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ABSTRACT

Within the class of reflexive Banach spaces, we prove a metric characteriza-
tion of the class of asymptotic-co spaces in terms of a bi-Lipschitz invariant
which involves metrics that generalize the Hamming metric on k-subsets
of N. We apply this characterization to show that the class of separable,
reflexive, and asymptotic-co Banach spaces is non-Borel co-analytic. Fi-
nally, we introduce a relaxation of the asymptotic-co property, called the
asymptotic-subsequential-co property, which is a partial obstruction to the
equi-coarse embeddability of the sequence of Hamming graphs. We present
examples of spaces that are asymptotic-subsequential-cg. In particular,
T*(T*) is asymptotic-subsequential-co where T™ is Tsirelson’s original
space.

1. Introduction

A central theme of the Ribe Program is to find metric characterizations of linear
properties of Banach spaces. We refer to [Naol2|, [Ball3], and [NaoId for a
discussion of the origins, motivations, applications, and the depth of the Ribe
Program. There are various forms of metric characterizations, the most common
ones being expressed in terms of Poincaré-type/concentration inequalities, or in
terms of containment in a metric sense of a sequence of graph metrics. If a
class C of separable Banach spaces coincides with the class of Banach spaces
equi-coarsely (or equi-bi-Lipschitzly) containing some sequence (My,); of metric
spaces, then C would be an analytic class since it can be shown that the latter
class is analytic (in the Effros—Borel structure).

The following metric characterization, in terms of a concentration inequality,
was proved in [BLMS20] and was used to show that the class of reflexive and
asymptotic-cy Banach spaces is coarsely rigid.

TueoreM 1.1 ([BLMS20]): A Banach space X is reflexive and asymptoti-
cally cg if and only if there exists C' > 1 such that for every k € N and every
Lipschitz map f : ([N]*, dﬁk)) — X there exists an infinite subset M of N so that

(1) sup |[f(m) — f(n)|| < C'Lip(f).

m,ne[M]k
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In Theorem [[T] d,(f) is the Hamming metric on the set [N]* of k-subsets
of N, and we will simply denote ([N]*, d,(f)) by H{. The concentration inequal-
ity (@) prevents the equi-coarse embeddability of the sequence of Hamming
graphs (HY), into any reflexive and asymptotic-co Banach space. The converse
does not hold since it was shown in [BLMS2(] that there are quasi-reflexive
(and not reflexive) asymptotic-c¢y Banach spaces that do not equi-coarsely con-
tain (HY)r. Therefore the coarse (or Lipschitz) geometry of the Hamming
graphs cannot be used directly to compute the descriptive set theoretic com-
plexity of the class of separable, reflexive and asymptotic-co Banach spaces. It
follows from [DEFQ7 Theorem 3] that if this class were analytic, then there would
exist a separable reflexive space containing isomorphic copies of all members of
this class. However, in [OSZ08 Remark on page 120] it is observed that if a
separable space contains isomorphic copies of all reflexive and asymptotic-cg
spaces, then it must contain an isomorphic copy of ¢g, barring it from being re-
flexive. In conclusion, the class of separable, reflexive and asymptotic-cy Banach
spaces is non-analytic and in particular non-Borel.

In this article, we continue our investigation of the metric geometry of the
Hamming graphs and we introduce a useful class of metrics on [N]* which gen-
eralizes the Hamming metric. These Hamming-type metrics are generated by
certain basic sequences of Banach spaces and, relying on geometric arguments,
they can be used to prove that the class of separable, reflexive and asymptotic-cg
Banach spaces is co-analytic.

Definition 1.2: Let € = (e;)jen be a normalized 1-suppression unconditional
basis of a Banach space E. For every k € N we define dék) : INJ* x [N]* — R as
follows: If m = {m1,ma,...,mx}, i = {n1,na,...,nx} are in [N]* (both sets
written in increasing order) and F' = {j : m; # n;}, then
2
JEF
We will justify that dék) is indeed a metric in Section B2l The metric dék) is
dominated by the Hamming metric dﬁk) and coincides with it if (e;);en is the

d (A, B) =

E

canonical basis of /1. Also, if € = (e;); is not equivalent to the unit vector basis
of ¢g, then the sequence of metric spaces ([N]*, dék)) k is hereditarily unbounded,

in the following sense:
k

>

i=1

= Q.

lim inf diam(M]*,d%) = lim
k—o00 ME[N]w k
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Recall that for two metric spaces X and Y, the Y-distortion of X, deno-
ted ¢y (X), is defined as the infimum of those D € [1,00) such that there
exist s € (0,00) and a map f: X — Y so that for all z,y € X

(2) sdx(x,y)gdy(f(m),f(y)) SSDdX(xay)

When (@) holds we say that X bi-Lipschitzly embeds into Y with distortion at
most D. Within the class of separable reflexive Banach spaces, we prove the
following metric characterization of the class of asymptotic-cy Banach spaces.

THEOREM A: Let X be a separable reflexive Banach space. Then X is asymp-
totic-co if and only if for every 1-suppression unconditional sequence &= (e;);
such that limy, infye e diam([M]", dék)) =00, one has sup,cy cx ([N]*, dék)) =o0.

Theorem [A] which is the main result of Section [, cannot be drawn from
the statement of Theorem [[T] alone. The key difference is that it provides the
existence of an embedding for a “Hamming-type” metric instead of the non exis-
tence of a concentration phenomenon. As in [BLMS2(], the proof of Theorem [Al
relies in large part on a theorem of Freeman, Odell, Sari and Zheng [FOSZIF]
which establishes a deep and unexpected relation between the asymptotic struc-
ture of a Banach space and its asymptotic models. However, to obtain the finer
geometric information in Theorem [A] another ingredient is required. A cru-
cial unconditionality property for normalized weakly null arrays of finite height
is proved using an asymptotic notion of a third kind, namely joint spreading
models introduced in [AGLM20]. The following complexity result follows from
Theorem [A] and an application of the Souslin operation from descriptive set
theory.

COROLLARY B: The class of separable, reflexive, and asymptotic-co Banach
spaces is non-Borel co-analytic.

The quantity

k
sup cx ([N]¥, d|(_| )) =00
keN
cannot be a substitute for the metric invariant in Theorem [A] since it follows

from [KRO§) that sup,ey ce, ((NJF, dﬁk)) = ooEl and the Hilbert space (5 is not

1 An alternative argument would use an Enflo-type argument [E@I69l and the fact that
the map « € {0,1}* — (2i + x; — 1)%_| is an isometric embedding of the Hamming cube
({0, 1}*, d}(f)) into the Hamming graph ([N}k,dﬂk)).
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asymptotic-cg. Identifying the class of Banach spaces which equi-bi-Lipschiztly,
or equi-coarsely, contain the Hamming graphs is a central problem in nonlinear
geometry of Banach spaces. The goal of Sectiondis to provide new insights on
this problem. With the previous knowledge on the geometry of the Hamming
graphs, there still existed a possibility that the metric invariant in Theorem
[A] could be substituted with the failure of equi-coarse embeddability of the
Hamming graphs. We examine this possibility in Section @l We already know
from [BLSIY that a Banach space admitting an unconditional spreading
model not equivalent to the unit vector basis of ¢y equi-coarsely contains the
Hamming graphs. We must therefore draw our attention to non-asymptotic-cg
Banach spaces all of whose spreading models are isomorphic to ¢y. A particu-
larly interesting example, the space T*(T*), is studied to a great
extent in Section We introduce a new linear property, which we called
asymptotic-subsequential-cg, that is strong enough to rule out the existence of
a sequence of equi-coarse embeddings of the Hamming graphs of certain canon-
ical types.

Definition 1.3: Let X be an infinite-dimensional Banach space. We say that X
is an asymptotic-subsequential-c space if there exists a constant C' > 1 so
that for all n € N there exists an N € N satisfying the following: whenever
E = (RY,||-||g) is in the N-th asymptotic structure of X (to be defined in
Subsection 24), then there are 41 < --- < i, so that (e;, )7_; is C-equivalent to

the unit vector basis of £Z, where (e;)_; is the unit basis in RY.

We then show that a T™-sum of countable copies of T* is an asymptotic-

subsequential-cy space, but not necessarily asymptotic cg.

THEOREM C:  The space T*(T*) is asymptotic-subsequential-co but not
asymptotic-cg.

2. Preliminaries

2.1. COARSE AND LIPSCHITZ EMBEDDINGS. We introduce some convenient ter-
minology and notation that will allow us to treat all at once various embedding
notions.
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Definition 2.1: Let X and Y be metric spaces. Let p,w: [0,00) — [0,00). We
say that X (p,w)-embeds into Y if there exists f: X — Y such that for
all z,y € X we have

(3) pldx (z,y)) < dy (f(x), f(y)) <w(dx(x,y)).

If { X }ier is a collection of metric spaces, we say that {X;}ier (p,w)-embeds
into Y if for every i € I, X; (p,w)-embeds into Y.

We will say that {X;};c; equi-coarsely embeds into Y if there exist non-
decreasing functions p, w: [0, 00) — [0, o) such that lim;_, o p(t) =00 and {X; }icr
(p,w)-embeds into Y. With an abuse of notation we say that {X;}c; equi-
bi-Lipschiztly embeds into Y if there exist s, D > 0 such that {X;}ics
(p,w)-embeds into Y, with p(¢t) = st and w(t) = sDt. Note that equi-bi-
Lipschitz embeddability is a stronger condition than merely assuming that
sup;e; ¢y (X;) < oo since it does not allow for arbitrarily large or arbitrar-
ily small scaling factors in [2)). However, if Y is a Banach space, rescaling is
possible and the two notions coincide.

2.2. PROJECTIVE HIERARCHY AND THE SOUSLIN OPERATION. Let us recall a
few basics from descriptive set theory. We refer the reader to the book by
Kechris [KecO8], where all the proofs and details can be found. A measurable
space (X, M) is said to be a standard Borel space if there exists a Polish
topology 7 (i.e., separable and completely metrizable) on X such that the Borel
o-algebra generated by 7 coincides with the o-algebra M. A typical standard
Borel space is Baire space, i.e., N¥ equipped with the Borel o-algebra gener-
ated by the product of the discrete topology. The set of all closed subsets of
the Banach space C[0, 1], which is a Polish space, is a standard Borel space
when equipped with the Effros—Borel structure. Invoking a selection theorem
of Kuratowski and Ryll-Nardzewski together with the classical result that every
separable Banach space isometrically embeds into C[0, 1], the class

SB := {X: X is a separable Banach space}

can be considered as a standard Borel space. With this identification in mind,
classes of separable Banach spaces become subsets of SB, and the topological
complexity results in this paper will always refer to this standard Borel struc-
ture. We are interested in the projective complexity. The projective hierarchy
is built using the operations of projection (or equivalently of continuous image)
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and complementation. The 0-level of the projective hierarchy consists of the
Borel sets. The next level comprises analytic sets which are exactly the con-
tinuous images of Borel sets, and co-analytic sets which are the complements
of analytic sets. We will not need to discuss higher levels of the projective hier-
archy which can be obtained by iterating the projection and complementation
operations. An immediate corollary of the Souslin first separation theorem es-
tablishes a fundamental connection between the Borel hierarchy and the projec-
tive hierarchy. More precisely, Borel sets are exactly those sets that are analytic
and co-analytic. The analytic and co-analytic classes can be seen to be stable
under countable intersection or countable unions. A fact of crucial importance
to us is that the class of analytic sets is also stable under the Souslin operation.
Let N“ be the set of all sequences of natural numbers. If z = (z1,z9,...) € N¥
and k € N we write z; := (21,%2,...,2x) the restriction of x to its first k
terms. The Souslin operation, denoted A in honor of Alexandrov, applies to
a collection of sets {A;: s € N<¥} where N<“ denotes all the finite sequences
of natural numbers, and is defined as

(4) A{Astsen<e) = (J ) At,.-

teN® keN

It is easy to observe that the Souslin operation subsumes countable union
and countable intersection. Moreover, the Souslin operation is idempotent and
every analytic set can be obtained via an application of the Souslin operation
over a collection of closed sets. We refer to [Kec95 Chapter III, Section 25]
for properties of Souslin schemes. The following proposition will be needed in

Section B.1t

PROPOSITION 2.2: Let {As: s € N<¥} be a collection of analytic sets. Then
A({As}sen<w) is analytic.

2.3. ASYMPTOTIC MODELS AND SPREADING MODELS OF UNCONDITIONAL SUMS.
In this section we recall the definitions of spreading and asymptotic models and
prove two results about the spreading models of complemented sums. These
results will be used in Section @ For two basic sequences (x;) and (y;) in some
Banach spaces X and Y, respectively, and C' > 1, we say that (z;) and (y;)
are C-equivalent, and we write (z;) ~¢ (y;), if there are positive numbers A
and B, with C = A - B, so that for all (a;) € coo, the vector space of all
sequences z = (§;) in R for which the support supp(z) = {j : {; # 0} is finite,
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we have

<B
Y

o0 oo o0
E a;T; E a;Y; E QT4
i=1 i=1 i=1

In that case we say that j‘ is the lower estimate and B the upper estimate

<
b's

1
A X

of (y;) with respect to (x;). Note that (z;) and (y;) are C-equivalent if and only
C > ||T||-||T~||, where the linear operator T : span(z; :i € N) —span(y; :i €N),
is defined by
T(x;) =vy;, i€N.
If (e;) is a Schauder basis of a Banach space X, we recall that (x,,) is a block
sequence in X with respect to the basis (e;) if, for all n € N,

zp #0 and max(supp(z,)) < min(supp(zn+1)).

For a sequence of Banach spaces (X )ken, and a Banach space U which has a
l-unconditional basis (u;), we denote the U-sum of the X}’s by (B, Xk)v.
This is the space of all sequences T = (z1), with xy € X}, for k € N, such that
the series Y ;- ||k |lux converges in U, and equipped with the norm

oo
> [l
k=1

If all the X},’s are the same space X we also write U(X) instead of (P, , X)v.
Our first proposition is about spreading models of unconditional sums of

Izl =

U

Banach spaces. Spreading models were introduced by Brunel and Sucheston
in [BST4]. We recall the definition. Let E be a Banach space with a normalized
basis (e;) and let (x;) be a basic sequence in a Banach space X. We say that F
with its basis (e;) is a spreading model of (x;), if there is a null-sequence
(en) C (0,1), so that for all n, all (a;)?; C [-1,1] and n < k1 < kg < --- < ky,
it follows that

n n
‘ g a; Tk, — g a;€e; < éEp
i=1 X i=1 E
or, in other words, if
n n
lim lim --- lim a; Ty, = aie;
JLk; j€j
k1—00 ko —00 ky—00 - X
=1 X j=1 E

Using Ramsey’s Theorem it can be shown that every normalized basic se-
quence has a subsequence which admits a spreading model.
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PROPOSITION 2.3: Let 1 < p < o0, A,B,C,D > 1, and (X,,) be a sequence
of Banach spaces so that for all n € N any spreading model generated by a
normalized weakly null sequence in X,, is equivalent to the unit vector basis
of £y, (or ¢o if p = 00) with é—]ower and D-upper estimates. Let also U be a
reflexive Banach space with a 1-unconditional basis (u,,) satisfying the following

property:

() For every finitely supported xg € Sy, every normalized block sequence
(n)n in U, and every k € N there exist ny < --- < ny so that the
sequence (xq, Tn,,--.,Tn, ) is equivalent to the unit vector basis off’j;‘|r1
with i—lower and B-upper estimates.

Then every spreading model generated by a weakly null normalized sequence
in (@, Xn)u is equivalent to the unit vector basis of £, with , ., -lower and
ABD-upper estimates.

Proof of Proposition 2.3 We assume that p < oo; for p = oo the proof is simi-
lar. Assume that z(™) = P :17§-m) €(@j2, X)), for meN, with zg-m) € Xj,
for j €N, and [z = |2, &l |lu;]| = 1, and assume that (z(™)2_,
converges weakly to 0. It is enough to show that for fixed k¥ € N, (a;)%
in Spx and e > 0, there is a subsequence (&™), of (z("™),, so that for
all mi <mg < -+ < my

< ABD(1 +¢).

k
1—¢
< (ma)
5) ABC = H Zj:l it

Then a straightforward diagonalization argument will prove our claim. We
define z,, = >272, Hx;m) |lw;j, for m € N. Since U is reflexive we can assume, after
passing to a subsequence, that z,, is weakly converging to some z = Z;il bju;.
Since we need to show (B for a fixed k and a fixed (a;)F_, € Sgl;, we can assume,
after passing again to a subsequence and to arbitrarily small perturbations,
that z = 25021 bju; for some Iy € N, and that there are intervals I,, C N,
with lop < min(l;) < max(l;) < min(l3) < max(lz) < ---, so that for all m € N

we can write z,, as

lo

(6) zm = bjuj+ Y o™ lu;, and b; =[], for j =1,2,... 1o,

Jj=1 JE€EIm



690 F. BAUDIER ET AL. Isr. J. Math.

and thus

(7) 2(m) — Z(m)+zx

Jj=1 J€Im

By the assumption on Xj;, j € N, and because the sequences (:cgm

weakly null, we also can assume, after passing to a subsequence, that for

))j are
1<my <mg <---<my and every j =1,2,...,ly we have
k

>l

=1

<(1+e)D (Zla |p|:c(”“>||p>

k 1/p
1—e¢ ms
c (Zlallpllaﬁ >||p) <

i=1

Finally, letting yo = z € span(u; : j = 1,2,...,lo) and ym = 3y ||£C§-m)||’u]‘,
for m € N, we can use the property (x) of U, and, again after passing to a
subsequence, assume that for all m; < mo < --- < my

1/p k
p) < ‘ y0+z iYm,;
=1

k
< (1+€)B<||y0||p+z .
=1

k
1—¢
(1ol Y il o,
=1

1/p
p> ,

Using (@) and (8) we deduce from the 1-unconditionality of (u;) that

>

j=1

< (1+e)D

lo k 1/p

> el > ()
=1 Ni=1

lo

> bju;

=1

(10) - (1+5)D<zk: |ai|p)1/p

i=1

mr)

(14¢)D
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We therefore deduce that

k
Zaix(m")
-I= Zaz i

U

j=1
s Zal ()l + zaz Z 5™ s
j=1 = JE€Ln
p\ 1/p
<(1+¢)B ( }: §:m (o +§:kwp E:me’ : )
j=1 JE€ELm
(by @)
p\ 1/p
<(1+¢)B <1+g )P DP an(mﬂnuj +Z|a i Z o™ s )

j€lm,

(by (@)
Z [

(1+¢) 2BD<
JjE€l,

+Z|a|p )

=b;,for j=1,2,...,lp,and i =1,2,...,k, and Zi:l la;[P =1)

P\ \ 1/p
> 1l ))

GEIm,
)1/17

Zb uj + Z ||:v(ml

Jj€L,

(since |27

=(1+ s)QBD(Zk: |ai|p<

i=1

IN

(1+¢)?
BDA § P
1—¢ o

U

(1+5) ABD<Z|(1 |pme1) L

>1/P (1+e) ABD.
1-—
1=1

Similarly we show that

We deduce therefore (B after readjusting e.
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The next proposition is about asymptotic models of unconditional sums of
Banach spaces. Asymptotic models, which are a generalization of spreading
models, were introduced by Halbeisen and Odell in [HO04], and are based on the
behavior of infinite arrays (as opposed to a single array for spreading models).
An array of infinite height in a Banach space X is a family

(@l :4,j eN) C X.

(@)
J
of the array. We call an array weakly null if all rows are weakly null. A

;Z) :i € N,j € N) C X is an array of the form

(xg? :1 € Nys € N), where (j5) C N is a subsequence. Thus, for a subarray we

For an array (z;’ : i,j € N), we call the sequence (:C;i))jeN the i-th row

subarray of an infinite array (z
are taking the same subsequence in each row.
A basic sequence (e;) is called an asymptotic model of a Banach space X,

if there exist an infinite array (.T;Z) : 4,7 € N) € Sx and a null-sequence
(en) C (0,1), so that for all n, all (a;)?; C [-1,1] and n < ky < kg < --- < ky,

it follows that
n . n
[poretsi b ol
=1 =1

One may think of spreading models as asymptotic models for arrays with

< éE&p.

identical rows, and thus part of the theory of asymptotic models is reminiscent
of the spreading model theory of Brunel and Sucheston. For instance, in [HO0Z]
it was shown that an asymptotic model generated by a normalized weakly null
array is 1-suppression unconditional.

ProprosITION 2.4 ([HOO04 Proposition 4.1 and Remark 4.7.5]): Assume that
(asgi) :4,j € N) C Sx is an infinite array, all of whose rows are normalized
and weakly null. Then there is a subarray of (xgl) : 1,7 € N) which has a
1-suppression unconditional asymptotic model (e;).

PROPOSITION 2.5: Let 1 < p < oo, C,D > 1, and (X,), be a sequence of
Banach spaces so that for any n € N every asymptotic model generated by a
normalized weakly null array in X,, is equivalent to the unit vector basis of ¢,
with C-lower and D-upper estimates. Then every asymptotic model generated
by a weakly null normalized array in the space (B, X,)p Is equivalent to the
unit vector basis of £, with C-lower and D-upper estimates.
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Proof. For M C N we denote the canonical projection from (@, Xx)¢, onto
(Brem Xk)e, by Py and we abbreviate

w_<§xk)é.

P

Let (wj(l) : 4,7 € N) be a normalized weakly null array in W. By passing
to a subarray, i.e. by taking a common infinite set L of j’s and relabeling the
(4)
J
model (e;);. Fix m € N and scalars aq, ..., a,. Without loss of generality we

may assume that (3" |a;|?)!/? = 1. The goal is to show that

m

§ (2
aiwy,

=1

In particular, we are only interested in the first m sequences of the given array,

array (w;’ : 1 € N,j € L), we may assume that it generates an asymptotic

< lim lim --- lim
J1—>00 J2—>00 Jm —>00

<D.

so we may disregard the remaining ones. By passing to a further subarray we
may assume that the scalars ugf) = lim; ||P{n}w§-z)||, 1 <i<m,n €N exist.

Observe that for i = 1,...,m we have by Fatou’s Lemma

NE

()P < liminf [lw [P = 1.
J—0o0

n=1

We fix § > 0 to be small enough, so that forall0 < a <landall0 <z < mot/p
we have that (a + z)? < aP 4 2pz and |a — z|P > aP — pz.

Choose ng € N appropriately large so that for i = 1,...,m we have
(11) S Wy <.
n>ng

We now pick an increasing sequence (n;); in N such that for each j € N and
1<i<m

(12) | Pl ooy P < 6.

By the definition of the scalars ug), n €N, 1 <i<m,and [[), we can now
pass to a new common subarray so that the following condition is satisfied:

(13) ||P(n0,nj,]wj(-i)||p <§ forany j' <jin Nand any 1 <i <m.
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We put jo = 0. We calculate for any choice of j; < jo < -+ < jm

m p
(@
Hp(noyoo) Z aiwj
i=1

Z(P(nji71 1’”’]‘»5] + P(n07nji71] + P(njl 1OO])a7’w_§:)
i=1

- ) 1/p »
< <(Z ||P(nji1’nji]aiw§':)|p> +m51/p+m51/p)
i=1
(by (@) and (@)

(14)

S Z ”P("J-L—lvnjl]alwx) Hp + 4mp51/p.
i=1
A similar argument (using the choice of §) also yields that

)
HP(HO’OO) Z aiwji
i=1

We slightly refine this calculation:

HP (0. +00) Z aiw!!

(15) zZ (r0,00) G0 | = 1 (P, 00) + Plngyny,1)asw'? [P — mipd'/?

p m )
2 Z ||P(nji71,nji]aiw§-:)|\p — 2mpdt/P.
i=1

||P(n0,+oo)a'iwj(‘j)||p — 4mp51/‘5,

NgERD

>

i=1

We now wish to evaluate the norm of an initial segment. For n=1,...,n¢
define F,,={1 <i<m: u 7é 0}. By our assumptions, we may assume that
for n=1,...,ng the array

w®
Pnyw g
U

(z;”(i):z‘an,jeN): ( an,jeN)

1Py 0

generates an asymptotic model that is equivalent to the unit vector basis of ¢,
with C-lower and D-upper estimates. We now calculate an initial segment of
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the norm:
] DY E (1/
jlhm)OO JWILIm:: HP[l no ( W ) H
a; l{n}w

(1)

= lim --- lim E
J1—00 Jm—>00

n=1"4ieF,
S0 W
i€ Fyp
D33
n=1i=1
S (0
— P P lim --- li )P
=D Z|az| JJim Mlgloogllp{n}%
S |
= lim --- li P P, s’ .
jlgnoo jmlglooD ; [1,n0] iy, ’

We deduce that for any j; < --- < j,, that are chosen sufficiently large we have

(16) H [1,n0] (ZQZ (i )) H < DP Z ||P[1,n0]aiw§j)”p + 81/,
=1

A similar argument yields that for j; < --- < j,, which are chosen sufficiently
large we have

’P[l’"‘”(Zaiwg‘?)H _cpZHP[lnoaz w7 - 577,
=1

We can finally estimate the desired norm. For j; < --- < j,, large enough and §
sufficiently small, by ([[d) and (I8, we have

m ) D
=ruea(3e)

m ) P

(17)

(@)
Ji

S L (”Hp+4mp5””+DpZIIPln(,]az D617
i=1 i=1

<DPZHPTL0 oo)az aw()|\p+(4mp+1)51/p

=1 =1

=D” 3" [lagw” [P+ (4mp+1)8Y7 = DP Y [ag|P + (4mp + 1)8/7.

=1 i=1
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A very similar calculation using ([[H) and (7)) yields

m

E (8
Wy,

=1

As § can be chosen arbitrarily close to zero we deduce the desired conclusion.

p 1 m
> LS e — (mp + 1o
1=1

2.4. ASYMPTOTIC STRUCTURE. In this last preliminary subsection we recall
the notion of asymptotic structure and its connection to weakly null trees.
For k € N we denote by & the set of all norms on R¥, for which the unit vector
basis (e;)%_; is a normalized monotone basis. With an easily understood abuse
of terminology this can also be referred to as the set of all pairs (E, (e;)¥_,),
where F is a k-dimensional Banach space and (ej);?:l is a normalized monotone
basis of E.

We define a metric §; on & as follows: For two spaces E = (R* | - ||z)
and F = (R¥| - ||r) we let

5x(E, F) =log(|l1g.r - |15 %),

where Ig p : E — F, be the formal identity. It is also well known and easy to
show that (&, dk) is a compact metric space.
We let

[N]<“ = {SCN:|S| <o} and [N]*={SCN:|S|=oco}.
For k € N we put

[NJSF = {ScN:|S|<k}, and [N]"={ScN:|S|=n},

and we always list the elements of some m € [N]** in increasing order, i.e., if

we write m = {my, ma, ..., my}, we tacitly assume that m; < mg < --+ < mg.
If X is a Banach space we call a tree (v; : 7 € [N]SF) in X normalized
if z; € Sx, for all 7 € [N]S*, and weakly convergent, or weakly null if for
all0 < j <k—1and n; < ng < --- < ny, we have that (T, ny,....n;.0))i 18
weakly converging or weakly null, respectively.

The following definition is due to Maurey, Milman and Tomczak-Jaegermann
[MMTI05]. Here Sx denotes the unit sphere in X, while Bx denotes the closed
unit ball.

Definition 2.6 (The k-th asymptotic structure of X [MMTI95]): Let X be a
Banach space. We denote by cof (X)) the set of all its closed finite codimensional
subspaces of X. For k € N we define the k-th asymptotic structure of X
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to be the set, denoted by {X}x, of spaces E = (R¥,|| - ||) € & for which the
following is true:

Ve>0VX; €cof (X) Jzq € Sx, VX2 €cof (X) Jxg € Sx,

(18)
VX €cof(X)3xy € Sx,
(%‘)?:1 ~lte (%‘)?:1-

For 1 < p < ooand c > 1, we say that X is ccasymptotically ¢, if for all k€N
and all spaces E € {X}, with monotone normalized basis (ej);?:l, (ej)le is
c-equivalent to the E’; unit vector basis. We say that X is asymptotically ¢,
if it is c-asymptotically £, for some ¢ > 1. In case that p = co we say that the

space X is c-asymptotically ¢y, or asymptotically co.

We denote by T* the Banach space constructed by Tsirelson in [[s174]. This
is the archetype of a reflexive asymptotic-¢g space (see Remark [g]). Soon after,
in [EJ74], it became clear that the easier to define space is T', the dual of T*, be-
cause the norm of this space is more conveniently described. It has since become
common to refer to T" as Tsirelson space instead of 7. Figiel and Johnson in
[ET74] gave an implicit formula that describes the norm of T as follows. We call a
sequence (Ej);-’zl of finite subsets of N admissibleif n < F1 < By < --- < E,.
For x = 3772, Ajej € coo and E € [N|<“ we write

E(IZ?) = Z /\jej.
JjeEE

As it was observed in [EI74], if ||-||7 denotes the norm of T', then for every x € cqp

n
(19) fellr = maox{ el 500 3 15l .
j=1

where the supremum is taken over all n € N and admissible sequences (Ej);-’zl.
The space T is the completion of ¢oy with this norm and the unit vector basis
is a 1-unconditional basis of T

It is worth noting that a T*-sum of infinitely many infinite-dimensional Ba-
nach spaces cannot be asymptotic-cg.

LEMMA 2.7: The space (@;—, Xx)r- cannot be asymptotic-co if infinitely
many of the Xy ’s are infinite-dimensional.
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Proof. Let L = {ky < ka < ---} denote the collection of k € N for which X}, is
infinite-dimensional. If any one of these X}’s contains an isomorphic copy of ¢4
we are done. Otherwise, by Rosenthal’s theorem, we can pick for each k € L a
normalized weakly null sequence (z; (k ))1- in Xj. For each n € N take the count-
ably branching weakly null tree {27 :m € [N]<"} where 2, m,} = 1:5,’1“) Every
maximal branch of this tree is isometrically equivalent to elements of (e, )7,

where (e;)22; denotes the unit vector basis of T*. Then

e {(@), ),

for all n € N. But (e, )52, is not equivalent to the ¢y unit vector basis.

The following lemma, which will be used repeatedly and follows from [OSch02]
Proposition 2.3], says in particular that, for a separable reflexive space, every
N-dimensional asymptotic subspace can be realized (up to an arbitrarily small
perturbation) on a branch of a normalized weakly null tree of height N.

LeEmMMA 2.8: Let X be a Banach space with a separable dual, k € N,
(e;)¥_, € {X}k, and let € > 0. Then there exists a countably branching weakly
null tree {z; : 7 € [N]<F\{0}} in Sx, all of whose branches are (1+¢)-equivalent

to (ei)f_s-

3. Co-analyticity of RN As., and Hamming-type metrics

In Section B.J] we expand on the general principles, mentioned in the Introduc-
tion, that are useful to estimate the projective complexity of classes of Banach
spaces using certain bi-Lipschitz invariants. We show how such a strategy can
be applied to show the co-analyticity of the class of all separable and reflex-
ive asymptotic-cg Banach spaces using Theorem [A] In Section we prove
Theorem [Al

3.1. CO-ANALYTICITY VIA BI-LIPSCHITZ EMBEDDINGS. The goal of this sub-
section is to prove Corollary [Bl We will deduce it from the following Theorem
which presents an, at least formal, strengthening of Theorem [A]l and which will
be proved in Subsection
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THEOREM 3.1 (Theorem [Al):

(1) Let X be a separable reflexive Banach space. Then X is asymptotic-cg
if and only if for every 1-suppression unconditional sequence € = (e;);
such that limy, diam([N]*, dék)) = oo one has supycy cx ([N]*, dék)) = 0.

(2) Moreover, if X is a separable but not asymptotic-co, Banach space,
then there is a l-suppression unconditional sequence € = (e;);, with
limy, diam([N]k,dék)) = o0, and for every k € N a bi-Lipschitz embed-
ding of ([N]J¥, dék)) of distortion at most 3.

Before we deduce Corollary[B] note that the class of all separable and reflexive
asymptotic-cyp Banach spaces is not analytic. For, if it were analytic, then by
[DFQ7 Theorem 3] there would exist a separable reflexive Banach space that
would contain isomorphic copies of all separable and reflexive asymptotic-cg
Banach spaces. But it was observed in [OSZ08 Remark on Page 120] that
such a space cannot exist, and thus invoking Corollary Bl and Souslin’s theorem
(see, e.g., [KecOf Theorem 14.11]) which stipulates that a set is analytic and
co-analytic if and only if it is Borel, we have

COROLLARY 3.2: The class of all separable and reflexive asymptotic-co Banach

spaces is co-analytic non-Borel in the Effros—Borel structure of closed subspaces
of C0,1].

We first fix some notation and make some remarks. Denote by SB the col-
lection of all closed subspaces of the separable Banach space C[0, 1], endowed
with the Effros—Borel structure. This is a collection of Borel sets generated
by a canonical Polish topology. This structure is very useful to “measure” the
complexity of classes of Banach spaces. We refer the reader to the fundamental
work of B. Bossard on this subject [Bas02]. Consider for a metric space (M, d)
and D > 1 the class

LCY :={Y € SB | M bi-Lipschitzly embeds into Y with distortion at most D}.

It is folklore (and not difficult but rather tedious to show) that the class LCY;
is analytic, i.e., the continuous image of a Polish space. So if we were to prove
that a certain class of Banach spaces B coincides with a class of the form LCY; for
some metric space M, then we could conclude that B is analytic. As a concrete

example consider the class SR of all separable super-reflexive Banach spaces.
It is known [Bau07 that SR® = LCF_ where Bw is the binary tree of infinite
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height and D > 1 is a universal constant, and thus SR is co-analytic. Bour-
gain’s original metric characterization of super-reflexivity [Bou86] (on which
[Bau07 builds) is in terms of the sequence of binary trees (B )ren, and could
be reformulated as: there exists D > 1 such that
(20) SR® = (1) LCE..

keN
Since the countable intersection of analytic sets is analytic, this gives another
proof of the co-analyticity of SR. Similarly, we could immediately deduce Corol-
lary [Blif in Theorem [A] we could replace all sequences of metric spaces of the
form ([N]*, dék)) by a countable sub-collection. But this is not possible as will
be shown in Proposition B.I0} We overcome the problem of the uncountability
by representing the class of reflexive and asymptotic Banach spaces by a Souslin
Scheme. We consider the following four classes of Banach spaces:

R={Y € SB:Y is reflexive},
As., = {Y € SB : Y is asymptotic-cg},
SU={e:e=(e); CC[0,1]is a
normalized 1-suppression unconditional basic sequence},
HU = {e: & € SU with Egg}diam([N]k,dg“)) = ool

Keeping in mind descriptive set theoretic applications, Theorem B.] can be
succinctly reformulated as
(21) RNAs;, =RnN 7U () L€t

e€HU keN
Proof of Corollary Bl using Theorem[BIl We need to show that RN As,, is co-
analytic.

A compactness argument implies that there exists a countable
collection (™) = (égm)), m € N, so that for every e € SU and k € N there
is m € N so that dék) and dgf,)n) are 4/3 equivalent. Indeed, for fixed k, choose
a countable set

(B, (e )Ey) jeN)
of k-dimensional subspaces with a 1-suppression unconditional and normal-
ized basis which is dense in the set of all k-dimensional subspaces with a 1-
suppression unconditional and normalized basis, with respect to the metric in-
troduced at the beginning of Subsection 24l For every k,j € N choose an
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k

arbitrary extension of (el(-k’j))l:

, into an infinite 1-suppression unconditional
and normalized basic sequence e®9) = (e*7)%.  Finally reorder (e®:9),
into (™).

For simplicity denote MPF = (IN]*, a®

e("")

), for m, k € N. Let

T = {((ms, k;))i~y : n € N, diam(M¥)) > j, for all 1 < j < i < n},
and observe that 7 is a countable, infinitely branching tree of infinite height
(as partial order we just consider the extension of finite sequences of pairs of

natural numbers). Denote by
[T] = {((mi, ki))Zy : ((mi, ki))izy € T for all n € N}
the collection of branches of 7. For m, k € N, define

LC(n k) = {Y € SB:M{¥ embeds bi-Lipschitzly into ¥

with distortion at most 4}.

Recall that LC(,, 1) is an analytic set. A crucial observation is that the set

M= U ﬂ LCU(n)
oc€[T]n=1

is also analytic since it is obtained via a Suslin operation of analytic sets. The
4%

properties of distances d_,,, and the second part of Theorem B imply that

(22) (Ase,)°NR C M.

Additionally, the first part in Theorem Bl yields that RN As,, " M = § or
equivalently

(23) M C (RN Asq,)® = (R)° U (As, )°.

Indeed, if a Banach space X belongs to M, then there exists an infinite branch
((mi, ki))$2, in [T] such that M,Sfii) embeds bi-Lipschitzly into X with distortion
at most 4. Then a compactness argument yields the existence of € € SU and a
sequence (I;); such that for alli € N, (eimlj), . e,(:”j))jzi tends to (eq, ..., ex;)
for the Banach—Mazur distance. It then follows from our construction of 7 that

& € HU and that for all i € N, ([N]*,d") embeds bi-Lipschitzly into X with

€

distortion at most 4. Since the sequence (k;); cannot be bounded, we deduce
from the first part of Theorem B2 that X is not in RN As,,.
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It now follows from [22), (23), and elementary set-theoretic manipulations
that

(24) (RN Ase,)° = (R)° U M.

We already observed that M is analytic and it is known (see [Bos9d Corollary
3.3]) that the set (R)¢ is analytic. Analyticity being preserved by taking finite
unions, it follows that RN As,, is co-analytic.

3.2. A BI-LIPSCHITZ CHARACTERIZATION OF ASYMPTOTIC-¢y SPACES IN THE
REFLEXIVE SETTING. In this section we pay our debt to Section Bl and prove
Theorem B] (and thus Theorem [A]). We will prove the two implications sepa-
rately. But first we gather some essential properties of those metrics that are
naturally generated by 1-suppression unconditional sequences, and which play
a central role in this section. We call a basic sequence (e;) c-suppression
unconditional, for some ¢ > 1, if for any (a;) C cgp and any A C N

oo
g ;€4 E ;€4
i=1

i€A
We call (e;) c-unconditional if for any (a;) C coo and any (o) € {£1}N

oo oo
g ;€4 E 0;a;€4
i=1 i=1

Note that a c-unconditional basic sequence is c-suppression unconditional, and

<c

<c

that any c-suppression unconditional is 2¢c-unconditional.
Recall from the introduction that for an arbitrary normalized 1-suppression

unconditional basis € = (e;)jen of a Banach space (E,|| ||), we define for
every k € N a map dék) : [NJ¥ x [NJ* — [0,00) such that for every m =
{m1,ma,...,my} and i = {ny1,na9,...,n} in [NJ¥

(25) d(A,B) = || Y e, where F = {j :m; # nj}.

JjEF
The only metric axiom which is not trivially satisfied and that needs atten-
(k)

tion to ensure that the map d; "~ is a genuine metric is the triangle inequality.
This is where the unconditionality condition is needed. If m = {my,...,my},
a={ni1,...,nk}, and I={l,..., Ik}, set F={j :m; #n;}, G={j:m; #1;},

and H = {j : n; #1;}. Since the set FF C GU H we have
F=FN(GUH)=(FNG)U((F\G)NH).
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It follows from 1-suppression unconditionality that

dék)(m,ﬁ): Zej < Z ejll + Z €e;j
JjEF JEFNG JE(F\G)NH
ISl + | D e = d m, D) + (1 7).
JjEG jeEH

The metric dgk) is similar to the Hamming metric in the sense that for
m={mi,...,mg} and i = {nq,...,ng} the distance dék) (m,n) is determined
by the set FF C {1,2,...,k} of coordinates ¢ on which m; and n; differ. The
following important features directly follow from the definition of the metric
and classical Banach space theory.

LEMMA 3.3: Let & = (e;) en be a normalized 1-suppression unconditional basis
of a Banach space (E, || |).

(i) If € = (ej)jen is the unit vector basis of ¢ then dék) is the
Hamming distance dﬁk) on [N]*. Hence, for any normalized 1-suppression
unconditional basic sequence & = (e;)jen and any m, i in [NJ¥ we
have d® (m, n) < d&F (m, 7).

(ii) For every k € N and every M € [N]¥ we have

k

P

Jj=1

diam([M]*, d™) = .

e

In particular, limy, diam([NJ]¥, dék)) = oo if and only if € = (e;) jen is not

equivalent to the unit vector basis of c¢y.
(k)
e

the concentration inequality from [BLMS2{ to prove the non-embeddability im-

The domination of the metric dz’ by the Hamming metric allows us to use
plication of Theorem Bl Indeed, assume that Y is asymptotic-cy and reflexive,
and let € = (e;); be a normalized 1-suppression unconditional sequence such
that limy, diam([M]*, dék)) = 00. The crucial observation here is that the domi-
nation property in Lemma[B3] (i) can be equivalently restated by saying that the
identity maps from ([N]*, dy) to ([N]¥, d;) are 1-Lipschitz, and a straightforward
application of [BLMS20 Theorem B] shows that there exists C € [1, c0) so that
for every € € SU, every k € N and every 1-Lipschitz map f : ([N]¥, dék)) —Y
there exists M € [N]* so that

(26) diam(f([M]")) < C.
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If moreover € € HU, inequality (26]) and (ii) of Lemma B3 clearly prevent the
equi-bi-Lipschitz embeddability of the sequence ([N]*, dék)) k, or in other words

sup Cy([N]k, dék)) =00
kEN

necessarily. We have thus proved

THEOREM 3.4: Let X be a separable asymptotic-cy reflexive Banach space.
Then for every 1-suppression unconditional sequence € = (e;); such that

lim inf diam(M])*,d") = oo
k Me[N]w

one has

sup cX([N]k, dék)) = 00.
keN

For the remaining implication and the “moreover” part of Theorem Bl we
may assume that X does not contain an isomorphic copy of ¢;. Indeed, it is
clear that the graphs Hy, & € N, embed isometrically into £;. For X separable,
but not containing ¢;, we will use the following result by Freeman, Odell, Sari
and Zheng.

THEOREM 3.5 ([EOSZI8 Theorem 4.6]): If a separable Banach space X does
not contain any isomorphic copy of ¢1 and all the asymptotic models generated
by normalized weakly null arrays are equivalent to the co unit vector basis,
then X is asymptotically cg.

Theorem B establishes a crucial connection between asymptotic models and
asymptotic structure in the extremal co-case. In the light of the new informa-
tion of Theorem [B.5 the completion of the proof of Theorem Bl boils down to
showing that a separable reflexive Banach space that admits at least one asymp-
totic model generated by normalized weakly null arrays that is not equivalent
to the ¢y unit vector basis, contains equi-bi-Lipschitzly a sequence ([N]*, dék)) ks
for some € € HU. Slightly anticipating the ensuing argument, Lemma (ii)
says that if (e;) is an asymptotic model (generated by a normalized weakly
null array) that is not equivalent to the ¢y unit vector basis, then (e;) € HU.
This observation provides a natural candidate for the embedding map. Indeed,
arrays (and in turn asymptotic models) are intimately connected to Hamming-
type metrics in the sense that if (xgl) 4,5 € N) C Sx is an infinite array, then
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the map ¢ : [N]* — X defined for any m = {my,ma,...,ms} by

k

m) = Z xg,?l
i=1

is clearly 1-Lipschitz with respect to dy. As we will shortly see, if the array
generates a 1-suppression unconditional asymptotic model € we can slightly
modify ¢ by “pushing the vectors far enough along the sequence” and obtain
a map that is Lipschitz (with a slightly larger distortion) with respect to de.
Estimating the lower Lipschitz bound however will require a strengthening of
the unconditionality condition, and is the content of the crucial Lemma
below. This is done via the notion of joint spreading models recently introduced
by Argyros, Georgiou, Lagos and Motakis [AGLM?20], a notion that we briefly
recall together with some ingredients needed in the proof of Lemma B8

Definition 3.6 (Plegmas [AKTI3] Definition 3]): Let k,m € N and
si= (s 58 sYCN fori=1,...,k

The family (s;)¥_; is called a plegma if

NONC)

< (1) 4@

<- <s <s2 (k)

B (D C I )

A family (gcgz) 11 =1,2,...,k,7 € N) C X will be referred to an array of
height £ in X, and we can extend naturally the terminology for infinite arrays
introduced in Section to arrays of finite height.

Definition 3.7 (Joint spreading models [AGLM20] Definition 3.1]): Let
(@ 1<i<k,jeN) and (e :1<i<k,jeN)

be two normalized arrays of height k in the Banach spaces X and F, respectively,
whose rows are normalized and basic. We say that (J;EZ) :1<i<k,jeN) gener-
ates ( @ q <i<k,jeN) as a joint spreading model if there exists a null se-
quence of positive real numbers (£,,)59_; so that for every m € N, every plegma
(si)iz1, 80 = (s; W 5=1,2. m) for 1 < i <k, with min(s1) = 3 (M > m, and

scalars (( 5))3 DF | in [-1, 1], we have

‘ ZZ@“ w?)

j=11i=1
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Joint spreading models are naturally related to spreading models as well as
asymptotic models. If (zgi) : 1<i<k, jeN) generates (e§i) :1<i<k,jeN) as
a joint spreading model, then (eg-i) )32, is the spreading model of (:Cg-i));’;l, for
i=1,2,...,k On the other hand, if k€N and (z\":i =1,2,...,k,j € N)C Sx
if a normalized weakly null array of height k, then we extend this array to an
infinite array (,’Egl) :1=1,2,...,k,7 € N) by letting

:cSSkH) = z§i) forscNandi=1,2,...,k.

3

By Proposition 2.4l we can pass to a subarray
@ . :
(z;7 i €N,j€N)

of (xgl) : i € N,j € N) which admits an asymptotic model (e;). Now let-
(@)
(eg.z) : 1<i<k,j€eN) is the joint spreading model of (zj(-l) ci=1,2,...,k,j €N).
In particular this argument shows that joint spreading models of normalized

ting e;” = e(j_1)g4i, for © = 1,2,...,k and j € N we observe that the array

weakly null arrays are 1-suppression unconditional.

LEMMA 3.8: Let X be a Banach space and (zgi) :1<i<kjeN) be a
normalized weakly null array of height k. Then for every ¢ > 0 and m € N
there exists L € [N]“ so that for every iy,...,in in {1,...,k} (not necessarily
different) and pairwise different Iy, ..., 1, € L the sequence (xl(]”))gnzl is (1+¢)-
suppression unconditional.

Proof. As explained above, we may assume after passing to a subarray that
(xg.i) : 1<i<k,jeN) generates a joint spreading model (eg-i) :1<i<k,jeN)
that is 1-suppression unconditional. Thus, we find N € N, so that for any
plegma (s;)k_,, s; = (sgi),sg), .. .,s,(fl)), fori =1,2,...,k, with N < sgl) the
family (:vil()) :1<i<k,1<j<m)is (1+ e)-suppression unconditional. Let L
be the set that consists of all positive integer multiples of 2k that are greater
than N + k.

Let now 41,...,4y, in {1,...,k} and l1, ..., 1, be pairwise different elements

of L. After reordering, we can assume 1 <lo <+ - <Ip. Let 11 <ro <.+ <1y

be in N so that I; = 2kr;. We will now define a plegma (s;)¥_;, s; = (sgi));ﬂzl,
as follows. First we define sgij) =1l; = 2kr;, for j =1,2,...,m. Then, since

liy1 —1; > 2k, for every j =1,...,m — 1 and sgil) > N + k, we can find
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natural numbers sg i) < s(lﬁl) < s(“H) < s( ) < 8521 << sngil), num-
bers N < s(l) (2) < s(z1 b (“ and numbers stim) < glim+1) <s£f),
which means that the famlly (si)le, with s; = (sg))] 1, for i = 1,2,...k
is a plegma. Thus (;C(?i) ci=1,2,...,k,j=1,2,...,m) is (1 —|—<€)—suppressmn
unconditional and (:El(jj));’lzl is just a subsequence of it.

Having now established all the tools we needed we can proceed with the
proof of

THEOREM 3.9: Let X be a Banach space and € = (e;)jen be an asymptotic
model generated by a normalized weakly null array in X. Then, for any k € N
and ¢ > 0, the metric space ([N]k,d(ék)) bi-Lipschitzly embeds into X with
distortion at most (2 + €).

Proof. Let (z; @ ) : i, 7 €N) be a normalized weakly null array in X that generates
an asymptotlc model € = (ej)jen. Fixing & € N and § > 0 and passing to
appropriate subsequences of the array we may assume that for any j; < --- < ji

and any ay,...,ax in [—1,1] we have
In addition, by applying Lemma B.8§ we may also assume that for any 71, ...,
in {1,...,k} and any pairwise different I1,...,lo; in N the sequence (ZCZ(J ))fkl

is (1 4 d)-suppression unconditional.
We are now ready to define the embedding. Define ¢ : [NJ*¥ — X as follows.

If m = {mqy,ma,...,my} set

2 :ka —+3°

Observe first that for mq <---<myj we have kmi1+1<kmo+2<---<kmp+k.
Then, if m = {mq,...,mi}, i ={ny,...,ng} and F = {i: m; # n;} we have

Om) = 6(1) = 3 s = D T i
i€F ieF
It immediately follows from the triangle inequality and @7)) that if 7 # 7 then

S

icF

p(m) — ¢(a)|| < 2 +26 < 2(1 + 6)d (m, ).
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Also, note that km; + ¢ = kny + ¢ if and only if i = ¢ and m; = ny.
We deduce that the sequence (ZL'](;)T”_,’_Z-),L'GF U (IE;)”_H)Z-eF is (1 + J)-suppression

unconditional. Therefore we have

7) — (7 1 0 1 II-
¢(m) — o(n)|| = (11 6) ;epmkmm > (1+5)(’ ;epel 5)
(1=9) .y,
> (1+6)dé (m,n).

Hence, the distortion of ¢ is at most 2(1 + §)?/(1 — §). For a given £ > 0, we
choose ¢ > 0 small enough, and then deduce the result.

As we observed earlier Theorem implies the remaining implication of
Theorem B.1] as well as the “moreover” part via Theorem

At the end of this section we would like to address the question whether or
not in the class of reflexive spaces, the property of not being asymptotic ¢y could
be characterized by the uniform Lipschitz embeddability of ([N]*, ), k € N, for
some €, where € only comes out of a countable subset of HU. This is not the
case as the following proposition shows.

ProrosiTION 3.10: Let
D C {(d®™)en :d® is a metric on [N]*, which is dominated by df_,k)

and limsup inf diam([M]k,d(k)) = o0}
k—oo MEN]»

be countable. Then there exists a reflexive Banach space X, which is not
asymptotic cg, so that for all (d*)),ey € D and for all sequences (¥},), where
Ty, : ([N)*,d®)) — X is 1-Lipschitz, it follows that

' k d®)
e diam(B(M]Fd®)

k—ooMe[NJ»  diam([M]*, d(*)) ’
in particular, the Wy, cannot be uniform bi-Lipschitz embeddings.

Proof. Let D = {(d¥ : k € N) : n € N} and for n € N, put

(k)= inf diam(]M]*, d®).
fu(k) = dnf iam([M]"*, d;,”’)

For each n there exists a k,, so that

min f,,(k) >n forall k > k,.

m<n
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We put f(k)=1if k<ky, and f(k)=min,<, fm(k)>n whenever k, <k <k 1.
Then put

f(k) = max(2, min(f'/%(k),log, (1 + k))).
It follows that

(28) klim f(k)=o00, hﬁm J{((k))() and hﬁm ﬁf):o, for all neN.

The space X will be the dual of the space Z = Zf, which was constructed
n [Sch9T]. Although f does not satisfy all the conditions demanded in the
construction there, for our purposes the properties in (28) suffice. By [Scholl
Proposition 2], there is a Banach space Z with a 1-subsymmetric basis (e;),
whose norm satisfies the following implicit equation:

||| = max([|z[|oc, sup |lz]ls),
2<l<o0

(29) 1
where ||x||l—f(l 5, JBOX. EZZHE |, forl>2 and z € X.

It is clear that, by (28) and (Zd), Z does not contain ¢y. We will show that
Z also does not contain a copy of ¢;1. This fact follows from the arguments in
[SchoT] (more precisely, the arguments on page 87), but for the sake of better
readability let us give a self-contained proof. Assume Z contained a normal-
ized block sequence (z,,) which is equivalent to the ¢; unit basis. By James’s
Theorem [JamG4] we can assume it is (1 + €)-equivalent to the ¢; unit basis,
for some given € > 0. It follows for any [ € N and any A C N, with |A| > /e,
that there are finite sets B1 < FEy < --- < Ej, so that (letting mq = 1, and
mj = max{n :supp(x;j_1) N E, #0},if 1 <j<Il+1)

1 1 <
e A Z 1@< ) 2

(30) jea
1 |A] +1 1
S0 14 STy

Secondly, we choose a rapidly increasing sequence of ¢;-averages of length 2,

mj+1 }

2
i:mj

l

a name coined by Gowers and Maurey [GM97]. By this we mean that we first
choose I3 € N so that 1/f(l) < ¢, for all [ > Iy, then we choose ny > I3 /e and
1= nll > ity aj. Then we choose Iz € N so that maxsupp(z1) < ef(l), for

l Z ZQ, ) Z 12/5 and then Z9 = nlg 7;2?_7_1 Zj.
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It follows from (B0) for some ! > 2 that

25+2m)<2g+1 if2<1<1y,
21+ 22l = 21+ 22l < [zl + 22l S 1 4e+ 4y S1+2e il <ULy,
e+1 if Iy < 1.

But this contradicts the assumption that (z;) is (1 + €)-equivalent to the unit
vector basis of ¢ if ¢ > 0 is chosen small enough. Since (e;) is an unconditional
basis, it follows from the fact that Z does neither contain ¢y nor ¢; that Z is
reflexive [Jam50]. Since (e;) is subsymmetric Z cannot even be asymptotic ¢1.
It follows that (e}) is a 1-subsymmetric basis of Z* and, by a straightforward
dualization argument [MMTI95, Theorem 4.3], Z* is not asymptotically co.
From @9) it follows that for any normalized block basis (z7)7_; in BZ* we

J
have, for an appropriate = € Sz, and letting E; = supp(z}) for j = 1,2,.

S Z:c )<Y IE @I < fn).

Jj=1

(31)

Assume now that n, k € N and that ¥ : ([N]¥, d%k)) — Z* is 1-Lipschitz, and let
¢ > 0. By [BLSIS Proposition 4.1] there is an M’ € [M]¥ and a y € Z*, and

for all m € [M']*, there is a block sequence (y,(,i))J 1 C Bz~ so that

k

me) v <

Thus
[0 (m) - (R)|| < 2e+ |y +y2 +- -y —y P 4yP 4y P < 20421 (k)

which by the second property in ([28]) proves our claim.

4. Embeddability of Hamming graphs into non-asymptotic-cy spaces

In this section we discuss coarse embeddability of the Hamming graphs into
non asymptotic-¢y spaces. Notably, we show that T*(T*) is a reflexive non-
asymptotic-cg space in which the Hamming graphs cannot be coarsely embedded
in certain canonical ways.
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4.1. EMBEDDABILITY INTO (D2, {3 (T*))r-. For p € [1,00], the space

(@),

is separable and reflexive but not asymptotically-cg, yet all its spreading models
are uniformly equivalent to the unit vector basis of ¢y. More precisely, we have

PROPOSITION 4.1: Let p € [1,00]. Every spreading model generated by a
normalized weakly null sequence in (@, £;(T*))7- is 6-equivalent to the unit

vector basis of ¢g.

Proof. Every normalized block basis (z,) in V = (.., {3)r- has a sub-
sequence which is isometrically equivalent to a (z,) in T* and thus has a
spreading model equivalent to the cgp-unit basis with lower bound 1 and up-
per bound 2, and therefore for any finitely supported vector zy and any k
there are n; < ng < -+ < ng so that {xo} U {zy,,,j = 1,2,...,k} is equiva-
lent to the ¢%! basis, with lower bound 1 and upper bound 3. Since V (T*)
is canonically isometric to (@,—, ¢2(T*))r+, our claim follows from Proposi-

n=1"%p
tion 23]

It turns out that despite all its spreading models generated by a normalized
weakly null sequence are 6-equivalent to the unit vector basis of ¢y, the space
(B €E(T*)) 7+ contains equi-coarsely the Hamming graphs.

PROPOSITION 4.2: Let 1 < p < oco. The Hamming graphs embed equi-coarsely
into the Banach space (@, (5(T*))r-.

Proof. Consider for every n € N the space E’;(T*) and let (e§i))j denote the
standard basis of the ¢-th copy of T*. Then, for any j; < --- < ji the se-
(@ ))

quence (e;)i; is isometrically equivalent to the unit vector basis of ék Addi-

tionally, the collection ( 5) : 7 € N,J1 < <k) is l-unconditional. We conclude
that if we define the map fi : [NJ¥ — ¢%(T™*) with f.(m) = Zle e%)i, where
m = {my,...,my}, then for all m,n € [N]* we have

dy) (m, 2) 7 < | fr(m) — fr(@)]] < 248 (m, m) /7.

We now deduce that the Hamming graphs equi-coarsely embed into the space
(B, Li(T*)) 7+ with compression modulus p(t) = t1/7 and expansion modu-
lus w(t) = 2t'/7,
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The proof actually gives that the 1-s1rlovv{'laking of the k-dimensional Ham-

ming graph, i.e., ([N]* dl/p) bi-Lipschitzly embeds into £%(T*) with distortion
at most 2. In particular, the Hamming graphs equi-bi-Lipschitzly embed into

(B (1 (T)r

Remark 4.3: For k € N, the Johnson graph of height k is the set [N]* equipped
with the metric defined by dﬂk)(m,ﬁ) = M4(mAn) for m,n € [N]F. It is
proved in [BLSIY| that there is a constant C' > 1 such that for any k¥ € N
and f: ([NJ¥, dgk)) — T Lipschitz, there exists M € [N]* so that

diam(f([M]*)) < C'Lip(f).

It is easily seen that the same is true if T is replaced by any reflexive asymptotic-
co space. However, we do not know whether the Johnson graphs embed equi-
coarsely into (@,_, £;;(T*))r~. The reason is that canonical embeddings of the
Johnson graphs are built on sequences and not arrays. This confirms the qual-
itative difference between asymptotic models and spreading models. The space
(B,—, €3 (T*))r- is a possible example of a space that equi-coarsely contains
the Hamming graphs but not the Johnson graphs.

Problem 4.4: Does there exist a Banach space equi-coarsely containing the
Hamming graphs and not the Johnson graphs? Is (P,_, £;(T™*))r+ such an

example?

4.2. EMBEDDABILITY INTO T*(T*). We now introduce and study a relaxation
of the asymptotic-cy property that is relevant to the coarse geometry of the
Hamming graphs.

4.2.1. A partial obstruction: the asymptotic-subsequential-cy property. We de-
note the unit vector basis of 7* by (e}), which is also 1-unconditional. There-
fore the space T*(T*) = (P T*)7+ is well defined. We study the asymptotic
properties of this space and the goal is to prove that the space T*(T™*), which
is not an asymptotic-cy space by Lemma 7] is very close to being one. We
introduce the following definition.

Definition 4.5: Let X be an infinite-dimensional Banach space and 1 < p < oo.
We say that X is an asymptotic-subsequential-/, space if there exists a con-
stant C' > 1 so that for all n € N there exists an N € N satisfying the following:
whenever (e;)¥ ; is in {X}y (recall Definition 28]) then there are iy < --- < i,
so that (e;, )y_; is C-equivalent to the unit vector basis of £}.
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Clearly, any asymptotic-£, space fits the above description. To follow our pre-
viously introduced convention, we shall use the term asymptotic-subsequential-
co space for the case p = co. We do not know whether such spaces fail to
contain the Hamming graphs equi-coarsely, nonetheless this property rules out
certain “canonical” embeddings as described below

PROPOSITION 4.6: IfY is an asymptotic-subsequential-cy space then there is no
sequence of maps (fx)k, such that fi : HY — Y, and where (fi) is a sequence
of equi-coarse embeddings of (HY)y into Y with the property that for every
k € N there is a normalized weakly null array (y§i) :1<i<k,j€eN) so that

k
fe(m) = Zy,(fl)l, for all m = {my,ma,...,my} € [NJ¥.
i=1

Proof. Let Y be a C-asymptotic-subsequential-cy space and let us fix an increas-
ing sequence of non-negative real numbers (py,),. Let us assume that for every
k € N we can find a normalized weakly null array (y§i) 1 <i<kjeN)
in Y so that for all m < k, all i1 < -+ < 4, and j1 < -+ < Jm We
have || >0, y](l”)H > pm. We pass to a subarray that generates a finite as-
ymptotic model (e;)*_;. This asymptotic model has the property that for all
l1<m<kand1l <i3 < - < iy <nwehave ||} /2 e, > pm. Addi-
tionally, (e;)¥_; € {X}4. Since this is the case for all m,k € N we can easily
conclude using the definition of C-asymptotic-subsequential-cy that p,, < C
for all m € N. But this means that (fx)x, defined above, is not a sequence of
equi-coarse embeddings of (H{)ren into Y.

Remark 4.7: The above proof with minor modifications shows that a reflexive
asymptotic-subsequential-cy space Y cannot have the following property:

(t) There are sequences (p(n))n, (u(n))n C (0,00) with p(n), u(n) /oo, if

n /oo, and for each k € N a weakly null tree (y%k))ﬁe[N]Sk C By, so

that for all k& € N and all m,n € [N)* | m = {my,ma,...,my}, and

ﬁ:{nl,ng,...,nk}

‘ < u(d (m, n)).

k
k), _ k k
p(d|('| )(m’n)) = Z y*({")h,m%-n,mi} - y‘({")17n2a---7ni}

i=1,m;#n;

and

k
(k) (= = (k) (k)
p(dH (m,n)) < Zy{mhmz,---ﬂm} T Yining,on}
=1
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(k)

The existence of trees (y,,  : m € [N]¥) satisfying the condition (1) above means

that the maps

k
fe:HY =Y, {mi,meo,...,myp}— Zy‘({];)h,__wmi}
i=0
are equi-coarse embeddings, and that the lower bound for || fi(m) — fi(7)|| is
witnessed by the values of

(k) (k)

y{ml,mQ,...,mi} - y{nl,n2,...,ni}’
where m; # n;, for m = {my,ma,...,mp}, and 1 = {ny,no,...,ns} in [N]*.

4.2.2. T*(T*) is asymptotic-subsequential-co. The main goal of this section is
to prove that T*(T*) is asymptotic-subsequential-cy and thereby finishing the
proof of Theorem We start with some preparatory work. The following
property of T* (see [[SI74] Lemma 4]) is essential:

n

PES

j=1

<2 max |z;r-

e 1S5S

(32)

whenever (z;)_; is a block sequence, with n < supp(z1),

and thus, under a slightly weaker condition

n
>
j=1

<3 max ||zl
(33) 1<j<n

T*
whenever (z;)7_; is a block sequence, with n < supp(w2).

Remark 4.8: The fact that T™ is 2-asymptotic-cg is an easy consequence of the
above estimate [B2). This well known fact is hard to track down in the literature,
and follows from the fact that every weakly null tree admits a refinement for
which all branches are arbitrary small perturbations of blocks. A noteworthy
comment is that in [OSZ0J] the notion of asymptotic-fp, 1 < p < oo with
respect to a finite-dimensional decomposition (FDD) was introduced and it was
proved that a reflexive space is asymptotic-£, if and only if it linearly embeds
in a space that is asymptotic-£,, with respect to an FDD.

Recall that the norm of T satisfies the implicit formula ([[). We will need the
following observation for the space T*, which follows from a statement for T,
proved in [CO83 Theorem 2].
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PROPOSITION 4.9: There exists a constant Dy; > 0 so that the following holds.

For every n € N, any vectors x1,...,x, in T*, having disjoint supports, with
min(supp(xy)) > n, for 1 < k <mn, it follows that

n
D
k=1

Note that in Proposition 9] the vectors have disjoint supports (as opposed

SDM max ||='17k||T*-
T+ 1<k<n

to consecutive supports as in ([33])). In order to prove Proposition .9 we need

to introduce some necessary notions. A norm very similar to || - |7 was defined
by W. B. Johnson in [Ioh76]. It is called the modified Tsirelson norm, we
denote this norm by || - ||as and it satisfies the implicit formula

1 n
(39) fellar = maox el 0 3 [Bx(o)la

k=1

where the supremum is taken over all n € N and disjoint subsets (Ex)}_; of N
with n < min(Ey) for 1 < k < n. Note that there is a unique norm || - ||as
satisfying this implicit formula (this can, e.g., be shown by induction on the
size of the support of the vector ). The main statement we need to prove
Proposition [£9] is the following.

THEOREM 4.10 ([CO83] Theorem 2], see also [CS8 Theorem V.3]): There
exists a constant Cpy > 0 so that for any sequence of scalars (a;)?_, we have

n n n
E aié; E i€ E ai€;
i=1 i=1 i=1

Proof of Proposition 9l Let 21, xo, ..., 2, € T* have pairwise disjoint support

<
T

<Cu
M

T

with min(supp(z;)) > n, for j =1,2,...,n. We first choose y € S, with

j=1

T*

By the 1-unconditionality of the basis of T', we can assume that

n
supp(y) C | J supp(z;),
j=1



716 F. BAUDIER ET AL. Isr. J. Math.

and letting y; = supp(z;)(y) we deduce from Theorem FLI0 and (B4) that

Zyj zj) < Z lysllz - max

n

PO

j=1

T*

e <2

<Z||y3||M jDax ||

Z y]

Jj=1

>u
M

Jj=1

- max
j=1,...n

< 2Cum

- max
j=1,...n

S 20@[ max
j=l,.un
which implies our claim if we choose Dy = 2C),.

We denote the basis of T* now by (e;). For A C N we denote by Pa the
projection

PA : T*(T*) — TW(TV*)7 ((L‘n) — (mn)neA-
Note that
[Pa((zn))ll =

> lajlle;

JEA

T*

For i € N we call the space
P(T™(T™)) = P (T*(T7)) =T~

the i-th component of (7*(7™)) and we denote by (e; )) the basis of the i-th
component (which is of course isometrically equivalent to (e;)). For R C N? we
denote by Pg the (norm 1) projection

Pr : T*(T*) — T*(T*) ZZa(” Yo 3T age
(i,5)ER

The first out of two key Lemmas towards showing Theorem [(Jis the following

LEmMMA 4.11: Let k e Nand k =ng < ny < --- <ng. Forj=12,...)k
put R; = (k,n;] x [1,n;] and let z; € Pr\g,_,(T*(T*)), with ||z;|| < 1. Then
it follows for (a;)5_, C R that

E a;zj

j=1

(35)

<3Dy [ nax la|.
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Proof. For j =1,2,...,k we write z; as
nj—1 nj nj
E E Zj(ivs)eg) + E E Zj(ias)e(e)
i=k+1s=n;_1+1 i=nj_1+1 s=1
~ ~ - ~ ~ -
ul), for k <i<mj_y ul? for n;_1 < i <n,
Thus
nj—1
g ajzj—g aj[ g E i (i, 8)el + E E zjzse(z} E y®,
i=k+1s=n;_1+1 i=n;j_1+1s=1 1=k+1
where for i =k+1,...,nk, say nj_1 <t < nj, for some j =1,2,...,k we have

k k
S STE)ED SERD SERTREUNE SETRTIES o0
j=1 s=1

I=j+1 s=n;_1+1

The following picture visualizes the above decompositions.

k i no ns
k
u§k+l) ugk+l) ugk+1)
k+2 k+2 k+2
P W= =
- u§n1) ugm) ugnl)
(2n1+1) ugn1+1)
ni1+2 +2
Z2 u;l ) ugﬂl )
- u<2n2> uénz)
—+1
ug'm )
(n2+2)
oda) ug"
~O :
(n3)
ns Us
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It follows from [B3) that for n;_1 < i < nj,

D

(36) o <3 ma, o] - [l o]

where j < [; < k is a number for which the above maximum is attained.
For j =1,2,...,k we define A; = {k <i < ng:1l; =j}. Then (Aj)§:1 is a

partition of {k +1,...,n;} and from Proposition 9 and [@B8) we deduce that

k
> ajz Z ly@le;
j=1

i=k+1

T

D My e

< Dy nllax

a T*

i€EA;
< 3Djp max Z ajHu(-i)Hei
j=lek || ’ T
I€EA;
n;
< 3Dy max Z ajHuy)Hei
"""" i=k+1 ™

= 3Dy max [l <3Das max oyl

..........

The second key Lemma towards showing Theorem [(]is the following
LEMMA 4.12: Let k € N, M = k¥ and k = ng < ny < --- < ny.

For j=1,2,...,k put R; = [L,k] x [1,n;] and let w; € Ppg,_,(T*(T")),
with ||w;|| < 1. Then, there exist 1 < j; < --- < ji, < M so that for (a)f_; CR

E Wy,

{=1

Proof. Define f: {1, M} — [0,1]* given by

(37) <2 ,max |ael.

FG) = (1Prwjlls [[Pyws [, - [ Prwy]).-
Next, write [0,1] = UZ:1 I, where
I=0,1/k], Iy = (1/k,2/K], ..., Iy = ((k —1)/k,1].
Define

T={Ig xIgyx--x1Ig :(dy,dg,... dy)e{l,... k}"}.
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Note that Z forms a partition of [0,1]* into k* sets. By the pigeonhole prin-
ciple and the fact that M/k* = k, there exist 1 < j; < --- < jx < M and
(d9,...,d%) € {1,...,k}* so that for 1 < <k, f(je) € Lgo x Igg x -+ X Igo. In
particular, for 1 < ¢ < k and 1 <i < k we have

1
(38) ‘Piwjz - ‘ Prw, ||| < s
i.e., the value |P;wj, ||, up to error 1/k, depends only on 4 and not on £.
Finally, take a1, ..., a; with maxj<<j |a¢] = 1 and estimate
ko k k
E2)
- || neme] S| 2 s, (eeipcon)e
i=1" (= i=1
k ko
w]l |eZ + Z kel < ||wj1H +1<2.
= i=1

We combine the two Lemmas above to obtain the following, from which The-
orem [(] will follow.

PROPOSITION 4.13: Let k € N, M = EF' and k=ng <n; <--- < ny.
Forj=1,2,..., M put R;=[1,n;]? and let ;€ Pg \p,_, (T*(T*)), with || z;]| =1.
Then, there exist 1 < j; < --- < jr < M so that (%)?:1 is (3D p+2)-equivalent
to the unit vector basis of £, .

Proof. For j =1,2,..., M we write z; as
nj-1 n; n;
E E xj(lvs)eg) + E E xj(lvs)eg) = Wj +Zja
i=1 s=nj_1+1 i=n;_1+1s=1
where
k nj
_ . i
wy = (i, 5)el?
i=1 s=nj_1+1
and
nj—1 n; n; n;
. i . I3
zj = E :I:j(z,s)eg) + E E xj(z,s)eg)
i=k+1s=n;_1+1 i:’n,j,l-i-l s=1

Then, (w;)}L, satisfies the assumption of Lemma and there exist

1 <j1 <+ < jr <M so that (wj,)F_, is dominated by the unit vector basis

of £, with constant 2. Finally, (z;,)5_, satisfies the assumption of Lemma LTI}
e., it is dominated by the unit vector basis of /o, with constant 3D;.
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Proof of Theorem[Cl We already showed in Lemma [Z7] that T*(T*) is not
asymptotic ¢p. Secondly, let k& € N and let ( fj)]M be the basis of an ele-
ment of the M-th asymptotic structure of T*(T*), where M = k*+1. Using
a straightforward perturbation argument, for any ¢ > 0 there is a block se-
quence (zj)j]\il, satisfying the conditions of Proposition L13} for some sequence
k <ni<ng<---<nps, which is (14€)-equivalent to (f])j\i1 Thus, there is a sub-

sequence (f;,)5_, that is (1+¢)(3DM+2)-equivalent to the £¥ -unit basis.

5. Final remarks and open problems

Although we do not know whether or not the Hamming graphs equi-coarsely
embed into T*(T™*) we now understand that if such embeddings were to exist
they would not be of any of the canonical types that we have described in
Proposition and Remark @7

Problem 5.1: Is it true that the Hamming graphs do not equi-coarsely embed
into any reflexive asymptotic-subsequential-cy space? In particular, is it true
that the Hamming graphs do not equi-coarsely embed into T*(T*)?

The class of asymptotic-subsequential-cy spaces is a new one. This is not
surprising, as even proving that 7*(T*) has this property is non-trivial and the
motivation for defining this property presented itself only now. A more general
theorem can be shown, albeit with a more technical proof.

THEOREM 5.2: The T*-sum of any sequence of C-asymptotic-cy spaces for a
uniform constant C' is asymptotic-subsequential-cg.

Such examples contain many asymptotic-cy subspaces.

Problem 5.3: Let X be an infinite-dimensional asymptotic-subsequential-cg
space. Does X contain an infinite-dimensional asymptotic-cy subspace?

Next we describe a particular Banach space and some of its properties which
are interesting regarding the study of certain asymptotic properties under a
metrical scope. This example is based on the original idea of Szlenk in [SzIGg].
It is also related to [OSch02 Example 4.2]. For 1 < p < co and 1 < ¢ < o0
we can construct a reflexive Banach space X7 with the following property:
all asymptotic models generated by normalized weakly null arrays in X* are
isometrically equivalent to the unit vector basis of ¢, yet ﬂ’; is (isometrically) in
the k-th asymptotic structure of X7 for every k € N. Therefore a statement
which is analogous to Theorem Bl for ¢, 1 < p < oo, cannot be true.
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The construction of the space X’ that we are about to describe is based on
the idea of Szlenk from [SzIGg], and is somewhat similar to [OSch02 Example
4.2]. Fix 1 < p < oo and 1 < g < oo and define by induction a sequence of
spaces (X2F);, as follows. Set X7° = R and then set

Xpk =REP £p(XPH1).
q

Finally, define

oo

X1 = (@ngk) :

k=0 P
Each space Xg’k is reflexive and so is X2*. The fact that all asymptotic models
generated by normalized weakly null arrays in X1 are isometrically equivalent
to the unit vector basis of £, can be proved as follows. Use Proposition 2.1 to
show by induction that for all £ € N, all the asymptotic models generated by
normalized weakly null arrays in X} ** are isometrically equivalent to the £,-unit
vector basis, and use Proposition 2.5 one more time to obtain the same conclu-

sion for X7*. We now turn to the statement about the asymptotic structure
of X2,

PROPOSITION 5.4: Let p € (1,00) and q € [1,00]. For every k € N U {0}
the space X* contains a normalized weakly null tree (zy, : m € [N]<F), all
branches of which are isometrically equivalent to the unit vector basis of E’;.

Proof. For k = 0 pick a norm-one vector zp in Xg*o = R. Let now
Xpk = REP, £p(X2*1) and let, for each i € N, (:v,(%) :m € [NJSF=1) be a nor-
malized weakly null tree in the i-th copy of Xg’k_l all branches of which are iso-
metrically equivalent to the unit vector basis of E’;_l. Take zy to be a norm-one
vector in Xg’k that resides in R (the left part of the sum Xg’k:R D, b (Xg’k_l))

ma

and for 1 <n <k and m = {mq,...,m,} define z; = T st oo —mi}

(in
particular, for m = {m}, zs = zj").
Remark 5.5: For each k € N U {0} the collection (z,; : m € [N]<F) forms a

1-unconditional basis of ngk. Hence, the space X»* has an unconditional
basis.

As previously mentioned, it follows from [BLMS20, Lemma 3.5] that every as-
ymptotic space of X;I** is realized by a countably branching normalized weakly
null tree and thus we obtain
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COROLLARY 5.6: Let p € (1,00) and g € [1,00]. For every k € N the unit
vector basis ofé’; is in {ng‘*’}k,

Recall the following notions of asymptotic uniform convexity and asymptotic
uniform smoothness that were introduced originally by Milman in [MiI71], and
with the following notation and terminology in [JLPS02].

Definition 5.7: For a Banach space X the modulus of asymptotic uniform
smoothness px(t) is given for ¢t > 0 by

px(t)= sup inf sup ||z + ty|| — 1.
P ( ) z€Sx Y €cof(X) yESy || H

The modulus of asymptotic uniformly convexity dx (t) is given for ¢ > 0 by

S5x(t) = inf su inf ||z + tyl| — 1.
x(@)=nf  swp oty

Also, X is called asymptotically uniformly smooth (AUS) if
lim px(t)/t=0
A, Px @)/t =0,
and X is called asymptotically uniformly convex (AUC) if for ¢ > 0,
6_)( (t) > 0.

Note that, as shown in [BKLIQ, within the class of reflexive Banach spaces
the subclass of reflexive spaces that admit an equivalent asymptotic uniformly
smooth norm (i.e., they are AUS-able) and admit an equivalent asymptotic
uniformly convex norm (i.e., they are AUC-able) is coarse Lipschitzly rigid. It
was later proved in [BCDT17 that, within the class of reflexive spaces with
an unconditional asymptotic structure, the subclass of such spaces that are
additionally AUC-able is coarse Lipschitzly rigid. Within this context we are
also inclined to study the metric properties of AUS-able spaces. It is known
that whenever a Banach space X coarse Lipschitzly embeds into a reflexive
AUS-able space Y, then X is reflexive [BKLIQO, Theorem 4.1]. We recall the
important Problem 2 from [GLZI4]:

Problem 5.8: Is the class of reflexive AUS-able spaces coarse Lipschitzly rigid?

We observe that an approach using asymptotic models to characterize re-
flexive AUS-able spaces in terms of equi-coarse-Lipschitz embeddability of the
Hamming graphs, or similar metric spaces, is not easily possible. In particular,
the space X21 ¥ is a reflexive non-AUS-able space with an unconditional basis
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with only isometric /5 asymptotic models. In other words, the information
gained from knowing all the asymptotic models of this space cannot be used to
reveal that the space is non-AUS-able.

COROLLARY 5.9: Let p € (1,00). The space X, is non-AUS-able.

Proof. By [0OS06, Theorem 3], if a Banach space with separable dual is AUS-
able, then there exists a 1 < p < oo so that all of its asymptotic spaces are
uniformly dominated by the unit vector basis of £,. Since by Corollary .6 ¢%
is in {X*“'}1, this space cannot be AUS-able.
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