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Abstract

We adopt the deep learning method CASI-3D (Convolutional Approach to Structure Identification-3D) to
systemically identify protostellar outflows in '>CO and 'CO observations of the nearby molecular clouds,
Ophiuchus, Taurus, Perseus, and Orion. The total outflow masses are 267 M., 795 M., 1305 M, and 6332 M, for
Ophiuchus, Taurus, Perseus, and Orion, respectively. We show the outflow mass in each cloud is linearly
proportional to the total number of young stellar objects. The estimated total 3D deprojected outflow energies are
9 x 10% erg, 6 X 10 erg, 1.2 x 10%7 erg, and 6 X 104 erg for Ophiuchus, Taurus, Perseus, and Orion,
respectively. The energy associated with outflows is sufficient to offset turbulent dissipation at the current epoch
for all four clouds. All clouds also exhibit a break point in the spatial power spectrum of the outflow prediction
map, which likely corresponds to the typical outflow mass and energy injection scale.

Unified Astronomy Thesaurus concepts: Interstellar medium (847); Stellar jets (1607); Convolutional neural
networks (1938); Young stellar objects (1834); Stellar feedback (1602); Molecular clouds (1072); Star formation
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(1569); Astronomy data analysis (1858)

1. Introduction

Protostars launch energetic collimated bipolar outflows during
the star formation process. This outflow gas entrains and
accelerates the surrounding material to higher velocities than that
of the ambient cloud gas, injecting a substantial amount of
energy into the host molecular cloud (Frank et al. 2014;
Bally 2016). Numerical simulations suggest protostellar outflows
not only reduce the core and stellar mass (e.g., Hansen et al.
2012; Offner & Chaban 2017) but also depress the star formation
rate and star formation efficiency in molecular clouds (e.g.,
Federrath et al. 2014; Federrath 2015; Cunningham et al. 2018).
Meanwhile, protostellar outflows likely control the shape of the
stellar initial mass function (IMF; Cunningham et al. 2018;
Guszejnov et al. 2021). Theoretical and numerical studies
indicate that protostellar outflows are highly efficient at driving
turbulent motions (Matzner 2007; Nakamura & Li 2007
Moraghan et al. 2013). In small-to-intermediate-sized clouds,
energy injected by protostellar outflows can compensate for
rapid turbulent dissipation over at least several dynamical
timescales (Cunningham et al. 2006; Li & Nakamura 2006;
Matzner 2007; Carroll et al. 2009). Consequently, protostellar
outflows may stall the local gravitational collapse of molecular
clouds, thereby extending the cloud lifetime (Wang et al. 2010).
The role of protostellar feedback on the fate of molecular clouds
is still under debate (Bally 2016).

Unfortunately, the mechanism by which protostellar out-
flows convert their kinetic energy into turbulent energy remains
poorly understood observationally (Frank et al. 2014). In
practice, astronomers usually evaluate outflow impact by
comparing the total kinetic energy from protostellar outflows
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with the turbulent energy of their host cloud. For example,
Arce et al. (2010) identified 60 outflow candidates in the
Perseus molecular cloud and concluded the total outflow
energy is sufficient to replenish the dissipation of turbulence.
A similar result was also found in Taurus (Li et al. 2015),
in Ophiuchus (Nakamura et al. 2011), and in Orion
(Feddersen et al. 2020).

Accurately determining the impact of protostellar outflows,
especially quantifying their effect on the cloud energy budget,
requires a complete census of outflows. However, it is
challenging to identify most of the outflows that are deeply
embedded in dense clouds (Arce et al. 2010; Dunham et al.
2014a). The morphology of these embedded outflows are not as
distinct as isolated ones in low-velocity channels, and the
outflowing gas is difficult to separate from the ambient cloud.
Protostars are often clustered, and their outflows interact,
making visual identification challenging. One solution is to
calculate the outflow gas whose velocity is significantly above
the cloud velocity dispersion and extrapolate the total mass
(Arce et al. 2010; Li et al. 2015; Feddersen et al. 2020).
However, this leads to an order-of-magnitude uncertainty
(Arce et al. 2010).

Recent developments in machine-learning approaches have
enabled automated detection, which can separate outflows from
cloud emission and conduct systematic identification of outflow
features (Zhang et al. 2020; Xu et al. 2020b). Zhang et al.
(2020) employed support vector machines (SVMs) to identify
molecular outflows in a dark cloud complex from molecular
line emission. Although SVMs perform robustly in classifica-
tion tasks, they require preprocessing of the raw data cubes,
i.e., manually extracting feature vectors that represent the raw
data. The choice of input features is determined subjectively by
visual inspection, and extracting these features from data cubes
is nontrivial. Moreover, the manually extracted features discard
part of the information embedded in the raw spectral cubes,
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which introduces uncertainty and affects the performance of
classification. Convolutional neural networks (CNNs) are a
powerful new approach being applied to identify structures or
objects in astronomical data, such as exoplanets (Shallue &
Vanderburg 2018), stellar feedback bubbles (Van Oort et al.
2019; Xu et al. 2020a), and protostellar outflows (Xu et al.
2020b). Given a labeled training set of images or spectral cube
data, CNNs can be applied to efficiently identify features in
large surveys. Van Oort et al. (2019) developed a Convolu-
tional Approach to Shell/Structure Identification, CASI, to
identify stellar feedback bubbles in 2D density slices and '*CO
integrated intensity maps. Xu et al. (2020a) and Xu et al.
(2020b) successfully extended CASI to CASI-3D, which is able
to identify stellar feedback bubbles and protostellar outflows in
position—position—velocity (PPV) molecular line spectral
cubes. Xu et al. (2020b) applied CASI-3D to '*CO observations
of the Perseus molecular cloud and identified all 60 previously
visually identified outflows. Additionally, CASI-3D found 20
new high-confidence outflows. Apart from structure identifica-
tion, CASI-3D successfully predicts hidden information in the
data cube, such as the fraction of mass associated with
feedback, which provides a more accurate feedback mass
estimation. Xu et al. (2020a) showed that the actual mass
associated with stellar feedback in Taurus is an order of
magnitude smaller than the previous visual estimates. These
results illustrate the capability of CNNs to identify complex
structures and infer embedded information.

In this paper, we adopt the deep learning method CASI-3D to
systemically identify protostellar outflows in the nearby
molecular clouds, Ophiuchus, Taurus, Perseus, and Orion.
We describe CASI-3D and the CO observations of these nearby
molecular clouds in Section 2. In Section 3, we present the
performance of our CNN models in identifying protostellar
outflows in the observational data, calculate the physical
properties of outflows, and discuss their impact on the clouds.
We discuss the broader impact of outflows and compare them
with stellar-wind-driven bubbles in Section 4 and summarize
our results and conclusions in Section 5.

2. Data and Method
2.1. COMPLETE Survey

The "*CO J=1-0 (115.271 GHz) and *CO J=1-0
(110.201 GHz) lines were observed simultaneously in surveys
of Ophiuchus, Taurus, and Perseus between 2002 and 2005
using the 13.7m Five College Radio Astronomy Observatory
(FCRAO) Telescope (Ridge et al. 2006; Narayanan et al.
2008). The main beam of the antenna pattern has an FWHM of
45" for '*CO and 47” for ">CO. The data are obtained on the
fly, but they are resampled onto a uniform 23” grid (Ridge et al.
2006).

The Ophiuchus data has rms antenna temperatures of 0.98 K
and 0.33 K for '2CO and *CO, respectively. We resampled the
spectra with a lower velocity resolution of 0.125 kms™' to
ensure a uniform velocity resolution for all regions and to
match the resolution of the training set. If the velocity
resolution is too low (>0.3 km sfl), the structure generated
by stellar feedback is not distinguishable across multiple
velocity channels. On the other hand, if the velocity resolution
is too high (<0.1kms™'), the training data will hit the
limitation of GPU memory. The noise levels for the new
Ophiuchus '*CO and "CO spectra are reduced by a factor of

Xu et al.

square root of 2-0.69 K and 0.23 K, respectively. The final
Ophiuchus data cube has a velocity range between —0.8 and
7.5 kms ™" with 67 channels.

The Taurus data has an rms antenna temperature of 0.28 K
for "*CO and 0.125 K for '*CO. There are 80 and 76 channels
with 0.26 and 0.27kms ' spacing for '2CO and '*CO,
respectively. The velocity range of the Taurus data spans
—5.1to 14.9 kms_".

The Perseus 'CO and '*CO data have rms antenna
temperatures of 0.25 K and 0.2 K, respectively. We resampled
the spectra with a lower velocity resolution of 0.125 kms™' to
ensure a uniform velocity resolution for all regions and to
match the resolution of the training set. The noise levels for the
new '“CO and '*CO spectra is reduced by a factor of the square
root of 2 to 0.17 K and 0.14 K, respectively. The final Perseus
data cube has a velocity range between —2.0 and 15.0 kms ™'
with 137 channels.

2.2. NRO45 Orion Survey

The 'CO J=1-0 and *CO J=1—0 observations of
Orion A were carried out from 2007 to 2017 by the Nobeyama
Radio Observatory 45 m telescope (NRO 45m), using two
different receivers (Shimajiri et al. 2015a, 2015b; Ishii et al.
2019; Nakamura et al. 2019). The two maps were calibrated to
the same intensity scale and combined on a common grid with
a pixel scale of 7”5, which corresponds to an effective angular
resolution of 22”. Ishii et al. (2019) smoothed the combined
map to a velocity resolution of 0.22 kms™', and further
converted the intensity to the main beam temperature scale that
is benchmarked with data from FCRAO and the Institute for
Radio Astronomy in the Millimeter Range 30 m. The final
sensitivity for the '>CO map is 0.35 K, while the sensitivity for
the '>CO map is 0.40 K. The velocity range of the Orion data
spans —2.9-19.3 kms~'. More detailed descriptions about the
data can be found in Kong et al. (2018) and Ishii et al. (2019).

2.3. YSO Catalog

To validate our outflow identifications, we compare our
feedback maps with the observed distributions of YSOs. We
use the YSO catalog for Ophiuchus and Perseus from the
Spitzer Extended Solar Neighborhood Archive (SESNA;
R. Gutermuth et al. 2021, in preparation) used by Pokhrel et al.
(2020). SESNA uses an updated implementation of the data
treatment, source catalog construction, and YSO identification
and classification processes on Spitzer surveys (Gutermuth et al.
2009). SESNA classified YSOs into four groups: deeply
embedded protostars, Class I YSOs, Class I1 YSOs, and transition
disks. For further analysis, we combine the former two groups
as “younger YSOs” and merge the latter two groups as
“older YSOs.”

We adopt the YSO catalog from Rebull et al. (2010) for
Taurus, which contains 215 previously identified YSOs and
148 newly identified YSOs. Rebull et al. (2010) adopted
observations from the InfraRed Array Camera (IRAC) and
Multiband Imaging Photometer for Spitzer (MIPS) between
2005 and 2007. Rebull et al. (2010) applied color-magnitude
criteria to select the YSO candidates and classified these YSO
candidates into four different classes: Class I, II, III, and flat.
For further analysis, we combine YSOs in Class I and flat into a
single category of “younger YSOs” and merge YSOs in
Classes II and III into a single category of older YSOs.”
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We adopt the YSO catalog from Megeath et al. (2012) for
Orion, which contains a total of 3479 dusty YSOs from IRAC
and MIPS observations. Megeath et al. (2012) classified these
YSOs into three categories, which includes 2991 young stars
with disks, 428 protostars, and 50 faint candidate protostars.
For further analysis, we designate protostars as ‘“‘younger
YSOs” and young stars with disks as “older YSOs.”

YSOs in the group of “younger YSOs” have an average age
smaller than 1 Myr, while YSOs in the group of “older YSOs”
have an average age around 1-3 Myr (Dunham et al. 2014b).
However, it is worth noting that truly younger YSOs and older
YSOs may be misclassified based on their orientation with
respect to the line of sight (LOS; Offner et al. 2012), which
means the actual age of an individual YSO in the group of
“younger YSOs” is not necessarily younger than that of an
object in the group of “older YSOs.”

Finally, we note that not all of the surveys completely cover
the area of observed molecular emission. We focus our analysis
on the areas with YSO coverage and indicate the boundaries of
the surveys on the maps.

2.4. Method
2.4.1. CASI-3D

We adopt the previously trained CASI-3D model from Xu
et al. (2020b) to identify protostellar outflows in '*CO. CASI-3D
is an encoder-decoder based CNN combining both residual
networks (He et al. 2016) and a “U-net” (Ronneberger et al.
2015). CASI3D is trained on synthetic '>CO data, which
models forming stars that launch protostellar outflows. We
adopt the same training set and ranges of magnetohydro-
dynamic (MHD) model properties as described in Xu et al.
(2020b, Table 1). We adopt three different 2CO abundances
and two different cloud kinetic temperatures when conducting
synthetic observations as described in Xu et al. (2020b, Table
2). CASI-3D takes '*CO data cubes as input and predicts the
position of outflows on the voxel level. Xu et al. (2020b)
trained two CASI-3D models to identify protostellar outflows.
One model, model MEI1, is trained to predict the 2co
emission that is associated with outflows. The other model,
model MF, is trained to predict the fraction of the mass that
comes from stellar feedback. A more detailed description of
how we generate training data for these two models can be
found in Xu et al. (2020b).

2.4.2. Data Preprocessing

Before we apply our CASI-3D models to the observational
data, we apply the same preprocessing steps that we adopt for
the training data. Due to the relatively large dynamic range of
the '2CO emission, we take the logarithm of the emission and
then normalize the values by subtracting the mean and dividing
by the standard deviation of the full map. Figure 1 illustrates
the cumulative distribution of normalized emission for the four
clouds. Although the '*CO emission varies significantly
between clouds, after preprocessing, the normalized emission
of the four clouds is similar. This allows CASI-3D to perform
stably across a variety of conditions.

Xu et al. (2020b) examined the performance of CASI-3D on
conditions that are not included in the training set, such as
different kinetic temperatures, 2co abundances, beam sizes,
and noise levels. CASI-3D is able to successfully identify
outflows across a variety of physical and observational
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Figure 1. Cumulative distribution function (CDF) of the normalized emission
for the four clouds.

conditions. See Appendix C in Xu et al. (2020b) for more
details. These tests suggest that the CASI-3D identifications are
relatively robust across the range of conditions expected to be
characteristic of the observed clouds.

After preprocessing the observational data, we adopt the
same strategy as Xu et al. (2020a) to carry out the full '*CO
map prediction. We crop the full "*CO map into a stack of 3D
chunks. Each chunk has a size of 64 x 64 x 32 (PPV). To
reduce the bias due to the position of outflows, each chunk has
at least an 84% volume overlap with adjacent chunks. To
construct the full-map prediction, we combine the predictions
for the individual chunks and adopt the maximum predicted
value for each voxel.

2.4.3. Mass Calculations

We follow the same strategy as Arce et al. (2010) to
calculate the outflow mass by combining both '2CO and '*CO
data. If there is distinct '*CO emission at the corresponding
position, we use 3CO to calculate the outflow mass. We
assume the '*CO emission line is optically thin and the '*CO
emission line is optically thick. We adopt an excitation
temperature of 25 K or the '>CO peak temperature, whichever
is higher, to calculate the mass (Arce et al. 2010; Narayanan
et al. 2012; Li et al. 2015; Feddersen et al. 2020). If there is no
distinct '3CO emission at the corresponding position, we
assume the '*CO emission line is optically thin to derive the
mass. Under the assumption of local thermodynamic equili-
brium, the mass estimation scales linearly with the excitation
temperature. From previous feedback mass estimates, the
choice of excitation temperature ranges from 10 K to 50 K.
This could potentially introduce a factor-of-two uncertainty in
the mass estimation. We take 62 as the abundance ratio
between '2CO and '*CO and 10™* as the abundance ratio
between 2CO and H, (Arce et al. 2010; Feddersen et al. 2020).
We verify that the '>CO emission is generally optically thin for
all four clouds. For example, Orion has the largest cloud mass
and highest column density among the four clouds. The optical
depth of '*CO in Orion is less than 1 for 99.4% of the pixels
(see also Kong et al. 2018). Only 0.6% of the pixels have
713 > 1, and these are mostly in the OMC-2/3 and L1641-N
regions. The maximum value of 73 is 7.8.
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Figure 2. Intensity of '?CO (1-0) integrated over all velocity channels for Ophiuchus, overlaid with the model ME1 prediction (upper panel in red and blue contours)
and with the model MF prediction (lower panel in red and blue contours). Red contours indicate the integrated prediction over the channels that have velocities greater

than Ve, + 0.4 km s~ ! for model ME1 and Ve, 4+ 0.2 km s~' for model MF.
smaller than V.., — 0.4 km s~! for model ME1 and V., —

Blue contours indicate the integrated prediction over the channels that have velocities

0.2 km s~! for model MF. “Y” and “O” indicate the location of YSOs, as described in Section 2.3. The

contours start at 25th percentile of the sorted pixel values and end at 99.7th percentile of the sorted pixel values of the data, with six levels evenly spaced. It is worth
noting that the absolute values of the contour levels for models ME1 and MF are different. The contour levels for the model ME1 prediction start at 2.8 K km s~ for
the blueshifted lobes, and 2.2 K km s~! for the redshifted lobes, and end at 19.3 K km s ' and 15.3 Kkm s! for the blue- and redshifted lobes, respectively. The
contour levels for the model MF prediction start at 0.80 K km s~ (blue) and 0.96 K km s~ ! (red), and end at 7.2 K km s ' (blue) and 8.6 K km s ™' (red). The method

of plotting contours is the same for Figures 4, 5, 7, and 8.

3. Results
3.1. Outflows Identified in the Full Map

In this section, we present the prediction by models ME1
and MF on the four star-forming clouds (Ophiuchus, Taurus,
Perseus, and Orion). Most molecular clouds have a global
velocity gradient, which indicates there is no one unique
central velocity of a cloud. To better visualize the blue-
shifted and redshifted lobes of outflows, we remove the
large-scale gradient to make local outflow motions clearer,
i.e., shifting the velocity zero-point to the flux-weighted
central velocity of the spectrum for each pixel. We calculate
the flux-weighted central velocity from the first moment
maps. In order to reduce the velocity fluctuations on small
scales, we apply a Gaussian kernel with an FWHM that
corresponds to 0.1 pc to convolve the first moment maps. For
each pixel, we show the integrated prediction over the
channels that have absolute velocities greater than the central
velocity by the specified thresholds.

3.1.1. Ophiuchus

Figure 2 shows MEl and MF model predictions for
Ophiuchus. Both models identify a large amount of outflow

activity in the region of the large, central star cluster. In
contrast, the models identify much less outflow activity just
north of the cluster, which has only a few YSOs.

Figure 3 shows the predicted outflow activity by models
MEI and MF toward the young star cluster region Lynds
1688 in Ophiuchus. The L1688 region has over 120 young
stars and a large number of interacting outflows. Model
ME]I, which performs similarly to human visual identifica-
tion, identifies almost everything as feedback in this region.
In contrast, Model MF provides an approach to disentangle
the outflow emission from the ambient cloud emission.
Quantitatively, model ME1 predicts 81% of the mass in this
region as outflows. However, model MF predicts that only
12% of the total mass is associated with outflows. Figure 3
shows that both models ME1 and MF are able to identify
coherent high-velocity structures in the position—velocity
diagram.

It is challenging to separate outflow emission from the cloud
emission in '“CO (1-0) “by eye,” since the cloud emission
dominates the '>CO (1-0) emission. Consequently, even an
expert astronomer can only separate the high-velocity comp-
onent from the host cloud emission but cannot identify the
outflow morphology near the rest-frame velocity of the cloud.
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Figure 3. Position—velocity diagram of '>CO emission toward the Ophiuchus L1688 region. Left panel: integrated intensity of '2CO over the full velocity range (from
—0.8 to 7.5 km s ') overlaid with the model ME1 and MF predictions in white contours. Letters “Y” and “O” mark YSO positions, as described in Section 2.3. The
purple line illustrates the cut direction of the position—velocity diagram. Middle and right panel: position—velocity diagram of '>CO emission overlaid with the model

MEI and MF predictions in white contours.

3.1.2. Taurus

Figures 4 and 5 show the ME1 and MF model predictions for
Taurus. The structures in the outflow prediction maps are more
discrete than those in Ophiuchus. One possible reason is that
YSOs in Taurus are more sparsely distributed than those in
Ophiuchus. Although the total number of YSOs in Taurus is
slightly larger, they are less clustered. In Ophiuchus, the
outflows driven by YSOs are more likely to interact and
overlap with each other. While in Taurus, the outflows are
more isolated.

Figure 6 shows the outflow activity predicted by models
MEl and MF toward a previously identified outflow,
TMO_06 (Li et al. 2015), in Taurus. Several young YSOs
are located around this outflow. Both models are able to
identify the blueshifted and redshifted lobes of this outflow.
However, the model MF prediction is more extended in the
position—velocity diagram. In high-velocity channels, the
2CO emission produced by outflows is usually faint while
the fraction of outflow mass is high. Model ME1 only
identifies the location of outflows and gives stronger
emission a higher weight. In this subregion, model MEI1
predicts that 43% of the mass in this region is associated with
outflows. However, model MF predicts that only 8% of the
total mass is outflows gas.

3.1.3. Perseus

Xu et al. (2020b) followed up previous visually identified
outflow targets and validated the model performance. Here we
extend that analysis by carrying out a “blind search” where we
analyze the full cloud. Figure 7 shows the full-map predictions
for both models. Both model ME1 and MF predictions are
more concentrated toward star clusters. The model MEI
prediction is more spatially extended than that by model MF.
This might be caused by a strong emission region with a low
outflow mass fraction, where model ME1 counts the entire
voxel as feedback while model MF recognizes that much of
this emission is cloud contamination and excludes it.

3.1.4. Orion

Figure 8 shows the model MEl and MF predictions for
Orion. Due to the large number of old evolutionary stage YSOs
in Orion, we only show the younger YSOs to reduce confusion.
We show the position of all Orion YSOs in Figure 22 in
Appendix C. The prediction by both models covers most of the
emission in Orion, which indicates outflows exist everywhere.
This is consistent with the extremely dense distribution of
YSOs in Orion.

Figure 9 shows the predicted outflow activity by models
MEI and MF toward a previously identified outflow, Outflow
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Figure 4. Intensity of '2CO (1-0) integrated over all velocity channels for Taurus, overlaid with the model MEI prediction (red and blue contours). Letters “Y” and
“O” mark YSO positions, as described in Section 2.3. The gray line encloses the Spitzer coverage, where YSOs are identified (Rebull et al. 2010). The contours start at
the 25th percentile of the sorted pixel values (0.47 K km s~ ', for blue contours and 0.49 K km s, for red contours) and end at the 99.7th percentile of the sorted pixel
values of the data (2.9 K km s’l, for blue contours and 3.4 for red contours), with six levels evenly spaced. Note that the absolute values of the contour levels for
models ME1 and MF are different.
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Figure 5. Intensity of '>CO (1-0) integrated over all velocity channels for Taurus, overlaid with the model MF prediction (red and blue contours). Letters “Y” and “O”
mark YSO positions, as described in Section 2.3. The gray line encloses the Spitzer coverage, where YSOs are identified (Rebull et al. 2010). The contours start at the
25th percentile of the sorted pixel values (0.27 K km s~ ', for blue contours and 0.27 K km s~ ', for red contours) and end at the 99.7th percentile of the sorted pixel
values of the data (1.7 K km sfl, for blue contours and 1.5 for red contours), with six levels evenly spaced.

No. 7 (Tanabe et al. 2019), in Orion. Both models similarly be the driving source. For reference, we illustrate the high-
highlight the coherent high-velocity structures. There are velocity components in blue and red contours, which are
several young YSOs located around this outflow, which could considered to be outflows by Tanabe et al. (2019). The mass of
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Figure 6. Position—velocity diagram of '>CO emission toward a previously identified outflow, TMO_06 (Li et al. 2015), in Taurus. Left panel: integrated intensity of
12CO over the full velocity range (from —1.5 to 13.4 km s~ ') overlaid with the model ME1 and MF predictions in white contours. Letters “Y” and “O” mark YSO
positions, as described in Section 2.3. The purple line illustrates the cut direction of the position—velocity diagram. Middle and right panels: position—velocity diagram
of 'CO emission overlaid with the model ME1 and MF predictions in white contours.

these high-velocity components is 268 M. Model MF predicts
the outflow mass to be 308 M, which is similar to previous
estimates. In this subregion, model ME1 predicts 61% of the
mass in this region is associated with outflows. However,
model MF predicts that only 13% of the total mass is
outflow gas.

3.2. Physical Properties of Outflows

In this section, we study the physical properties of the
outflows we identified and analyze the correlation between
the physical quantities of outflows and the number of YSOs
in the clouds. This analysis help us evaluate the robustness of
the outflow identification by CASI-3D. If the outflows are
accurately identified by CASI-3D, we should expect a linear
correlation between the outflow mass and the number of YSOs.
This is exactly what we find in this Section and Section 3.3.
Because our analysis aims to correlate the physical properties
of outflows with the number of YSOs, we only calculate mass,
energy, and momentum of outflows in the source catalog
covered area.

We follow the method in Section 2.4.3 to calculate the mass
of outflows. We adopt the model MF estimates for the fiducial
values. Figure 10 shows the mass estimates for the outflows in
the four molecular clouds. When there are more YSOs in the

region, the predicted outflow mass is higher. In Ophiuchus, on
average, each YSO (including both young and old) contributes
0.43 M, outflow mass to the host cloud. The values are 1.7 M,
2.8 M, and 3.4 M, for Taurus, Perseus, and Orion, respectively.
On average, in each of the four clouds, the total mass associated
with feedback is about 10% of the mass of the host cloud within
the area studied.

We define the 1D LOS momentum as the sum of the gas
mass in each channel multiplied by the channel velocity, where
we have shifted the mean cloud velocity to zero. To better
quantify LOS momentum, we subtract the central velocity
along each sightline to reduce the effect of large velocity
gradients across the entire cloud, as described in Section 3.1.
Subtracting the velocity gradient provides a better estimate of
LOS momentum, which reduces the impact of large-scale
motions on our estimates. For comparison, we also calculate
the LOS moment without subtracting the velocity gradient. The
LOS momenta of the outflows and the host clouds are
calculated by the following equations

P(VGsub) =Y Mco,ijx(Vijx — Vij), (1)
ik

P(VGnonsub) = > Mco,;jx(Vijx — Velobal)- ()
ik
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0.90 Kkm s~ ! (red), and end at 8.6 Kkm s~ ! (blue) and 8.0 K km s~ (red).

Similarly, we define the LOS kinetic energy as

2
1 _
E|VGsub) = > —Mco,ijx(vijx — Vij| 3)
Tk
2
1 _
E| VGnonsub) = —Mco,ijx(Vijx — Veiobal | - 4
ik

Figure 11 shows the LOS outflow momentum estimates for
the four molecular clouds. We list two sets of momentum
estimates: one that subtracts the velocity gradient and a second
that does not subtract the velocity gradient. We adopt the
momentum estimate by model MF, which subtracts the velocity
gradients as the fiducial estimate. The trend between the
momentum driven by outflows and the number of YSOs is
similar to that of the mass estimates for four clouds. In
Ophiuchus, the 1D momentum driven by outflows is around
10% of the total 1D momentum of the host cloud. In Taurus,
this momentum ratio is 8%. In Perseus and Orion, the 1D
momentum driven by outflows is around 16% of the total 1D
momentum, which indicates there are likely more high-velocity
structures identified as outflows. This is consistent with the star
formation history of these clouds. Taurus has a relatively low

star formation rate and mainly forms low-mass stars. On the
other hand, Ophiuchus and Orion are home to clusters forming
higher-mass stars and have more active star formation. Perseus
also contains some intermediate-mass stars, including a couple
of B-type stars (Arce et al. 2011).

Ophiuchus, Perseus, and Orion have larger velocity gradients
than Taurus, which indicates these clouds contain more
complex cloud kinematic structure. These velocity gradients
are likely caused by large-scale processes, such as gas accretion
(Klessen & Hennebelle 2010) or converging atomic gas flows
caused by spiral density waves (Wolfire et al. 1995; Heitsch
et al. 2006). Given the magnitude of these bulk motions, we
expect that the momentum estimate that includes the velocity
gradient overestimates the contribution of outflows, while the
momentum that subtracts the velocity gradient provides a better
estimate.

Figure 12 shows the LOS outflow kinetic energy for the four
molecular clouds. We adopt the kinetic energy estimates by
model MF that subtracts the velocity gradient for the
comparisons. In Ophiuchus, the LOS kinetic energy injected
by outflows is around 6% of the total LOS kinetic energy of the
host cloud. In Taurus, this energy ratio is 4%. In Perseus and
Orion, the LOS kinetic energy injected by outflows is around
14% of the total LOS kinetic energy. Since kinetic energy is
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proportional to v, one caveat here is that a small amount of
mass located at high velocities likely dominates the kinetic
energy estimates. However, due to observational limits, some
high-velocity gas emission vanishes into background noise,
such that our kinetic energy calculation is likely an under-
estimate. As discussed in Xu et al. (2020b), this could
potentially introduce a factor-of-two uncertainty.

3.3. Correlation between the Outflow Properties and the
Number of YSOs

In this section, we study the correlation between the total
mass, momentum, and energy associated with outflows and the
number of YSOs. Due to the extended and overlapping nature
of the outflow emission, it is not possible to definitively
associate particular sources with particular outflows. Instead,
we consider an approach that independently counts the number
of YSOs and the outflow impact in a region. We define a
“window” to scan through the entire cloud region. We adopt
window sizes of 0.5 pc x 0.5 pc, 1 pc x 1 pc, and 2 pc X 2 pc to
scan Ophiuchus, and 2 pc x 2 pc, 3 pc x 3 pc, and 5 pc x 5 pc
to scan Taurus and Orion. Since Perseus has the poorest
physical resolution, and its full map is narrow, we only adopt
window sizes of 2pc x 2pc and 3 pc X 3pc to prevent the
window exceeding the region. We examine the effect of our
choice of window sizes in Appendix A. We set a scanning step
size such that each box overlaps with its neighbors by at least
80%. We calculate the mass, momentum, and energy inside the
window and count the number of YSOs inside. We consider the
outflow relationship between the number of both young YSOs
and total YSOs.

Figure 13 shows the correlation between the mass associated
with feedback and the number of YSOs in the four clouds. The
outflow mass grows linearly with the number of young YSOs
for all four clouds. However, the clouds have different offsets,
indicating that the outflow mass per young YSO varies. Orion
has the most mass associated with outflows per young YSO.
However, Orion also has a very large population of older
YSOs, which may also drive outflows. The right panel of
Figure 13 shows that the correlation between the outflow mass
and the number of total YSOs is tighter, and most of the
separation between different clouds disappears. There is a
linear relation between the outflow mass and the number of all
YSOs, where on average, each YSO is associated with 1 M, of
outflow material. The outflow mass directly launched by the
protostar is expected to be 10%—-30% of the accreted gas, i.e.,
10%-30% of the star mass (e.g., Shu et al. 1988; Pelletier &
Pudritz 1992). However, here our outflow estimate also counts
entrained mass, which is much higher (e.g., Offner &
Chaban 2017). Our results suggest 1 M., of outflow material
per source. Assuming a 1 M., star, for example, theoretical
models for outflow launching predict that the outflow mass
directly launched would be about 0.1-0.3 M, (e.g., Shu et al.
1994; Bontemps et al. 1996). This implies that 0.7-0.9 M, of
the outflow gas we identify is entrained. This gives a mass-
loading factor of 2.3-9. This is comparable to the mass-loading
factor estimated from simulations of individual protostars and
the average core-mass-function to stellar IMF offset (Machida
& Hosokawa 2013; Offner & Arce 2014; Offner &
Chaban 2017). It is worth noting that our outflow estimate is
larger than previous observational estimates. The main reason
is that CASI-3D is able to capture the outflow material that has
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Figure 9. Position—velocity diagram of 12CO emission toward a previously identified outflow, Outflow No. 7 (Tanabe et al. 2019), in Orion. Left panel: integrated
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velocity diagram of '>CO emission overlaid with the model ME1 and MF predictions in white contours.

relatively low velocities. The low-velocity outflowing gas
entrains a significant amount of mass that also contributes to
the momentum and kinetic energy of the host cloud, but it is
not possible to separate this gas from the ambient gas by eye.
Previous work mainly considered the high-velocity outflow
mass only.

Younger sources power stronger outflows (Bally 2016), so we
might expect a tighter relation between the outflow mass and the
number of young YSOs. However, we see better correlation
between outflow mass and the total YSO number. There are
several possible explanations. First, low-mass sources, with ages
up to 34 Myr (Bally 2016) continue to launch outflows, albeit
weaker ones. We discuss an example in Section 4.1, where an
outflow is likely driven by old evolutionary stage YSOs. Second,
although young YSOs have a higher mass-loss rate, the outflow
mass is a combination of both the mass-loss rate and the launching
duration. The older YSOs likely have ejected a significant amount
of gas by the time they are observed. In addition, our method may
include outflow “relics.” The dissipation timescale of outflow
features produced by young stars is much longer than the lifetime
of the driving source. These fossil outflows might remain even as
their driving sources evolve to older evolutionary stages.
Cunningham et al. (2006) found a similar scenario in numerical
simulations, where fossil outflows retain speeds above the
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turbulent velocity for a timescale that is 10 times the duration
of their driving source. Similarly, Offner & Chaban (2017) found
in simulations that although the high accretion and active outflow
phase lasts for ~0.05 Myr, their impact on the velocity dispersion
of the host clouds remains for several 0.1 Myr.

In our outflow mass estimate, a significant amount of the
total outflow mass is derived from emission in the cloud
velocity channels (|v| < 1 kms™"). This raises the concern that
our results may be contaminated by dense, non-outflow
material. In Appendix E we evaluate the effect of dense gas
contamination on the derived outflow masses and YSO
relations. We show that our outflow mass estimate is not
significantly contaminated by dense gas.

We show the correlation between the outflow momentum and
the number of YSOs in Figure 13. The trend is similar to that of
outflow mass. On average, one YSO injects 1 Mg kms™'. This
indicates the mass-weighted LOS velocity is 1km s, which is
even smaller than the cloud turbulent velocity derived from '2CO.
This is because the '>CO emitting region dominates the mass of
the cloud and the outflows, which usually has a velocity
dispersion only half that of '>CO. For example, after subtracting
the velocity gradients, the '?CO velocity dispersion in Orion is
~1.5kms ', while that of '*CO is only 0.8 kms . The mass-
weighted LOS velocity dispersion in Orion is 0.98 km s ~'. Model
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MF predicted outflow gas has an LOS velocity dispersion of
1.02 km's™ " in Orion. All of these numbers are similar for the four
clouds. Although the outflow '2CO emission spans 2-3 kms™"'
across the velocity channels, most of the mass is associated with
gas within 0.8 kms ™' of the cloud mean velocity, i.., the '>CO
emitting regions. Near the rest-frame velocity channels, the gas
mass increases significantly, but the fraction of gas associated with
feedback drops. Consequently, there is a competition between
these two effects. Xu et al. (2020b) examined the outflow mass
located near the rest-frame velocity, which was ignored in
previous outflow surveys. As shown in Figures 16 and 17 in Xu
et al. (2020b), the rest-frame gas that is associated with the
outflows accounts for almost 75% of the total outflow mass. Thus,
the mass-weighted LOS velocity is relatively low, because high-
velocity gas contributes only a small portion of the total outflow
mass. In addition, the resolution and low signal-to-noise of the
data makes detecting high-velocity outflow emission difficult.
Consequently, the mass-weighted LOS velocity of outflows is
only 1 kms " for all four clouds. We show a position—velocity
diagram of an outflow in >CO in Appendix D.

Our mass-weighted LOS outflow velocity of 1 kms ™" is low
compared to typical outflow velocities estimated in previous
works of 1-4 kms ™! (e.g., Arce et al. 2010). This is caused by
the mass-weighting. In most cases, observers discard the rest-
frame gas emission, whose outflow morphology is difficult to
identify. This leads to a higher LOS velocity estimate.
However, CASI-3D is able to pick out the outflow emission
from the confused ambient gas emission near the rest-frame
velocity. Although the fraction of mass associated with
feedback is low, perhaps a few percent, the total mass near
rest frame, especially in '>CO emission channels, is
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significantly higher than that located at high-velocity channels.
After correcting for the contamination, the outflow gas near the
rest frame still dominates the total mass, which is consistent
with the conclusion in Xu et al. (2020b). On the other hand,
high-velocity gas is less dense and may be lost in the
background noise. Thus, we likely underestimate the total
outflow momentum by at least 10% (Xu et al. 2020b).

The correlation between the outflow kinetic energy and the
number of YSOs in the four clouds is similar to that of mass, as
shown in Figure 13.

3.4. Quantifying the Impact of Feedback with Turbulent
Statistics

Feedback, including stellar winds and outflows, injects
kinetic energy into the host cloud. The input energy influences
the shape of the spatial power spectrum (SPS) of the integrated
intensity map of 'CO. Xu et al. (2020a) found that stellar-
wind—generated bubbles flatten the SPS of the '>CO integrated
intensity map, which indicates that mass and energy are
injected at small scales. In this section, we investigate how
protostellar outflows affect the SPS of the '*CO integrated
intensity maps.

The SPS is defined as the square of the 2D Fourier transform
of an image:

P(k) = Z|k|:k|M0(k) |2

=1 [ Mywe 2 axp, 5)

where M), is the zeroth moment (integrated intensity) of '>CO.
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Figure 14 shows the SPS of Taurus where the emission is
above 0.2 K (i.e., excluding noise) and the SPS of the model
MEI and MF predicted feedback regions. Figure 14 shows that
the SPS of the feedback predictions breaks into two power
laws. The break point corresponds to a physical scale of
~0.5 pc, which might indicate the typical outflow mass and
energy injection scale. For reference, we show the scale bar of
this injection length in a subregion of Taurus in Figure 14. This
outflow injection scale is comparable to the typical outflow size
in Taurus.

We find similar broken power laws in Ophiuchus, Perseus,
and Orion. We list the SPS fits for all four regions in Table 1.
For a given cloud, we find the model ME1 break point scale to
be similar and usually slightly higher than that of the model
MF. Table 1 also lists the median of the distance between
young YSOs and their four nearest young companions.

There are several competing effects that likely influence the
location of the break point. For isolated outflows, the break
point size is close to the outflow physical scale. However, the
typical outflow size is not necessarily the same in all regions. It
is influenced by the gas density and how readily the outflow
can expand, as well as the source mass and age. In very
clustered regions, outflows interact with each other, since the

12

separation between sources is smaller. This causes the outflow
emission to blend together, which increases the break point.

The physical scale of the break point is small for Orion and
Ophiuchus, and Taurus has an intermediate break point scale,
while Perseus has the largest. Among the four clouds, Taurus
has the most distributed and least clustered YSOs. Taurus also
has the lowest average gas density. The mass/energy injection
scale in Taurus reflects the physical size of individual
molecular outflows. In Orion and Ophiuchus, the average
distance between stars is small, which increases the probability
that outflows from different sources interact. The mean gas
densities are also higher, and high external pressure from the
surrounding gas may also act to limit the propagation of
outflows. For example, Kirk et al. (2017) found that all dense
cores in Orion are pressure confined. All of these effects help to
explain the relatively small mass/energy injection scale.

The physical scale of the break point in Perseus is
significantly larger than that of the other regions. This might
be due to both its typical density, which is lower than that of
Orion and Ophiuchus, and the presence of multiple clusters in
Perseus. Perseus hosts several intermediate-mass star-forming
clusters, such as NGC 1333 and IC348. Outflows in these
clusters interact and blend together, such that mass/energy
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Table 1
Fitting Results of the Spatial Power Spectrum
b b
Cloud Full Map® MEI MF Young YSO
Slope Slope Break (pc) Slope Break (pc) Seperation® (pc)
Ophiuchus —3.17 £ 0.02 —2.47 £ 0.05 0.36 —1.82 £ 0.05 0.38 0.24
—3.71 £0.07 —3.78 £ 0.08
Taurus —2.92 +0.02 —1.59+£0.02 0.56 —1.49 +0.02 0.49 0.85
—3.26+£0.04 —3.47 £ 0.04
Perseus —3.07 £ 0.02 —2.18 £ 0.04 1.03 —2.21+0.03 0.65 0.31
—3.40 + 0.06 —3.47 £ 0.05
Orion —2.95+0.02 —2.294+0.03 0.36 —2.06 £+ 0.03 0.27 0.22
—3.75 4+ 0.05 —4.83 £ 0.05

Notes.

 Single power-law fit results for the spatial power spectra for the emission regions (excluding noise).

® Broken power-law fit results for the spatial power spectra applied to the ME1 and MF feedback maps.
¢ Median of the separation between YSOs and their four nearest companions.

injection occurs on a relatively larger scale compared to To investigate how YSO clusters affect the SPS break
individual stars. The average young YSO separation is slightly point, we conduct an SPS analysis toward two star clusters,
larger in Perseus than that in Orion and Ophiuchus, in part NGC1333 in Perseus and L1688 in Ophiuchus. We adopt
because the two main clusters contain few young YSOs. different window sizes to explore the location of the break
Consequently, the combination of these effects may explain point in the cluster when viewed on different size scales. When
the large mass/energy injection scale in Perseus. the window size is smaller than the cluster size, we find there is

13
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Figure 13. Correlation between the mass (top row)/momentum (middle row)/energy (bottom row) associated with feedback and the number of young YSOs (left
panel) or the number of all YSOs (right panel) in the four clouds. The filled circles indicate the total outflow mass (top row)/momentum (middle row)/energy (bottom
row) and the total number of YSOs (young YSOs in the left panel, all YSOs in the right panel) in the four clouds. The window sizes are 0.5 pcx0.5 pc, 1 pcx1 pc, and
2 pcx2 pe for Ophiuchus, and 2 pcx2 pe, 3 pcx3 pe, and 5 pcx5 pc for Taurus and Orion. The window sizes for Perseus are 2 pcx2 pc and 3 pcx3 pc.

no break point in the SPS for both clustered regions, and the
slope is steeper. When the window size is two or more times
larger than the cluster size, the break point appears. However,
the break point scale is not neatly correlated with the size of the
cluster nor the window size. NGC1333 has a break point
between 0.6 and 0.7 pc, while L1688 has a break point scale
between 0.3 and 0.4 pc. These scales are similar to those of the
full predictions, which suggests that the outflows in the
clustered regions are influencing the location of the overall
break point.

We also explore the effect of different observation resolu-
tions on the results. The observations of Ophiuchus, Taurus,
and Orion have a similar physical scale per pixel,
0.013-0.015 pc pixel "'. However, the physical scale per pixel
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of Perseus is twice that of the others. We convolve the
Ophiuchus and Orion observations to a similar effective
resolution as Perseus, and apply the CASI-3D models to these
convolved data cubes and conduct the same SPS analysis on
the convolved data. However, we find only minor changes in
the break point. For example, the break point remains the same
in the convolved Ophiuchus model MF prediction and
increases by 0.1 pc in the convolved Ophiuchus model ME1
prediction. However, it decreases by 0.08 pc in the convolved
Orion MEL1 prediction, while increasing by 0.08 pc in the Orion
MF prediction. We find no significant trend when convolving
with a larger beam and conclude the analysis is relatively
insensitive to the resolution. However, this test suggests that
the break point has an uncertainty of +0.1 pc, which is smaller
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the emission is above 0.2 K (excluding noise) and the SPS of the model ME1 and MF predicted feedback regions. The top right number in each panel indicates the
slope of the fit. The middle bottom number in each panel indicates the physical scale of the broken point.

than the difference between the break point of Perseus and
those of the other clouds.

Finally, to test whether (non-feedback) gas structures influence
the break point location, we compute the SPS for the dense
regions of the clouds that are traced by '*CO. We mask out the
low-intensity pixels to isolate only the dense gas. We compare the
results for two clouds, Orion and Taurus. When all pixels with
intensities below 5 K are removed, there is no break point in the
Orion SPS. For the densest regions, i.e., as defined using an
intensity cut-off of 10 K, we find a break point at 0.6 pc. This is
two times larger than that of the break point of the outflow maps.
We find a similar result in Taurus. When applying a high-intensity
cut-off, we find a break point around 1 pc, which is a size-scale
twice that of the break point identified by the Taurus SPS outflow
analysis. We conclude that our outflow predictions are not
correlated with dense cloud structures.

4. Discussion
4.1. Outflows without Driving Sources and False Detections

Confirming outflow identifications requires ancillary data, e.g.,
YSO catalogs. With the help of YSO locations, we are able to
increase confidence in the CASI-3D predictions, which are based
on '“CO data only. In this section, we discuss two cases predicted
by CASI-3D: a region in Taurus with no detected YSOs, and a
region in Orion with no young YSOs.

15

Figure 15 presents the channel-by-channel prediction by
model MF on a region with no YSOs in Taurus. This region is
considered to be a trans-Alfvenic flow regulated by magnetic
fields (Heyer & Brunt 2012; Heyer et al. 2016), which has low
surface brightness '?CO emission. There are no known YSOs
observed by GAIA or Herschel (Roccatagliata et al. 2020).
Consequently, we believe there is no outflow activity.
However, the model MF predicts outflow activity in this
region. Inspection of the channel map shows that a coherent jet-
like structure exists across several velocity channels. These
structures actually visually resemble outflows, which might be
the reason for the model failure.

Figure 16 shows the model MF prediction along a position—
velocity cut of the fake outflow in Figure 15. In the position—
velocity diagram, we identify two faint coherent high-velocity blobs
between 4 and 5 kms . Their morphology is similar to some of
the faint outflows (e.g., TMO22 in Li et al. 2015). Since these '*CO
structures are indistinguishable from true outflows, CASI-3D is not
able to recognize these false detections based only on '*CO
morphology. In terms of morphology, CASI-3D performs robustly in
identifying coherent high-velocity features that are similar to
outflows. But many mechanisms may cause coherent high-velocity
features, including but not limited to cloud formation, cloud—cloud
collision, gas phase transition near the cloud boundary, or gas flows
regulated by MHD waves (Heyer & Brunt 2012; Motte et al. 2014;
Nakamura et al. 2014; Heyer et al. 2016).
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Figure 15. '?CO channel map of a region with no YSOs in Taurus overlaid with the prediction by the model MF in white contours.

Figure 17 shows an example of the performance of models
ME]1 and MF toward a region where there are no young YSOs
in Orion. In the position—velocity diagram, we identify a clear
outflow-like feature above 10 km sfl, which is also identified
by the two models. We notice that there are several old
evolutionary stage YSOs nearby, which might act as driving
sources. One reason might be that the boundary between young
and old is not so well defined, which is discussed in
Section 3.3. Or these outflow structures might exist for a
much longer timescale than that of their driving sources. We
recognize that there are two velocity components in the
molecular cloud at this position. A narrow gas bridge located
around 8 kms™' connects these two gas components, which is
likely an outflow. We cannot confirm the origin of this high-
velocity component. It might be caused by the fossil outflows
from YSOs or by two converging gas flows. All of these
mechanisms cause similar high-velocity features, which cannot
be easily distinguished either visually or using CASI-3D.
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In order to validate that our CASI-3D models are sensitive to
gas velocity structures and morphology but not only the dense
regions, we examine the CASI-3D performance on several
previously identified filaments in Taurus. Panopoulou et al.
(2014) identified 10 filamentary structures in 13CO emission in
Taurus, and illustrated the PPV diagrams of the filaments in
Figure 15 in their paper. The filaments have very coherent
motions and exhibit small velocity dispersions. Their filaments
3, 4,5, 6, and 7 do not have significant high-velocity
components. When comparing with our outflow predictions
(Figures 4 and 5 in this work) and bubble predictions (Figures
17 and 18 in Xu et al. 2020a), we find that both models predict
little feedback along these filaments. However, when we look
at Filament 2 (also known as L1495/B213), we see a clear
high-velocity structure with a “U” shape. This morphology is
consistent with the theoretical bubble morphology shown in
Figure 5 in Arce et al. (2011). Unsurprisingly, both CASI-3D
models that identify bubbles and outflows predict the presence
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Figure 16. Position—velocity diagram of '2CO emission toward a region with no YSOs in Taurus. Left panel: integrated intensity of '2CO over the full velocity range
(from —1.5 to 13.4 km s~ ") overlaid with the model ME1 and MF predictions in white contours. The purple line illustrates the cut direction of the position—velocity
diagram. Middle and right panel: position—velocity diagram of '>CO emission overlaid with the model ME1 and MF predictions in white contours.

of feedback at the location of filament 2. CASI-3D may return a
false detection if the morphology of a structure is similar to that
of outflows or bubbles. In this case, visual inspection suggests
that filament 2 also contains a bubble, so it is likely that the
feedback identified by our models at this location is real. We
emphasize that machine-learning models are not perfect tools.
They must be applied with caution and checked thoroughly.

4.2. Outflows versus Bubbles

In this section we investigate the overlap between a model
identifying outflow feedback and one identifying stellar-wind
feedback. We present the prediction by two sets of models:
those trained to identify protostellar outflows and those trained
to identify stellar-wind-driven bubbles.

The morphology of bubbles is more symmetric and arc-like
compared to that of outflows. However, when the line of sight
is parallel to an outflow launching axis, i.e., looking through
the cavity of the outflow, the morphology of the outflow can
resemble that of a bubble. Figure 18 illustrates an example of a
synthetic outflow whose launching axis is parallel to the line of
sight. Consequently, models trained to identify outflows are
likely to also identify some bubble structures.

Figure 19 shows the prediction by models trained to identify
stellar-wind-driven bubbles toward Ophiuchus L.1688 Region.
Comparison with Figure 3 shows that the prediction by models
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trained to identify protostellar outflows covers most of the
regions that are identified as bubbles. Quantitatively, 68% of
the voxels are identified as feedback by both MF models, 21%
of the voxels are identified as only outflow feedback, while
11% of the voxels are identified as only belonging to bubbles.
Statistically, we might neglect 13% of the feedback gas
associated with stellar winds when adopting the mass estimates
predicted by models trained to identify protostellar outflows.
On average, the outflow mass predicted by models can serve as
a decent estimate for feedback mass.

To better investigate the difference between outflows and
bubbles, we employ an unsupervised learning method t-SNE (t-
distributed Stochastic Neighbor Embedding) to study the
similarities between the spectra of outflows and those of
bubbles. We discuss t-SNE and the results in detail in
Appendix B. Our main finding is that there is a variation in
spectra shape for outflows and bubbles. And even the spectra
that are dominated by outflow gas show various spectral
shapes. Meanwhile, there are some “transitional spectra” with a
shape similar to both. We note that the t-SNE representation
encodes only 1D information about the spectra and does not
represent any correlations in the spatial dimension. Conse-
quently, this analysis provides intuition for understanding the
features that the models select when they identify feedback,
and it illustrates the challenge of distinguishing outflows and
bubbles based only on the LOS spectrum.
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Figure 17. Position—velocity diagram of '>CO emission toward a region without young YSOs in Orion. Left panel: integrated intensity of '2CO over the full velocity
range (from 2.3 kms~' to 17.1 km s~ ") overlaid with the model ME1 and MF predictions in white contours. Letters “O” mark old YSO positions. The purple line
illustrates the cut direction of the position—velocity diagram. Middle and right panel: position—velocity diagram of '>CO emission overlaid with the model ME1 and
MF predictions in white contours.

12¢cO Slice Tracer 4.3. Impact of Outflows on Molecular Clouds

¥

In this section, we place our energy estimations (Section 3.2) in
the context of prior work and discuss the broader implications of
the global impact of outflows. Most prior work derives the total
outflow energy by assuming a moderate inclination angle and
multiplying the 1D energy estimate by a factor of three. For
example, Dunham et al. (2014a) adopted an inclination angle of
57”3, which yields an energy correction factor of 3.4. Here we
make the same assumption and report the 3D total, where we
multiply our 1D estimate by a factor of three.

Integrated Tracer To investigate the impact of outflows on turbulence, a typical
approach is to compare the turbulence dissipation rate and the
outflow energy injection rate (e.g., Arce et al. 2010; Li et al.
2015; Feddersen et al. 2020). However, the outflow energy
injection timescale is highly uncertain. As discussed in
‘ Section 3.3, we find the outflow mass is linearly correlated
‘ with the total number of YSOs instead of only the younger
sources, which indicates that the driving timescale of outflows
is even less clear. Instead, we compute the total outflow kinetic
energy—a quantity estimated as part of previous analyses in the
determination of the outflow injection rate—and compare our
Figure 18. A synthetic outflow whose launching axis is parallel to the line of sight. new values to those in the prior published studies. This allows

18
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Figure 19. Position—velocity diagram of '*CO emission toward Ophiuchus L1688 Region, similar to Figure 3 but predicted by models trained to identify stellar-wind-

driven bubbles.

us to conclude whether the impact of outflows is relatively
similar to, more or less, that in prior analyses.

Nakamura et al. (2011) conducted observations of 'CO
(3-2) and '2CO (1-0) toward an active cluster-forming clump
in Ophiuchus and identified six molecular outflows in both
data. Nakamura et al. (2011) derived the outflow mass from
2CO (3-2) and '>CO (1-0) emission located in the high-
velocity line wings. They derived a total outflow kinetic energy
of 6x 10* erg. After comparing the total outflow energy
injection rate with the dissipation rate of the supersonic
turbulence, Nakamura et al. (2011) concluded that outflows
inject significantly more energy than needed to offset the
dissipation of turbulence. In our work, we find that the total
outflow kinetic energy is 9 x 10 erg, which is an order of
magnitude larger than the value in Nakamura et al. (2011). A
larger area coverage in our work and using the optically thin
tracer '>CO in mass estimates might explain this difference.
2CO (3-2) and ">CO (1-0) are likely optically thick, which
could cause their outflow mass, momentum, and energy to be
underestimated. More importantly, our method does not discard
the outflow material ejected perpendicular to the line of sight
that is located near the cloud central velocity. Since our energy
calculation leads to a higher energy estimate, our result
confirms the conclusion that outflow kinetic energy is sufficient
to compensate for the dissipation of turbulence in Ophiuchus.

Li et al. (2015) conducted a feedback census in Taurus and
identified 55 outflows and 37 bubbles. They derived a total
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outflow energy of 3.9 x 10* erg, which is 1% of the Taurus
cloud turbulent energy. However, Li et al. (2015) found that
bubbles dominate the feedback energy. When also combining
the kinetic energy from bubbles, they found the total kinetic
energy from stellar feedback in Taurus is 30% of the cloud
turbulent energy. Since the energy injection rate from stellar
feedback is comparable to the dissipation rate of the cloud
turbulence, they concluded that stellar feedback, mainly in the
form of bubbles, is sufficient to maintain turbulence in the
current epoch. However, Xu et al. (2020a) showed that the Li
et al. (2015) bubble energy estimate was substantially
overestimated due to LOS contamination, which is caused by
gas emission that is not associated with feedback being
included in the outflow /bubble estimate. After correction, the
kinetic energy from bubbles decreased by a factor of four. In
our current work, we find the total outflow kinetic energy is
5.4 x 10* erg, which is an order of magnitude larger than the
value in Li et al. (2015). This difference is likely caused by a
similar reason to that in Ophiuchus, i.e., our method includes
the outflow material located around the cloud central velocity
that is excluded in traditional approaches. Our calculation
indicates that the kinetic energy from outflows is 14% of the
cloud turbulent energy. If we combine the contribution from
bubbles (Xu et al. 2020a), the total kinetic energy from stellar
feedback is 22% of the cloud turbulent energy. Li et al. (2015)
concluded that the outflow energy injection rate is marginally
comparable to the dissipation rate of turbulence in Taurus,
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although outflow energy is only 1% of the Taurus cloud
turbulent energy. With our updated feedback energy, which is
22% of the cloud turbulent energy, we conclude that the
feedback energy injection rate can compensate for the turbulent
dissipation rate (Li et al. 2015; Xu et al. 2020a).

Arce et al. (2010) identified 60 outflow candidates in Perseus
and derived a total outflow energy of 2 x 10% erg, which is
12.5% of the total cloud turbulent energy. However, it is worth
noting that the method of calculating cloud turbulent energy used
in Arce et al. (2010) is different from our method. Arce et al.
(2010) adopted an average line width of 2 kms™" to calculate the
turbulent energy. While in this work, we calculate the turbulent
energy channel by channel followed by Equation (3). The cloud
turbulent energy derived by Arce et al. (2010) is 1.6 x 10% erg,
while our approach indicates an estimate of 8 x 10*’ erg, which is
a factor of five larger than the estimate by Arce et al. (2010). To
make a fair comparison, we adopt our turbulent energy estimate to
discuss the impact of outflows in Perseus. Under these
circumstances, the kinetic energy of the previously identified
outflows are only 2.4% of the total cloud turbulent energy. Xu
et al. (2020b) applied CASI-3D to the same outflow catalog and
predicted a total outflow energy of 7.8 x 10* erg, which is one-
fourth of the value in Arce et al. (2010). This is caused by the
lower mass-weighted LOS velocity as discussed in Section 3.3. In
our present work, we derive a total outflow energy of 1.2 x 10%
erg, which is six times larger than that in Arce et al. (2010). There
are several possible reasons for this higher value. First, there are
newly identified isolated outflows as discussed in Xu et al.
(2020b). It should be noted that Xu et al. (2020b) just followed up
the 60 previous outflows and identified a few new outflows in the
vicinity of these, whereas our current work makes a prediction
using the full CO map, which includes the entire cloud and a
couple of clusters. This likely increase the outflow kinetic energy
by a factor of a few. Second, CASI-3D is able to identify all
feedback structures in clustered regions, which are not fully
identified in previous works. This also may enlarge the outflow
energy by a factor of a few. Moreover, outflows identified by Arce
et al. (2010) are all distinct outflows with obvious coherent high-
velocity structures that are likely powered by strong driving
sources. However, in our work, CASI-3D also identifies less
distinct outflows whose velocities are small compared to
previously identified ones. These weaker, less distinct outflows
might be driven by more evolved or lower-mass sources. This
indicates that CASI-3D provides a more inclusive outflow sample.
Arce et al. (2010) concluded that the 60 outflow candidates they
identified play an important role in maintaining turbulence at the
current epoch in Perseus, although the kinetic energy of outflows
is 12.5% of the total cloud turbulent energy in their study, or 2.4%
of the total cloud turbulent energy in our turbulence calculation.
However, our updated outflow kinetic energy estimate is 15% of
the cloud turbulent energy. This indicates that outflows still play
an important role in maintaining turbulence in Perseus.

Feddersen et al. (2020) identified 45 outflows near Herschel
Orion Protostar Survey protostars (Furlan et al. 2016) in Orion but
skipped the OMC-1 region. They derived a total outflow energy
of 0.7-1.7 x 10* erg. They found that the total outflow energy
injection rate is comparable to the dissipation rate of turbulence. In
our work, we derive a total outflow energy of 2.1 x 10% erg,
which is an order of magnitude larger than previous estimates.
The main reason for the difference is that our survey covers a
larger area and does not only focus on gas near the position of
YSOs. In particular, we include the most active star-forming
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region OMC-1. CASI-3D predicts the kinetic energy from outflows
in OMC-1 is 7.7 x 10* erg, which is 37% of the entire outflow
energy in Orion. Thus, we confirm the prior conclusion that
outflows are sufficient to maintain turbulence in Orion.

In conclusion, our outflow kinetic energy estimates for all
four clouds are larger than previous estimates. Consequently,
we confirm the previous conclusion that outflows are an
important agent to maintain turbulence at the current epoch.

4.4. Uncertainties of Outflow Estimates

In Section 3.2, we calculated the masses and dynamical
properties of the outflows for the four clouds. In this section, we
attempt to quantify the uncertainty of these outflow estimates.

First, we assume a moderate excitation temperature of 25 K
or the '>CO peak temperature, whichever is higher, to calculate
the outflow mass. Most studies adopt values of excitation
temperature in the range of 10-50 K (Dunham et al. 2014a;
Feddersen et al. 2020). Since the mass scales linearly with the
excitation temperature, the choice of excitation temperature
introduces a factor-of-two uncertainty.

Meanwhile, Xu et al. (2020b) found that model MF predicts the
outflow mass within a scatter of 0.41. The most extreme offset
case over-/under- estimates the mass by a factor of two. We did
not find any offset that would cause a systematic over- or
underestimation. Meanwhile, we carry out one additional test to
constrain the degree of possible contamination from cloud
emission at rest-frame gas velocities. Appendix F shows an
analysis of a more complex synthetic observation, which contains
a number of interacting outflows. We conclude that our CASI-3D
model is generally able to exclude contamination from the
ambient gas near the rest-frame velocity and may even
underestimate the outflow contribution from low velocities in
complex star-forming areas.

Furthermore, high-velocity, low-density gas emission is
easily missed in high-velocity channels due to the low signal-
to-noise. Xu et al. (2020b) used the simulations to estimate that
10% of the outflow gas is lost. The correction factors for LOS
momentum and LOS energy are 1.3 and 1.8 (Xu et al. 2020b),
respectively.

In addition, the inclination angle of the outflow plays an
important role in converting LOS momentum/energy to 3D
momentum/energy. In this work, we adopt correction factors
of v/3 and 3 to convert LOS momentum and LOS energy to 3D
estimates. These correspond to an inclination angle of 55°. If
the inclination angle is between 20° and 70°, this leads to a
factor-of-two uncertainty for 3D momentum and a factor-of-
four uncertainty for 3D energy.

Finally, chemical conditions, i.e., 2C0O and *CO abundances,
have an influence on the mass estimate. In our mass calculation,
we adopt constant abundance ratios, [12CO] /[Ho]= 107* and
[>CO] / [*CO]=62. However, these abundance ratios vary
across diffident clouds. We cannot evaluate this uncertainty
without sophisticated chemical modeling for each cloud.

Consequently, by combining these uncertainties and using
error propagation, we find a factor-of-three uncertainty for
mass, a factor-of-3.4 uncertainty for 3D momentum, and a
factor-of-five uncertainty for 3D energy.

5. Conclusions

We apply the deep learning method CASI-3D to four nearby
molecular clouds, Ophiuchus, Taurus, Perseus, and Orion, to
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systemically identify protostellar outflows and study the impact of
outflows on their host clouds. Our main findings are as follows:

1. The total outflow masses are 267 M., 795 M, 1305 M.,
and 6332 M., for Ophiuchus, Taurus, Perseus, and Orion,
respectively. On average, the mass associated with feedback
is around 10% of the host cloud mass for all four clouds.

2. The total 3D outflow energies are 9 x 10* erg, 6 x 10*°erg,
1.2 x 107 erg, and 6 x 10%7 erg for Ophiuchus, Taurus,
Perseus, and Orion, respectively.

3. The outflow mass is linearly proportional to the total
number of YSOs for all four clouds. On average, each
YSO is associated with 1 M, of outflow material.

4. The outflow momentum is linearly proportional to the total
number of YSOs for all four clouds. On average, each
outflow has a mass-weighted LOS velocity of 1 kms™ .
This relatively low value is because more mass is located
near the cloud central velocity.

5. We compute the SPS of the outflow prediction map. We
find all four clouds exhibit a break point, which ranges
from 0.27 pc (Orion) to 0.65 pc (Perseus). The break
point likely indicates the typical outflow mass and energy
injection scale.

6. Models trained to identify outflows are likely to also
identify bubble structures, which may be produced by
main-sequence massive stars.

7. We compare the energy associated with outflows to the
rate of turbulent dissipation and conclude that feedback is
sufficient to maintain turbulent dissipation at the current
epoch for all four clouds.

Xu et al.

D.X., S.S.R.0O., and R.A.G. acknowledge support by NSF grant
AST-1812747. D.X. acknowledges support from the David Alan
Benfield Memorial Scholarship in Astronomy and from the
Virginia Initiative on Cosmic Origins (VICO). S.S.R.O. acknowl-
edges support from NSF Career grant AST-1748571. R.A.G.
acknowledges support from NASA ADAP grant NNX17AF24G.
H.G.A. acknowledges support from NSF grant AST-1714710.
The Texas Advanced Computing Center (TACC) at the
University of Texas at Austin provided HPC resources that have
contributed to the research results reported within this paper.

Appendix A
Discussion on the Effect of Box Sizes on the YSO-Mass
Relation

In this section, we examine the effect of our choice of
“window” sizes when studying the correlation between the total
mass associated with outflows and the number of YSOs. We
define windows with physical sizes of 0.5pc x 0.5pc,
1 pc x 1pc,2pex2pe, 3 pex3pe, and 5 pcxS5 pe to scan through
the entire cloud region. We set a step size such that each box
overlaps with its neighbors by at least 80%. Then we calculate the
mass inside the window and count the number of YSOs enclosed.
We consider the outflow relationship between the number of both
young YSOs and total YSOs.

Figure 20 shows the correlation between the model MF outflow
prediction and the number of young YSOs for the five window
sizes applied to the four clouds. For Ophiuchus, Perseus, and
Orion, when the window size is above a certain threshold, the
correlations between outflow mass and the number of YSOs
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Figure 20. Correlation between the mass associated with feedback and the number of young YSOs. The different colors indicate different window sizes for the
estimation. The filled circles indicate the total outflow mass and the total number of young YSOs in the four clouds.
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become similar, which indicates the choice of window size does
not significantly change the results. Taurus is more sensitive to the
window size than the other regions. This is likely caused by the
large separations between YSOs. However, it still shows a clear
trend of smaller separation between different correlations when
the window size gets larger.

The trends are similar when considering total YSOs.
Consequently, we conclude that the study of the correlation
between the outflow properties and the number of YSOs is
robust.

Appendix B
Spectra of Outflows and Bubbles

In this section, we employ an unsupervised learning
algorithm t-SNE (t-distributed Stochastic Neighbor Embed-
ding) to compare the spectra identified as outflow feedback to
those identified as belonging to bubbles. t-SNE is a tool to
visualize high-dimensional data by converting the similarities
between data points into a low-dimensional manifold. It has
been used for classification and outlier detection in a variety of
astronomy data (Jofré et al. 2017; Reis et al. 2018; Fluke &
Jacobs 2020; Lochner & Bassett 2020). For example, Reis et al.
(2018) successfully applied t-SNE to cluster stars based on
their spectra and identify outliers based on the t-SNE map.

We take the L1688 star cluster region in Ophiuchus as an
example. Figures 3 and 19 show the prediction of this star
cluster region by models trained to identify only outflows and
only bubbles, respectively. In some cases, the models clearly
identify only one or the other type of feedback; however, there
is also significant overlap. In order to classify the spectra, we
calculate outflow mass and bubble mass of each spectra. If the
outflow mass or bubble mass for a given line of sight is above
50 compared with the background noise, we consider that
spectrum to contain feedback. If the outflow mass is larger than
the bubble mass, we label it an outflow spectrum. If the bubble
mass is larger than the outflow mass, we label it a bubble
spectrum. If there is emission but neither outflow mass nor
bubble mass exceeds the 5o threshold, or the spectrum has less
than three channels that contain feedback, we label this
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spectrum as non-feedback. We neglect any spectra that have
no emission above 3o.

We use the spectra of the L1688 region at each line of sight
as input to t-SNE. t-SNE projects the higher-dimensional data
into a lower-dimensional (2D) space and organizes it based on
similarities (e.g., the line shape and intensity of a spectrum) in
the high-dimensional space. Figure 21 shows the t-SNE
clusters. We color the data points based on the CASI-3D
predictions, where spectra predicted to be primarily associated
with outflows are in red, those primarily associated with
bubbles are in blue, and non-feedback in black. It is clear that
the spectral shapes for bubbles and outflows are different. The
spectra of bubbles show two Gaussian components with two
peaks of different intensities. The spectra of outflows have
various shapes, e.g., broader line wings, and two Gaussian
components but with almost equal peaks. It’s worth noting that
broad line wings are often used to visually identify outflows (Li
et al. 2015; Tanabe et al. 2019). t-SNE separates some bubble
spectra from the outflow spectra. Meanwhile, we notice that
there are some blended/transiting regions, where outflow
spectra and bubble spectra are clustered together. In these
cases, we find that bubble and outflow identifications have
similar spectral shapes. This demonstrates that we cannot
distinguish outflows and bubbles based only on single spectra.
There is also a mixed region where non-feedback spectra are
blended with outflow spectra. The spectral shape of this region
indeed shows fewer outflow features, where there is a faint
broad line-wing on the blueshifted side.

This analysis explores the similarity between outflow and
bubble feedback using an unsupervised machine-learning
approach. In some cases, the CASI-3D predictions are clearly
distinct. In other cases, where both models identify feedback
emission, it is clear that the spectra are truly similar. This may
be because both types of feedback can produce such velocity
features or because such regions genuinely contain both types
of feedback. In the current analysis, it is not possible to
distinguish between these two possibilities. However, this
t-SNE clustering gives confidence that feedback is shaping
these spectra and that CASI-3D is correctly identifying feedback
signatures.
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Outflow

Bubble

Figure 21. t-SNE map of the 2co spectra in the L1688 star cluster region in Ophiuchus. Red dots indicate outflow spectra. Blue dots indicate bubble spectra. Black
dots indicate non-feedback spectra. The sub-plots show the average spectra of each subregion.

Appendix C

YS0s in Orion Orion. While we expect younger YSOs to contribute more

Orion has an extensive population of older YSOs, so in feedback per source, the large number of older YSOs indicates
Figure 8 we plot only the young YSOs for readability. Here, that they likely contribute feedback throughout the cloud, and
Figure 22 shows the location of both young and old YSOs in this is consistent with the prediction in Section 3.1.4.

23



THE ASTROPHYSICAL JOURNAL, 926:19 (28pp), 2022 February 10

-5°00" +

30

-6°00'

Dec

30

-7°00'

Xu et al.

5h3gm

1 1
36™ 34™M

RA

Figure 22. Intensity of '2CO integrated over all velocity channels for Orion. Letters “Y” and “O” mark YSO positions, as described in Section 2.3.

Appendix D
Outflows in *CO

In some regions, '*CO is optically thick, and we combine both
12CO and *CO to derive the kinematic estimates rather than using
12CO only (e.g., Arce et al. 2010). In most cases, the velocity
channels where there is '*CO emission dominate the mass in each
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spectrum. Here we compare the identification from the '*CO map
to the '*CO emission. Figure 23 shows the '>CO emission of the
outflow in Figure 9. We can clearly see that the velocity range of
3CO is substantially smaller than that of 2co. However, the
mass in the '*CO emitting region dominates the total mass of the
cloud. This also explains why the mass-weighted LOS velocity is
smaller than the velocity calculated based on '2CO only.
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Figure 23. Same as Figure 9 but where the background color-scale indicates the '*CO integrated intensity. White contours show the prediction by models ME1 and

MF on the 2CO data.

Appendix E
Correlation between the Gas Mass and the Number
of YSOs

In this Appendix, we examine the relationship between the
number of YSOs, the total gas mass, and the dense gas mass.
Prior work has shown that the number of YSOs is well

correlated with the gas column density, which is 2y o Eéas,

or Mg, Nf‘s (e.g., Gutermuth et al. 2011; Pokhrel et al.
2020, 2021), where the gas mass was estimated from dust
emission. Pokhrel et al. (2020, 2021) found that the surface
density of protostars (i.e., younger YSOs) is tightly
correlated with gas column following the relation above.
Gutermuth et al. (2011) found a similar but less tight relation
when considering all YSOs. Consequently, we expect YSOs
and dense gas to be correlated. Figure 24 shows a nearly
linear relation between the total mass and the number of all
YSOs. We find the slope is 0.93, which is slightly smaller
than the slope of the outflow mass—YSO relation, 1.03.

To check whether the outflow mass estimate is correlated
with the dense gas due to contamination, we examine the

25

relation excluding the rest-frame velocity gas, which is
located within the turbulent velocity range (£1 kms™').
Figure 25 shows the correlation between the total high-
velocity gas (v — veen| > 1 km s~ 1) mass and the number of
all YSOs, and the correlation between the high-velocity
outflow mass (|v — veen| > 1 kms™') and the number of all
YSOs. The slopes are similar to that of the total gas—outflow
gas relation including the rest-frame velocity gas. Therefore,
we conclude the correlation between gas mass and YSOs
exists because outflows are linearly proportional to the
number of YSOs launching them. YSOs form from dense gas
and thus by nature are more likely to be located in denser
regions. By focusing only on the high-velocity material,
which traces the outflows most directly, we show that the
trend arises directly from the expected correlation between
YSOs and outflows rather than indirectly from contamina-
tion by the dense gas. This result provides further evidence
that our method performs well in dense regions where
contamination from the cloud would otherwise be a serious
problem.
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Appendix F
CASI-3D Prediction on a Complex Synthetic Observation

In this Appendix, we examine a prediction by the two CASI-
3D models on a synthetic observation of a simulation snapshot
with a number of interacting outflows. This synthetic
observation and the simulation it is derived from are not
included in our previous training or testing, so they constitute a
more challenging test of the model performance. This
simulation is run using a different initial turbulent seed and
with twice the initial gas density as the other simulations in the
training set. The mean magnetic field strength is 0.8 uG. The
evolutionary time of the snapshot is 0.7 t;. There are 13 stars
launching outflows in the simulation box, whereas our training
set is constructed from snapshots with one to five stars.
Consequently, this output provides an independent check on
the CASI-3D model performance.
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Figure 26 shows the integrated CO emission, tracer
fractions, and predictions. We find the CASI-3D model does
not actually overpredict the amount of emission in the cloud
velocity channels but instead slightly underpredicts the
location and mass of the outflows. More quantitatively, the
model MF identifies 76% of the outflow emission at high-
velocity channels (above 2 km sfl). However, the model MF
only identifies 40% outflow emissions near the rest-frame
velocity (within 2kms™'). This implies CASI-3D might
underestimate the outflow mass by a factor of two. This is
consistent with the model uncertainty discussed in
Section 4.4. This analysis gives further confidence that
CASI-3D correctly excludes contamination from the ambient
gas near the rest-frame velocity, even in relatively clustered
and complex regions.
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ORCID iDs

Duo Xu @ https: //orcid.org/0000-0001-6216-8931

Stella S. R. Offner ® https: //orcid.org/0000-0003-1252-9916
Robert Gutermuth © https: //orcid.org/0000-0002-6447-899X
Shuo Kong @ https: //orcid.org/0000-0002-8469-2029

Hector G. Arce © https: //orcid.org/0000-0001-5653-7817

References

Arce, H. G., Borkin, M. A., Goodman, A. A., Pineda, J. E., & Beaumont, C. N.
2011, AplJ, 742, 105

Arce, H. G., Borkin, M. A., Goodman, A. A., Pineda, J. E., & Halle, M. W.
2010, ApJ, 715, 1170

Bally, J. 2016, ARA&A, 54, 491

Bontemps, S., Andre, P., Terebey, S., & Cabrit, S. 1996, A&A, 311, 858

Carroll, J. J., Frank, A., Blackman, E. G., Cunningham, A. J., & Quillen, A. C.
2009, ApJ, 695, 1376

Cunningham, A. J., Frank, A., Quillen, A. C., & Blackman, E. G. 2006, ApJ,
653, 416

Cunningham, A. J., Krumholz, M. R., McKee, C. F., & Klein, R. 1. 2018,
MNRAS, 476, 771

Dunham, M. M., Arce, H. G., Mardones, D., et al. 2014a, ApJ, 783, 29

Dunham, M. M., Stutz, A. M., Allen, L. E., et al. 2014b, in Protostars and
Planets VI, ed. H. Beuther et al. (Tucson: Univ. Arizona Press), 195

Feddersen, J. R., Arce, H. G., Kong, S., et al. 2020, ApJ, 896, 11

Federrath, C. 2015, MNRAS, 450, 4035

Federrath, C., Schron, M., Banerjee, R., & Klessen, R. S. 2014, ApJ, 790, 128

Fluke, C. J., & Jacobs, C. 2020, WDMKD, 10, 1349

27

Frank, A., Ray, T. P., Cabrit, S., et al. 2014, in Protostars and Planets VI, ed.
H. Beuther et al. (Tucson: Univ. Arizona Press), 451

Furlan, E., Fischer, W. J., Ali, B., et al. 2016, ApJS, 224, 5

Guszejnov, D., Grudi¢, M. Y., Hopkins, P. F., Offner, S. S. R., &
Faucher-Giguere, C.-A. 2021, MNRAS, 502, 3646

Gutermuth, R. A., Megeath, S. T., Myers, P. C., et al. 2009, ApJS, 184, 18

Gutermuth, R. A., Pipher, J. L., Megeath, S. T., et al. 2011, ApJ, 739, 84

Hansen, C. E., Klein, R. 1., McKee, C. F., & Fisher, R. T. 2012, ApJ, 747, 22

He, K., Zhang, X., Ren, S., & Sun, J. 2016, in Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (Piscataway, NJ: IEEE), 770

Heitsch, F., Slyz, A. D., Devriendt, J. E. G., Hartmann, L. W., & Burkert, A.
2006, AplJ, 648, 1052

Heyer, M., Goldsmith, P. F., Yildiz, U. A,, et al. 2016, MNRAS, 461, 3918

Heyer, M. H., & Brunt, C. M. 2012, MNRAS, 420, 1562

Ishii, S., Nakamura, F., Shimajiri, Y., et al. 2019, PASJ, 71, S9

Jofré, P., Traven, G., Hawkins, K., et al. 2017, MNRAS, 472, 2517

Kirk, H., Friesen, R. K., Pineda, J. E., et al. 2017, ApJ, 846, 144

Klessen, R. S., & Hennebelle, P. 2010, A&A, 520, A17

Kong, S., Arce, H. G., Feddersen, J. R., et al. 2018, ApJS, 236, 25

Li, H., Li, D., Qian, L., et al. 2015, ApJS, 219, 20

Li, Z.-Y., & Nakamura, F. 2006, ApJL, 640, L187

Lochner, M., & Bassett, B. A. 2020, A&C, 36, 100481

Machida, M. N., & Hosokawa, T. 2013, MNRAS, 431, 1719

Matzner, C. D. 2007, ApJ, 659, 1394

Megeath, S. T., Gutermuth, R., Muzerolle, J., et al. 2012, AJ, 144, 192

Moraghan, A., Kim, J., & Yoon, S. J. 2013, MNRAS, 432, L80

Motte, F., Nguyén Luong, Q., Schneider, N., et al. 2014, A&A, 571, A32

Nakamura, F., & Li, Z.-Y. 2007, ApJ, 662, 395

Nakamura, F., Ishii, S., Dobashi, K., et al. 2019, PASIJ, 71, S3

Nakamura, F., Kamada, Y., Kamazaki, T., et al. 2011, ApJ, 726, 46

Nakamura, F., Sugitani, K., Tanaka, T., et al. 2014, ApJL, 791, L23


https://orcid.org/0000-0001-6216-8931
https://orcid.org/0000-0001-6216-8931
https://orcid.org/0000-0001-6216-8931
https://orcid.org/0000-0001-6216-8931
https://orcid.org/0000-0001-6216-8931
https://orcid.org/0000-0001-6216-8931
https://orcid.org/0000-0001-6216-8931
https://orcid.org/0000-0001-6216-8931
https://orcid.org/0000-0003-1252-9916
https://orcid.org/0000-0003-1252-9916
https://orcid.org/0000-0003-1252-9916
https://orcid.org/0000-0003-1252-9916
https://orcid.org/0000-0003-1252-9916
https://orcid.org/0000-0003-1252-9916
https://orcid.org/0000-0003-1252-9916
https://orcid.org/0000-0003-1252-9916
https://orcid.org/0000-0002-6447-899X
https://orcid.org/0000-0002-6447-899X
https://orcid.org/0000-0002-6447-899X
https://orcid.org/0000-0002-6447-899X
https://orcid.org/0000-0002-6447-899X
https://orcid.org/0000-0002-6447-899X
https://orcid.org/0000-0002-6447-899X
https://orcid.org/0000-0002-6447-899X
https://orcid.org/0000-0002-8469-2029
https://orcid.org/0000-0002-8469-2029
https://orcid.org/0000-0002-8469-2029
https://orcid.org/0000-0002-8469-2029
https://orcid.org/0000-0002-8469-2029
https://orcid.org/0000-0002-8469-2029
https://orcid.org/0000-0002-8469-2029
https://orcid.org/0000-0002-8469-2029
https://orcid.org/0000-0001-5653-7817
https://orcid.org/0000-0001-5653-7817
https://orcid.org/0000-0001-5653-7817
https://orcid.org/0000-0001-5653-7817
https://orcid.org/0000-0001-5653-7817
https://orcid.org/0000-0001-5653-7817
https://orcid.org/0000-0001-5653-7817
https://orcid.org/0000-0001-5653-7817
https://doi.org/10.1088/0004-637X/742/2/105
https://ui.adsabs.harvard.edu/abs/2011ApJ...742..105A/abstract
https://doi.org/10.1088/0004-637X/715/2/1170
https://ui.adsabs.harvard.edu/abs/2010ApJ...715.1170A/abstract
https://doi.org/10.1146/annurev-astro-081915-023341
https://ui.adsabs.harvard.edu/abs/2016ARA&A..54..491B/abstract
https://ui.adsabs.harvard.edu/abs/1996A&A...311..858B/abstract
https://doi.org/10.1088/0004-637X/695/2/1376
https://ui.adsabs.harvard.edu/abs/2009ApJ...695.1376C/abstract
https://doi.org/10.1086/508762
https://ui.adsabs.harvard.edu/abs/2006ApJ...653..416C/abstract
https://ui.adsabs.harvard.edu/abs/2006ApJ...653..416C/abstract
https://doi.org/10.1093/mnras/sty154
https://ui.adsabs.harvard.edu/abs/2018MNRAS.476..771C/abstract
https://doi.org/10.1088/0004-637X/783/1/29
https://ui.adsabs.harvard.edu/abs/2014ApJ...783...29D/abstract
https://ui.adsabs.harvard.edu/abs/2014prpl.conf..195D/abstract
https://doi.org/10.3847/1538-4357/ab86a9
https://ui.adsabs.harvard.edu/abs/2020ApJ...896...11F/abstract
https://doi.org/10.1093/mnras/stv941
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450.4035F/abstract
https://doi.org/10.1088/0004-637X/790/2/128
https://ui.adsabs.harvard.edu/abs/2014ApJ...790..128F/abstract
https://doi.org/10.1002/widm.1349
https://ui.adsabs.harvard.edu/abs/2020WDMKD..10.1349F/abstract
https://ui.adsabs.harvard.edu/abs/2014prpl.conf..451F/abstract
https://doi.org/10.3847/0067-0049/224/1/5
https://ui.adsabs.harvard.edu/abs/2016ApJS..224....5F/abstract
https://doi.org/10.1093/mnras/stab278
https://ui.adsabs.harvard.edu/abs/2021MNRAS.502.3646G/abstract
https://doi.org/10.1088/0067-0049/184/1/18
https://ui.adsabs.harvard.edu/abs/2009ApJS..184...18G/abstract
https://doi.org/10.1088/0004-637X/739/2/84
https://ui.adsabs.harvard.edu/abs/2011ApJ...739...84G/abstract
https://doi.org/10.1088/0004-637X/747/1/22
https://ui.adsabs.harvard.edu/abs/2012ApJ...747...22H/abstract
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1086/505931
https://ui.adsabs.harvard.edu/abs/2006ApJ...648.1052H/abstract
https://doi.org/10.1093/mnras/stw1567
https://ui.adsabs.harvard.edu/abs/2016MNRAS.461.3918H/abstract
https://doi.org/10.1111/j.1365-2966.2011.20142.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.420.1562H/abstract
https://doi.org/10.1093/pasj/psz065
https://ui.adsabs.harvard.edu/abs/2019PASJ...71S...9I/abstract
https://doi.org/10.1093/mnras/stx1877
https://ui.adsabs.harvard.edu/abs/2017MNRAS.472.2517J/abstract
https://doi.org/10.3847/1538-4357/aa8631
https://ui.adsabs.harvard.edu/abs/2017ApJ...846..144K/abstract
https://doi.org/10.1051/0004-6361/200913780
https://ui.adsabs.harvard.edu/abs/2010A&A...520A..17K/abstract
https://doi.org/10.3847/1538-4365/aabafc
https://ui.adsabs.harvard.edu/abs/2018ApJS..236...25K/abstract
https://doi.org/10.1088/0067-0049/219/2/20
https://ui.adsabs.harvard.edu/abs/2015ApJS..219...20L/abstract
https://doi.org/10.1086/503419
https://ui.adsabs.harvard.edu/abs/2006ApJ...640L.187L/abstract
https://doi.org/10.1016/j.ascom.2021.100481
https://ui.adsabs.harvard.edu/abs/2021A&C....3600481L/abstract
https://doi.org/10.1093/mnras/stt291
https://ui.adsabs.harvard.edu/abs/2013MNRAS.431.1719M/abstract
https://doi.org/10.1086/512361
https://ui.adsabs.harvard.edu/abs/2007ApJ...659.1394M/abstract
https://doi.org/10.1088/0004-6256/144/6/192
https://ui.adsabs.harvard.edu/abs/2012AJ....144..192M/abstract
https://doi.org/10.1093/mnrasl/slt044
https://ui.adsabs.harvard.edu/abs/2013MNRAS.432L..80M/abstract
https://doi.org/10.1051/0004-6361/201323001
https://ui.adsabs.harvard.edu/abs/2014A&A...571A..32M/abstract
https://doi.org/10.1086/517515
https://ui.adsabs.harvard.edu/abs/2007ApJ...662..395N/abstract
https://doi.org/10.1093/pasj/psz057
https://ui.adsabs.harvard.edu/abs/2019PASJ...71S...3N/abstract
https://doi.org/10.1088/0004-637X/726/1/46
https://ui.adsabs.harvard.edu/abs/2011ApJ...726...46N/abstract
https://doi.org/10.1088/2041-8205/791/2/L23
https://ui.adsabs.harvard.edu/abs/2014ApJ...791L..23N/abstract

THE ASTROPHYSICAL JOURNAL, 926:19 (28pp), 2022 February 10

Narayanan, G., Heyer, M. H., Brunt, C., et al. 2008, ApJS, 177, 341

Narayanan, G., Snell, R., & Bemis, A. 2012, MNRAS, 425, 2641

Offner, S. S. R., & Arce, H. G. 2014, ApJ, 784, 61

Offner, S. S. R., & Chaban, J. 2017, ApJ, 847, 104

Offner, S. S. R., Robitaille, T. P., Hansen, C. E., McKee, C. F., & Klein, R. 1.
2012, AplJ, 753, 98

Panopoulou, G. V., Tassis, K., Goldsmith, P. F., & Heyer, M. H. 2014,
MNRAS, 444, 2507

Pelletier, G., & Pudritz, R. E. 1992, ApJ, 394, 117

Pokhrel, R., Gutermuth, R. A., Betti, S. K., et al. 2020, ApJ, 896, 60

Pokhrel, R., Gutermuth, R. A., Krumholz, M. R, et al. 2021, ApJL, 912, L19

Rebull, L. M., Padgett, D. L., McCabe, C. E., et al. 2010, ApJS, 186, 259

Reis, 1., Poznanski, D., Baron, D., Zasowski, G., & Shahaf, S. 2018, MNRAS,
476, 2117

Ridge, N. A., Di Francesco, J., Kirk, H., et al. 2006, AJ, 131, 2921

Roccatagliata, V., Franciosini, E., Sacco, G. G., Randich, S.,, &
Sicilia-Aguilar, A. 2020, A&A, 638, A85

28

Xu et al.

Ronneberger, O., Fischer, P., & Brox, T. 2015, in Int. Conf. on Medical Image
Computing and Computer-Assisted Intervention (Cham: Springer), 234

Shallue, C. J., & Vanderburg, A. 2018, AJ, 155, 94

Shimajiri, Y., Kitamura, Y., Nakamura, F., et al. 2015a, ApJS, 217, 7

Shimajiri, Y., Sakai, T., Kitamura, Y., et al. 2015b, ApJS, 221, 31

Shu, F., Najita, J., Ostriker, E., et al. 1994, ApJ, 429, 781

Shu, F. H., Lizano, S., Ruden, S. P., & Najita, J. 1988, ApJL, 328, L19

Tanabe, Y., Nakamura, F., Tsukagoshi, T., et al. 2019, PASJ, 71, S8

Van Oort, C. M., Xu, D., Offner, S. S. R., & Gutermuth, R. A. 2019, ApJ,
880, 83

Wang, P, Li, Z.-Y., Abel, T., & Nakamura, F. 2010, ApJ, 709, 27

Wolfire, M. G., Hollenbach, D., McKee, C. F., Tielens, A. G. G. M., &
Bakes, E. L. O. 1995, ApJ, 443, 152

Xu, D., Offner, S. S. R., Gutermuth, R., & Van Oort, C. 2020a, ApJ,
890, 64

Xu, D., Offner, S. S. R., Gutermuth, R., & Van Oort, C. 2020b, ApJ, 905, 172

Zhang, S., Yang, J., Xu, Y., et al. 2020, ApJS, 248, 15


https://doi.org/10.1086/587786
https://ui.adsabs.harvard.edu/abs/2008ApJS..177..341N/abstract
https://doi.org/10.1111/j.1365-2966.2012.21579.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.425.2641N/abstract
https://doi.org/10.1088/0004-637X/784/1/61
https://ui.adsabs.harvard.edu/abs/2014ApJ...784...61O/abstract
https://doi.org/10.3847/1538-4357/aa8996
https://ui.adsabs.harvard.edu/abs/2017ApJ...847..104O/abstract
https://doi.org/10.1088/0004-637X/753/2/98
https://ui.adsabs.harvard.edu/abs/2012ApJ...753...98O/abstract
https://doi.org/10.1093/mnras/stu1601
https://ui.adsabs.harvard.edu/abs/2014MNRAS.444.2507P/abstract
https://doi.org/10.1086/171565
https://ui.adsabs.harvard.edu/abs/1992ApJ...394..117P/abstract
https://doi.org/10.3847/1538-4357/ab92a2
https://ui.adsabs.harvard.edu/abs/2020ApJ...896...60P/abstract
https://doi.org/10.3847/2041-8213/abf564
https://ui.adsabs.harvard.edu/abs/2021ApJ...912L..19P/abstract
https://doi.org/10.1088/0067-0049/186/2/259
https://ui.adsabs.harvard.edu/abs/2010ApJS..186..259R/abstract
https://doi.org/10.1093/mnras/sty348
https://ui.adsabs.harvard.edu/abs/2018MNRAS.476.2117R/abstract
https://ui.adsabs.harvard.edu/abs/2018MNRAS.476.2117R/abstract
https://doi.org/10.1086/503704
https://ui.adsabs.harvard.edu/abs/2006AJ....131.2921R/abstract
https://doi.org/10.1051/0004-6361/201936401
https://ui.adsabs.harvard.edu/abs/2020A&A...638A..85R/abstract
https://ui.adsabs.harvard.edu/abs/2015arXiv150504597R/abstract
https://doi.org/10.3847/1538-3881/aa9e09
https://ui.adsabs.harvard.edu/abs/2018AJ....155...94S/abstract
https://doi.org/10.1088/0067-0049/217/1/7
https://ui.adsabs.harvard.edu/abs/2015ApJS..217....7S/abstract
https://doi.org/10.1088/0067-0049/221/2/31
https://ui.adsabs.harvard.edu/abs/2015ApJS..221...31S/abstract
https://doi.org/10.1086/174363
https://ui.adsabs.harvard.edu/abs/1994ApJ...429..781S/abstract
https://doi.org/10.1086/185152
https://ui.adsabs.harvard.edu/abs/1988ApJ...328L..19S/abstract
https://doi.org/10.1093/pasj/psz100
https://ui.adsabs.harvard.edu/abs/2019PASJ...71S...8T/abstract
https://doi.org/10.3847/1538-4357/ab275e
https://ui.adsabs.harvard.edu/abs/2019ApJ...880...83V/abstract
https://ui.adsabs.harvard.edu/abs/2019ApJ...880...83V/abstract
https://doi.org/10.1088/0004-637X/709/1/27
https://ui.adsabs.harvard.edu/abs/2010ApJ...709...27W/abstract
https://doi.org/10.1086/175510
https://ui.adsabs.harvard.edu/abs/1995ApJ...443..152W/abstract
https://doi.org/10.3847/1538-4357/ab6607
https://ui.adsabs.harvard.edu/abs/2020ApJ...890...64X/abstract
https://ui.adsabs.harvard.edu/abs/2020ApJ...890...64X/abstract
https://doi.org/10.3847/1538-4357/abc7bf
https://ui.adsabs.harvard.edu/abs/2020ApJ...905..172X/abstract
https://doi.org/10.3847/1538-4365/ab879a
https://ui.adsabs.harvard.edu/abs/2020ApJS..248...15Z/abstract

	1. Introduction
	2. Data and Method
	2.1. COMPLETE Survey
	2.2. NRO45 Orion Survey
	2.3. YSO Catalog
	2.4. Method
	2.4.1. casi-3d
	2.4.2. Data Preprocessing
	2.4.3. Mass Calculations


	3. Results
	3.1. Outflows Identified in the Full Map
	3.1.1. Ophiuchus
	3.1.2. Taurus
	3.1.3. Perseus
	3.1.4. Orion

	3.2. Physical Properties of Outflows
	3.3. Correlation between the Outflow Properties and the Number of YSOs
	3.4. Quantifying the Impact of Feedback with Turbulent Statistics

	4. Discussion
	4.1. Outflows without Driving Sources and False Detections
	4.2. Outflows versus Bubbles
	4.3. Impact of Outflows on Molecular Clouds
	4.4. Uncertainties of Outflow Estimates

	5. Conclusions
	Appendix ADiscussion on the Effect of Box Sizes on the YSO–Mass Relation
	Appendix BSpectra of Outflows and Bubbles
	Appendix CYSOs in Orion
	Appendix DOutflows in 13CO
	Appendix ECorrelation between the Gas Mass and the Number of YSOs
	Appendix Fcasi-3d Prediction on a Complex Synthetic Observation
	References



