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Abstract

We use hydrodynamical simulations of star-forming gas with stellar feedback and sink particles—proxies for
young stellar objects (YSOs)—to produce and analyze synthetic 1.1 mm continuum observations at different
distances (150–1000 pc) and ages (0.49–1.27 Myr). We characterize how the inferred core properties, including
mass, size, and clustering with respect to diffuse natal gas structure, change with distance, cloud evolution, and the
presence of YSOs. We find that atmospheric filtering and core segmentation treatments have distance-dependent
impacts on the resulting core properties for d< 300 pc and 500 pc, respectively, which dominate over evolutionary
differences. Concentrating on synthetic observations at further distances (650–1000 pc), we find a growing
separation between the inferred sizes and masses of cores with and without YSOs in the simulations, which is not
seen in recent observations of the Monoceros R2 (Mon R2) cloud at 860 pc. We find that the synthetic cores cluster
in smaller groups, and that their mass densities are correlated with gas column density over a much narrower range,
than those in the Mon R2 observations. Such differences limit the applicability of the evolutionary predictions we
report here, but will motivate our future efforts to adapt our synthetic observation and analysis framework to next
generation simulations, such as Star Formation in Gaseous Environments (STARFORGE). These predictions and
systematic characterizations will help to guide the analysis of cores on the upcoming TolTEC Clouds to Cores
Legacy Survey on the Large Millimeter Telescope Alfonso Serrano.

Unified Astronomy Thesaurus concepts: Star formation (1569); Molecular clouds (1072); Protostars (1302)

1. Introduction

Dense cores within giant molecular clouds (GMCs) are the
birthplaces of stars (Bergin & Tafalla 2007; di Francesco et al.
2007; Ward-Thompson et al. 2007). These cores are part of a
hierarchical structure of fragments within GMCs (Pokhrel et al.
2018) that form as a result of a variety of physical processes,
including self-gravity (Heyer et al. 2009; Ballesteros-Paredes
et al. 2011, 2012), magnetohydrodynamic turbulence (Mac Low
& Klessen 2004; Hennebelle & Falgarone 2012), supersonic
interstellar turbulence (e.g., Pudritz & Kevlahan 2013), and the
ionization of molecular gas (Whitworth et al. 1994; Dale et al.
2009). The densest filamentary structures within clouds have
been observed to host cores (André et al. 2010; Polychroni et al.
2013) of order 104−5 cm−3 in density, 0.03–0.1 pc in size, and
T< 12 K in temperature (di Francesco et al. 2007). Through
gravitational instabilities, some prestellar cores may collapse to
form protostars.

In the millimeter to submillimeter regime, thermal emission
from cores is optically thin, which allows the flux density to trace
the total dust mass, making them ideal targets of study for both
ground-based and space-based submillimeter telescopes. Various
surveys of nearby Gould Belt molecular clouds (d < 500 pc) have
produced censuses of dense cores (e.g., Könyves et al. 2015;
Marsh et al. 2016; Bresnahan et al. 2018; Benedettini et al. 2018;
Ladjelate et al. 2020; Enoch et al. 2006, 2007, 2008). These
surveys have also confirmed that the cores are predominantly
found within relatively dense ∼0.1 pc filamentary structures in
clouds (André et al. 2010, 2014; Menʼshchikov et al. 2010;
Arzoumanian et al. 2011, 2019; Polychroni et al. 2013). These
cores have been observed in varying stages of gravitational
stability, from those that are gravitationally collapsing and

forming young stellar objects (YSOs) to those that are pressure-
confined but at too low masses to collapse further under self-
gravity (Kirk et al. 2016, 2017; Friesen et al. 2017).
Overall, the mass distribution of cores (core mass function;

CMF) has been shown to follow the same shape as the stellar
initial mass function (IMF), shifted to 1–5× in mass in a variety of
clouds (André et al. 2010; Könyves et al. 2015; Marsh et al. 2016;
Bresnahan et al. 2018; Benedettini et al. 2018; Könyves et al.
2020; Sokol et al. 2019; Ladjelate et al. 2020). This similarity has
been interpreted as evidence that the CMF sets the distribution of
stellar masses (Offner et al. 2014). However, most core surveys
remain incomplete at masses < 1 Me, so it is difficult to
determine whether the CMF turnover is similar to that of the IMF
and likewise invariant with the environment (Offner et al. 2014;
Guszejnov & Hopkins 2015). The incomplete sampling of the
CMF at the low mass end is a result of the limited sensitivities and
angular resolutions of previous measurements, which limited their
ability to distinguish dense cores from larger natal gas structures,
like filaments. Along with the sensitivity issue, the various Gould
Belt surveys only observed clouds within 500 pc, which limited
their view to only a narrow range of star-forming environments.
Surveys of more distant and active star-forming clouds, including
Cygnus-X (Cao et al. 2019) and Monoceros R2 (Mon R2; Sokol
et al. 2019), give insights into more active star formation, but also
suffer from low sensitivity and angular resolution.
In order to address these issues, the TolTEC Clouds to Cores

Legacy Survey (C2C) will survey the cores in 10 clouds at a
variety of ages and distances using the new TolTEC three-band
submillimeter imaging polarimeter on the Large Millimeter
Telescope Alfonso Serrano (LMT; Wilson et al. 2020). Under
optimal performance conditions for the LMT and TolTEC, C2C
plans to survey 88 deg2 of nearby molecular clouds in 100 hr
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of observations, with the goal of reaching 0.24 mJy/beam rms
at 1.1mm in order to detect cores with 0.1Me at 4σ. The survey
will observe thousands of spatially resolved cores at a uniform
surface brightness, and therefore mass, from Ophiuchus (at 137
pc) to Cygnus-X (1400 pc), as a result of the high angular
resolution (5″ at 1.1 mm) and fast mapping speed (2–12
deg2/mJy2/hr). This will allow a complete characterization of
the CMF down to< 0.3 Me, and will place potent new
constraints on the origin of the CMF, how it potentially varies
with natal environmental conditions, and how or if it influences
the stellar IMF.

Numerical simulations of core formation play a key role in
interpreting observations, including understanding the potential
relationship between the CMF and IMF, and the role of
environmental processes in shaping cores (Lee et al. 2020).
Previous works have predicted a range of relationships between
the IMF and CMF, from no link between the two (Bonnell et al.
2001; Bate et al. 2003; Clark et al. 2007) to the IMF directly
mapping from the core mass distribution (Padoan & Nor-
dlund 2002; Hennebelle & Chabrier 2008, 2009; Oey 2011;
Hopkins 2012; Guszejnov & Hopkins 2015). Simulations have
shown that the CMF and resulting IMF are sensitive to a variety
of physical and environmental processes. These include magnetic
fields limiting fragmentation (Padoan et al. 2007; Commercon
et al. 2011; Hennebelle et al. 2011; Myers et al. 2013); radiative
feedback heating the surrounding material and thereby increasing
the local Jeans mass (Bate 2009; Offner et al. 2009; Krumholz
et al. 2011, 2016); kinematic feedback, such as outflows and
winds, which reduce the star formation efficiency of dense cores
(Krumholz et al. 2012; Cunningham et al. 2018; Guszejnov et al.
2020); and turbulence that decreases the local freefall time and
prevents collapse (Robertson & Goldreich 2012; Murray et al.
2017). When comparing their results to observations, most of
these simulations do not take into account the observational
biases, such as atmospheric filtering, noise, and image segmenta-
tion algorithms, that affect the observation results. They also focus
on snapshots in time, and rely on sink particles or an overdensity
mass to define a core. Recent work by Smullen et al. (2020) has
investigated the evolution of cores over time in magnetohydro-
dynamic simulations in order to explore how gas reservoirs
evolve, and how core identification using a common structure-
finding algorithm based on dendrograms may bias core properties.
They found that, while the distributions of core properties and the
CMF remained relatively stable in time, the boundaries of the
individual cores fluctuated significantly. Although a variety of
simulations have explored the environmental effects on the
formation of cores, less attention has been devoted to using
synthetic observations as tools for: (a) testing the robustness of
simulations in reproducing observational core properties, along
with the systematics of the observational and analytic reduction
tools (data reduction pipelines and core identification analysis);
and (b) determining how the above environmental effects
influence the observed core properties.

Due to the extensive nature of C2C, the properties of the
cores surveyed will be influenced by their environment and
evolutionary status, as stellar feedback, the magnetic field, and
gas accretion can all play roles in core formation and evolution
(Kirk et al. 2013; Pokhrel et al. 2018). In order to compare
cores at varying distances and ages, and to interpret the core
properties, including mass, size, clustering, and star-forming
yield, predictions of core properties are necessary in order to
distinguish the underlying mechanisms. However, without a

detailed analysis and characterization of the robustness of both
the simulations and the analysis tools, we will not be able to
use synthetic observations or simulations to accurately interpret
how core formation varies in different environments in the
various molecular clouds in C2C.
In this paper, we test the reduction and the analysis tools that

are currently planned to be used on C2C in terms of their ability
to identify and characterize cores uniformly at various distances
and ages. We will also probe the robustness of synthetic
1.1 mm emission maps of star-forming molecular gas regions
from numerical radiative transfer simulations in reproducing
the observed core properties. In Section 2, we describe the
hydrodynamical radiative transfer simulations, the observa-
tional data, and the construction of the synthetic emission
maps. In Section 3, we describe the core identification and
property characterization algorithms. In Section 4, we assess
the core properties and systematics found from the synthetic
observations. In Section 5, we compare the synthetic observa-
tions to observations of the Mon R2 GMC in order to test the
robustness of the simulation in reproducing the observed core
properties. In Section 6, we explore the evolution of the
observable core properties (mass, size, and clustering) by
extracting and characterizing cores in three snapshots in time
from one simulation. We conclude by summarizing our results
in Section 7.

2. Simulations, Observations, and Their Synthesis

Our goal is to produce synthetic millimeter-wave continuum
observations from projected views of simulations of star-
forming molecular gas, for core extraction and analysis, as if
they were observed in the real sky. Here we describe the
simulations and the LMT and AzTEC 1.1 mm observations that
we used to make our synthetic observations, followed by the
process that we used to make them.

2.1. Radiative Transfer Simulations

We use hydrodynamic simulations produced using Orion, an
adaptive mesh refinement (AMR) code that follows the equations
of hydrodynamics, including self-gravity and gray flux-limited
diffusion radiative transfer (RT; see Klein (1999) and Krumholz
et al. (2004, 2007) for full details of the numerical methods
employed). These simulations include star particles that follow a
subgrid prescription of protostellar evolution, including radiative
feedback due to accretion and nuclear processes (Offner et al.
2009), and that are meant to simulate low mass star formation in a
turbulent molecular cloud.
We analyze two RT simulations with different domain sizes

and resolutions (see Table 1). Both simulations adopt periodic
boundary conditions. The larger simulation (RT1) has a domain
size of 10 pc, a Mach number of 14, a base grid of 5123, 2
AMR levels of refinement, and a maximum resolution of 1030
au (previously also analyzed in Qian et al. 2015). The smaller
simulation (RT2) has a domain size of 5 pc, a Mach number of
10.5, a base grid of 2563, 4 AMR levels of refinement, and a
maximum resolution of 126 au. Both simulations have an initial
gas temperature of 10 K.
The simulations are initialized by applying velocity perturba-

tions of the form P(k)∝ k0 to an initially uniform density field
(Mac Low 1999), with input-normalized wavenumbers in the
range k∼ 1− 2. The perturbations are continued until a turbulent
steady state is reached and the gas distribution follows P(k)∝ k−2
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(at approximately two crossing times), at which time self-gravity
is turned on within the simulation. Energy is continually injected
to ensure the turbulence remains steady and does not decay as a
result of shock dissipation. At each time step of the simulation,
the radiative transfer equation in a gray flux-limited diffusion
approximation is solved to determine the radiation energy density
(Krumholz et al. 2007). The gravitational potential is also
calculated from the Poisson equation (Klein 1999), and the
radiation, including the radiation feedback from sink particles
(forming stars), is updated (Offner et al. 2009).

Once self-gravity is turned on, collapse can commence. New
AMR grids are added when the density in a collapsing region
exceeds the critical Jeans density for a Jeans number of NJ> 0.25
(Truelove et al. 1997). If the critical Jeans density is exceeded at
the maximum AMR level, a sink particle is inserted (Krumholz
et al. 2004). When this occurs, the excess mass within the dense
cells is transferred to the inserted sink particle. The sink particles
interact with the gas through mass accretion within the nearest
four cells and through gravitational attraction; however, all
knowledge of the hydrodynamics within the cell is lost, and the
gas will continue to collapse. In these calculations, each sink
particle represents an individual star system; only wide binaries,
i.e., those with initial separations d 800 au, are resolved.

2.2. Observational Data

We use the 1.1 mm continuum data from Sokol et al. (2019) for
two purposes in this work. First, these data are the foundation of
the synthetic observations providing actual realizations of atmo-
spheric emission and other observational systematics once the
MonR2 emission has been removed (described below). Second,
the core census of Mon R2 provides an important comparison set
for the analyzed synthetic observations. The original observations
were taken between 2014 November 27 and 2015 January 31 with
AzTEC, a 144-element 1.1 mm bolometer array (Wilson et al.
2008; Austermann 2009), during the 32m diameter early science
configuration on the 50m diameter LMT. 14 fields of MonR2
were mapped, covering a region of 2 deg2. Noise levels of
∼7mJy per beam rms are determined from the Scott et al. (2008)
jackknifing technique (see Sokol et al. (2019) for a coverage map
of the fields and a full description of the observations). The maps
(of both the original observations and the synthetic observations)
were reduced using the standard AzTEC C++ reduction pipeline
described in Sokol et al. (2019) (macana; Scott et al. 2008). The
final maps have an angular resolution of ∼12″ FWHM,
corresponding to 0.05 pc at the distance of Mon R2 (860 pc;
derived from Gaia Collaboration et al. 2018; Pokhrel et al. 2020).

2.3. Synthetic Observations

We use one snapshot from RT1 and three snapshots from RT2
(see Table 1) to produce the synthetic observations. These
snapshots correspond to different output times from the simulations
once gravity has been turned on (t= 0). At the output time of RT1,
0.83Myr, there are 169 sink particles. For the three RT2 snapshots
—RT2.1 (0.49Myr), RT2.2 (0.92Myr), and RT2.3 (1.27Myr)—
there are 3, 62, and 120 sink particles, respectively. The sink
particles are proxies for YSOs. Their locations indicate where the
density has exceeded the Jeans number and collapse has occurred
until the eventual star formation, i.e., they mark the locations of
protostellar cores.
We convert the simulation gas to 1.1mm continuum synthetic

emission maps at the resolution of the MonR2 AzTEC maps (1″
per pixel) and a representative range of distances for the C2C
clouds (150–1000 pc), while preserving the fluxes and physical
scales of the simulations.
We first flatten the snapshot gas density cubes onto a fixed grid

(RT1: 2048×2048 pixels; RT2.1–2.3: 4096×4096 pixels). The
projected density of the resulting 2D map is given a world
coordinate system, where the center pixel of the map corresponds
to the center pixel from one field of the AzTEC data. We use
Field 4, centered on R.A. (J2000): 06h07m59 89 and decl. (J2000):
–07°00′04″.1, to map our simulation. This field is large (40′× 40′),
with a noise level of 7mJy/beam and a maximum peak flux of
109mJy/beam, making it an ideal candidate for inserting the
synthetic emission maps. The density maps are scaled to the
resolution necessary for the synthetic observation to appear at a
given distance in the sky. The simulations are then reprojected onto
the same grid as Field 4, while preserving their fluxes and scales.
The 3D Cartesian sink particle positions are similarly flattened and
projected onto the same world coordinate grid.
As noted above, the simulations are 5 and 10 pc across, and

Field 4 is larger (or further) than that at the Mon R2 distance.
To address this, we exploit the periodic boundary conditions of
the simulations and tile the projected density map in order to
fill the whole field. We next apply a Gaussian kernel the same
size as the LMT (32 m) and AzTEC natural beam (FWHM
~ ¢¢8.5 ) to smooth the projected maps to the resolution of the
AzTEC maps.
To determine the thermal dust emission at 1.1 mm (in Jy/

beam), we assume the dust and gas are thermally coupled
(Offner et al. 2009), and the gas density is optically thin
(τ∼ 0.005 for RT1 and RT2). Therefore, we can apply the
radiative transfer equation for an optically thin gas to convert
the projected gas density (g cm−2) to the dust emission (Jy/
beam):

t=n n nI B T , 1d( ) ( )

Table 1
Simulation Properties

Modela M  L Age Ti N3 Δxmin Nsink

(104Me) (pc) (Myr) (K) (pc)

RT1 1.425 14 10 0.83 10 5123 0.005 169
RT2.1 0.378 10.5 5 0.49 10 2563 0.001 3
RT2.2 0.364 10.5 5 0.92 10 2563 0.001 62
RT2.3 0.327 10.5 5 1.27 10 2563 0.001 120

Note.
a Model name, gas mass, Mach number, domain length, analysis output time, initial gas temperature, base grid size, minimum cell size, and number of sink particles.
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where Iν is the emission, Bν(Td) is the Planck function for a dust
temperature Td, and τν is the optical depth of the simulated
cloud. The dust temperature, Td, is the temperature at each map
pixel found from the radiation energy of the projected
simulation. Since τν= κνΣ, where Σ=M/D2 is the mass
surface density and κν is the dust opacity, then the emission at
1.1 mm is

k=I B T
M

D
. 2d1.1 mm 1.1 mm 1.1 mm 2

⎛
⎝

⎞
⎠

( ) ( )

We assume a constant dust opacity of 0.0121cm2 g−1 at
1.1 mm (model 4 opacities; Ossenkopf & Henning 1994),
including a gas-to-dust ratio of 100. M is the gas mass and D is
the distance corresponding to each model’s distance. This
converts the gas density from g cm−2 to Jy cm−2. In order to
convert Jy cm−2 to Jy/beam we multiply by the beam
in cm2/beam.

The scaled and beam-smoothed synthetic emission map is
then added to the timestream data for Field 4 and reduced with
macana to produce a synthetic emission map with the effects
of atmospheric filtering. However, in order to obtain a pure
synthetic observation, the original AzTEC signal must be
removed from the timestream. This is achieved through the
following steps:

1. Reduce the original Field 4 timestream data to make a
map of the Field 4 Mon R2 cores;

2. Negate the astronomical AzTEC emission (S/N > 2.5) in
the Field 4 map to create an inverted map; and

3. Project the Field 4 map with the negated astronomical
signal along with the synthetic emission from the
simulation back into the timestream to produce a
synthetic observation of the simulation.

During the reduction with macana, the negated AzTEC signal
will be added to the original timestream, canceling it out and
leaving only the synthetic signal. However, removing the
original emission in the timestream oversubtracts the signal,

resulting in negative valleys at the locations of high S/N. To
get around this oversubtraction, we must only add a fraction of
the negated signal back into the timestream, such that the final
map consists of just the simulated signal. For Field 4, we find
that we must subtract 55% of the original emission to produce a
clean noise-only map. See Appendix A for more details of how
we determine this fractional amount. Figure 1 shows the
prefiltered synthetic observation map and the final synthetic
flux map after running it through macana for RT2.3_D860z.
The synthetic emission macana runs are listed in Table 2.

3. Core Property Extraction

3.1. Core Identification

To identify the cores in the simulations, we create a python-
based core identification and selection process (ImSeg4),
following the method described in Sokol et al. (2019). This
method of core identification will be used by C2C; therefore,
we aim to test the robustness of this algorithm in detecting the
same synthetic cores at various distances.
This method utilizes the python library photutils.

Segmentation (p.Seg), a multi-thresholding algorithm for
blob identification, which implements a watershed algorithm
for separating blobs into individual components.
Before identifying the candidate cores, the signal map produced

from macana is first masked on values with S/N < 2.5 and/or
where the weight is less than 40% of the median nonzero weight
values of the map. This masking restricts our core search to those
areas with relatively uniform coverage depth. A noise map is also
created from the signal and S/N map in order to give a threshold
level for detection. The masked signal map is then run through the
p.Seg multi-thresholding algorithm.
Each segment that is found with the p.Seg multi-thresholding

algorithm is run through a modified p.Seg deblending process.
This process utilizes the watershed algorithm to search for
saddle points within each segment in order to separate an

Figure 1. Prefiltered synthetic observation S/N map (left) and post-macana synthetic observation S/N map (right) for RT1_D860z.

4 http://github.com/sbetti22/ImSeg
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otherwise continuous emission region. The resulting output is a
footprint map of the candidate dense gas cores. Properties,
including the total footprint area, center position, total and peak
flux, S/N, and half-peak power (HPP) information (position,
total and peak flux, S/N, and area) are calculated for each
candidate core. As in Sokol et al. (2019), all cores that fall
within 8 arcseconds of the coverage edge are subsequently
rejected in order to eliminate the majority of false detections.

In the macana reduction process, a jackknife technique is
applied to the time stream data in order to characterize the
noise. For each reduction, 15 fully filtered and spatially
mapped noise realizations are produced. These noise realiza-
tions are passed through ImSeg and are used to estimate
the false detection probability for each candidate core. To
determine the final core candidates, we create 2D histograms of
the total S/N and the ratio of the simulation-derived column
density to the synthetic dust emission column density for both
the noise realization false cores and the core candidates. The
ratio of these two histograms is used to isolate the regions of
the parameter space in which false detections dominate.
Confidence intervals are calculated for the histogram ratio. If
a core candidate lies within the 75% confidence interval, then it
is considered a false detection. Cores that lie outside this
confidence interval have a low probability of being considered
false detections, and are considered to be core candidates.

3.2. Core Flux, Mass, and Size Measurements

Once the synthetic cores are identified, we measure their
sizes, masses, and temperatures. As in Sokol et al. (2019), we

assume that the synthetic cores are spatially resolved and that
the lower S/N cores are not detected across their full radial
extents. Sokol et al. (2019) corrected the underestimation of
total flux and core mass by modeling and characterizing the
peak-to-total flux ratio relation, and then correcting for high
ratios at low S/N. They tested their correction by constructing
several Plummer-like models that span the expected ranges of
the peak-to-total flux and total S/N of the prestellar cores. To
confirm that our simulated cores have these same features, and
that we can use the same correction, we model the peak-to-total
flux ratio relation and find the same “iceberg” effect as seen by
Sokol et al. (2019) (see their Figure 7) in all of the model runs.
We then apply the same correction

d= -
-

F F
F

F
R , 3corr peak

peak

tot

1

⎜ ⎟
⎛
⎝

⎞
⎠

( )

where Fpeak is the observed peak flux, Ftot is the observed total
flux, Fcorr is the corrected total flux, and δR is the S/N-
dependent flux correction term found to be

d = ´ -R S N5.25 . 41.8( ) ( )

The simulated core flux ratios are corrected for noise bias. We
show fluxes before and after correction for RT1_D860z in
Figure 2. We use this process to correct all of the total observed
fluxes for all of the model runs.
We then calculate the mass of the cores from the corrected

fluxes. At 1.1 mm, the mass is found to be

Table 2
macana Runs and ImSeg Results

Model Distance View Resolutiona Ncores Nstarred cores fsink
b fstarred

c

(pc) (″)

RT1_D860z 860 z 1.21 222 78 0.53 0.35

RT2.1_D150z 150 z 1.68 146 (146) 1 (1) 0.50 (0.50) 0.01 (0.01)
RT2.1_D300z 300 z 0.84 83 (165) 2 (2) 1.00 (1.00) 0.01 (0.01)
RT2.1_D450z 450 z 0.56 41 (206) 2 (2) 1.00 (0.50) 0.01 (0.05)
RT2.1_D650z 650 z 0.38 21 (198) 2 (4) 1.00 (0.80) 0.09 (0.02)
RT2.1_D860z 860 z 0.30 11 (178) 2 (5) 1.00 (0.38) 0.18 (0.03)
RT2.1_D1000z 1000 z 0.25 11 (246) 2 (10) 1.00 (0.56) 0.18 (0.04)

RT2.2_D150z 150 z 1.68 89 (89) 2 (2) 0.12 (0.14) 0.02 (0.02)
RT2.2_D300z 300 z 0.84 63 (110) 11 (19) 0.64 (0.49) 0.17 (0.17)
RT2.2_D450z 450 z 0.56 34 (144) 12 (33) 0.85 (0.48) 0.35 (0.23)
RT2.2_D650z 650 z 0.38 27 (211) 11 (60) 0.84 (0.38) 0.40 (0.28)
RT2.2_D860z 860 z 0.30 18 (258) 11 (90) 0.69 (0.38) 0.61 (0.35)
RT2.2_D1000z 1000 z 0.25 15 (280) 11 (114) 0.68 (0.30) 0.73 (0.41)

RT2.3_D150z 150 z 1.68 135 (135) 14 (14) 0.50 (0.50) 0.10 (0.10)
RT2.3_D300z 300 z 0.84 49 (105) 16 (24) 0.51 (0.27) 0.32 (0.22)
RT2.3_D450z 450 z 0.56 44 (123) 18 (37) 0.58 (0.28) 0.41 (0.30)
RT2.3_D650z 650 z 0.38 37 (191) 18 (61) 0.58 (0.21) 0.48 (0.32)
RT2.3_D860z 860 z 0.30 24 (178) 13 (98) 0.42 (0.20) 0.55 (0.54)
RT2.3_D1000z 1000 z 0.25 21 (287) 13 (147) 0.41 (0.20) 0.62 (0.51)

Notes. For models RT2.1–2.3, the ImSeg results outside parentheses are the results for the cores in the same physical region as the 150 pc distance model field, which
covers a ∼2.3 × 2.3 pc region, while the results in parentheses are the results for the cores in the whole field, including duplicates from tiling.
a The resolution of 1 pixel before reprojecting.
b The fraction of the number of sink particles with cores to the total number of sink particles in the field.
c The fraction of the number of cores with sink particles to the total number of cores.

5

The Astrophysical Journal, 923:25 (21pp), 2021 December 10 Betti et al.




k

= ´ -

´

-

-

-

M
S

T

D
M

1.3 10
1 Jy

exp
13 K

1

1 pc 0.0121 cm g
, 5

d

5 1.1 mm

2
1.1 mm

2 1

1

⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

where S1.1 mm is the total flux density at 1.1 mm, Td is the dust
temperature, D is the distance, and κ1.1 mm is the dust opacity at
1.1 mm. Following Sokol et al. (2019), we take the dust opacity
to be 0.0121 cm2 g−1 at 1.1 mm. The dust opacity is found
from the Ossenkopf & Henning (1994) model 4 opacities for
icy dust grains at 1.1 mm, and assumes a gas-to-dust ratio
of 100.

The core sizes are calculated following Sokol et al. (2019)
and Könyves et al. (2015). The widths of the cores are found
from the deconvolved FWHM size given by

= -size FWHM HPBW , 6deconv
2 2 ( )

where the FWHM is the HPP diameter and the half-power
beam width (HPBW) is the final AzTEC beam width (12″). As
in Sokol et al. (2019), there is a bias toward smaller areas for
cores with S/N < 5. We therefore use the correction found by
Sokol et al. (2019) to calculate the unbiased HPP areas of the
cores in order to determine the FWHM.

The temperature of each core is found from temperature
maps derived from the simulated radiation energy density
smoothed to the Herschel beam at 500 μm (36″) at each
model’s distance. We take the average temperature within the
footprint of each core as the temperature. As the Herschel beam
and pixel scale is larger than the AzTEC maps, the synthetic
temperature maps may be biased due to blending and the large
beam causing the temperatures to be overestimated. Since this
same effect will occur for C2C, as Herschel temperature maps
will be used for the analysis, this provides a good test for
temperature robustness.

4. Core Property Systematic Effects Assessment

With synthetic observations, we can probe how measure-
ments of identical molecular gas structures are impacted by
observational and analytical algorithm biases. Here we describe

two systematic biases identified by placing the simulations at a
range of heliocentric distances.
Using the three RT2 snapshots, we look at how varying the

distance and age of the cloud affects the core properties. This

Figure 2. The peak-to-total flux ratio vs. the total S/N for all cores (blue–
starless; gold–starred) in model run RT1_D860z. The left panel shows the
uncorrected flux ratios with the “iceberg effect,” where the lower S/N cores are
not detected over their full extents. The right panel shows the corrected flux
ratios, where the fluxes are not underestimated. The final beam profile is shown
as the solid line, while the Plummer models are shown as dashed lines. The
Plummer models have aspect ratios of 2, power-law indices of 2, and scale
lengths of 2, 12, and 18 arcseconds (top to bottom), respectively.

Figure 3. RT2.3 overlaid with the sizes of the simulation at different distances
(black boxes). At these different distances, different amounts of the simulation
fit into the Field 4 area.

Figure 4. Median recovered sizes, masses, and temperatures as a function of
distance for starless and starred cores. For all panels, the red squares are RT2.1,
the green circles are RT2.2, and the purple diamonds are RT2.3. The cores
show a size and mass increase at large distances, which is indicative of
oversegmentation and overfiltering at closer distances.
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will help to place constraints on the CMFs and core sizes from
clouds at various distances and ages that are planned to be
observed in C2C. The three RT2 outputs are placed at 150,
300, 450, 650, 860, and 1000 pc in order to cover the full range
of distances of C2C. 860 pc is specifically chosen as a direct
point of comparison with the cores from Mon R2 presented in
Sokol et al. (2019). In Figure 3, the black boxes indicate the
extent of the tiled prefiltered synthetic observations seen at
each distance. RT2.3 is tiled and shown underneath the black
boxes for visualization purposes.

At 150 pc, only the center 2.3 pc of the synthetic emission
map fits within the Field 4 coverage; therefore, when compar-
ing the cores at all distances, we only look at cores within the
center 2.3 pc of each model to make a fair comparison. This
region will be called the “center,” while the whole Field 4
coverage will be called “total.” The center core candidates
found for each model run are summarized in Table 2, with the
total core candidates being shown in parentheses. On average,
for all of the synthetic emission model runs, we recover cores
subtending 65% of the sink particles within the center
and∼ 60% of all sink particles.

We find that the median recovered masses, sizes, and
temperatures for the synthetic cores vary with distance for the
three RT2 synthetic observations, as shown in Figure 4 (red is
RT2.1, green is RT2.2, and purple is RT2.3). From 150 to 1000 pc,
the mass increases by 1.4 dex, the size increases by 0.64 dex, and

the temperature decreases by 37± 6%. At D> 450 pc, these
physical properties level off, varying only by ∼0.2 dex. Though
there is slight temperature dependency with distance, the order of
magnitude discrepancy in mass cannot be fully explained by this.
If the temperature was the only cause of the mass discrepancy, the
temperature would have to vary by ∼1 dex in the opposite sign to
our result, with the core temperatures being around 6K at 150 pc
and 60K at 1000 pc. As this is not the case, the discrepancy in
mass and size is not due to the variation in temperature.
This significant increase in core mass and size with distance is

problematic, as these properties should be intrinsic quantities,
and not dependent on distance. Though we could be probing
substructures within the cores themselves, we clearly need to
identify and extract similar gas structures across all distances to
ensure their fair comparison. We consider two likely causes of
the observed discrepancies here: (1) atmospheric filtering in our
data reduction process, and (2) oversegmentation during the core
identification and extraction analysis. The former is likely to
shrink the extent of the diffuse emission for clouds at closer
distances. The latter occurs when resolved substructures within
cores are considered distinct objects at close distances, yet are
blended together at further distances.
We present an example comparison in Figure 5, where the

red/pink contours show the footprint map for the segments at
150 pc overlaid on gray footprint maps of the segments at
1000 pc. The pink and light gray contours are false core

Figure 5. Footprint map at 1000 pc (grays) overlaid with the 150 pc contours (reds) for RT2.2. False core detections are indicated by light gray/pink, while core
candidates are shown as dark gray/red. The dark red outline is the coverage edge for the 150 pc map. The oversegmentation and overfiltering at 150 pc is shown by
the increased number and narrower areas of the segments compared to the cores at 1000 pc.
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detections, while the red and dark gray contours are core
detections. The most obvious difference is that there are several
smaller segments at 150 pc for every segment that is found
at 1000 pc. Using the ratio of core counts in Table 2, there are
∼6 times as many cores at 150 pc compared to 1000 pc, though
of course there are other minor differences in the cores found at
each distance. This segmentation discrepancy results in the

closer distance extraction providing many more segments
overall, and with commensurately smaller typical masses and
sizes. The apparent “cores” in the 150 pc synthetic observation
have an average size of 0.025 pc (5100 au) and a mass of
0.25Me, similar to the protostellar “envelopes” found within
cores by millimeter-wave interferometers (Pokhrel et al. 2018).
Regardless of their origin, extracting only the smallest
resolvable structures will not yield a consistent set of structure
properties across our distance range.
The combined red 150 pc footprint is also distinctly narrower

than the footprint at 1000 pc, due to the strong negative halos
surrounding the positive flux, a classic sign of atmospheric filtering
affecting the detectable astrophysical signal. If overfiltering was
not an issue, the total amount of flux and the emission area within
the same physical area should scale inversely with the distance
squared. However, as shown in Figure 6, there is a substantial loss
of flux and area at relatively close distances. At 150 pc, only
1.3× 10−3 of the total original flux is recovered, compared to
∼3× 10−3 being recovered at larger distances, a factor of 2.3
greater. The total emission footprint area (with pixels greater than
the median noise, ∼7mJy) is similarly discrepant, with only 0.03
of the total original area recovered at 150 pc compared to 0.1 of the
total area recovered at 650−1000 pc (the uncertainties for both flux
and area are insignificant here), a factor of 3.3 greater. This small
reduction of the region-wide mean flux density within the
identified emission footprint, by a factor of 0.7, despite a net
increase in the total flux detected, masks complex flux-filtering
behavior. Ultimately, the median mass surface densities of the
cores increased by a factor of 2.3 over our distance range. This is
the opposite sign of the change in mean flux density, but consistent
with the increase in total flux within the fixed field of view of the
center region (the median core temperature difference also impacts
the mass-to-flux conversion).
In summary, the mass and size discrepancies of cores at close

distances are a direct result of both overfiltering and over-
segmentation. Care should be taken in C2C when comparing
cores at various distances, and future work will need to address
these issues, as the smaller TolTEC beam may exacerbate the
issues at the closest distances. With that stated, it is expected that
the TolTEC data will not suffer as much filtering damage,
because of its larger array footprint and massive increase in

Figure 6. Top: the total flux and total area of the synthetic observations and
Mon R2 AzTEC cores. Bottom: the percentage of flux and area recovered as a
function of distance. The synthetic observations are shown as black squares,
and the red squares mark the “Herschel-like” 36″ 1.1 mm prefiltered map
within the center 2.3 × 2.3 pc region. The gray circles are the AzTEC Mon R2
total flux and the area within each field mapped by AzTEC, while the black
circle is Field 4 (Sokol et al. 2019). The red circles are the Herschel total flux
and the area within each AzTEC field, and the dark red circle is Field 4. The
solid black and red lines follow the D−2 dependence for flux and area, while the
dashed black lines show the deviation from this dependence. The uncertainties
in flux and area are insignificant for all maps.

Figure 7. Column density vs. temperature for the cores from the RT1_D860z
synthetic observation (magenta diamonds) and the AzTEC Mon R2 observa-
tions (gray contours). In order to conduct a fair comparison between the
synthetic and real observations, we required a sample of cores that lie in the
same types of environments. Therefore, we only selected observed cores with
column densities N(H 2) > 1022 cm−2 (which is the fifth percentile of the
synthetic column density value, marked by the black dashed line).
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sampling density over AzTEC in terms of both space (35 times
more detectors at 1.1 mm) and time (a higher sampling
frequency). Furthermore, TolTEC’s simultaneous observations
at 3 mm wavelengths may enable additional advances in
atmospheric filtering that are less destructive to the astronomical
signal. For this work, however, we will only use synthetic
observations at D > 500 pc for the remainder of the analysis, so
that the effects of these biases are negligible.

5. Comparison to AzTEC Mon R2 Observations

To analyze how well the simulations can reproduce the
observed core properties within molecular clouds, we compare
our synthetic cores to the observed cores in MonR2 (Sokol et al.
2019). We use the RT1 simulation, as it is approximately the same
size as Field 4 (10 pc simulation versus the ∼12 pc AzTEC
MonR2 field), and therefore the simulation fills the whole field
with little duplication from tiling. At this distance and scale, sink
particles are proxies for YSOs. The core candidates found for
model run RT1_D860z are summarized in the first row of Table 2.
All cores where a sink particle falls within the core footprint are
considered to be starred, while all other cores are considered to be
starless. We find 222 core candidates, with 35% of them
considered to be starred. However, only∼ 53% of all sink
particles are located within the footprint of a core. The sink
particles that are not within core footprints are in areas of low S/N
emission, and are thus not detected in the synthetic observation.

The simulations generally best represent the conditions found in
denser “clump” regions within nearby molecular clouds (e.g., the
center of MonR2). Thus we must attempt to prune the observed
cores to those that are found in similar environments to the
simulation. We select observed cores with local diffuse gas column
densities N(H 2)> 1022 cm−2 (the fifth percentile of the simulated
column density value), as shown in Figure 7. All cores with N(H
2)> 1022 cm−2 are relatively dense, but span a wide range of
temperatures and fill the same parameter space as the synthetic
cores. Only observed cores above this column density will be used
in order to conduct a fair comparison of the properties of the
two sets.

In order to determine the extent to which we can accurately
compare synthetic cores, and therefore the robustness of the

simulations in predicting core properties and environmental
effects, we first look at the CMFs for the synthetic cores
(×/square) and the AzTEC Mon R2 observations (histograms)
in Figure 8(a). As the synthetic observations are created using
the same spatially filtered maps and reduction process, we use
the same differential core detection completeness characteriza-
tions and corrections as in Sokol et al. (2019). In that work, the
authors inserted nine false cores per mass bin into the
timestream data, reduced the modified data with macana,
and ran a full core extraction analysis in order to determine the
differential completeness as a function of the corrected core
flux (see their Figure 6). Since we use their data for our
synthetic observations, we also adopt their completeness trend
in order to correct for the incomplete core number counts at the
low mass end of our synthetic CMF.
We find that the CMF shape derived from the synthetic

emission cores is the same as that in Sokol et al. (2019), with and
without the completeness corrections. The mass-complete values in
Figure 8(a) are shown by ×/the light gray hatched histogram,
while the mass-incomplete observed values are shown by the gray
squares/gray hatched histogram. The number counts between the
starless and the starred synthetic cores vary, with 175 starless
synthetic cores and 83 starred synthetic cores. We cannot rule out a
turnover at the low mass end near 3Me, similar to a Chabrier IMF
with a mass shift of 3× (black line).
Figure 8(b) shows the masses and sizes of the synthetic

cores, separated into starless (blue unfilled circles) and starred
(yellow filled stars) cores, overlaid onto the parameter space
occupied by the Mon R2 cores (with the prestellar cores being
displayed as yellow contours, and the starless cores as blue
contours). The median synthetic core size is 0.073 pc, while the
median Mon R2 core size is 0.083 pc. We see a clear trend of
small cores (cores with sizes <0.05 pc) primarily containing
sink particles not seen in the observations. In RT1_D860z,
separated at the median size (0.073 pc), 51± 7% of cores
<0.073 pc contain sink particles compared to 23± 4% of cores
>0.073 pc. This substantial difference among the core sizes is
not observed in the Mon R2 cores, where 33± 5% of cores
with sizes <0.083 pc contain YSOs compared to 23± 7% for
the larger sizes. This discrepancy appears for two reasons. First,

Figure 8. RT1_D860z synthetic core observations compared to Mon R2 AzTEC Field 4 cores with similar column densities. (a) RT1_D860z synthetic CMF (x/
square) and AzTEC Mon R2 CMF (histograms). The incomplete CMF is shown by the squares/dark histogram, while the result after correcting for completeness is
shown by x/the hatched histogram. Error bars are shown in the corrected CMFs if they have >20% completeness. A Chabrier (2003) IMF with a mass scale factor of 3
is shown as the black line. (b) RT1_D860z synthetic (blue circles/gold stars) and AzTEC Mon R2 Field 4 (blue/gold contours) corrected mass vs. corrected
deconvolved FWHM size. The cores with YSOs for the synthetic observation and the AzTEC data are shown as gold stars and contours, while the starless cores are
shown as blue circles and contours. The black line is the Bonnor–Ebert stability line for the median core temperature (T=16 K; Könyves et al. 2015). The cores above
this line are gravitationally bound, while the cores below this line are gravitationally unbound.
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an inspection of the raw simulation data (see Appendix C)
shows that these sources are mainly older objects, which have
bright, massive disks and very little surrounding envelope.
Hydrodynamic simulations, which neglect magnetic fields,
commonly produce large disks (Zhao et al. 2020), which are
much more massive than expected compared to the observa-
tions (e.g., Williams et al. 2019; Tobin et al. 2020). On the
observational side, the region of the parameter space for
smaller low mass cores, M 0.5 Me, has a completeness
of < 5%, so we expect more starless and protostellar objects to
reside in this region than are actually detected.

In order to gauge how the environment may affect the cores
found in our synthetic observations, we examine how the cores
are clustered relative to the column density of their surrounding
diffuse gas. Following Sokol et al. (2019), surface density is
calculated by finding the nearest neighbor distances (dn) from
each core, given as (n-1)/(π(dn)

2). This is multiplied by the
mean mass of the n cores selected to get the core mass density.

Using our Herschel-like synthetic column density map, we find
the average column density over the same area that was used to
calculate the core mass density. We measure the gas surface
and core surface densities for n= 4, 6, 11, and 18 nearest
neighbors to look at clustering at different size scales, similar to
Gutermuth et al. (2008), Sokol et al. (2019), and Pokhrel et al.
(2020).
As shown in Figure 9, RT1 (pink diamonds) tends to span a

smaller range of gas densities than the MonR2 observations, and
that range decreases as more neighbors (n) are included. This effect
is largely confined to the high column density end, while the the
minimum gas densities remain relatively constant. This indicates
that more diffuse gas (lower column density) is enclosed as the
smoothing size scale increases, and the enclosed area also increases
in order to contain more nearest neighbors. Figure 10 shows that
when we compare the range of gas densities subtended, we see
much stronger dilution for a given n compared to the Mon R2
observations. The synthetic gas densities shrink by 59% by n= 18,
while the MonR2 cores only shrink by 27% over the same range in
n value selection. We also find that the average gas surface density
in the synthetic observations shifts by a greater extent as more
neighbors are included, from 212Me pc−2 to 148Me pc−2, while
the MonR2 observations shift from 210Me pc−2 to 171Me pc−2.
This shrinking and shifting is predominantly a signature of the
smaller N core groupings in the simulation than are in MonR2, a
systematic difference between the two data sets.
Overall, while the simulation can accurately reproduce the

observed MonR2 CMF for cores in a similar range of column
densities, the environments that form these cores differ from the
observations. While some cores form in areas of low column
densities, the majority of the low mass cores preferentially form in
small but overly dense regions. The discrepancies in the clustering
characteristics between the observations and the synthetic results
demonstrates the limiting nature of the simulations used here for
the purpose of disentangling the environmental effects on core
properties. Future work will employ next generation simulations,
such as those from the Star Formation in Gaseous Environments
(STARFORGE) project (Grudić et al. 2021), that simulate entire
molecular clouds over a much wider dynamic range of spatial
scales and gas column densities, and that incorporate more stellar
feedback effects. Parallel improvements in the simulation suite
used and the observations from C2C should facilitate much more

Figure 9. The RT1_D860z synthetic observation (magenta) and AzTEC/
Herschel Mon R2 (gray contour) core gas correlation for n = 4, 6, 11, and the
18 nearest neighbors. At high gas and core surface densities, the cores are
clustered within small, dense regions, while at lower surface densities, the cores
are in a more diffuse medium. As n increases, the amount of synthetic
clustering in the dense regions decreases.

Figure 10. The RT1_D860z synthetic observation (magenta) and AzTEC/
Herschel Mon R2 (black) gas surface density ranges from Figure 9, normalized
to the n = 4 range. As n increases, the range in the synthetic gas surface
densities decreases at a faster rate than the observations.
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comprehensive analysis of the environmental impacts on core
properties.

6. Core Property Evolution from Multiple Simulation
Snapshots in Time

In order to analyze the cores from C2C across various
environments and ages, we first need to characterize the
systematic effects in the data reduction and analysis process;
determine the extent to which the simulations can reproduce the
observations; and, if the simulations are robust, start to probe
how age will affect the observed core properties.

Understanding both the systematics in the data reduction
techniques and the reliability of the simulations is essential for
explaining and interpreting observations. Therefore, we focus
our analysis on both these angles, with the goal of characteriz-
ing the potential issues that may arise in the C2C results and
interpretation. We will show the differences between the
synthetic cores as compared to the observed core properties,
highlighting the potential issues of our understanding of star
formation within simulations.

6.1. Mass and Size

We first characterize how the inferred masses and sizes (and
therefore the CMF) will vary with both distance and age, two of
the most prominent dependent variables for the C2C sample.
Overall, the starless core properties are independent of age,
with little variation in average mass, size, and temperature with
time (Figure 11). However, as the cloud ages, starred cores

appear above the distribution of starless cores, suggesting that
the cores grow in mass before undergoing collapse. Over time,
the starred cores collapse and shrink, on average, from a
median mass of 12Me–2Me and a size of 0.98 pc–0.04 pc.
This represents the depletion of the envelope as the protostar
accretes.
In Figure 11, we show the mass–size relation for 650, 860,

and 1000 pc at all ages, with the starred cores shown as stars,
and the starless cores shown as circles. The black line is the
approximate numerically modeled Bonnor–Ebert (BE) stability
criterion line (Könyves et al. 2015). The critical BE mass is the
largest mass that an isothermal sphere in a pressurized medium
can have while maintaining hydrostatic equilibrium (Bon-
nor 1956). A core is considered self-gravitating and bound if its
mass is above the approximate numerically modeled critical
thermal BE mass, =M R c G2.4 sBE,crit BE

2 . RBE is the BE
radius, cs is the isothermal sound speed, and G is the
gravitational constant (Könyves et al. 2015). This critical mass
does not take into account nonthermal turbulent motions; these
can be considered by substituting the total velocity dispersion
for the sound speed. However, André et al. (2007) and Pokhrel
et al. (2018) show that nonthermal motions are insignificant for
low mass cores, and produce unphysical formation efficiencies
when treated as an effective pressure. Therefore, we only
consider the thermal BE mass. Cores with a BE mass ratio
αBE=MBE,crit/Mobs� 2 are considered self-gravitating, and
will eventually collapse and form protostars (generally these
are cores above MBE,crit, while cores with αBE> 2 do not have
enough mass at that moment to remain bound). Though they

Figure 11. The corrected mass vs. corrected deconvolved FWHM size for RT2.1 (left), RT2.2 (center), and RT2.3 (right), at 650 (top), 860 (middle), and 1000 pc
(bottom), within the center 5 pc of each model. The darker filled stars correspond to the starred cores, while the lighter unfilled circles are the starless cores. The large
star or circle is the median value for the starred or starless cores, respectively. The black line is the BE stability line for the median core temperature ( ≈15 K for all
panels; Könyves et al. 2015). By 1.27 Myr, there is a split in size between the starred and starless cores.
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may be pressure-confined, they may eventually dissipate if
more mass is not accreted.

The separation between the median sizes of the starred and
starless cores, as shown in Figure 11, increases with age,
changing from an average separation of 0.016± 0.001 pc to
0.044± 0.002 pc. For RT2.2 and RT2.3, the majority of the
starred cores have sizes less than the median size of the cores,
with 60%–80% of the small cores containing YSOs. The
number of starred cores less than the overall median size also
increases as a function of age, though there is a slight turnover
at 860 and 1000 pc for RT2.1. Due to the low number counts of
starred cores that lie within the center region at all distances in
RT2.1, there is no statistically significant separation of starred
and starless cores. However, between RT2.2 and RT2.3, there
is a 16± 3% increase in the number of starred cores with sizes
smaller than the median.

In order to derive the synthetic core temperatures, we follow
a similar approach to the approach that will be used by C2C, as
described in Section 3. However, the large 36″ beam (ranging
from a physical size of 0.11 pc at 650 pc away to 0.17 pc at
1000 pc away) will resolve different size scale temperature
estimates, depending on distance.

If we assume the median temperature of the cores at each age
and distance (∼15 K), we find that the hotter cores are
generally starred, gravitationally bound, and less extended
compared to the starless cores, which are large (and thus less
dense), gravitationally unbound, and colder. We also see a clear
separation between the peak-to-total flux ratio (the “peakiness”
of the core) of the starred (diamonds) and starless (squares)
cores. The starred cores, which all generally fall on or above
the BE line for all distances and ages, are smaller and less
massive, but have higher S/N and are more concentrated
(“peaky”) compared to the starless cores. As discussed in
Section 5, this is because many of the older protostars are
embedded in massive disks and have little remaining envelope.

The fraction of the starless cores above the BE line varies with
evolutionary time and observational resolution, as early times
show better agreement with the observed starless cores.

6.2. Core Mass Function

We find that the average mass over time decreases for the
starred cores, while remaining constant for the starless cores,
resulting in CMFs with increased low mass bins. This initial
bias toward higher masses has been found in other molecular
cloud simulations (Smullen et al. 2020), and can be fit with a
high mass slope µ -dN dM M 2, as seen in Guszejnov &
Hopkins (2015). However, from 0.49Myr to 0.92Myr, the
high mass slope decreases to µ -dN dM M 1.3, consistent with
a Chabrier IMF, though shifted by a factor of 2.5–3.5. The
number of starred cores also increases significantly; within the
original 5 pc box, the starred cores increase from 2–3 to ∼30.
From 0.92Myr to 1.27Myr, the starred core counts remain
fairly stable and span a wide range of masses (1–30 Me).
However, we do not produce cores in the low mass regime
(<1Me), as the radiative feedback in the simulation and the
lower resolution of turbulence can inhibit small-scale fragmen-
tation (Offner et al. 2009; Urban et al. 2010; Krumholz et al.
2011; Bate 2012; Padoan et al. 2020). The starless core tallies,
while initially high due to a lack of sink particles in the
simulation, remain fairly constant between the two later time
steps, both in mass and number counts.
Overall, the CMFs from 0.92 to 1.27Myr remain nearly

constant between the two snapshots. This consistency is seen in
other simulations, such as those by Smullen et al. (2020) and
Cunningham et al. (2018). The relative consistency of the
masses of the starless cores has also been observed (e.g., André
et al. 2014). However, Smullen et al. (2020) also found
significant variation over time in the properties of individual
simulated isolated starless cores, even while the total CMF

Figure 12. The CMFs for RT2.1 (left), RT2.2 (center), and RT2.3 (right), at 650 (top), 860 (middle), and 1000 pc (bottom), within the center 5 pc of each model.
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shape remained invariant. Much of the core variation was due
to the changing core definition, since the core identification
method (dendrograms) was overly sensitive to small changes in
the core’s underlying physical structure. This leads to the
concern that some algorithms, especially when used to identify
cores in clustered regions, may not be robust.

The reproductions of the combined starred and starless
CMFs, in both Figures 8 and 12, is a good indication that the
simulations are able to reproduce cores at similar masses and
ages. The consistency of the CMFs over this time range gives a
good indication that the core identification and data reduction
algorithms are able to identify the same cores with the same
masses and sizes, confirming that systematic biases will not be
a significant variable to untangle when analyzing the C2C core
properties for most of the target clouds. Only Perseus and
Ophiuchus are closer than 400 pc in the C2C sample, and thus
are likely to need special consideration for biases.

6.3. Core Gas Correlation

We look at the core gas correlation at varying distances and
ages to explore the effect of clustering and core formation over
time within the simulations. We find that the synthetic data
overlap at all distances, with very little variation in gas and core
surface densities. Therefore, in Figure 13, we show the core gas
correlation at 860 pc for all three ages as a representative
sample. The left panel of Figure 13 shows the core gas
correlation at small (n= 4) and larger scales (n= 11), overlaid
with the power-law fit (index of 1.99) from Sokol et al. (2019),
while the right panel shows the range of gas densities at various
size scalings (number of nearest neighbors) at each age.
Overall, the synthetic data loci parallel and often overlap the
power-law fit at all ages and smoothing scales. The range in gas
densities decreases with increasing distance, shifting toward
low gas densities.

The range of gas surface densities that host the cores
increases with age, and shows higher gas column densities for
the same core densities, indicating that the gas has had time to
accumulate due to the influence of gravity. At younger ages,
the gas is highly diffuse for all size scales, indicating very few
high gas density regions within the cloud. Over time, the gas
accumulates and collapses into small, high column density
“clumps” that form several cores at most, while the gas remains
relatively uniform at large scales. This seeming inability to
sustain larger molecular gas clumps may be a result of the
driven turbulence and periodic boundary conditions of the

simulation, which preclude large-scale gravitational collapse
and prevent large clumps from forming.
The simulated core gas correlation falls along the same slope

as found by Sokol et al. (2019), with a power-law index of
1.99± 0.03. Sokol et al. (2019) found that this slope, which
follows the model of thermal fragmentation (Myers 2009),
indicates that the primordial gas distribution will be depleted
quickly at high column densities, due to the high mass
efficiency of the cores formed in that environment. The extent
to which our synthetic cores extend in this core gas density
space is more limited than in the observations, but the extent
does grow toward the higher core densities as the simulation
evolves with time, and this is especially noticeable in the small
n nearest neighbor measurements. When we separate the
starred and starless cores (Figure 14), they are both well
represented across the entire density range subtended, in
agreement with the Mon R2 observations. The main discre-
pancy appears to be the penchant for small number groupings
in the simulations, which results in the representation of the
higher density regions being extremely sensitive to n selection,
as seen in both the core density and nearest neighbor distance
measurements (Figures 14(a) and (b)), unlike the observations
of Sokol et al. (2019). Along with this discrepancy, we also
find no variation in mass with gas density (Figure 14(c)), which
is inconsistent with the observations. However, this disagree-
ment is only seen at the low and high gas density ranges; in the
former, it is a result of noise-induced false detections, and in
the latter, it is due to temperature variations not being taken
into account in the observations.

6.4. Summary

We have explored the robustness of synthetic observations—
with the same noise properties, filtering effects, and core
identification algorithms as real observations—in reproducing
observed cores, in order to assess their feasibility for disentangling
the environmental effects, ages, and distances of the core properties
that will be observed by C2C. We have found substantial
overfiltering and oversegmentation at close cloud distances
(D< 300 pc and 500 pc, respectively) in the synthetic observations
based on AzTEC on the 32 m LMT. The smaller TolTEC beam on
the 50 m LMT may exacerbate the oversegmentation issue, while
the larger field of view of the TolTEC arrays should reduce the
impact of overfiltering at core scales when observing the nearest
C2C target clouds. For further distances, however, at which these
effects are less significant, we have been able to investigate

Figure 13. Left: the core gas correlation for RT2.1 (left/squares), RT2.2 (center/circles), and RT2.3 (right/diamonds) at 860 pc for n = 4 (top/small scales) and
n = 11 (bottom/large scales). The black line corresponds to the best power-law fit from Sokol et al. (2019) with a power-law index of 1.99. The white markers
indicate the starless cores, while the colored markers indicate the starred cores. Right: the gas surface density range as a function of the number of nearest neighbors (n)
for each model shown in the left panel. As n increases, the gas surface density range decreases for all ages, indicating that clustering occurs only on the smallest scales.
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observable evolutionary changes in the core properties. We find
that the synthetic observations are able to reproduce the observed
CMFs and produce cores with an efficiency that is consistent with
the middle portion of the gas column density range of the MonR2
AzTEC survey’s field of view. However, the clump formation in
the simulation does not advance far enough to reach the high gas
column density and strong intermediate scale core clustering that is
observed in MonR2. Similarly, the simulations exhibit the
increasing separation over time of the core masses and sizes of
the starred and starless cores, while no such distinction is observed
in MonR2.

These discrepancies between the observations and the
simulations limit the power of using synthetic observations to
predict how observed core properties should behave when they
are exposed to various environmental factors. Next generation
simulations, such as STARFORGE (e.g., Grudić et al. 2021),
are better able to capture the physics from cloud to core size
scales, and thus they may address some of the apparent
discrepancies reported here. Similarly, future work on the
observation side is needed to address the filtering and
segmentation issues that plagued our analysis of nearby
synthetic clouds. An observation simulator for TolTEC and
LMT is under active development (Z. Ma, private commu-
nication), which will include end-to-end treatments of the
telescope, the optical and electronics system, and the model
atmosphere, and which will provide an extremely useful test
platform for future iterations of C2C data treatment and core
analysis.

7. Conclusions

In this paper, we have begun to explore the robustness of
synthetic observations in accurately predicting molecular cloud core
properties for C2C on the 50 m diameter LMT. As this survey aims
to map clouds at different ages and within different environments,
assessing the feasibility of using synthetic observations to predict
how environmental factors affect the core properties and their
evolution is essential.
We produced synthetic 1.1 mm continuum emission obser-

vations by inserting snapshots of hydrodynamical radiative
transfer simulations of star-forming regions into AzTEC/LMT-
32 m observations of the Mon R2 cloud. We used a python-
based image segmentation algorithm to find core candidates
in the synthetic observations and to calculate various core
properties, including mass, size, and temperature. We explored
a variety of simulation outputs at different ages and varying
distances in order to probe the full range of clouds that will be
surveyed by C2C. We found the following:

1. Overfiltering and oversegmentation of cores occurs at
distances less than 300 pc and 500 pc, respectively, under
the current data treatment and analysis path developed for
C2C. The higher resolution and better sampling that
TolTEC will provide may improve or exacerbate these
issues. Regardless, caution should be taken when analyz-
ing cores from nearer distances because of these effects.

2. The core masses, sizes, and CMFs found from the synthetic
observation of the RT1 simulation at 860 pc are consistent
with the same observed core properties for the cores in
MonR2 found by Sokol et al. (2019). However, we find a
separation in size between the starred and starless cores that
is not seen in the MonR2 observations, where the majority
of synthetic cores with sizes <0.073 pc contain sink
particles/YSOs (51± 7%) compared to only 23± 4% of
the cores with sizes >0.073 pc. We expect that this
discrepancy is caused by both the overly massive disks in
the simulations, which appear as bright, compact emissions,
and the observational incompleteness for small core masses.

3. In sampling several ages of the RT2 simulations for the
synthetic observations, we explore the ranges of core
mass, size, and clustering that are potentially observable.
We find that the starred cores decrease in mass and size,
while the starless cores remain invariant over time. In the
simulations, the synthetic starred cores move down the

Figure 14. (a) The core gas correlation; (b) the smoothing size scales; and (c)
the smoothed mass for RT2.3 at 860 pc for n = 4 (top panels/small scales) and
n = 11 (bottom panels/large scales). The black line in (a) corresponds to the
best power-law fit from Sokol et al. (2019) with a power-law index of 1.99. The
yellow stars are the measurements centered on the starred cores, while the open
blue circles are the measurements centered on the starless cores. The starless
cores are generally found to be more isolated, while the starred cores are more
clustered at large n.
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BE stability line with age, as they accrete their envelope,
separating from the starless cores.

4. The simulated cores cluster where the gas is densest, but the
groupings are universally small N, exhibiting notable
density reductions for modest increases in smoothing scale.
The character of their clustering with respect to gas density
is only consistent with the MonR2 observations within a
narrow gas column density range. The Mon R2 observations
exhibit core clustering that is correlated with gas structure at
a wide range of gas column densities and smoothing scales.
These results suggest that while the synthetic observations
can reproduce the CMFs, the discrepancies between some
of the simulations and observations of Mon R2 are
nonetheless substantial, and will require amelioration in
order to improve confidence in the predictions that we
derive from the simulations.
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Appendix A
Removing the AzTEC Signal

In order to insert the simulations into the AzTEC 1.1mm
continuum maps, the original signal must be removed, such that
all of the astronomical signal in the final synthetic observation is
from the original simulation. We find that a straight subtraction
oversubtracts the original signal, leaving negative halos surround-
ing the observed signal. To address this, we determine the fraction
of the original signal that should be subtracted (the oversubtraction
fraction, fsub), before inserting the simulation into the AzTEC
1.1mm continuum maps. We create negated AzTEC signal maps
multiplied by various values of fsub that are added to the time

Figure 15. The effect of fsub on the negating signal in the Field 4 map. Top: the resulting S/N background map for Field 4, with different factors of fsub (0, 1, 0.5, 0.55,
0.6) applied post-macana. Middle: 2D histograms comparing the S/N of the original map to the background maps, with various factors of fsub applied. The dashed
line is unity. Bottom: histograms of the S/N in the background maps (red) compared to the S/N of the original map (gray). When the significant signal is removed
from the map, the background S/N is −4  S/N  4. When oversubtraction occurs, negative halos produce significant negative S/N values, and when
undersubtraction occurs, the positive signal produces a significant positive S/N. At fsub = 0.55, the optimal amount of signal is subtracted, diminishing the negative
halos and the strong positive signal.
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stream and run through macana. The goal is to create a map of
well-behaved noise without a strong correlated signal (or anti-
signal). Figure 15 shows how the oversubtraction of the signal in
Field 4 changes for different fsub values. When all of the original
signal is subtracted, the background-only map is significantly
oversubtracted, resulting in negative S/N values for all original S/
N > 2.5. However, when the original signal is halved ( fsub∼ 0.5),
the amount of oversubtraction is much less severe, with every
pixel having |S/N|< 5.

To quantify fsub, we find a linear relationship between fsub
and the average S/N of pixels with S/N values greater than the
pivot S/N. The pivot S/N is found by:

1. Selecting all of the bins that have a background-only S/
N ∼0;

2. Determining the bins in that selection with counts greater
than the median number of counts in the whole
histogram;

3. Finding S/Nthresh: the original S/N value that corre-
sponds to the rightmost bin with counts greater than the
median number of counts in the whole histogram; and

4. Calculating the average S/N in each map with S/N>Nthresh.

This average S/N is the S/N of all of the pixels for which the
original S/N was large enough to be affected by the
oversubtraction. With this relationship, we can then find fsub
where the average S/N of those affected pixels will be zero,
and create a blank canvas on which to add the synthetic
emission map. As shown in Figure 16, for the three fields that
we tested—Field 01 (relatively empty), Field 4, and Field 09
(relatively strong emission)—we found a range of fsub from
0.55 (Field 01) to 0.8 (Field 09), indicating that fields with
more emission have a higher fsub.

Appendix B
Image Segmentation

At submillimeter wavelengths, the thermal emission from the
cores is optically thin, allowing the full flux density to be
measured. However, how these cores are identified is still an
issue that must be resolved before the core properties can be
measured. Beyond searching by eye, several clump-finding
algorithms exist, which search for bright peaks (ClumpFind;
Williams et al. 1994), ascend gradients until reaching a peak
(FellWalker; Berry 2015), or use hierarchical branches to find a

range of clumps (dendrograms; Rosolowsky et al. 2008). Each
of these methods have biases and work in different ways.
However, none take into account the noise properties and maps
that are produced by the data reduction pipeline from AzTEC
and eventually TolTEC.
macana, the AzTEC C++ Data Reduction Pipeline,

produces a coadded signal, weight, S/N, and point-spread
function (PSF) maps. In order to characterize the noise in each
scan of the time stream data, noise realization maps are
produced through a jackknifing technique. These produce a
good estimation of the noise variance in each scan, and can
give a false detection rate when finding clumps. In order to
utilize the noise realization maps to the fullest extent and obtain
an accurate core census, Sokol et al. (2019) used a core
identification algorithm similar to ClumpFind for both the
signal maps and the noise realization maps to identify the real
and false cores. This algorithm was written in IDL and uses the
IDL watershed algorithm to search for continuous emission.
With the upcoming C2C, this algorithm has been updated,
converted into a working python-based library (named
ImSeg5), and documented so that it can be used by the C2C
community.
ImSeg is a core detection and characterization utility that

uses the photutils package photutils.Segmentation to
detect and deblend clumps and cores in both observational data
and simulations. After detecting core candidates, ImSeg
measures the characteristics of each core, including R.A./
decl., total and peak flux, area, FWHM semimajor/minor axes,
and mass. All core candidates are then put through a
“goodness” test, using the noise realization maps, to determine
the final core catalog and CMF.
ImSeg is currently set up for 350, 450, 850, and 1100 μm

wavelength observations, and it has been successfully applied
to James Clerk Maxwell Telescope Submillimetre Common-
User Bolometer Array 2 (SCUBA-2) 450 and 850 μm data, as
well as to LMT AzTEC 1100 μm data.
Before identifying the cores, the flux map is first masked on

values with S/N < 2.5 and/or where the weight was less than
40% of the median nonzero weight values of the map. This
masking ensures that only a significant signal is identified. A
noise map is also created from the signal and S/N maps in
order to give a threshold level for detection. The masked signal
map is then run through the photutils.Segmentation
detect_sources() algorithm, which detects blobs with
values greater than the noise at each pixel. For a blob to be
identified, it must have a minimum number of 8 connected
pixels (npixels; pixels touching along edges or at corners). This
parameter is tuneable; however, we choose a value of npixels
that corresponds to blobs slightly smaller than 0.05 pc. As
0.05 pc is the average core size, we include cores by choosing a
slightly smaller npixel, while excluding potential noise peaks
or hot pixels. However, as this method only determines the
connected pixels, overlapping blobs will be identified as one
component. Therefore, we utilize the photutils.Segmen-
tation deblend_sources() multi-thresholding and
watershed algorithm to separate the individual cores. This
method requires two parameters: nlevels and contrast. nlevels
refers to the number of multi-thresholding levels, while contrast
is the fraction of the total flux that a peak must have to be its
own blob. The number of levels is used for every source; this

Figure 16. The effect of S/N on the oversubtraction fraction for three fields in
Mon R2: Field 1, Field 4, and Field 9. Oversubtraction increases with the
increase of the signal in the field; therefore, the oversubtraction fraction
required to remove all of the signal from the field also increases.

5 http://github.com/sbetti22/ImSeg
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means that 2σ sources are separated by the same number of
levels as a 10σ source. This poses a problem, as either
oversegmenting (where the nlevels is too high) or under-
segmenting (where the nlevels is too low) can occur. To get
around this issue, we make several changes to the deblen-
d_sources() function. Before running the function, we
create a noise-based contour image of our signal map, with
steps 1σ in size. The contour image is found by scaling the
masked signal map by the median noise value of the masked
pixels, before the fractional values are truncated to yield the
noise-based contour image. This image is stored as a greyscale
byte image.

The deblend_sources() function is then changed to
use this noise-based contour map to find the number of multi-
thresholding levels to use for each blob and their corresponding
data values. Each blob is then segmented with a different
number of levels, based on the contour image; however, the
step size between the thresholding levels for each blob is
always 1σ.

After each core is deblended, the properties of each core are
then determined. For each core, photutils.Segmenta-
tion source_properties calculates several properties.
We utilize the central R.A. and decl., the peak S/N and signal,

the area in pixels squared, and the flux values within each core.
With these various properties, we find and calculate the central
R.A. and decl., the peak S/N, the peak signal, the total S/N,
the total signal, the area in degrees squared, the HPP area, and
the HPP central R.A. and decl., then determine if the core is too
close to the edge of the map. Additionally, we calculate the
temperature of each core and the number of YSOs within the
footprint of each core.
The final core candidates are selected using a “goodness”

test, based on the whether the core passes three tests: the
minimum S/N threshold, the “good” score minimum threshold,
and the minimum column density ratio threshold.
The column density from the emission map is calculated as:
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where Sν is the total signal from each core in Jy; Bν(T) is the
Planck function at the temperature of each core inK; κν is the dust
opacity;mH2

is the mean molecular weight, which we take to be
2.8 (Kauffmann et al. 2008); andΩB is the beam area.We assume
a constant dust opacity interpolated for various wavelengths,
taken from model 5 in Ossenkopf & Henning (1994) for thin ice

Figure 17. Footprint matching between ImSeg (red) and the IDL watershed (white; Sokol et al. 2019) on top of the 1.1 mm AzTEC emission maps for the Mon R2
region (top), the GGD 12 15 region (bottom left), and the GGD 17 region (bottom right). These main areas of the molecular cloud are shown in order, to give a range
of core densities.
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mantles. For 350, 450, 850, and 1100 μm, we assume 0.101,
0.0674, 0.0114, and 0.0121cm2 g−1, respectively. We also
assume a gas-to-dust ratio of 100.

As shown by Sokol et al. (2019), the false cores from noise
realization maps are poor matches with the diffuse gas from an
inputted column density map, while the high S/N core
candidates correlate well (their column density ratio is
approximately unity). Therefore, by finding cores that occupy
the same S/N–column density ratio parameter space as the
false noise realization cores, we can separate the false
detections from the cores.

To do this, we create a 2D histogram of the S/N–column
density ratio for both the noise realization false cores and
the core candidates. The ratio of these two histograms is
found in order to determine the parameter space in which
false detections are likely to occur. Confidence intervals are
calculated for the histogram ratio. If a core candidate lies
within the “good” score minimum confidence interval, then it
is considered a false detection. The cores that lie outside this
confidence interval have a low probability of being considered
a false detection. The final census of core candidates is
selected from the cores that lie outside this “good” score
confidence interval, have an S/N above the minimum
threshold, and have a column density ratio greater than the
provided threshold. If no noise realizations are provided, only
the final two criteria are used to create the final catalog.

B.1. Comparison to the IDL Implementation in Sokol et al.
(2019)

ImSeg is based on a similar implementation outlined in
Sokol et al. (2019) that is written in IDL, using the IDL
watershed. In order to gauge the effectiveness and reliability of
ImSeg, we compare the two methods in order to see if we can
produce the same results.
We use 1.1 mm Mon R2 GMC data taken with AzTEC on

the LMT from 2014 November 27–2015 January 31. 14 fields
were observed, covering an area of 2 deg2, and they were
reduced with macana. We then applied ImSeg to the reduced
maps in order to identify the cores within the cloud. We used
the Herschel 500 μm-derived column density and temperature
maps from Pokhrel et al. (2016). These cores were then
compared to the original core catalog and footprints found in
Sokol et al. (2019) using IDL. In Figure 17, we show a
comparison between the IDL method and ImSeg for the main
clusters within Mon R2. Red shows the footprint found with
ImSeg, while white shows the footprint found with the IDL
watershed. By visually inspecting both the dense cluster and
the more isolated cores, we see that ImSeg reproduces the same
footprints as the IDL watershed.
We then look at the core properties for all fields—

specifically area, size, and mass—to see how the two methods
compare. Figure 18 shows the deconvolved FWHM size of all

Figure 18. Histograms of the corrected deconvolved FWHM sizes for all of the cores within each field and all combined, found with ImSeg (black) and the IDL
watershed (gray hatch; Sokol et al. 2019).
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Figure 19. The peak-to-total flux vs. the total S/N for the cores found with ImSeg (left) and the IDL watershed (right; Sokol et al. 2019). The top panels show the
uncorrected flux ratio, while the bottom panels show the flux ratio corrected for the noise bias. The black dashed lines are the three Plummer-like models with a power-
law index of 2 and scale lengths of 2, 12, and 18 arcseconds (top to bottom), respectively; the black solid line is the final beam profile; and the black dotted line is the
composite core profile.

Figure 20. Mass vs. deconvolved FWHM size for the cores found with ImSeg (left and center) and the IDL watershed (right; Sokol et al. 2019). The left panel shows
the cores found with ImSeg where the mass was calculated using the average temperature of the core found in Herschel. The center panel shows the cores found with
ImSeg where the mass was calculated assuming 12 K, the temperature assumed in Sokol et al. (2019). The right panel shows the cores found with the IDL watershed
from Sokol et al. (2019). The black lines in all of the panels mark the BE line for cores with T = 12 K. The black squares represent the starred cores, while the gray
circles are the starless cores.
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of the cores found with ImSeg that passed the threshold cuts.
Overall, we found 306 cores with ImSeg and 246± 9 matches
(83± 3%) in the original 295-core IDL catalog. Therefore,
∼50 IDL cores were not found with ImSeg, and ∼60 ImSeg
cores were not found with IDL. The majority of the
nonmatches occurred for cores with predominantly small or
large areas. This is either due to ImSeg or the IDL watershed
not breaking up a core candidate into multiple candidates,
instead giving candidates with larger overall areas or small-area
candidates not passing either the watershed algorithm or the
threshold cuts.

Finally, we reproduce the diagnostics from Sokol et al.
(2019) in order to make sure that the core properties are similar.
As shown in Figures 7 and 8 of Sokol et al. (2019), the 1.1 mm
AzTEC Mon R2 survey is shallow, so the cores are spatially
resolved, and the lower S/N cores are not fully detected. Sokol
et al. (2019) corrected the underestimation of the total flux and
core mass by modeling and characterizing the peak-to-total flux
ratio relation, and then correcting for high ratios at low S/N.
They tested their correction by constructing several Plummer-
like models that range the peak-to-total flux and total S/N
parameter space, as they fit the radial profile of the prestellar
cores. We applied these same models and corrections to
confirm that ImSeg gives the same noise bias and that the same
corrections can be used to correct the underestimation of the
flux (Figure 19).

We then apply the flux correction to correct the core mass in
order to look at the mass versus size relation (Figure 20) and
the CMF (Figure 21). As we use a Herschel temperature map to
derive the temperatures of the cores, the masses will be
different from the masses found by Sokol et al. (2019), who
assumed T= 12 K for all cores. We therefore recalculate the
masses, assuming this temperature, to confirm the reproduci-
bility of these diagnostics. Figures 19–21 visually confirm that
ImSeg reproduces the same properties as the IDL watershed.

Appendix C
Disks within Synthetic Starred Cores

The starred synthetic cores are generally less massive and
smaller than the starless cores. This is due to the addition of

bright, massive disks within the simulation. When these are
smoothed and run through the macana pipeline, they appear as
“peaky” small cores encompassing a sink particle. These
massive older disks are a common occurrence in HD
simulations (e.g., Zhao et al. 2020), and help to account for
the discrepancy between the observations and the synthetic
cores as described in Section 5.
By inspecting the original simulation, we find four main

types of starred cores: (a) those with a disk surrounded by an
extended halo; (b) those with a disk surrounded by a compact
halo; (c) a disk with streamers; and (d) only a diffuse emission,
where the disk is not visible (but a sink particle is still located
within the core boundary). We illustrate these four types with a
representative sample in Figure 22.

Figure 21. The mass-corrected CMFs found with ImSeg (left and center) and the IDL watershed (right; Sokol et al. 2019). The panels are as in Figure 20. Masses less
than 3 Me have incomplete sampling.

Figure 22. Representative samples of the different types of simulated starred
cores overlaid by their synthetic observed core boundaries (the white contours):
(a) a disk with an extended halo; (b) a disk with a compact halo; (c) a disk with
streamers; and (d) a diffuse emission.
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