by uy (Go) = g:1w§ﬁ)%pn(6g) and uy, (Ge) =

g=1 wj(fn)%pn (Gy). The reconstructions to u; (G,) and u;,L(Gg) are similar.

StepA.5. The linear approximation of the partial derivatives at point G, can be taken directly by (A.2).
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