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ABSTRACT

Within the class of reflexive Banach spaces, we prove a metric characteriza-

tion of the class of asymptotic-c0 spaces in terms of a bi-Lipschitz invariant

which involves metrics that generalize the Hamming metric on k-subsets

of N. We apply this characterization to show that the class of separable,

reflexive, and asymptotic-c0 Banach spaces is non-Borel co-analytic. Fi-

nally, we introduce a relaxation of the asymptotic-c0 property, called the

asymptotic-subsequential-c0 property, which is a partial obstruction to the

equi-coarse embeddability of the sequence of Hamming graphs. We present

examples of spaces that are asymptotic-subsequential-c0. In particular,

T ∗(T ∗) is asymptotic-subsequential-c0 where T ∗ is Tsirelson’s original

space.

1. Introduction

A central theme of the Ribe Program is to find metric characterizations of linear

properties of Banach spaces. We refer to [Nao12], [Bal13], and [Nao18] for a

discussion of the origins, motivations, applications, and the depth of the Ribe

Program. There are various forms of metric characterizations, the most common

ones being expressed in terms of Poincaré-type/concentration inequalities, or in

terms of containment in a metric sense of a sequence of graph metrics. If a

class C of separable Banach spaces coincides with the class of Banach spaces

equi-coarsely (or equi-bi-Lipschitzly) containing some sequence (Mk)k of metric

spaces, then C would be an analytic class since it can be shown that the latter

class is analytic (in the Effros–Borel structure).

The following metric characterization, in terms of a concentration inequality,

was proved in [BLMS20] and was used to show that the class of reflexive and

asymptotic-c0 Banach spaces is coarsely rigid.

Theorem 1.1 ([BLMS20]): A Banach space X is reflexive and asymptoti-

cally c0 if and only if there exists C ≥ 1 such that for every k ∈ N and every

Lipschitz map f : ([N]k, d
(k)
H ) → X there exists an infinite subset M of N so that

(1) sup
m̄,n̄∈[M]k

‖f(m̄)− f(n̄)‖ ≤ C Lip(f).
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In Theorem 1.1, d
(k)
H is the Hamming metric on the set [N]k of k-subsets

of N, and we will simply denote ([N]k, d
(k)
H ) by Hω

k . The concentration inequal-

ity (1) prevents the equi-coarse embeddability of the sequence of Hamming

graphs (Hω
k )k into any reflexive and asymptotic-c0 Banach space. The converse

does not hold since it was shown in [BLMS20] that there are quasi-reflexive

(and not reflexive) asymptotic-c0 Banach spaces that do not equi-coarsely con-

tain (Hω
k )k. Therefore the coarse (or Lipschitz) geometry of the Hamming

graphs cannot be used directly to compute the descriptive set theoretic com-

plexity of the class of separable, reflexive and asymptotic-c0 Banach spaces. It

follows from [DF07, Theorem 3] that if this class were analytic, then there would

exist a separable reflexive space containing isomorphic copies of all members of

this class. However, in [OSZ08, Remark on page 120] it is observed that if a

separable space contains isomorphic copies of all reflexive and asymptotic-c0

spaces, then it must contain an isomorphic copy of c0, barring it from being re-

flexive. In conclusion, the class of separable, reflexive and asymptotic-c0 Banach

spaces is non-analytic and in particular non-Borel.

In this article, we continue our investigation of the metric geometry of the

Hamming graphs and we introduce a useful class of metrics on [N]k which gen-

eralizes the Hamming metric. These Hamming-type metrics are generated by

certain basic sequences of Banach spaces and, relying on geometric arguments,

they can be used to prove that the class of separable, reflexive and asymptotic-c0

Banach spaces is co-analytic.

Definition 1.2: Let ē = (ej)j∈N be a normalized 1-suppression unconditional

basis of a Banach space E. For every k ∈ N we define d
(k)
ē : [N]k × [N]k → R as

follows: If m̄ = {m1,m2, . . . ,mk}, n̄ = {n1, n2, . . . , nk} are in [N]k (both sets

written in increasing order) and F = {j : mj �= nj}, then

d
(k)
ē (A,B) =

∥∥∥∥∑
j∈F

ej

∥∥∥∥
E

.

We will justify that d
(k)
ē is indeed a metric in Section 3.2. The metric d

(k)
ē is

dominated by the Hamming metric d
(k)
H and coincides with it if (ej)j∈N is the

canonical basis of �1. Also, if ē = (ej)j is not equivalent to the unit vector basis

of c0, then the sequence of metric spaces ([N]k, d
(k)
ē )k is hereditarily unbounded,

in the following sense:

lim
k→∞

inf
M∈[N]ω

diam([M]k, d
(k)
ē ) = lim

k

∥∥∥∥
k∑

i=1

ei

∥∥∥∥ = ∞.
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Recall that for two metric spaces X and Y , the Y -distortion of X , deno-

ted cY (X), is defined as the infimum of those D ∈ [1,∞) such that there

exist s ∈ (0,∞) and a map f : X → Y so that for all x, y ∈ X

(2) s · dX(x, y) ≤ dY (f(x), f(y)) ≤ s ·D · dX(x, y).

When (2) holds we say that X bi-Lipschitzly embeds into Y with distortion at

most D. Within the class of separable reflexive Banach spaces, we prove the

following metric characterization of the class of asymptotic-c0 Banach spaces.

Theorem A: Let X be a separable reflexive Banach space. Then X is asymp-

totic-c0 if and only if for every 1-suppression unconditional sequence ē=(ej)j

such that limk infM∈[N]ω diam([M]k, d
(k)
ē )=∞, one has supk∈N

cX([N]k, d
(k)
ē )=∞.

Theorem A, which is the main result of Section 3, cannot be drawn from

the statement of Theorem 1.1 alone. The key difference is that it provides the

existence of an embedding for a “Hamming-type” metric instead of the non exis-

tence of a concentration phenomenon. As in [BLMS20], the proof of Theorem A

relies in large part on a theorem of Freeman, Odell, Sari and Zheng [FOSZ18]

which establishes a deep and unexpected relation between the asymptotic struc-

ture of a Banach space and its asymptotic models. However, to obtain the finer

geometric information in Theorem A, another ingredient is required. A cru-

cial unconditionality property for normalized weakly null arrays of finite height

is proved using an asymptotic notion of a third kind, namely joint spreading

models introduced in [AGLM20]. The following complexity result follows from

Theorem A and an application of the Souslin operation from descriptive set

theory.

Corollary B: The class of separable, reflexive, and asymptotic-c0 Banach

spaces is non-Borel co-analytic.

The quantity

sup
k∈N

cX([N]k, d
(k)
H ) = ∞

cannot be a substitute for the metric invariant in Theorem A since it follows

from [KR08] that supk∈N c�2([N]
k, d

(k)
H ) = ∞,1 and the Hilbert space �2 is not

1 An alternative argument would use an Enflo-type argument [Enf69] and the fact that

the map x ∈ {0, 1}k �→ (2i+ xi − 1)ki=1 is an isometric embedding of the Hamming cube

({0, 1}k , d(k)H ) into the Hamming graph ([N]k, d
(k)
H ).



Vol. 244, 2021 THE GEOMETRY OF HAMMING-TYPE METRICS 685

asymptotic-c0. Identifying the class of Banach spaces which equi-bi-Lipschiztly,

or equi-coarsely, contain the Hamming graphs is a central problem in nonlinear

geometry of Banach spaces. The goal of Section 4 is to provide new insights on

this problem. With the previous knowledge on the geometry of the Hamming

graphs, there still existed a possibility that the metric invariant in Theorem

A could be substituted with the failure of equi-coarse embeddability of the

Hamming graphs. We examine this possibility in Section 4. We already know

from [BLS18] that a Banach space admitting an unconditional spreading

model not equivalent to the unit vector basis of c0 equi-coarsely contains the

Hamming graphs. We must therefore draw our attention to non-asymptotic-c0

Banach spaces all of whose spreading models are isomorphic to c0. A particu-

larly interesting example, the space T ∗(T ∗), is studied to a great

extent in Section 4.2. We introduce a new linear property, which we called

asymptotic-subsequential-c0, that is strong enough to rule out the existence of

a sequence of equi-coarse embeddings of the Hamming graphs of certain canon-

ical types.

Definition 1.3: Let X be an infinite-dimensional Banach space. We say that X

is an asymptotic-subsequential-c0 space if there exists a constant C ≥ 1 so

that for all n ∈ N there exists an N ∈ N satisfying the following: whenever

E = (RN , ‖ · ‖E) is in the N -th asymptotic structure of X (to be defined in

Subsection 2.4), then there are i1 < · · · < in so that (eik)
n
k=1 is C-equivalent to

the unit vector basis of �n∞, where (ej)
N
j=1 is the unit basis in R

N .

We then show that a T ∗-sum of countable copies of T ∗ is an asymptotic-

subsequential-c0 space, but not necessarily asymptotic c0.

Theorem C: The space T ∗(T ∗) is asymptotic-subsequential-c0 but not

asymptotic-c0.

2. Preliminaries

2.1. Coarse and Lipschitz embeddings. We introduce some convenient ter-

minology and notation that will allow us to treat all at once various embedding

notions.
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Definition 2.1: Let X and Y be metric spaces. Let ρ, ω : [0,∞) → [0,∞). We

say that X (ρ, ω)-embeds into Y if there exists f : X → Y such that for

all x, y ∈ X we have

(3) ρ(dX(x, y)) ≤ dY (f(x), f(y)) ≤ ω(dX(x, y)).

If {Xi}i∈I is a collection of metric spaces, we say that {Xi}i∈I (ρ, ω)-embeds

into Y if for every i ∈ I, Xi (ρ, ω)-embeds into Y .

We will say that {Xi}i∈I equi-coarsely embeds into Y if there exist non-

decreasing functions ρ, ω: [0,∞)→ [0,∞) such that limt→∞ ρ(t)=∞ and {Xi}i∈I

(ρ, ω)-embeds into Y . With an abuse of notation we say that {Xi}i∈I equi-

bi-Lipschiztly embeds into Y if there exist s,D > 0 such that {Xi}i∈I

(ρ, ω)-embeds into Y , with ρ(t) = st and ω(t) = sDt. Note that equi-bi-

Lipschitz embeddability is a stronger condition than merely assuming that

supi∈I cY (Xi) < ∞ since it does not allow for arbitrarily large or arbitrar-

ily small scaling factors in (2). However, if Y is a Banach space, rescaling is

possible and the two notions coincide.

2.2. Projective hierarchy and the Souslin operation. Let us recall a

few basics from descriptive set theory. We refer the reader to the book by

Kechris [Kec95], where all the proofs and details can be found. A measurable

space (X,M) is said to be a standard Borel space if there exists a Polish

topology τ (i.e., separable and completely metrizable) on X such that the Borel

σ-algebra generated by τ coincides with the σ-algebra M. A typical standard

Borel space is Baire space, i.e., Nω equipped with the Borel σ-algebra gener-

ated by the product of the discrete topology. The set of all closed subsets of

the Banach space C[0, 1], which is a Polish space, is a standard Borel space

when equipped with the Effros–Borel structure. Invoking a selection theorem

of Kuratowski and Ryll-Nardzewski together with the classical result that every

separable Banach space isometrically embeds into C[0, 1], the class

SB := {X : X is a separable Banach space}

can be considered as a standard Borel space. With this identification in mind,

classes of separable Banach spaces become subsets of SB, and the topological

complexity results in this paper will always refer to this standard Borel struc-

ture. We are interested in the projective complexity. The projective hierarchy

is built using the operations of projection (or equivalently of continuous image)
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and complementation. The 0-level of the projective hierarchy consists of the

Borel sets. The next level comprises analytic sets which are exactly the con-

tinuous images of Borel sets, and co-analytic sets which are the complements

of analytic sets. We will not need to discuss higher levels of the projective hier-

archy which can be obtained by iterating the projection and complementation

operations. An immediate corollary of the Souslin first separation theorem es-

tablishes a fundamental connection between the Borel hierarchy and the projec-

tive hierarchy. More precisely, Borel sets are exactly those sets that are analytic

and co-analytic. The analytic and co-analytic classes can be seen to be stable

under countable intersection or countable unions. A fact of crucial importance

to us is that the class of analytic sets is also stable under the Souslin operation.

Let Nω be the set of all sequences of natural numbers. If x = (x1, x2, . . . ) ∈ N
ω

and k ∈ N we write x�k := (x1, x2, . . . , xk) the restriction of x to its first k

terms. The Souslin operation, denoted A in honor of Alexandrov, applies to

a collection of sets {As : s ∈ N
<ω} where N

<ω denotes all the finite sequences

of natural numbers, and is defined as

(4) A({As}s∈N<ω ) :=
⋃

t∈Nω

⋂
k∈N

At�k .

It is easy to observe that the Souslin operation subsumes countable union

and countable intersection. Moreover, the Souslin operation is idempotent and

every analytic set can be obtained via an application of the Souslin operation

over a collection of closed sets. We refer to [Kec95, Chapter III, Section 25]

for properties of Souslin schemes. The following proposition will be needed in

Section 3.1:

Proposition 2.2: Let {As : s ∈ N
<ω} be a collection of analytic sets. Then

A({As}s∈N<ω) is analytic.

2.3.Asymptotic models and spreading models of unconditional sums.

In this section we recall the definitions of spreading and asymptotic models and

prove two results about the spreading models of complemented sums. These

results will be used in Section 4. For two basic sequences (xi) and (yi) in some

Banach spaces X and Y, respectively, and C ≥ 1, we say that (xi) and (yi)

are C-equivalent, and we write (xi) ∼C (yi), if there are positive numbers A

and B, with C = A · B, so that for all (aj) ∈ c00, the vector space of all

sequences x = (ξj) in R for which the support supp(x) = {j : ξj �= 0} is finite,
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we have

1

A

∥∥∥∥
∞∑
i=1

aixi

∥∥∥∥
X

≤
∥∥∥∥

∞∑
i=1

aiyi

∥∥∥∥
Y

≤ B

∥∥∥∥
∞∑
i=1

aixi

∥∥∥∥
X

.

In that case we say that 1
A is the lower estimate and B the upper estimate

of (yi) with respect to (xi). Note that (xi) and (yi) are C-equivalent if and only

C ≥ ‖T ‖ · ‖T−1‖, where the linear operator T : span(xi :i∈N)→span(yi : i∈N),

is defined by

T (xi) = yi, i∈N.

If (ei) is a Schauder basis of a Banach space X , we recall that (xn) is a block

sequence in X with respect to the basis (ei) if, for all n ∈ N,

xn �= 0 and max(supp(xn)) < min(supp(xn+1)).

For a sequence of Banach spaces (Xk)k∈N, and a Banach space U which has a

1-unconditional basis (uj), we denote the U-sum of the Xk’s by (
⊕∞

k=1Xk)U .

This is the space of all sequences x̄ = (xk), with xk ∈ Xk, for k ∈ N, such that

the series
∑∞

k=1 ‖xk‖uk converges in U , and equipped with the norm

‖x̄‖ =

∥∥∥∥
∞∑
k=1

‖xk‖uk
∥∥∥∥
U

.

If all the Xk’s are the same space X we also write U(X) instead of (
⊕∞

k=1X)U .

Our first proposition is about spreading models of unconditional sums of

Banach spaces. Spreading models were introduced by Brunel and Sucheston

in [BS74]. We recall the definition. Let E be a Banach space with a normalized

basis (ei) and let (xi) be a basic sequence in a Banach space X . We say that E

with its basis (ei) is a spreading model of (xi), if there is a null-sequence

(εn) ⊂ (0, 1), so that for all n, all (ai)
n
i=1 ⊂ [−1, 1] and n ≤ k1 < k2 < · · · < kn,

it follows that ∣∣∣∣
∥∥∥∥

n∑
i=1

aixki

∥∥∥∥
X

−
∥∥∥∥

n∑
i=1

aiei

∥∥∥∥
E

∣∣∣∣ < εn

or, in other words, if

lim
k1→∞

lim
k2→∞

· · · lim
kn→∞

∥∥∥∥
n∑

j=1

ajxkj

∥∥∥∥
X

=

∥∥∥∥
n∑

j=1

ajej

∥∥∥∥
E

.

Using Ramsey’s Theorem it can be shown that every normalized basic se-

quence has a subsequence which admits a spreading model.
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Proposition 2.3: Let 1 ≤ p ≤ ∞, A,B,C,D ≥ 1, and (Xn) be a sequence

of Banach spaces so that for all n ∈ N any spreading model generated by a

normalized weakly null sequence in Xn is equivalent to the unit vector basis

of �p (or c0 if p = ∞) with 1
C -lower and D-upper estimates. Let also U be a

reflexive Banach space with a 1-unconditional basis (un) satisfying the following

property:

(∗) For every finitely supported x0 ∈ SU , every normalized block sequence

(xn)n in U , and every k ∈ N there exist n1 < · · · < nk so that the

sequence (x0, xn1 , . . . , xnk
) is equivalent to the unit vector basis of �k+1

p

with 1
A -lower and B-upper estimates.

Then every spreading model generated by a weakly null normalized sequence

in (
⊕∞

n=1Xn)U is equivalent to the unit vector basis of �p with 1
ABC -lower and

ABD-upper estimates.

Proof of Proposition 2.3. We assume that p <∞; for p = ∞ the proof is simi-

lar. Assume that x(m) =
∑∞

j=1 x
(m)
j ∈ (

⊕∞
j=1Xj)U , for m∈N, with x

(m)
j ∈ Xj ,

for j ∈ N, and ‖x(m)‖ = ‖
∑∞

j=1 ‖x
(m)
j ‖uj‖ = 1, and assume that (x(m))∞m=1

converges weakly to 0. It is enough to show that for fixed k ∈ N, (ai)
k
i=1

in S�kp
and ε > 0, there is a subsequence (x̃(m))m of (x(m))m so that for

all m1 < m2 < · · · < mk

(5)
1− ε

ABC
≤

∥∥∥∥
k∑

i=1

aix̃
(mi)

∥∥∥∥ ≤ ABD(1 + ε).

Then a straightforward diagonalization argument will prove our claim. We

define zm =
∑∞

j=1 ‖x
(m)
j ‖uj, form ∈ N. Since U is reflexive we can assume, after

passing to a subsequence, that zm is weakly converging to some z =
∑∞

j=1 bjuj.

Since we need to show (5) for a fixed k and a fixed (ai)
k
i=1 ∈ S�kp

, we can assume,

after passing again to a subsequence and to arbitrarily small perturbations,

that z =
∑l0

j=1 bjuj for some l0 ∈ N, and that there are intervals Im ⊂ N,

with l0 < min(I1) ≤ max(I1) < min(I2) ≤ max(I2) < · · · , so that for all m ∈ N

we can write zm as

(6) zm =

l0∑
j=1

bjuj +
∑
j∈Im

‖x(m)
j ‖uj, and bj = ‖x(m)

j ‖, for j = 1, 2, . . . , l0,
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and thus

x(m) =

l0∑
j=1

x
(m)
j +

∑
j∈Im

x
(m)
j .(7)

By the assumption on Xj , j ∈ N, and because the sequences (x
(m)
j )j are

weakly null, we also can assume, after passing to a subsequence, that for

1 ≤ m1 < m2 < · · · < mk and every j = 1, 2, . . . , l0 we have

(8)

1− ε

C

( k∑
i=1

|ai|p‖x(mi)
j ‖p

)1/p

≤
∥∥∥∥

k∑
i=1

aix
(mi)
j

∥∥∥∥
≤ (1 + ε)D

( k∑
i=1

|ai|p‖x(mi)
j ‖p

)1/p

.

Finally, letting y0 = z ∈ span(uj : j = 1, 2, . . . , l0) and ym =
∑

j∈Im
‖x(m)

j ‖uj,
for m ∈ N, we can use the property (∗) of U , and, again after passing to a

subsequence, assume that for all m1 < m2 < · · · < mk

(9)

1−ε
A

(
‖y0‖p+

k∑
i=1

|ai|p‖ymi‖p
)1/p

≤
∥∥∥∥y0+

k∑
i=1

aiymi

∥∥∥∥
≤ (1+ε)B

(
‖y0‖p+

k∑
i=1

|ai|p‖ymi‖p
)1/p

.

Using (6) and (8) we deduce from the 1-unconditionality of (uj) that

(10)

∥∥∥∥
l0∑

j=1

∥∥∥∥
k∑

i=1

aix
(mi)
j

∥∥∥∥uj
∥∥∥∥ ≤ (1+ε)D

∥∥∥∥
l0∑

j=1

( k∑
i=1

|ai|pbpj
)1/p

uj

∥∥∥∥
= (1+ε)D

( k∑
i=1

|ai|p
)1/p∥∥∥∥

l0∑
j=1

bjuj

∥∥∥∥
= (1+ε)D

∥∥∥∥
l0∑

j=1

‖x(mi)
j ‖uj

∥∥∥∥.
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We therefore deduce that∥∥∥∥
k∑

i=1

aix
(mi)

∥∥∥∥
=

∥∥∥∥
∞∑
j=1

∥∥∥∥
k∑

i=1

aix
(mi)
j

∥∥∥∥uj
∥∥∥∥

=

∥∥∥∥
l0∑

j=1

∥∥∥∥
k∑

i=1

aix
(mi)
j

∥∥∥∥uj +
k∑

i=1

ai
∑

j∈Imi

‖x(mi)
j ‖uj

∥∥∥∥

≤ (1 + ε)B

(∥∥∥∥
l0∑

j=1

∥∥∥∥
k∑

i=1

aix
(mi)
j

∥∥∥∥uj
∥∥∥∥
p

+

k∑
i=1

|ai|p
∥∥∥∥ ∑

j∈Imi

‖x(mi)
j ‖uj

∥∥∥∥
p)1/p

(by (9))

≤ (1 + ε)B

(
(1+ε)pDp

∥∥∥∥
l0∑

j=1

‖x(mi)
j ‖uj

∥∥∥∥
p

+

k∑
i=1

|ai|p
∥∥∥∥ ∑

j∈Imi

‖x(mi)
j ‖uj

∥∥∥∥
p)1/p

(by (10))

≤ (1+ε)2BD

(∥∥∥∥
k∑

i=1

|ai|p
l0∑

j=1

bjuj

∥∥∥∥
p

+

k∑
i=1

|ai|p
∥∥∥∥ ∑

j∈Imi

‖x(mi)
j ‖uj

∥∥∥∥
p)1/p

(since ‖xmi

j ‖ = bj , for j = 1, 2, . . . , l0, and i = 1, 2, . . . , k, and
∑k

i=1 |ai|p = 1)

= (1 + ε)2BD

( k∑
i=1

|ai|p
(∥∥∥∥

l0∑
j=1

bjuj

∥∥∥∥
p

+

∥∥∥∥ ∑
j∈Imi

‖x(mi)
j ‖uj

∥∥∥∥
p))1/p

≤ (1 + ε)2

1− ε
BDA

( k∑
i=1

|ai|p
∥∥∥∥

l0∑
j=1

bjuj +
∑

j∈Imi

‖x(mi)
j ‖uj

∥∥∥∥
p)1/p

(by (9))

=
(1 + ε)2

1− ε
ABD

( k∑
i=1

|ai|p‖x(mi)‖p
)1/p

=
(1 + ε)2

1− ε
ABD.

Similarly we show that

∥∥∥∥
k∑

i=1

aix
(mi)

∥∥∥∥ ≥ (1− ε)2

1 + ε

1

ABC
.

We deduce therefore (5) after readjusting ε.
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The next proposition is about asymptotic models of unconditional sums of

Banach spaces. Asymptotic models, which are a generalization of spreading

models, were introduced by Halbeisen and Odell in [HO04], and are based on the

behavior of infinite arrays (as opposed to a single array for spreading models).

An array of infinite height in a Banach space X is a family

(x
(i)
j : i, j ∈ N) ⊂ X.

For an array (x
(i)
j : i, j ∈ N), we call the sequence (x

(i)
j )j∈N the i-th row

of the array. We call an array weakly null if all rows are weakly null. A

subarray of an infinite array (x
(i)
j : i ∈ N, j ∈ N) ⊂ X is an array of the form

(x
(i)
js

: i ∈ N, s ∈ N), where (js) ⊂ N is a subsequence. Thus, for a subarray we

are taking the same subsequence in each row.

A basic sequence (ei) is called an asymptotic model of a Banach space X ,

if there exist an infinite array (x
(i)
j : i, j ∈ N) ⊂ SX and a null-sequence

(εn) ⊂ (0, 1), so that for all n, all (ai)
n
i=1 ⊂ [−1, 1] and n ≤ k1 < k2 < · · · < kn,

it follows that ∣∣∣∣
∥∥∥∥

n∑
i=1

aix
(i)
ki

∥∥∥∥−
∥∥∥∥

n∑
i=1

aiei

∥∥∥∥
∣∣∣∣ < εn.

One may think of spreading models as asymptotic models for arrays with

identical rows, and thus part of the theory of asymptotic models is reminiscent

of the spreading model theory of Brunel and Sucheston. For instance, in [HO04]

it was shown that an asymptotic model generated by a normalized weakly null

array is 1-suppression unconditional.

Proposition 2.4 ([HO04, Proposition 4.1 and Remark 4.7.5]): Assume that

(x
(i)
j : i, j ∈ N) ⊂ SX is an infinite array, all of whose rows are normalized

and weakly null. Then there is a subarray of (x
(i)
j : i, j ∈ N) which has a

1-suppression unconditional asymptotic model (ei).

Proposition 2.5: Let 1 ≤ p < ∞, C,D ≥ 1, and (Xn)n be a sequence of

Banach spaces so that for any n ∈ N every asymptotic model generated by a

normalized weakly null array in Xn is equivalent to the unit vector basis of �p

with C-lower and D-upper estimates. Then every asymptotic model generated

by a weakly null normalized array in the space (
⊕∞

n=1Xn)p is equivalent to the

unit vector basis of �p with C-lower and D-upper estimates.
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Proof. For M ⊂ N we denote the canonical projection from (
⊕∞

k=1Xk)�p onto

(
⊕

k∈M
Xk)�p by PM and we abbreviate

W =

( ∞⊕
k=1

Xk

)
�p

.

Let (w
(i)
j : i, j ∈ N) be a normalized weakly null array in W . By passing

to a subarray, i.e. by taking a common infinite set L of j’s and relabeling the

array (w
(i)
j : i ∈ N, j ∈ L), we may assume that it generates an asymptotic

model (ei)i. Fix m ∈ N and scalars a1, . . . , am. Without loss of generality we

may assume that (
∑m

i=1 |ai|p)1/p = 1. The goal is to show that

1

C
≤ lim

j1→∞
lim

j2→∞
· · · lim

jm→∞

∥∥∥∥
m∑
i=1

aiw
(i)
ji

∥∥∥∥ ≤ D.

In particular, we are only interested in the first m sequences of the given array,

so we may disregard the remaining ones. By passing to a further subarray we

may assume that the scalars μ
(i)
n = limj ‖P{n}w

(i)
j ‖, 1 ≤ i ≤ m, n ∈ N exist.

Observe that for i = 1, . . . ,m we have by Fatou’s Lemma

∞∑
n=1

(μ(i)
n )p ≤ lim inf

j→∞
‖w(i)

j ‖p = 1.

We fix δ > 0 to be small enough, so that for all 0 ≤ a ≤ 1 and all 0 ≤ x ≤ mδ1/p

we have that (a+ x)p ≤ ap + 2px and |a− x|p ≥ ap − px.

Choose n0 ∈ N appropriately large so that for i = 1, . . . ,m we have

(11)
∑
n>n0

(μ(i)
n )p < δ.

We now pick an increasing sequence (nj)j in N such that for each j ∈ N and

1 ≤ i ≤ m

(12) ‖P(nj ,∞)w
(i)
j ‖p < δ.

By the definition of the scalars μ
(i)
n , n ∈ N, 1 ≤ i ≤ m, and (11), we can now

pass to a new common subarray so that the following condition is satisfied:

(13) ‖P(n0,nj′ ]w
(i)
j ‖p < δ for any j′ < j in N and any 1 ≤ i ≤ m.
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We put j0 = 0. We calculate for any choice of j1 < j2 < · · · < jm

∥∥∥∥P(n0,∞)

m∑
i=1

aiw
(i)
ji

∥∥∥∥
p

=

∥∥∥∥
m∑
i=1

(P(nji−1
,nji

] + P(n0,nji−1
] + P(nji

,∞])aiw
(i)
ji

∥∥∥∥
≤
(( m∑

i=1

‖P(nji−1
,nji

]aiw
(i)
ji
‖p
)1/p

+mδ1/p+mδ1/p
)p

(by (12) and (13))

≤
m∑
i=1

‖P(nji−1
,nji

]aiw
(i)
ji
‖p + 4mpδ1/p.

(14)

A similar argument (using the choice of δ) also yields that

∥∥∥∥P(n0,∞)

m∑
i=1

aiw
(i)
ji

∥∥∥∥
p

≥
m∑
i=1

‖P(nji−1
,nji

]aiw
(i)
ji
‖p − 2mpδ1/p.

We slightly refine this calculation:

(15)

∥∥∥∥P(n0,+∞)

m∑
i=1

aiw
(i)
ji

∥∥∥∥
p

≥
m∑
i=1

|‖P(n0,+∞)aiw
(i)
ji
‖ − ‖(P(nji

,∞) + P(n0,nji−1
])aiw

(i)
ji
‖|p −mpδ1/p

≥
m∑
i=1

‖P(n0,+∞)aiw
(i)
ji
‖p − 4mpδ1/δ.

We now wish to evaluate the norm of an initial segment. For n= 1, . . . , n0

define Fn = {1 ≤ i ≤ m : μ
(i)
n �= 0}. By our assumptions, we may assume that

for n=1, . . . , n0 the array

(z
n,(i)
j : i∈Fn, j∈N) =

( P{n}w
(i)
j

‖P{n}w
(i)
j ‖

: i ∈ Fn, j∈N

)

generates an asymptotic model that is equivalent to the unit vector basis of �p

with C-lower and D-upper estimates. We now calculate an initial segment of
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the norm:

lim
j1→∞

· · · lim
jm→∞

∥∥∥∥P[1,n0]

( m∑
i=1

aiw
(i)
ji

)∥∥∥∥
p

= lim
j1→∞

· · · lim
jm→∞

n0∑
n=1

∥∥∥∥ ∑
i∈Fn

ai‖P{n}w
(i)
ji
‖zn,(i)ji

∥∥∥∥
p

≤
n0∑
n=1

Dp
∑
i∈Fn

|ai|p(μ(i)
n )p

= Dp
n0∑
n=1

m∑
i=1

|ai|p(μ(i)
n )p

= Dp
m∑
i=1

|ai|p lim
j1→∞

· · · lim
jm→∞

n0∑
n=1

‖P{n}w
(i)
ji
‖p

= lim
j1→∞

· · · lim
jm→∞

Dp
m∑
i=1

∥∥∥∥P[1,n0]aiw
(i)
ji

∥∥∥∥
p

.

We deduce that for any j1 < · · · < jm that are chosen sufficiently large we have

(16)

∥∥∥∥P[1,n0]

( m∑
i=1

aiw
(i)
ji

)∥∥∥∥
p

≤ Dp
m∑
i=1

‖P[1,n0]aiw
(i)
ji
‖p + δ1/p.

A similar argument yields that for j1 < · · · < jm which are chosen sufficiently

large we have

(17)

∥∥∥∥P[1,n0]

( m∑
i=1

aiw
(i)
ji

)∥∥∥∥
p

≥ 1

Cp

m∑
i=1

‖P[1,n0]aiw
(i)
ji
‖p − δ1/p.

We can finally estimate the desired norm. For j1 < · · · < jm large enough and δ

sufficiently small, by (14) and (16), we have∥∥∥∥
m∑
i=1

aiw
(i)
ji

∥∥∥∥
p

=

∥∥∥∥P[1,n0]

( m∑
i=1

aiw
(i)
ji

)∥∥∥∥
p

+

∥∥∥∥P(n0,∞)

( m∑
i=1

aiw
(i)
ji

)∥∥∥∥
p

≤
m∑
i=1

‖P(nji−1
,nji

]aiw
(i)
ji
‖p+4mpδ1/p+Dp

m∑
i=1

‖P[1,n0]aiw
(i)
ji
‖p+δ1/p

≤Dp
m∑
i=1

‖P(n0,∞)aiw
(i)
ji
‖p+Dp

m∑
i=1

‖P[1,n0]aiw
(i)
ji

‖p+(4mp+1)δ1/p

=Dp
m∑
i=1

‖aiw(i)
ji
‖p+(4mp+1)δ1/p = Dp

m∑
i=1

|ai|p + (4mp+ 1)δ1/p.
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A very similar calculation using (15) and (17) yields∥∥∥∥
m∑
i=1

aiw
(i)
ji

∥∥∥∥
p

≥ 1

Cp

m∑
i=1

|ai|p − (4mp+ 1)δ1/p.

As δ can be chosen arbitrarily close to zero we deduce the desired conclusion.

2.4. Asymptotic structure. In this last preliminary subsection we recall

the notion of asymptotic structure and its connection to weakly null trees.

For k ∈ N we denote by Ek the set of all norms on R
k, for which the unit vector

basis (ei)
k
i=1 is a normalized monotone basis. With an easily understood abuse

of terminology this can also be referred to as the set of all pairs (E, (ej)
k
j=1),

where E is a k-dimensional Banach space and (ej)
k
j=1 is a normalized monotone

basis of E.

We define a metric δk on Ek as follows: For two spaces E = (Rk, ‖ · ‖E)
and F = (Rk, ‖ · ‖F ) we let

δk(E,F ) = log(‖IE,F ‖ · ‖I−1
E,F ‖),

where IE,F : E → F , be the formal identity. It is also well known and easy to

show that (Ek, δk) is a compact metric space.

We let

[N]<ω = {S⊂N : |S| <∞} and [N]ω = {S⊂N : |S| = ∞}.

For k ∈ N we put

[N]≤k = {S⊂N : |S|≤k}, and [N]n = {S⊂N : |S| = n},

and we always list the elements of some m̄ ∈ [N]≤k in increasing order, i.e., if

we write m̄ = {m1,m2, . . . ,mk}, we tacitly assume that m1 < m2 < · · · < mk.

If X is a Banach space we call a tree (xn̄ : n̄ ∈ [N]≤k) in X normalized

if xn̄ ∈ SX , for all n̄ ∈ [N]≤k, and weakly convergent, or weakly null if for

all 0 ≤ j ≤ k − 1 and n1 < n2 < · · · < nj , we have that (x(n1,n2,...,nj ,i))i is

weakly converging or weakly null, respectively.

The following definition is due to Maurey, Milman and Tomczak-Jaegermann

[MMTJ95]. Here SX denotes the unit sphere in X , while BX denotes the closed

unit ball.

Definition 2.6 (The k-th asymptotic structure of X [MMTJ95]): Let X be a

Banach space. We denote by cof(X) the set of all its closed finite codimensional

subspaces of X . For k ∈ N we define the k-th asymptotic structure of X
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to be the set, denoted by {X}k, of spaces E = (Rk, ‖ · ‖) ∈ Ek for which the

following is true:

(18)

∀ε>0 ∀X1∈cof(X)∃x1∈SX1∀X2∈cof(X)∃x2∈SX2

...

∀Xk∈cof(X)∃xk∈SXk

(xj)
k
j=1 ∼1+ε (ej)

k
j=1.

For 1 ≤ p ≤ ∞ and c ≥ 1, we say that X is c-asymptotically �p, if for all k∈N

and all spaces E ∈ {X}k, with monotone normalized basis (ej)
k
j=1, (ej)

k
j=1 is

c-equivalent to the �kp unit vector basis. We say that X is asymptotically �p,

if it is c-asymptotically �p for some c ≥ 1. In case that p = ∞ we say that the

space X is c-asymptotically c0, or asymptotically c0.

We denote by T ∗ the Banach space constructed by Tsirelson in [Tsi74]. This

is the archetype of a reflexive asymptotic-c0 space (see Remark 4.8). Soon after,

in [FJ74], it became clear that the easier to define space is T , the dual of T ∗, be-

cause the norm of this space is more conveniently described. It has since become

common to refer to T as Tsirelson space instead of T ∗. Figiel and Johnson in

[FJ74] gave an implicit formula that describes the norm of T as follows. We call a

sequence (Ej)
n
j=1 of finite subsets of N admissible if n ≤ E1 < E2 < · · · < En.

For x =
∑∞

j=1 λjej ∈ c00 and E ∈ [N]<ω we write

E(x) =
∑
j∈E

λjej.

As it was observed in [FJ74], if ‖·‖T denotes the norm of T , then for every x ∈ c00

(19) ‖x‖T = max

{
‖x‖∞,

1

2
sup

n∑
j=1

‖Ej(x)‖T
}
,

where the supremum is taken over all n ∈ N and admissible sequences (Ej)
n
j=1.

The space T is the completion of c00 with this norm and the unit vector basis

is a 1-unconditional basis of T .

It is worth noting that a T ∗-sum of infinitely many infinite-dimensional Ba-

nach spaces cannot be asymptotic-c0.

Lemma 2.7: The space (
⊕∞

k=1Xk)T∗ cannot be asymptotic-c0 if infinitely

many of the Xk’s are infinite-dimensional.
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Proof. Let L = {k1 < k2 < · · · } denote the collection of k ∈ N for which Xk is

infinite-dimensional. If any one of these Xk’s contains an isomorphic copy of �1

we are done. Otherwise, by Rosenthal’s theorem, we can pick for each k ∈ L a

normalized weakly null sequence (x
(k)
i )i in Xk. For each n ∈ N take the count-

ably branching weakly null tree {xm̄ :m̄∈ [N]≤n} where x{m1,...,mi}=x
(ki)
mi . Every

maximal branch of this tree is isometrically equivalent to elements of (eki)
n
i=1,

where (ei)
∞
i=1 denotes the unit vector basis of T ∗. Then

(eki)
n
i=1 ∈

{( ∞⊕
k=1

Xk

)
T∗

}
n

for all n ∈ N. But (eki)
∞
i=1 is not equivalent to the c0 unit vector basis.

The following lemma, which will be used repeatedly and follows from [OSch02,

Proposition 2.3], says in particular that, for a separable reflexive space, every

N -dimensional asymptotic subspace can be realized (up to an arbitrarily small

perturbation) on a branch of a normalized weakly null tree of height N .

Lemma 2.8: Let X be a Banach space with a separable dual, k ∈ N,

(ei)
k
i=1 ∈ {X}k, and let ε > 0. Then there exists a countably branching weakly

null tree {xn̄ : n̄ ∈ [N]≤k\{∅}} in SX , all of whose branches are (1+ε)-equivalent

to (ei)
k
i=1.

3. Co-analyticity of R ∩ Asc0 and Hamming-type metrics

In Section 3.1 we expand on the general principles, mentioned in the Introduc-

tion, that are useful to estimate the projective complexity of classes of Banach

spaces using certain bi-Lipschitz invariants. We show how such a strategy can

be applied to show the co-analyticity of the class of all separable and reflex-

ive asymptotic-c0 Banach spaces using Theorem A. In Section 3.2 we prove

Theorem A.

3.1. Co-analyticity via bi-Lipschitz embeddings. The goal of this sub-

section is to prove Corollary B. We will deduce it from the following Theorem

which presents an, at least formal, strengthening of Theorem A and which will

be proved in Subsection 3.2.
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Theorem 3.1 (Theorem A):

(1) Let X be a separable reflexive Banach space. Then X is asymptotic-c0

if and only if for every 1-suppression unconditional sequence ē = (ej)j

such that limk diam([N]k, d
(k)
ē ) = ∞ one has supk∈N cX([N]k, d

(k)
ē ) = ∞.

(2) Moreover, if X is a separable but not asymptotic-c0 Banach space,

then there is a 1-suppression unconditional sequence ē = (ej)j , with

limk diam([N]k, d
(k)
ē ) = ∞, and for every k ∈ N a bi-Lipschitz embed-

ding of ([N]k, d
(k)
ē ) of distortion at most 3.

Before we deduce Corollary B, note that the class of all separable and reflexive

asymptotic-c0 Banach spaces is not analytic. For, if it were analytic, then by

[DF07, Theorem 3] there would exist a separable reflexive Banach space that

would contain isomorphic copies of all separable and reflexive asymptotic-c0

Banach spaces. But it was observed in [OSZ08, Remark on Page 120] that

such a space cannot exist, and thus invoking Corollary B and Souslin’s theorem

(see, e.g., [Kec95, Theorem 14.11]) which stipulates that a set is analytic and

co-analytic if and only if it is Borel, we have

Corollary 3.2: The class of all separable and reflexive asymptotic-c0 Banach

spaces is co-analytic non-Borel in the Effros–Borel structure of closed subspaces

of C[0, 1].

We first fix some notation and make some remarks. Denote by SB the col-

lection of all closed subspaces of the separable Banach space C[0, 1], endowed

with the Effros–Borel structure. This is a collection of Borel sets generated

by a canonical Polish topology. This structure is very useful to “measure” the

complexity of classes of Banach spaces. We refer the reader to the fundamental

work of B. Bossard on this subject [Bos02]. Consider for a metric space (M,d)

and D ≥ 1 the class

LCD
M :={Y ∈ SB |M bi-Lipschitzly embeds into Y with distortion at most D}.

It is folklore (and not difficult but rather tedious to show) that the class LCD
M

is analytic, i.e., the continuous image of a Polish space. So if we were to prove

that a certain class of Banach spaces B coincides with a class of the form LCD
M for

some metric space M , then we could conclude that B is analytic. As a concrete

example consider the class SR of all separable super-reflexive Banach spaces.

It is known [Bau07] that SRc = LCD
B∞ where B∞ is the binary tree of infinite
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height and D ≥ 1 is a universal constant, and thus SR is co-analytic. Bour-

gain’s original metric characterization of super-reflexivity [Bou86] (on which

[Bau07] builds) is in terms of the sequence of binary trees (Bk)k∈N, and could

be reformulated as: there exists D ≥ 1 such that

(20) SRc =
⋂
k∈N

LCD
Bk
.

Since the countable intersection of analytic sets is analytic, this gives another

proof of the co-analyticity of SR. Similarly, we could immediately deduce Corol-

lary B if in Theorem A we could replace all sequences of metric spaces of the

form ([N]k, d
(k)
ē ) by a countable sub-collection. But this is not possible as will

be shown in Proposition 3.10. We overcome the problem of the uncountability

by representing the class of reflexive and asymptotic Banach spaces by a Souslin

Scheme. We consider the following four classes of Banach spaces:

R = {Y ∈ SB : Y is reflexive},
Asc0 = {Y ∈ SB : Y is asymptotic-c0},
SU = {ē : ē = (ei)i ⊂ C[0, 1] is a

normalized 1-suppression unconditional basic sequence},

HU = {ē : ē ∈ SU with lim
k∈N

diam([N]k, d
(k)
ē ) = ∞}.

Keeping in mind descriptive set theoretic applications, Theorem 3.1 can be

succinctly reformulated as

(21) R ∩ Ascc0 = R ∩
⋃

ē∈HU

⋂
k∈N

LC3

([N]k,d
(k)
ē )

.

Proof of Corollary B, using Theorem 3.1. We need to show that R∩Asc0 is co-

analytic.

A compactness argument implies that there exists a countable

collection ē(m) = (ē
(m)
i ), m ∈ N, so that for every ē ∈ SU and k ∈ N there

is m ∈ N so that d
(k)
ē and d

(k)

ē(m) are 4/3 equivalent. Indeed, for fixed k, choose

a countable set

((E
(k)
j , (e

(k,j)
i )ki=1) : j ∈ N)

of k-dimensional subspaces with a 1-suppression unconditional and normal-

ized basis which is dense in the set of all k-dimensional subspaces with a 1-

suppression unconditional and normalized basis, with respect to the metric in-

troduced at the beginning of Subsection 2.4. For every k, j ∈ N choose an
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arbitrary extension of (e
(k,j)
i )ki=1 into an infinite 1-suppression unconditional

and normalized basic sequence ē(k,j) = (e
(k,j)
i )∞i=1. Finally reorder (ē(k,j))k,j

into (ē(m))m.

For simplicity denote M
(k)
m := ([N]k, d

(k)

ē(m)), for m, k ∈ N. Let

T = {((mi, ki))
n
i=1 : n ∈ N, diam(M (kj)

mi
) ≥ j, for all 1 ≤ j ≤ i ≤ n},

and observe that T is a countable, infinitely branching tree of infinite height

(as partial order we just consider the extension of finite sequences of pairs of

natural numbers). Denote by

[T ] = {((mi, ki))
∞
i=1 : ((mi, ki))

n
i=1 ∈ T for all n ∈ N}

the collection of branches of T . For m, k ∈ N, define

LC(m,k) = {Y ∈ SB :M (k)
m embeds bi-Lipschitzly into Y

with distortion at most 4}.

Recall that LC(m,k) is an analytic set. A crucial observation is that the set

M :=
⋃

σ∈[T ]

∞⋂
n=1

LCσ(n)

is also analytic since it is obtained via a Suslin operation of analytic sets. The

properties of distances d
(k)

ē(m) and the second part of Theorem 3.1 imply that

(22) (Asc0)
c ∩ R ⊂ M.

Additionally, the first part in Theorem 3.1 yields that R ∩ Asc0 ∩ M = ∅ or

equivalently

(23) M ⊂ (R ∩ Asc0)
c = (R)c ∪ (Asc0)

c.

Indeed, if a Banach space X belongs to M, then there exists an infinite branch

((mi, ki))
∞
i=1 in [T ] such thatM

(ki)
mi embeds bi-Lipschitzly intoX with distortion

at most 4. Then a compactness argument yields the existence of ē ∈ SU and a

sequence (lj)j such that for all i ∈ N, (e
(mlj

)

1 , . . . , e
(mlj

)

ki
)j≥i tends to (e1, . . . , eki)

for the Banach–Mazur distance. It then follows from our construction of T that

ē ∈ HU and that for all i ∈ N, ([N]ki , d
(ki)
ē ) embeds bi-Lipschitzly into X with

distortion at most 4. Since the sequence (ki)i cannot be bounded, we deduce

from the first part of Theorem 3.2 that X is not in R ∩ Asc0 .
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It now follows from (22), (23), and elementary set-theoretic manipulations

that

(24) (R ∩ Asc0)
c = (R)c ∪M.

We already observed that M is analytic and it is known (see [Bos97, Corollary

3.3]) that the set (R)c is analytic. Analyticity being preserved by taking finite

unions, it follows that R ∩ Asc0 is co-analytic.

3.2. A bi-Lipschitz characterization of asymptotic-c0 spaces in the

reflexive setting. In this section we pay our debt to Section 3.1 and prove

Theorem 3.1 (and thus Theorem A). We will prove the two implications sepa-

rately. But first we gather some essential properties of those metrics that are

naturally generated by 1-suppression unconditional sequences, and which play

a central role in this section. We call a basic sequence (ei) c-suppression

unconditional, for some c ≥ 1, if for any (ai) ⊂ c00 and any A ⊂ N∥∥∥∥∑
i∈A

aiei

∥∥∥∥ ≤ c

∥∥∥∥
∞∑
i=1

aiei

∥∥∥∥.
We call (ei) c-unconditional if for any (ai) ⊂ c00 and any (σi) ∈ {±1}N∥∥∥∥

∞∑
i=1

aiei

∥∥∥∥ ≤ c

∥∥∥∥
∞∑
i=1

σiaiei

∥∥∥∥.
Note that a c-unconditional basic sequence is c-suppression unconditional, and

that any c-suppression unconditional is 2c-unconditional.

Recall from the introduction that for an arbitrary normalized 1-suppression

unconditional basis ē = (ej)j∈N of a Banach space (E, ‖ ‖), we define for

every k ∈ N a map d
(k)
ē : [N]k × [N]k → [0,∞) such that for every m̄ =

{m1,m2, . . . ,mk} and n̄ = {n1, n2, . . . , nk} in [N]k

(25) d
(k)
ē (A,B) =

∥∥∥∥∑
j∈F

ej

∥∥∥∥, where F = {j : mj �= nj}.

The only metric axiom which is not trivially satisfied and that needs atten-

tion to ensure that the map d
(k)
ē is a genuine metric is the triangle inequality.

This is where the unconditionality condition is needed. If m̄ = {m1, . . . ,mk},
n̄={n1, . . . , nk}, and l̄= {l1, . . . , lk}, set F = {j : mj �= nj}, G={j : mj �= lj},
and H = {j : nj �= lj}. Since the set F ⊂ G ∪H we have

F = F ∩ (G ∪H) = (F ∩G) ∪ ((F \G) ∩H).
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It follows from 1-suppression unconditionality that

d
(k)
ē (m̄, n̄) =

∥∥∥∥∑
j∈F

ej

∥∥∥∥ ≤
∥∥∥∥ ∑

j∈F∩G

ej

∥∥∥∥+

∥∥∥∥ ∑
j∈(F\G)∩H

ej

∥∥∥∥
≤

∥∥∥∥∑
j∈G

ej

∥∥∥∥+

∥∥∥∥ ∑
j∈H

ej

∥∥∥∥ = d
(k)
ē (m̄, l̄) + d

(k)
ē (l̄, n̄).

The metric d
(k)
ē is similar to the Hamming metric in the sense that for

m̄ = {m1, . . . ,mk} and n̄ = {n1, . . . , nk} the distance d
(k)
ē (m̄, n̄) is determined

by the set F ⊂ {1, 2, . . . , k} of coordinates i on which mi and ni differ. The

following important features directly follow from the definition of the metric

and classical Banach space theory.

Lemma 3.3: Let ē = (ej)j∈N be a normalized 1-suppression unconditional basis

of a Banach space (E, ‖ ‖).
(i) If ē = (ej)j∈N is the unit vector basis of �1 then d

(k)
ē is the

Hamming distance d
(k)
H on [N]k. Hence, for any normalized 1-suppression

unconditional basic sequence ē = (ej)j∈N and any m̄, n̄ in [N]k we

have d
(k)
ē (m̄, n̄) ≤ d

(k)
H (m̄, n̄).

(ii) For every k ∈ N and every M ∈ [N]ω we have

diam([M]k, d
(k)
ē ) =

∥∥∥∥
k∑

j=1

ej

∥∥∥∥.
In particular, limk diam([N]k, d

(k)
ē ) = ∞ if and only if ē = (ej)j∈N is not

equivalent to the unit vector basis of c0.

The domination of the metric d
(k)
ē by the Hamming metric allows us to use

the concentration inequality from [BLMS20] to prove the non-embeddability im-

plication of Theorem 3.1. Indeed, assume that Y is asymptotic-c0 and reflexive,

and let ē = (ej)j be a normalized 1-suppression unconditional sequence such

that limk diam([M]k, d
(k)
ē ) = ∞. The crucial observation here is that the domi-

nation property in Lemma 3.3 (i) can be equivalently restated by saying that the

identity maps from ([N]k, dH) to ([N]k, dē) are 1-Lipschitz, and a straightforward

application of [BLMS20, Theorem B] shows that there exists C ∈ [1,∞) so that

for every ē ∈ SU, every k ∈ N and every 1-Lipschitz map f : ([N]k, d
(k)
ē ) → Y

there exists M ∈ [N]ω so that

(26) diam(f([M]k)) ≤ C.



704 F. BAUDIER ET AL. Isr. J. Math.

If moreover ē ∈ HU, inequality (26) and (ii) of Lemma 3.3 clearly prevent the

equi-bi-Lipschitz embeddability of the sequence ([N]k, d
(k)
ē )k, or in other words

sup
k∈N

cY ([N]
k, d

(k)
ē ) = ∞

necessarily. We have thus proved

Theorem 3.4: Let X be a separable asymptotic-c0 reflexive Banach space.

Then for every 1-suppression unconditional sequence ē = (ej)j such that

lim
k

inf
M∈[N]ω

diam([M]k, d
(k)
ē ) = ∞

one has

sup
k∈N

cX([N]k, d
(k)
ē ) = ∞.

For the remaining implication and the “moreover” part of Theorem 3.1 we

may assume that X does not contain an isomorphic copy of �1. Indeed, it is

clear that the graphs Hω
k , k ∈ N, embed isometrically into �1. For X separable,

but not containing �1, we will use the following result by Freeman, Odell, Sari

and Zheng.

Theorem 3.5 ([FOSZ18, Theorem 4.6]): If a separable Banach space X does

not contain any isomorphic copy of �1 and all the asymptotic models generated

by normalized weakly null arrays are equivalent to the c0 unit vector basis,

then X is asymptotically c0.

Theorem 3.5 establishes a crucial connection between asymptotic models and

asymptotic structure in the extremal c0-case. In the light of the new informa-

tion of Theorem 3.5, the completion of the proof of Theorem 3.1 boils down to

showing that a separable reflexive Banach space that admits at least one asymp-

totic model generated by normalized weakly null arrays that is not equivalent

to the c0 unit vector basis, contains equi-bi-Lipschitzly a sequence ([N]k, d
(k)
ē )k,

for some ē ∈ HU. Slightly anticipating the ensuing argument, Lemma 3.3 (ii)

says that if (ei) is an asymptotic model (generated by a normalized weakly

null array) that is not equivalent to the c0 unit vector basis, then (ei) ∈ HU.

This observation provides a natural candidate for the embedding map. Indeed,

arrays (and in turn asymptotic models) are intimately connected to Hamming-

type metrics in the sense that if (x
(i)
j : i, j ∈ N) ⊂ SX is an infinite array, then
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the map φ : [N]k → X defined for any m̄ = {m1,m2, . . . ,mk} by

φ(m̄) =

k∑
i=1

x(i)mi

is clearly 1-Lipschitz with respect to dH. As we will shortly see, if the array

generates a 1-suppression unconditional asymptotic model ē we can slightly

modify φ by “pushing the vectors far enough along the sequence” and obtain

a map that is Lipschitz (with a slightly larger distortion) with respect to dē.

Estimating the lower Lipschitz bound however will require a strengthening of

the unconditionality condition, and is the content of the crucial Lemma 3.8

below. This is done via the notion of joint spreading models recently introduced

by Argyros, Georgiou, Lagos and Motakis [AGLM20], a notion that we briefly

recall together with some ingredients needed in the proof of Lemma 3.8.

Definition 3.6 (Plegmas [AKT13, Definition 3]): Let k,m ∈ N and

si = (s
(i)
1 , s

(i)
2 , . . . , s(i)m ) ⊂ N for i = 1, . . . , k.

The family (si)
k
i=1 is called a plegma if

s
(1)
1 < s

(2)
1 < · · · < s

(k)
1 < s

(1)
2 < s

(2)
2 < · · · < s

(k)
2 < · · · < s(1)m < s(2)m < · · · < s(k)m .

A family (x
(i)
j : i = 1, 2, . . . , k, j ∈ N) ⊂ X will be referred to an array of

height k in X , and we can extend naturally the terminology for infinite arrays

introduced in Section 3.2 to arrays of finite height.

Definition 3.7 (Joint spreading models [AGLM20, Definition 3.1]): Let

(x
(i)
j : 1≤ i≤k, j∈N) and (e

(i)
j : 1≤ i≤k, j∈N)

be two normalized arrays of height k in the Banach spacesX andE, respectively,

whose rows are normalized and basic. We say that (x
(i)
j : 1≤ i≤k, j∈N) gener-

ates (e
(i)
j : 1≤ i≤k, j∈N) as a joint spreading model if there exists a null se-

quence of positive real numbers (εm)∞m=1 so that for every m ∈ N, every plegma

(si)
k
i=1, si = (s

(i)
j : j = 1, 2, . . . ,m) for 1 ≤ i ≤ k, with min(s1) = s

(1)
1 ≥ m, and

scalars ((a
(i)
j )mj=1)

k
i=1 in [−1, 1], we have

∣∣∣∣
∥∥∥∥

m∑
j=1

k∑
i=1

a
(i)
j x

(i)

s
(i)
j

∥∥∥∥
X

−
∥∥∥∥

m∑
j=1

k∑
i=1

a
(i)
j e

(i)
j

∥∥∥∥
E

∣∣∣∣ < εm.
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Joint spreading models are naturally related to spreading models as well as

asymptotic models. If (x
(i)
j : 1≤ i≤k, j∈N) generates (e

(i)
j : 1≤ i≤k, j∈N) as

a joint spreading model, then (e
(i)
j )∞j=1 is the spreading model of (x

(i)
j )∞j=1, for

i = 1, 2, . . . , k. On the other hand, if k∈N and (x
(i)
j : i = 1, 2, . . . , k, j ∈ N)⊂SX

if a normalized weakly null array of height k, then we extend this array to an

infinite array (x
(i)
j : i = 1, 2, . . . , k, j ∈ N) by letting

x
(sk+i)
j = x

(i)
j , for s ∈ N and i = 1, 2, . . . , k.

By Proposition 2.4 we can pass to a subarray

(z
(i)
j : i ∈ N, j ∈ N)

of (x
(i)
j : i ∈ N, j ∈ N) which admits an asymptotic model (ej). Now let-

ting e
(i)
j = e(j−1)k+i, for i = 1, 2, . . . , k and j ∈ N we observe that the array

(e
(i)
j : 1≤ i≤k, j∈N) is the joint spreading model of (z

(i)
j : i = 1, 2, . . . , k, j ∈ N).

In particular this argument shows that joint spreading models of normalized

weakly null arrays are 1-suppression unconditional.

Lemma 3.8: Let X be a Banach space and (x
(i)
j : 1 ≤ i ≤ k, j ∈ N) be a

normalized weakly null array of height k. Then for every ε > 0 and m ∈ N

there exists L ∈ [N]ω so that for every i1, . . . , im in {1, . . . , k} (not necessarily

different) and pairwise different l1, . . . , lm ∈ L the sequence (x
(ij )
lj

)mj=1 is (1+ε)-

suppression unconditional.

Proof. As explained above, we may assume after passing to a subarray that

(x
(i)
j : 1≤ i≤ k, j ∈N) generates a joint spreading model (e

(i)
j : 1≤ i≤ k, j ∈N)

that is 1-suppression unconditional. Thus, we find N ∈ N, so that for any

plegma (si)
k
i=1, si = (s

(i)
1 , s

(i)
2 , . . . , s

(i)
m ), for i = 1, 2, . . . , k, with N ≤ s

(1)
1 the

family (x
(i)

s
(i)
j

: 1≤ i≤ k, 1≤ j ≤m) is (1 + ε)-suppression unconditional. Let L

be the set that consists of all positive integer multiples of 2k that are greater

than N + k.

Let now i1, . . . , im in {1, . . . , k} and l1, . . . , lm be pairwise different elements

of L. After reordering, we can assume l1< l2< · · ·< lm. Let r1<r2< · · ·<rm
be in N so that lj = 2krj . We will now define a plegma (si)

k
i=1, si = (s

(i)
j )mj=1,

as follows. First we define s
(ij)
j = lj = 2krj , for j = 1, 2, . . . ,m. Then, since

lj+1 − lj ≥ 2k, for every j = 1, . . . ,m − 1 and s
(i1)
1 > N + k, we can find
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natural numbers s
(ij)
j <s

(ij+1)
j <s

(ij+2)
j < · · ·<s(k)j <s

(1)
j+1 < · · ·<s(ij+1)

j+1 , num-

bers N<s
(1)
1 <s

(2)
1 < · · ·<s(i1−1)

1 <s
(i1)
1 and numbers s

(im)
m <s

(im+1)
m <. . .<s

(k)
m ,

which means that the family (si)
k
i=1, with si = (s

(i)
j )mj=1, for i = 1, 2, . . . , k

is a plegma. Thus (x
(i)

s
(i)
j

: i= 1, 2, . . . , k, j = 1, 2, . . . ,m) is (1+ε)-suppression

unconditional and (x
(ij)
lj

)mj=1 is just a subsequence of it.

Having now established all the tools we needed we can proceed with the

proof of

Theorem 3.9: Let X be a Banach space and ē = (ej)j∈N be an asymptotic

model generated by a normalized weakly null array in X . Then, for any k ∈ N

and ε > 0, the metric space ([N]k, d
(k)
ē ) bi-Lipschitzly embeds into X with

distortion at most (2 + ε).

Proof. Let (x
(i)
j ) : i, j∈N) be a normalized weakly null array inX that generates

an asymptotic model ē = (ej)j∈N. Fixing k ∈ N and δ > 0 and passing to

appropriate subsequences of the array we may assume that for any j1 < · · · < jk

and any a1, . . . , ak in [−1, 1] we have

(27)

∣∣∣∣
∥∥∥∥

k∑
i=1

aix
(i)
ji

∥∥∥∥−
∥∥∥∥

k∑
i=1

aiei

∥∥∥∥
∣∣∣∣ < δ.

In addition, by applying Lemma 3.8 we may also assume that for any i1, . . . , i2k

in {1, . . . , k} and any pairwise different l1, . . . , l2k in N the sequence (x
(ij)
lj

)2kj=1

is (1 + δ)-suppression unconditional.

We are now ready to define the embedding. Define φ : [N]k → X as follows.

If m̄ = {m1,m2, . . . ,mk} set

φ(m̄) =

k∑
i=1

x
(i)
kmi+i.

Observe first that for m1< · · ·<mk we have km1+1<km2+2< · · ·<kmk+k.

Then, if m̄ = {m1, . . . ,mk}, n̄ = {n1, . . . , nk} and F = {i : mi �= ni} we have

φ(m̄)− φ(n̄) =
∑
i∈F

x
(i)
kmi+i −

∑
i∈F

x
(i)
kni+i.

It immediately follows from the triangle inequality and (27) that if m̄ �= n̄ then

‖φ(m̄)− φ(n̄)‖ ≤ 2

∥∥∥∥∑
i∈F

ei

∥∥∥∥+ 2δ ≤ 2(1 + δ)d
(k)
ē (m̄, n̄).
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Also, note that kmi + i = kni′ + i′ if and only if i = i′ and mi = ni′ .

We deduce that the sequence (x
(i)
kmi+i)i∈F ∪ (x

(i)
kni+i)i∈F is (1 + δ)-suppression

unconditional. Therefore we have

‖φ(m̄)− φ(n̄)‖ ≥ 1

(1 + δ)

∥∥∥∥∑
i∈F

x
(i)
kmi+i

∥∥∥∥ ≥ 1

(1 + δ)

(∥∥∥∥∑
i∈F

ei

∥∥∥∥− δ

)

≥ (1− δ)

(1 + δ)
d
(k)
ē (m̄, n̄).

Hence, the distortion of φ is at most 2(1 + δ)2/(1 − δ). For a given ε > 0, we

choose δ > 0 small enough, and then deduce the result.

As we observed earlier Theorem 3.9 implies the remaining implication of

Theorem 3.1 as well as the “moreover” part via Theorem 3.5.

At the end of this section we would like to address the question whether or

not in the class of reflexive spaces, the property of not being asymptotic c0 could

be characterized by the uniform Lipschitz embeddability of ([N]k, ē), k ∈ N, for

some ē, where ē only comes out of a countable subset of HU. This is not the

case as the following proposition shows.

Proposition 3.10: Let

D ⊂ {(d(k))k∈N :d(k) is a metric on [N]k, which is dominated by d
(k)
H

and lim sup
k→∞

inf
M∈[N]ω

diam([M]k, d(k)) = ∞}

be countable. Then there exists a reflexive Banach space X , which is not

asymptotic c0, so that for all (d(k))k∈N ∈ D and for all sequences (Ψk), where

Ψk : ([N]k, d(k)) → X is 1-Lipschitz, it follows that

lim
k→∞

inf
M∈[N]ω

diam(Ψk([M]k, d(k)))

diam([M]k, d(k))
= 0,

in particular, the Ψk cannot be uniform bi-Lipschitz embeddings.

Proof. Let D = {(d(k)n : k ∈ N) : n ∈ N} and for n ∈ N, put

fn(k) = inf
M∈[N]<ω

diam([M]k, d(k)n ).

For each n there exists a kn so that

min
m≤n

fm(k) ≥ n for all k ≥ kn.
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We put f̃(k)=1 if k<k1, and f̃(k)=minm≤n fm(k)≥n whenever kn≤k<kn+1.

Then put

f(k) = max(2,min(f̃1/2(k), log2(1 + k))).

It follows that

(28) lim
k→∞

f(k)=∞, lim
k→∞

f(k)

fn(k)
=0 and lim

k→∞

f(k)

k1/n
=0, for all n∈N.

The space X will be the dual of the space Z = Zf , which was constructed

in [Sch91]. Although f does not satisfy all the conditions demanded in the

construction there, for our purposes the properties in (28) suffice. By [Sch91,

Proposition 2], there is a Banach space Z with a 1-subsymmetric basis (ei),

whose norm satisfies the following implicit equation:

(29)

‖x‖ =max(‖x‖∞, sup
2≤l≤∞

‖x‖l),

where ‖x‖l =
1

f(l)
max

E1<E2<···El

l∑
j=1

‖Ej(x)‖, for l ≥ 2, and x ∈ X.

It is clear that, by (28) and (29), Z does not contain c0. We will show that

Z also does not contain a copy of �1. This fact follows from the arguments in

[Sch91] (more precisely, the arguments on page 87), but for the sake of better

readability let us give a self-contained proof. Assume Z contained a normal-

ized block sequence (xn) which is equivalent to the �1 unit basis. By James’s

Theorem [Jam64] we can assume it is (1 + ε)-equivalent to the �1 unit basis,

for some given ε > 0. It follows for any l ∈ N and any A ⊂ N, with |A| ≥ l/ε,

that there are finite sets E1 < E2 < · · · < El, so that (letting m1 = 1, and

mj = max{n : supp(xj−1) ∩ En �= ∅}, if 1 < j ≤ l + 1)

(30)

∥∥∥∥ 1

|A|
∑
j∈A

xj

∥∥∥∥
l

=
1

f(l)

1

|A|

l∑
j=1

‖Ej(x)‖ ≤ 1

f(l)

l∑
j=1

∥∥∥∥
mj+1∑
i=mj

xi

∥∥∥∥
≤ 1

f(l)

|A|+ l

|A| ≤ ε+
1

f(l)
.

Secondly, we choose a rapidly increasing sequence of �1-averages of length 2,

a name coined by Gowers and Maurey [GM97]. By this we mean that we first

choose l1 ∈ N so that 1/f(l) < ε, for all l ≥ l1, then we choose n1 ≥ l1/ε and

z1 = 1
n1

∑n1

j=1 xj . Then we choose l2 ∈ N so that max supp(z1) < εf(l), for

l ≥ l2, n2 ≥ l2/ε and then z2 = 1
n2

∑n1+n2

j=n1+1 xj .
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It follows from (30) for some l ≥ 2 that

‖z1+ z2‖ = ‖z1+ z2‖l ≤ ‖z1‖l + ‖z2‖l ≤

⎧⎪⎪⎨
⎪⎪⎩
2ε+ 2 1

f(l) ≤ 2ε+ 1 if 2 ≤ l ≤ l1,

1 + ε+ 1
f(l) ≤ 1 + 2ε if l1 < l ≤ l2,

ε+ 1 if l2 < l.

But this contradicts the assumption that (xj) is (1 + ε)-equivalent to the unit

vector basis of �1 if ε > 0 is chosen small enough. Since (ej) is an unconditional

basis, it follows from the fact that Z does neither contain c0 nor �1 that Z is

reflexive [Jam50]. Since (ej) is subsymmetric Z cannot even be asymptotic �1.

It follows that (e∗n) is a 1-subsymmetric basis of Z∗ and, by a straightforward

dualization argument [MMTJ95, Theorem 4.3], Z∗ is not asymptotically c0.

From (29) it follows that for any normalized block basis (x∗j )
n
j=1 in BZ∗ we

have, for an appropriate x ∈ SZ , and letting Ej = supp(x∗j ) for j = 1, 2, . . . , n,

(31)

∥∥∥∥
n∑

j=1

x∗j

∥∥∥∥ =

n∑
j=1

x∗j (x) ≤
n∑

j=1

‖Ej(x)‖ ≤ f(n).

Assume now that n, k ∈ N and that Ψ : ([N]k, d
(k)
n ) → Z∗ is 1-Lipschitz, and let

ε > 0. By [BLS18, Proposition 4.1] there is an M
′ ∈ [M]ω and a y ∈ Z∗, and

for all m̄ ∈ [M′]k, there is a block sequence (y
(j)
m̄ )kj=1 ⊂ BZ∗ so that

∥∥∥∥ψ(m̄)− y −
k∑

j=1

y
(j)
m̄

∥∥∥∥ ≤ ε.

Thus

‖Ψ(m̄)−Ψ(n̄)‖ ≤ 2ε+‖y(1)m̄ +y
(2)
m̄ +· · ·+y(k)m̄ −y(1)n̄ +y

(2)
n̄ +· · ·+y(k)n̄ ‖ ≤ 2ε+2f(k),

which by the second property in (28) proves our claim.

4. Embeddability of Hamming graphs into non-asymptotic-c0 spaces

In this section we discuss coarse embeddability of the Hamming graphs into

non asymptotic-c0 spaces. Notably, we show that T ∗(T ∗) is a reflexive non-

asymptotic-c0 space in which the Hamming graphs cannot be coarsely embedded

in certain canonical ways.
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4.1. Embeddability into (
⊕∞

n=1 �
n
p (T

∗))T∗ . For p ∈ [1,∞], the space

( ∞⊕
n=1

�np (T
∗)

)
T∗

is separable and reflexive but not asymptotically-c0, yet all its spreading models

are uniformly equivalent to the unit vector basis of c0. More precisely, we have

Proposition 4.1: Let p ∈ [1,∞]. Every spreading model generated by a

normalized weakly null sequence in (
⊕∞

n=1 �
n
p (T

∗))T∗ is 6-equivalent to the unit

vector basis of c0.

Proof. Every normalized block basis (xn) in V = (
⊕∞

n=1 �
n
p )T∗ has a sub-

sequence which is isometrically equivalent to a (xn) in T ∗ and thus has a

spreading model equivalent to the c0-unit basis with lower bound 1 and up-

per bound 2, and therefore for any finitely supported vector x0 and any k

there are n1 < n2 < · · · < nk so that {x0} ∪ {xnj , j = 1, 2, . . . , k} is equiva-

lent to the �n+1
∞ basis, with lower bound 1 and upper bound 3. Since V (T ∗)

is canonically isometric to (
⊕∞

n=1 �
n
p (T

∗))T∗ , our claim follows from Proposi-

tion 2.3.

It turns out that despite all its spreading models generated by a normalized

weakly null sequence are 6-equivalent to the unit vector basis of c0, the space

(
⊕∞

k=1 �
k
p(T

∗))T∗ contains equi-coarsely the Hamming graphs.

Proposition 4.2: Let 1 ≤ p <∞. The Hamming graphs embed equi-coarsely

into the Banach space (
⊕∞

k=1 �
k
p(T

∗))T∗ .

Proof. Consider for every n ∈ N the space �kp(T
∗) and let (e

(i)
j )j denote the

standard basis of the i-th copy of T ∗. Then, for any j1 < · · · < jk the se-

quence (e
(i)
ji
)ki=1 is isometrically equivalent to the unit vector basis of �kp. Addi-

tionally, the collection (e
(i)
j : j ∈ N, 1 ≤ i ≤ k) is 1-unconditional. We conclude

that if we define the map fk : [N]k → �kp(T
∗) with fk(m̄) =

∑k
i=1 e

(i)
mi , where

m̄ = {m1, . . . ,mk}, then for all m̄, n̄ ∈ [N]k we have

d
(k)
H (m̄, n̄)1/p ≤ ‖fk(m̄)− fk(n̄)‖ ≤ 2d

(k)
H (m̄, n̄)1/p.

We now deduce that the Hamming graphs equi-coarsely embed into the space

(
⊕∞

k=1 �
k
p(T

∗))T∗ with compression modulus ρ(t) = t1/p and expansion modu-

lus ω(t) = 2t1/p.
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The proof actually gives that the 1
p -snowflaking of the k-dimensional Ham-

ming graph, i.e., ([N]k, d
1/p
H ), bi-Lipschitzly embeds into �kp(T

∗) with distortion

at most 2. In particular, the Hamming graphs equi-bi-Lipschitzly embed into

(
⊕∞

k=1 �
k
1(T

∗))T∗ .

Remark 4.3: For k ∈ N, the Johnson graph of height k is the set [N]k equipped

with the metric defined by d
(k)
J (m̄, n̄) = 1

2 
(m̄�n̄) for m̄, n̄ ∈ [N]k. It is

proved in [BLS18] that there is a constant C ≥ 1 such that for any k ∈ N

and f : ([N]k, d
(k)
J ) → T ∗ Lipschitz, there exists M ∈ [N]ω so that

diam(f([M]k)) ≤ C Lip(f).

It is easily seen that the same is true if T ∗ is replaced by any reflexive asymptotic-

c0 space. However, we do not know whether the Johnson graphs embed equi-

coarsely into (
⊕∞

n=1 �
n
p (T

∗))T∗ . The reason is that canonical embeddings of the

Johnson graphs are built on sequences and not arrays. This confirms the qual-

itative difference between asymptotic models and spreading models. The space

(
⊕∞

n=1 �
n
p (T

∗))T∗ is a possible example of a space that equi-coarsely contains

the Hamming graphs but not the Johnson graphs.

Problem 4.4: Does there exist a Banach space equi-coarsely containing the

Hamming graphs and not the Johnson graphs? Is (
⊕∞

n=1 �
n
p (T

∗))T∗ such an

example?

4.2. Embeddability into T ∗(T ∗). We now introduce and study a relaxation

of the asymptotic-c0 property that is relevant to the coarse geometry of the

Hamming graphs.

4.2.1. A partial obstruction: the asymptotic-subsequential-c0 property. We de-

note the unit vector basis of T ∗ by (e∗j ), which is also 1-unconditional. There-

fore the space T ∗(T ∗) = (
⊕∞

k=1 T
∗)T∗ is well defined. We study the asymptotic

properties of this space and the goal is to prove that the space T ∗(T ∗), which

is not an asymptotic-c0 space by Lemma 2.7, is very close to being one. We

introduce the following definition.

Definition 4.5: Let X be an infinite-dimensional Banach space and 1 ≤ p ≤ ∞.

We say that X is an asymptotic-subsequential-�p space if there exists a con-

stant C ≥ 1 so that for all n ∈ N there exists an N ∈ N satisfying the following:

whenever (ei)
N
i=1 is in {X}N (recall Definition 2.6) then there are i1 < · · · < in

so that (eik)
n
k=1 is C-equivalent to the unit vector basis of �np .
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Clearly, any asymptotic-�p space fits the above description. To follow our pre-

viously introduced convention, we shall use the term asymptotic-subsequential-

c0 space for the case p = ∞. We do not know whether such spaces fail to

contain the Hamming graphs equi-coarsely, nonetheless this property rules out

certain “canonical” embeddings as described below

Proposition 4.6: If Y is an asymptotic-subsequential-c0 space then there is no

sequence of maps (fk)k, such that fk : Hω
k → Y , and where (fk)k is a sequence

of equi-coarse embeddings of (Hω
k )k into Y with the property that for every

k ∈ N there is a normalized weakly null array (y
(i)
j : 1 ≤ i ≤ k, j∈N) so that

fk(m̄) =

k∑
i=1

y(i)mi
, for all m̄ = {m1,m2, . . . ,mk} ∈ [N]k.

Proof. Let Y be a C-asymptotic-subsequential-c0 space and let us fix an increas-

ing sequence of non-negative real numbers (ρn)n. Let us assume that for every

k ∈ N we can find a normalized weakly null array (y
(i)
j : 1 ≤ i ≤ k, j ∈ N)

in Y so that for all m ≤ k, all i1 < · · · < im and j1 < · · · < jm we

have ‖
∑m

l=1 y
(il)
jl

‖ ≥ ρm. We pass to a subarray that generates a finite as-

ymptotic model (ei)
k
i=1. This asymptotic model has the property that for all

1 ≤ m ≤ k and 1 ≤ i1 < · · · < im ≤ n we have ‖
∑m

l=1 eil‖ ≥ ρm. Addi-

tionally, (ei)
k
i=1 ∈ {X}k. Since this is the case for all m, k ∈ N we can easily

conclude using the definition of C-asymptotic-subsequential-c0 that ρm ≤ C

for all m ∈ N. But this means that (fk)k, defined above, is not a sequence of

equi-coarse embeddings of (Hω
k )k∈N into Y .

Remark 4.7: The above proof with minor modifications shows that a reflexive

asymptotic-subsequential-c0 space Y cannot have the following property:

(†) There are sequences (ρ(n))n, (μ(n))n ⊂ (0,∞) with ρ(n), μ(n) ↗ ∞, if

n ↗ ∞, and for each k ∈ N a weakly null tree (y
(k)
n̄ )n̄∈[N]≤k ⊂ BY , so

that for all k ∈ N and all m̄, n̄ ∈ [N]k , m̄ = {m1,m2, . . . ,mk}, and
n̄ = {n1, n2, . . . , nk}

ρ(d
(k)
H (m̄, n̄)) ≤

∥∥∥∥
k∑

i=1,mi 
=ni

y
(k)
{m1,m2,...,mi} − y

(k)
{n1,n2,...,ni}

∥∥∥∥
and

ρ(d
(k)
H (m̄, n̄)) ≤

∥∥∥∥
k∑

i=1

y
(k)
{m1,m2,...,mi} − y

(k)
{n1,n2,...,ni}

∥∥∥∥ ≤ μ(d
(k)
H (m̄, n̄)).
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The existence of trees (y
(k)
m̄ : m̄ ∈ [N]k) satisfying the condition (†) above means

that the maps

fk : Hω
k → Y, {m1,m2, . . . ,mk} �→

k∑
i=0

y
(k)
{m1,...,mi}

are equi-coarse embeddings, and that the lower bound for ‖fk(m̄) − fk(n̄)‖ is

witnessed by the values of

y
(k)
{m1,m2,...,mi} − y

(k)
{n1,n2,...,ni},

where mi �= ni, for m̄ = {m1,m2, . . . ,mk}, and n̄ = {n1, n2, . . . , nk} in [N]k.

4.2.2. T ∗(T ∗) is asymptotic-subsequential-c0. The main goal of this section is

to prove that T ∗(T ∗) is asymptotic-subsequential-c0 and thereby finishing the

proof of Theorem C. We start with some preparatory work. The following

property of T ∗ (see [Tsi74, Lemma 4]) is essential:

(32)

∥∥∥∥
n∑

j=1

xj

∥∥∥∥
T∗

≤2 max
1≤j≤n

‖xj‖T∗

whenever (xj)
n
j=1 is a block sequence, with n ≤ supp(x1),

and thus, under a slightly weaker condition

(33)

∥∥∥∥
n∑

j=1

xj

∥∥∥∥
T∗

≤3 max
1≤j≤n

‖xj‖T∗

whenever (xj)
n
j=1 is a block sequence, with n ≤ supp(x2).

Remark 4.8: The fact that T ∗ is 2-asymptotic-c0 is an easy consequence of the

above estimate (32). This well known fact is hard to track down in the literature,

and follows from the fact that every weakly null tree admits a refinement for

which all branches are arbitrary small perturbations of blocks. A noteworthy

comment is that in [OSZ08] the notion of asymptotic-�p, 1 ≤ p ≤ ∞ with

respect to a finite-dimensional decomposition (FDD) was introduced and it was

proved that a reflexive space is asymptotic-�p if and only if it linearly embeds

in a space that is asymptotic-�p with respect to an FDD.

Recall that the norm of T satisfies the implicit formula (19). We will need the

following observation for the space T ∗, which follows from a statement for T ,

proved in [CO83, Theorem 2].
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Proposition 4.9: There exists a constant DM > 0 so that the following holds.

For every n ∈ N, any vectors x1, . . . , xn in T ∗, having disjoint supports, with

min(supp(xk)) ≥ n, for 1 ≤ k ≤ n, it follows that

∥∥∥∥
n∑

k=1

xk

∥∥∥∥
T∗

≤ DM max
1≤k≤n

‖xk‖T∗ .

Note that in Proposition 4.9, the vectors have disjoint supports (as opposed

to consecutive supports as in (33)). In order to prove Proposition 4.9 we need

to introduce some necessary notions. A norm very similar to ‖ · ‖T was defined

by W. B. Johnson in [Joh76]. It is called the modified Tsirelson norm, we

denote this norm by ‖ · ‖M and it satisfies the implicit formula

(34) ‖x‖M = max

{
‖x‖∞,

1

2
sup

n∑
k=1

‖Ek(x)‖M
}

where the supremum is taken over all n ∈ N and disjoint subsets (Ek)
n
k=1 of N

with n ≤ min(Ek) for 1 ≤ k ≤ n. Note that there is a unique norm ‖ · ‖M
satisfying this implicit formula (this can, e.g., be shown by induction on the

size of the support of the vector x). The main statement we need to prove

Proposition 4.9 is the following.

Theorem 4.10 ([CO83, Theorem 2], see also [CS89, Theorem V.3]): There

exists a constant CM > 0 so that for any sequence of scalars (ai)
n
i=1 we have

∥∥∥∥
n∑

i=1

aiei

∥∥∥∥
T

≤
∥∥∥∥

n∑
i=1

aiei

∥∥∥∥
M

≤ CM

∥∥∥∥
n∑

i=1

aiei

∥∥∥∥
T

.

Proof of Proposition 4.9. Let x1, x2, . . . , xn ∈ T ∗ have pairwise disjoint support

with min(supp(xj)) ≥ n, for j = 1, 2, . . . , n. We first choose y ∈ ST , with

y

( n∑
j=1

xj

)
=

∥∥∥∥
n∑

j=1

xj

∥∥∥∥
T∗
.

By the 1-unconditionality of the basis of T , we can assume that

supp(y) ⊂
n⋃

j=1

supp(xj),
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and letting yj = supp(xj)(y) we deduce from Theorem 4.10 and (34) that

∥∥∥∥
n∑

j=1

xj

∥∥∥∥
T∗

=

n∑
j=1

yj(xj) ≤
n∑

j=1

‖yj‖T · max
j=1,...,n

‖xj‖T∗

≤
n∑

j=1

‖yj‖M · max
j=1,...,n

‖xj‖T∗ ≤ 2

∥∥∥∥
n∑

j=1

yj

∥∥∥∥
M

· max
j=1,...,n

‖xj‖T∗

≤ 2CM

∥∥∥∥
n∑

j=1

yj

∥∥∥∥
T

· max
j=1,...,n

‖xj‖T∗

≤ 2CM max
j=1,...,n

‖xj‖T∗ ,

which implies our claim if we choose DM = 2CM .

We denote the basis of T ∗ now by (ej). For A ⊂ N we denote by PA the

projection

PA : T ∗(T ∗) → T ∗(T ∗), (xn) �→ (xn)n∈A.

Note that

‖PA((xn))‖ =

∥∥∥∥∑
j∈A

‖xj‖ej
∥∥∥∥
T∗
.

For i ∈ N we call the space

Pi(T
∗(T ∗)) = P{i}(T

∗(T ∗)) ≡ T ∗

the i-th component of (T ∗(T ∗)) and we denote by (e
(i)
j )j the basis of the i-th

component (which is of course isometrically equivalent to (ej)). For R ⊂ N
2 we

denote by PR the (norm 1) projection

PR : T ∗(T ∗) → T ∗(T ∗)
∑
i

∑
j

a(i,j)e
(i)
j �→

∑
(i,j)∈R

a(i,j)e
(i)
j .

The first out of two key Lemmas towards showing Theorem C is the following

Lemma 4.11: Let k ∈ N and k = n0 < n1 < · · · < nk. For j = 1, 2, . . . , k

put Rj = (k, nj ]× [1, nj] and let zj ∈ PRj\Rj−1
(T ∗(T ∗)), with ‖zj‖ ≤ 1. Then

it follows for (aj)
k
j=1 ⊂ R that

(35)

∥∥∥∥
k∑

j=1

ajzj

∥∥∥∥ ≤ 3DM max
j=1,2,...,k

|aj |.
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Proof. For j = 1, 2, . . . , k we write zj as

zj =

nj−1∑
i=k+1

nj∑
s=nj−1+1

zj(i, s)e
(i)
s

︸ ︷︷ ︸
u
(i)
j , for k < i ≤ nj−1

+

nj∑
i=nj−1+1

nj∑
s=1

zj(i, s)e
(i)
s

︸ ︷︷ ︸
u
(i)
j , for nj−1 < i ≤ nj

.

Thus

k∑
j=1

ajzj=

k∑
j=1

aj

[ nj−1∑
i=k+1

nj∑
s=nj−1+1

zj(i, s)e
(i)
s +

nj∑
i=nj−1+1

nj∑
s=1

zj(i, s)e
(i)
s

]
=

nk∑
i=k+1

y(i),

where for i = k+ 1, . . . , nk, say nj−1 < i ≤ nj , for some j = 1, 2, . . . , k we have

y(i)=Pi

( k∑
j=1

ajzj

)
=

k∑
l=j+1

al

nl∑
s=nl−1+1

zl(i, s)e
(i)
s +aj

nj∑
s=1

zj(i, s)e
(i)
s =

k∑
l=j

alu
(i)
l .

The following picture visualizes the above decompositions.

k

n1

n2

n3

0 0 0 0

k n1 n2 n3

z1

z2

z3

u
(k+1)
1

u
(k+2)
1

u
(n1)
1

u
(k+1)
2

u
(k+2)
2

u
(n1)
2

u
(k+1)
3

u
(k+2)
3

u
(n1)
3

u
(n1+1)
2

u
(n1+2)
2

u
(n2)
2

u
(n1+1)
3

u
(n1+2)
3

u
(n2)
3

u
(n2+1)
3

u
(n2+2)
3

u
(n3)
3
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It follows from (33) that for nj−1 < i ≤ nj ,

(36) ‖y(i)‖ ≤ 3 max
l=j,...k

|al| · ‖u(i)l ‖ = 3|ali| · ‖u
(i)
li
‖

where j ≤ li ≤ k is a number for which the above maximum is attained.

For j = 1, 2, . . . , k we define Aj = {k < i ≤ nk : li = j}. Then (Aj)
k
j=1 is a

partition of {k + 1, . . . , nk} and from Proposition 4.9 and (36) we deduce that

∥∥∥∥
k∑

j=1

ajzj

∥∥∥∥ =

∥∥∥∥
nk∑

i=k+1

‖y(i)‖ei
∥∥∥∥
T∗

≤ DM max
j=1,...,k

∥∥∥∥ ∑
i∈Aj

‖y(i)‖ei
∥∥∥∥
T∗

≤ 3DM max
j=1,...,k

∥∥∥∥ ∑
i∈Aj

aj‖u(i)j ‖ei
∥∥∥∥
T∗

≤ 3DM max
j=1,...,k

∥∥∥∥
nj∑

i=k+1

aj‖u(i)j ‖ei
∥∥∥∥
T∗

= 3DM max
j=1,...,k

|aj |‖zj‖ ≤ 3DM max
j=1,...,k

|aj|‖xj‖

≤ 3DM max
j=1,...,k

|aj |.

The second key Lemma towards showing Theorem C is the following

Lemma 4.12: Let k ∈ N, M = kk+1, and k = n0 < n1 < · · · < nM .

For j = 1, 2, . . . , k put Rj = [1, k] × [1, nj] and let wj ∈ PRj\Rj−1
(T ∗(T ∗)),

with ‖wj‖ ≤ 1. Then, there exist 1 ≤ j1 < · · · < jk ≤M so that for (a�)
k
�=1 ⊂ R

(37)

∥∥∥∥
k∑

�=1

a�wj�

∥∥∥∥ ≤ 2 max
�=1,2,...,k

|a�|.

Proof. Define f : {1,M} → [0, 1]k given by

f(j) = (‖P1wj‖, ‖P2wj‖, . . . , ‖Pkwj‖).

Next, write [0, 1] =
⋃k

d=1 Id, where

I1 = [0, 1/k], I2 = (1/k, 2/k], . . . , Ik = ((k − 1)/k, 1].

Define

I = {Id1 × Id2 × · · · × Idk
: (d1, d2, . . . , dk) ∈ {1, . . . , k}k}.
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Note that I forms a partition of [0, 1]k into kk sets. By the pigeonhole prin-

ciple and the fact that M/kk = k, there exist 1 ≤ j1 < · · · < jk ≤ M and

(d01, . . . , d
0
k) ∈ {1, . . . , k}k so that for 1 ≤ � ≤ k, f(j�) ∈ Id0

1
× Id0

2
× · · · × Id0

k
. In

particular, for 1 ≤ � ≤ k and 1 ≤ i ≤ k we have

(38)

∣∣∣∣
∥∥∥∥Piwj�

∥∥∥∥−
∥∥∥∥Piwj1

∥∥∥∥
∣∣∣∣ ≤ 1

k
,

i.e., the value ‖Piwj�‖, up to error 1/k, depends only on i and not on �.

Finally, take a1, . . . , ak with max1≤�≤k |a�| = 1 and estimate∥∥∥∥
k∑

�=1

a�wj�

∥∥∥∥ =

∥∥∥∥
k∑

i=1

∥∥∥∥
k∑

�=1

Pi(a�wj�)

∥∥∥∥ei
∥∥∥∥ (32)

≤
∥∥∥∥

k∑
i=1

max
1≤�≤k

(
|a�|‖Pi(wj�)‖

)
ei

∥∥∥∥
(38)

≤
∥∥∥∥

k∑
i=1

‖Pi(wj1 )‖ei
∥∥∥∥+

∥∥∥∥
k∑

i=1

1

k
ei

∥∥∥∥ ≤ ‖wj1‖+ 1 ≤ 2.

We combine the two Lemmas above to obtain the following, from which The-

orem C will follow.

Proposition 4.13: Let k ∈ N, M = kk+1, and k = n0 < n1 < · · · < nM .

For j=1, 2, . . . ,M putRj=[1, nj]
2 and let xj∈PRj\Rj−1

(T ∗(T ∗)), with ‖xj‖=1.

Then, there exist 1 ≤ j1 < · · · < jk ≤M so that (xj�)
k
�=1 is (3DM+2)-equivalent

to the unit vector basis of �k∞.

Proof. For j = 1, 2, . . . ,M we write xj as

xj =

nj−1∑
i=1

nj∑
s=nj−1+1

xj(i, s)e
(i)
s +

nj∑
i=nj−1+1

nj∑
s=1

xj(i, s)e
(i)
s = wj + zj ,

where

wj =

k∑
i=1

nj∑
s=nj−1+1

xj(i, s)e
(i)
s

and

zj =

nj−1∑
i=k+1

nj∑
s=nj−1+1

xj(i, s)e
(i)
s +

nj∑
i=nj−1+1

nj∑
s=1

xj(i, s)e
(i)
s .

Then, (wj)
M
j=1 satisfies the assumption of Lemma 4.12 and there exist

1 ≤ j1 < · · · < jk ≤ M so that (wj�)
k
�=1 is dominated by the unit vector basis

of �∞ with constant 2. Finally, (zj�)
k
�=1 satisfies the assumption of Lemma 4.11,

i.e., it is dominated by the unit vector basis of �∞ with constant 3DM .
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Proof of Theorem C. We already showed in Lemma 2.7 that T ∗(T ∗) is not

asymptotic c0. Secondly, let k ∈ N and let (fj)
M
j be the basis of an ele-

ment of the M -th asymptotic structure of T ∗(T ∗), where M = kk+1. Using

a straightforward perturbation argument, for any ε > 0 there is a block se-

quence (xj)
M
j=1, satisfying the conditions of Proposition 4.13, for some sequence

k <n1<n2< · · ·<nM , which is (1+ε)-equivalent to (fj)
M
j=1. Thus, there is a sub-

sequence (fj�)
k
�=1 that is (1+ε)(3DM+2)-equivalent to the �k∞-unit basis.

5. Final remarks and open problems

Although we do not know whether or not the Hamming graphs equi-coarsely

embed into T ∗(T ∗) we now understand that if such embeddings were to exist

they would not be of any of the canonical types that we have described in

Proposition 4.6 and Remark 4.7.

Problem 5.1: Is it true that the Hamming graphs do not equi-coarsely embed

into any reflexive asymptotic-subsequential-c0 space? In particular, is it true

that the Hamming graphs do not equi-coarsely embed into T ∗(T ∗)?

The class of asymptotic-subsequential-c0 spaces is a new one. This is not

surprising, as even proving that T ∗(T ∗) has this property is non-trivial and the

motivation for defining this property presented itself only now. A more general

theorem can be shown, albeit with a more technical proof.

Theorem 5.2: The T ∗-sum of any sequence of C-asymptotic-c0 spaces for a

uniform constant C is asymptotic-subsequential-c0.

Such examples contain many asymptotic-c0 subspaces.

Problem 5.3: Let X be an infinite-dimensional asymptotic-subsequential-c0

space. Does X contain an infinite-dimensional asymptotic-c0 subspace?

Next we describe a particular Banach space and some of its properties which

are interesting regarding the study of certain asymptotic properties under a

metrical scope. This example is based on the original idea of Szlenk in [Szl68].

It is also related to [OSch02, Example 4.2]. For 1 < p < ∞ and 1 ≤ q ≤ ∞
we can construct a reflexive Banach space Xq,ω

p with the following property:

all asymptotic models generated by normalized weakly null arrays in Xq,ω
p are

isometrically equivalent to the unit vector basis of �p, yet �
k
q is (isometrically) in

the k-th asymptotic structure of Xq,ω
p for every k ∈ N. Therefore a statement

which is analogous to Theorem 3.5 for �p, 1 < p <∞, cannot be true.
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The construction of the space Xq,ω
p that we are about to describe is based on

the idea of Szlenk from [Szl68], and is somewhat similar to [OSch02, Example

4.2]. Fix 1 < p < ∞ and 1 ≤ q ≤ ∞ and define by induction a sequence of

spaces (Xq,k
p )k as follows. Set Xq,0

p = R and then set

Xq,k
p = R

⊕
q

�p(X
q,k−1
p ).

Finally, define

Xq,ω
p =

( ∞⊕
k=0

Xq,k
p

)
p

.

Each space Xq,k
p is reflexive and so is Xq,ω

p . The fact that all asymptotic models

generated by normalized weakly null arrays in Xq,ω
p are isometrically equivalent

to the unit vector basis of �p can be proved as follows. Use Proposition 2.5 to

show by induction that for all k ∈ N, all the asymptotic models generated by

normalized weakly null arrays in Xq,k
p are isometrically equivalent to the �p-unit

vector basis, and use Proposition 2.5 one more time to obtain the same conclu-

sion for Xq,ω
p . We now turn to the statement about the asymptotic structure

of Xq,ω
p .

Proposition 5.4: Let p ∈ (1,∞) and q ∈ [1,∞]. For every k ∈ N ∪ {0}
the space Xq,k

p contains a normalized weakly null tree (xm̄ : m̄ ∈ [N]≤k), all

branches of which are isometrically equivalent to the unit vector basis of �kq .

Proof. For k = 0 pick a norm-one vector x∅ in Xq,0
p = R. Let now

Xq,k
p = R

⊕
q �p(X

q,k−1
p ) and let, for each i ∈ N, (x

(i)
m̄ : m̄ ∈ [N]≤k−1) be a nor-

malized weakly null tree in the i-th copy of Xq,k−1
p all branches of which are iso-

metrically equivalent to the unit vector basis of �k−1
q . Take x∅ to be a norm-one

vector inXq,k
p that resides in R (the left part of the sumXq,k

p =R
⊕

q �p(X
q,k−1
p ))

and for 1 ≤ n ≤ k and m̄ = {m1, . . . ,mn} define xm̄ = xm1

{m2−m1,...,mn−m1} (in

particular, for m̄ = {m}, xm̄ = xm∅ ).

Remark 5.5: For each k ∈ N ∪ {0} the collection (xm̄ : m̄ ∈ [N]≤k) forms a

1-unconditional basis of Xq,k
p . Hence, the space Xq,ω

p has an unconditional

basis.

As previously mentioned, it follows from [BLMS20, Lemma 3.5] that every as-

ymptotic space of Xq,ω
p is realized by a countably branching normalized weakly

null tree and thus we obtain
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Corollary 5.6: Let p ∈ (1,∞) and q ∈ [1,∞]. For every k ∈ N the unit

vector basis of �kq is in {Xq,ω
p }k.

Recall the following notions of asymptotic uniform convexity and asymptotic

uniform smoothness that were introduced originally by Milman in [Mil71], and

with the following notation and terminology in [JLPS02].

Definition 5.7: For a Banach space X the modulus of asymptotic uniform

smoothness ρ̄X(t) is given for t > 0 by

ρ̄X(t) = sup
x∈SX

inf
Y ∈cof(X)

sup
y∈SY

‖x+ ty‖ − 1.

The modulus of asymptotic uniformly convexity δ̄X(t) is given for t > 0 by

δ̄X(t) = inf
x∈SX

sup
Y ∈cof(X)

inf
y∈SY

‖x+ ty‖ − 1.

Also, X is called asymptotically uniformly smooth (AUS) if

lim
t→0+

ρ̄X(t)/t = 0,

and X is called asymptotically uniformly convex (AUC) if for t > 0,

δ̄X(t) > 0.

Note that, as shown in [BKL10], within the class of reflexive Banach spaces

the subclass of reflexive spaces that admit an equivalent asymptotic uniformly

smooth norm (i.e., they are AUS-able) and admit an equivalent asymptotic

uniformly convex norm (i.e., they are AUC-able) is coarse Lipschitzly rigid. It

was later proved in [BCD+17] that, within the class of reflexive spaces with

an unconditional asymptotic structure, the subclass of such spaces that are

additionally AUC-able is coarse Lipschitzly rigid. Within this context we are

also inclined to study the metric properties of AUS-able spaces. It is known

that whenever a Banach space X coarse Lipschitzly embeds into a reflexive

AUS-able space Y , then X is reflexive [BKL10, Theorem 4.1]. We recall the

important Problem 2 from [GLZ14]:

Problem 5.8: Is the class of reflexive AUS-able spaces coarse Lipschitzly rigid?

We observe that an approach using asymptotic models to characterize re-

flexive AUS-able spaces in terms of equi-coarse-Lipschitz embeddability of the

Hamming graphs, or similar metric spaces, is not easily possible. In particular,

the space X1,ω
2 is a reflexive non-AUS-able space with an unconditional basis
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with only isometric �2 asymptotic models. In other words, the information

gained from knowing all the asymptotic models of this space cannot be used to

reveal that the space is non-AUS-able.

Corollary 5.9: Let p ∈ (1,∞). The space X1,ω
p is non-AUS-able.

Proof. By [OS06, Theorem 3], if a Banach space with separable dual is AUS-

able, then there exists a 1 < p < ∞ so that all of its asymptotic spaces are

uniformly dominated by the unit vector basis of �p. Since by Corollary 5.6, �k1
is in {X1,ω

p }k, this space cannot be AUS-able.
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