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Abstract—Complementary metal oxide semiconductor 

(CMOS) devices display volatile characteristics, and are 
not well suited for analog applications such as 
neuromorphic computing. Spintronic devices, on the other 
hand, exhibit both non-volatile and analog features, which 
are well-suited to neuromorphic computing. 
Consequently, these novel devices are at the forefront of 
beyond-CMOS artificial intelligence applications. However, 
a large quantity of these artificial neuromorphic devices 
still require the use of CMOS to implement various 
neuromorphic functionalities, which decreases the 
efficiency of the system. To resolve this, we have 
previously proposed a number of artificial neurons and 
synapses that do not require CMOS for operation. 
Although these devices are a significant improvement 
over previous renditions, their ability to enable neural 
network learning and recognition is limited by their 
intrinsic activation functions. This work proposes 
modifications to these spintronic neurons that enable 
configuration of the activation functions through control 
of the shape of a magnetic domain wall track. Linear and 
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sigmoidal activation functions are demonstrated in this 
work, which can be extended through a similar approach 
to enable a wide variety of activation functions. 

Index Terms— Artificial neural network, Leaky integrate-
and-fire neuron, Multilayer perceptron, Neuromorphic 
computing 

I. INTRODUCTION 

CCORDING to neuroscientists, the human brain consists 
of neurons and synapses. Neurons receive electrical 

signals through their dendrites, and integrate these electrical 
signals in their somas. When enough input pulses have been 
received, these cells release output pulses from their somas, 
through their axons, and into the dendrites of other neurons. 
Synapses bridge the gaps between two neurons. 

Likewise, artificial neuromorphic systems consist of neuron 
and synapse analogs. They can be implemented using software 
run on standard von Neumann computers [1],[2], but such a 
method is highly inefficient due to the fact that conventional 
mathematical operations do not map efficiently to neuronal 
and synaptic functions. Furthermore, complementary metal-
oxide semiconductor (CMOS) technology does not naturally 
provide the required neuronal or synaptic functionality – 
instead, these functions must be implemented using a large 
number of devices per neuron or synapse. The efficiency can 
be improved by designing CMOS circuitry specifically for 
neuromorphic applications [3],[4]; however, even though this 
will significantly reduce the device count, and therefore the 
power consumption, CMOS devices are still not ideal for these 
applications due to their volatile and digital nature. 

The non-volatility and analog nature of spintronics is 
particularly attractive for neuromorphic computing, and 
several beyond-CMOS spintronic synapses and neurons have 
been proposed to improve the efficiency. Whereas synapses 
only require non-volatility and a variable resistance, the 
popular leaky integrate-and-fire (LIF) neuron model requires 
three primary functionalities: leaking, integrating, and firing. 
Therefore, while much progress has been made on beyond-
CMOS synapses [5]-[8], significant challenges remain to 
emulate the complex behavior of neurons. Advancing on 
previous work that required CMOS within the network [8], we 
have previously proposed spintronic LIF neurons capable of 
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intrinsically providing the three necessary functionalities 
within a purely spintronic system [9]-[13]. 

However, these neurons have limited capability to mimic 
the various activation functions commonly used in neural 
networks. Activation functions are commonly used in neural 
networks to improve the decision making process and, by 
extension, the learning characteristics of the networks. A 
variety of activation functions are utilized for neural networks, 
including the rectified linear unit (ReLU) and 
squashing/sigmoidal activation functions. Similar activation 
functions have already been implemented in recent works, but 
they only implement quantized, not analog, activation 
functions [14]. 

In this paper, we propose spintronic neurons that provide 
these activation functions by modifying the shape of one of 
our previously-proposed shape-based magnetic domain wall 
neuron [11]. By appropriately configuring the shape of this 
device, it is possible to implement a wide range of distinct 
activation functions. This permits the design of neural 
networks that leverage nearly any arbitrary activation 
function, thereby increasing the efficiency of the spintronic 
neuromorphic networks. 

Section 2 provides a brief background into the field of 
neuromorphic computing, including the shape-based neuron. 
Section 3 discusses the realization of two particular activation 
functions, while conclusions are provided in section 4.  

II. BACKGROUND 

Neuromorphic computing is generally realized with neuron 
layers connected through crossbar synapse arrays. In order to 
realize the LIF neuron functionality, we have previously 

proposed the use of artificial spintronic neurons as described 
in this section. This section also overviews the activation 
functions of interest for neuromorphic computing. 

A. Crossbar Array 

Crossbar arrays typically consist of horizontal input wires 
(word lines) and vertical output wires (bit lines). Input neurons 
are placed at the inputs to the word lines, and output neurons 
are placed at the outputs of the bit lines. Synapses, on the 
other hand, are placed at the intersections of the word and bit 
lines. Therefore, an MxN crossbar array will consist of M+N 
neurons and M*N synapses [15]-[17]. 

B. Leaky Integrate-and-Fire Neuron 

In order to accurately mimic biological neurons for 
neuromorphic computing, artificial LIF neurons implement 
three primary functionalities: leaking, integrating, and firing. 
When integrating, these neurons accept and store energy from 
input energy pulses. When no input pulse is provided, the 
stored energy gradually dissipates. Finally, once sufficient 
stored energy has been integrated, the neuron releases this 
energy as an output pulse of its own. 

C. Domain Wall Magnetic-Tunnel-Junction 

Magnetic tunnel junctions consist of two ferromagnetic 
layers – a “free” layer capable of changing states and a “fixed” 
or “pinned” layer whose magnetization is stable. When the 
two layers are magnetized parallel to each other, the device 
exhibits a low-resistance state (LRS); when they are 
magnetized anti-parallel to each other, the device exhibits a 
high-resistance state (HRS). Domain wall-magnetic tunnel 
junctions (DW-MTJs) are similar, but the free layer is 

 
 
Fig. 1. (a) Side view of a DW-MTJ neuron. (b) Top-view of the neuron with shape-based DW drift. (c) Combined integrating and leaking characteristics of a
shape-based DW drift neuron with L = 250 nm, w1 = 50 nm, and w2 = 100 nm, where the current is applied from right to left through the DW track using the left 
and right terminals. 
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extended and contains two anti-parallel magnetic domains 
bounded by a domain wall [18],[19]. The DW can be moved 
with a spin-orbit torque (SOT) current through a heavy metal 
beneath the DW track or through a spin-transfer torque (STT) 
current passed through the DW track, and the device changes 
resistance states when the DW shifts underneath the MTJ.  

D. DW-MTJ LIF Neuron 

This DW-MTJ device can be used as an LIF as shown in 
Fig. 1(a), with the neuron energy represented by the position 
of the DW within the track [9]. Integration is accomplished by 
applying current through the heavy metal, and firing occurs 
when the DW passes underneath the MTJ, thereby switching 
the current across the tunnel barrier. Device resetting can be 
performed using various methods [20], and is akin to a 
refractory period. 

In order to induce leaking that shifts the DW in the 
direction opposite the SOT, an energy landscape must be 
produced that causes the DW to exist in a lower energy state at 
one end of the device than the other. While this can be 
achieved by providing current through the DW track in the 
direction opposite the integration, this approach is undesirable 
due to the additional control circuitry [8]. It is preferable, 
therefore, for the leaking to be passive, as in [9]-[12]. 

The shape-based leaking of [11] is particularly attractive for 
enabling useful activation functions. With this method, the 
DW track width is varied from one end of the track to the 
other, as shown in Fig. 1(b). DWs typically exist in lower 
energy states in wider tracks than in narrower tracks. 
Consequently, the variation of the DW track width shown in 
Fig. 1(b) creates an energy landscape more favorable to the 
DW existing on the left side of the track than on the right side, 
causing the DW to shift from right to left. If desired, the 
leaking speed of the neurons can be increased by increasing 
w2 relative to w1 or by decreasing the Landau-Lifshitz 
damping, among other methods. Conversely, the leaking speed 
can be decreased by decreasing w2 relative to w1 or by 
increasing the Landau-Lifshitz damping. 

The integrating and leaking characteristics observed in 
mumax3 micromagnetic simulations are illustrated in Fig. 1(c) 
[11]. The magnetic parameters are listed in Table II. These 

micromagnetic parameters are used for the entirety of this 
work, including the linear and squashing neurons of section 3. 
Throughout this work, COMSOL has been used to create a 
current map for non-rectangular DW-MTJ neuron structures. 

E. Activation Functions 

Activation functions allow a neuron to provide the network 
with significantly improved learning characteristics during 
training, and significantly improved performance during 
operation. In fact, it has been shown that particular activation 
functions, such as the ReLU or sigmoidal activation functions 
shown in Fig. 2, can reduce the error exhibited by a neural 
network by up to two orders of magnitude when the network is 
applied to certain data sets.  

The ReLU activation function simply maps an input to the 
output in a linear fashion. On the other hand, the sigmoid 
function (also referred to as the squashing function), maps the 
input to a monotonically decreasing output, with the highest 
rate of change at the center of the function. Table I provides 
the equations representing these activation functions. 

As an activation function describes the impact of the stimuli 
input to a neuron on the stimuli output by a neuron, the 
activation function of an LIF neuron is a complex function 
dependent on the history of input stimuli. Whereas 
conventional activation functions used in machine learning 
can be characterized by equations that directly relate input and 
output signals, the activation function of an LIF neuron has 
time-dependent behavior that cannot be expressed by such 
simple functions. However, by modifying the leaking, 
integrating, or firing behavior of an LIF neuron, the activation 
function of the LIF neuron is altered. In particular, as 
explained in [21], an activation function can be described by a 
saturation function, which, for an LIF neuron, is equivalent to 
integration. This work therefore investigates the 

 
Fig. 2. Generalized linear (black) and sigmoidal (blue) activation functions. 
The sigmoidal activation functions are shown with various switching speeds. 

TABLE I 
ACTIVATION FUNCTION EQUATIONS 

Function Form Value a Value b 

Linear  -1 1 

Sigmoid 
 

10 2.25 
15 1.2 
15 0.75 
15 0.475 
15 0.45 
15 0.4 
15 0.4 
15 0.375 

Equations representing the activation functions in Fig. 2. 

TABLE II 
MATERIAL PARAMETERS 

Symbol Parameter Value 

Aex Exchange Stiffness 
[J/m] 

1.3 x 10-12 

α Landau-Lifshitz Damping Constant 
[dimensionless] 

0.05 

ξ Non-Adiabaticity of STT 
[dimensionless] 

0.05 

Msat Saturation Magnetization 
[A/m] 

7.96 x 105 

Ku First Order Uniaxial Anisotropy Constant 
[J/m3] 

5 x 105 

Material parameters used in the micromagnetic simulations. The parameters 
shown here correspond to those exhibited by CoFeB. 
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configurability of LIF neuron activation functions through 
control of the neuron structures that govern the leaking and 
integration behavior. 

III. DW-MTJ NEURONS WITH CONFIGURABLE ACTIVATION 

FUNCTIONS 

In order to improve the biomimetic capabilities of our 
neurons, it is important for them to implement a variety of 
activation functions, including the linear and squashing 
activation functions [22]-[26]. To do so, modifications to the 
neurons are required. The neuron from [11] is particularly well 

suited to implementing these functions due to the simplicity of 
the necessary changes. Although this section only 
demonstrates the linear and squashing activation functions, it 
is clear that this approach can be extended to a wide variety of 
activation functions using similar modifications. 

It is important to note that while the leaking behavior is 
dependent solely on the neuron structure, the integration 
behavior is also dependent on the applied input current 
magnitude. Therefore, in order to ensure that the desired 
activation functions are always significantly impacting the 
neuron behavior, these activation functions are implemented 
in terms of the leaking rather than the integration. For any 
given leaking activation function, a wide range of integration 
activation functions can be achieved by varying the current 
magnitude applied to the DW-MTJ neuron. 

A. Neuron with Linear Activation Function 

In the trapezoidal DW-MTJ device of Fig. 1(b), the DW 
accelerates as it nears the narrow end of the track. To realize a 
linear activation function without this acceleration, it is 
necessary to alter the shape of the DW track to decrease the 
leaking force in narrower regions of the track. 

Linear leaking can be accomplished simply by introducing a 
slight exponential variation in the width of the DW track, as 
shown in Fig. 3. In general, as the value of b increases, the 
linearity of the device’s leaking increases, calculated as the 
inverse of the root mean squared error of a linear regression 
performed on the leaking curve. The leaking speed also 
increases as b increases. However, once b reaches a certain 
point, further increases cease to produce an increase in 
linearity, although they continue to increase leaking speed. 
This exponential variation decreases the leaking force applied 
to the domain wall as it shifts to narrower regions of the track, 
preventing further DW acceleration and allowing for linear 
device operation. Additionally, the room temperature leaking 
characteristics of the neuron with b = 4 are illustrated in Fig. 
4, demonstrating robustness to temperature.  

It is also important to analyze the response of the DW-MTJ 
neurons to various input currents. When an input current of 

Fig. 3. (a) Top view of the linear neuron, displaying the slight exponential 
curvature of the sides of the track. This curvature is of the form w∝b-d, where 
b represents the curvature of the sides, d is the distance from the wide end of 
the track in nm, and w is the width of the device in nm at distance d. b ranges 
from 1 to 5 at intervals of 0.5. When b = 1, the sides are straight, and the 
track is identical to the one shown in Fig. 1(b). (b) Leaking characteristics of 
the linear neuron for various values of b, including b = 1. (Inset) Average 
DW velocity in m/s as a function of b. (c) Root mean squared error (RMSE) 
of the neuron’s leaking characteristics from a linear function. 

 
 
Fig. 4. Simulation of a linear neuron with b = 4 at 300 K with five randomly 
generated seeds. 
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0.1 mA is applied to the neuron, as in Fig. 5(a), the DW’s 
integration speed increases in proportion to b. As the DW 
nears the end of its range of motion, it also begins to exhibit 
slight oscillatory behavior due to interactions with the fixed 
region at the edge of the neuron. When the input current is 
increased to 0.5 mA, as shown in Fig. 5(b), the integration 
speed also increases, as would be expected. Additionally, the 
integration speed maintains its positive correlation with the 
value of b, but the higher current prevents the previously 
observed oscillations of the DW at the edges of its range of 
motion.  

B. Neuron with Squashing Activation Function 

In order to implement sigmoidal leaking, the leaking force 
must not only be minimized at the narrow end of the track, but 
also at the wide end of the track. Therefore, the neuron’s shape 
gradient can only exist within a narrow range halfway between 
the narrow and wide ends of the DW track, as illustrated in 
Fig. 6(a). 

With w1 = 100 nm as in Fig. 6(b), the neuron exhibits a 
sigmoidal leaking characteristic. As the width of the wide end 
of the track increases, the DW leaking motion becomes faster, 
with an effect similar to that of b on the leaking speed of a 

linear neuron. By zooming in on the leaking characteristics for 
these larger values of w1 in Fig. 6(c), it can be observed that 
the neurons still implement squashing functions. By varying 
the device width in this fashion, low leaking forces are applied 
to the DW in both the wide and narrow regions and higher 
leaking forces are applied to the DW in the middle region, 
causing the device to exhibit sigmoidal characteristics. As 
with the linear neurons, the room temperature leaking 
characteristics for a device with w1 = 150 nm are illustrated in 
Fig. 6. As with the linear neuron, the room temperature 
leaking characteristics of the neuron with w1 = 150 nm are 
illustrated in Fig. 7, demonstrating robustness to temperature. 

As with the previously discussed linear neuron, it is 

 
Fig. 6. (a) Top view of the squashing neuron, displaying the sharp 
constriction of the DW track centered in the middle of the track. (b) Leaking 
characteristics of the squashing neuron for w1 increasing from 100 nm to 400 
nm, with an increment of 50 nm. (Inset) Average DW velocity in m/s as a 
function of w1 in nm. (c) Leaking characteristics of the squashing neuron for 
w1 increasing from 150 nm to 400 nm, into the time range 0 s to 100 ns. 

Fig. 5. (a) Integration of the linear neuron for an input current of 0.1 mA. As 
with Fig. 4(b), b ranges from 1 to 5 with an increment of 0.5. (b) Integration 
of the linear neuron for an input current of 0.5 mA. 
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important to analyze the integration characteristics of the 
squashing neurons for various input currents. With an input 
current of 0.1 mA, illustrated in Fig. 8(a), the DW integration 
speed is inversely proportional to w1, partly due to an 

increased leaking force and partly due to a decreased current 
density. Additionally, as the width increases, the integration 
becomes non-monotonic due to instability of the wide DWs. 
When the input current is increased to 0.5 mA as in Fig. 8(b), 
not only does the DW integration speed increase significantly, 
the integration speed remains inversely related to w1. 
Additionally, with increased current, the integration becomes 
monotonic even with large widths.  

IV. CONCLUSION 

Shape-based DW drift enables configurable DW-MTJ 
neuron leaking that enables the realization of diverse 
activation functions for efficient learning and recognition in 
spintronic neuromorphic computing systems. In this work, we 
have demonstrated linear and squashing activation functions 
through specific configurations of the shape of the DW tracks. 
By extension of this concept, further activation functions 
commonly used in the field of neuromorphic can also be 
realized. This represents a significant advancement over 
previous spintronic neurons that will enable drastically 
improved learning characteristics of spintronic neural 
networks.  
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