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1. Introduction

The celebrated Johnson-Lindenstrauss [16] lemma asserts that any n-point subset of ¢5 admits a bi-
Lipschitz embedding with distortion at most 1 + ¢ into ¢5, where k = O(IOE%). This dimension reduction
phenomenon is a fundamental paradigm, as it can be used to improve numerous algorithms in theoretical
computer science (cf. [29]), both in terms of running time and storage space. Johnson and Lindenstrauss
observed that a simple volume argument gives that the dimension must be at least Q(loglogn). Later,
Alon [1] showed that the bound in the Johnson-Lindenstrauss lemma was tight up to a log(1/e) factor.
Recently, Larsen and Nelson [25] were able to show the optimality of the dimension bound in the Johnson-
Lindenstrauss lemma. A common feature of the subsets exhibiting lower bounds on the dimension is that
they have high doubling constants. In [26], Lang and Plaut raised the following fundamental question.

Problem 1. Does a doubling subset of ¢, admit a bi-Lipschitz embedding into a constant dimensional Eu-
clidean space?
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Based on a linear programming argument, Brinkman and Charikar [4] proved that there is no dimension
reduction in £;. An enlightening geometric proof was given by Lee and Naor in [22]. The subset of ¢; that does
not admit dimension reduction is the diamond graph Dy and has a high doubling constant. However, there
does exist a doubling subset” of ¢, the Laakso graph Ly, for which existence of a bi-Lipschitz embedding
with distortion D into ¢¢ implies that D = Q(y/log(n)/log(d)), or equivalently, there is no bi-Lipschitz
embedding of Ly with distortion D in (% if k = O(n!/P *). Therefore, Problem 1 has a negative solution for
£1-targets. That Problem 1 also has a negative solution for {,-targets for ¢ > 2 was proved independently
by Y. Bartal, L.-A. Gottlieb, and O. Neiman [6,7], and V. Lafforgue and A. Naor [23].

Theorem 1. For every g € (2,00), there exists a doubling subset of £, that does not admit any bi-Lipschitz
embedding into R? for any d € N.

In Section 2, we give a new proof of Theorem 1. In order to put our contribution into perspective and
to highlight the advantages and limits of our alternative proof, we will discuss the two distinct approaches
taken in [6,7] and [23], as well as their scopes of application.

The approach undertaken by Lafforgue and Naor is based on classical, albeit subtle, geometric properties
of Heisenberg groups. In [23], Lafforgue and Naor construct for every e € (0, 3] and ¢ € [2, 00), an embedding
F. 4 H3(Z) — Ly(R®) such that F; ,(Hj3(Z)) is 2'6-doubling and
dw (z,9)'~*

vx’y S H?)(Z)v dW(xay)l_s < ||F57q(x) - Fe’;‘,q(y)H 5 El/q

; (1)
where dyy is the canonical word metric on the discrete 3-dimensional Heisenberg group Hjs(Z), and R? is
some potentially high-dimensional Euclidean space equipped with the Lebesgue measure. The symbol <
will be conveniently used to hide a universal numerical mulitiplicative constant.

The map F; 4 is given by a rather elementary formula, but showing that it is a bi-Lipschitz embedding
of the (1 — ¢)-snowflaking of H3(Z) as in (1), and that the image is doubling requires some quite technical
analytic computations.® By taking ¢ = 1/logn in (1), the map F} /log n,q Decomes a bi-Lipschitz embedding
with distortion O((logn)'/4) of the ball of radius /n into L, (whose image inherits the doubling property
of F, 4(Hj3(Z))). Since H3(Z) is a finitely generated group of quartic growth, for every n > 1, there exists
a n-point subset X, C Hj3(Z) lying in an annulus enclosed by two balls with radii proportional to ¥/n.
The image of X, under F/15gn,4, Which will be denoted H,(q), is 216_doubling. A significant advantage
of the Heisenberg-based approach of Lafforgue and Naor is that it provides non-embeddability results for
the doubling subset H,,(¢) of ¢, for a wide class of Banach space targets. It is indeed possible to leverage
some deep non-embeddability results available for the subset X,, of H3(Z) to derive lower bounds on the
distortion of H,(¢) when embedding H,,(¢) into any p-uniformly convex Banach space for 2 < p < ¢, and
even into L.

Let cy(X) denote the Y-distortion of X for two metric spaces (X, dx) and (Y, dy). The following theorem is
a quantitatively explicit version (and updated according to the most recent available bounds) of Theorem 1.2
in [23].

Theorem 2. For every q € (2,00) and every n € N, there exists a 2'5-doubling n-point subset H,(q) of 4
such that

2 The results are asymptotic in nature and by doubling we mean that the doubling constant of L, is O(1). The classical notation
D = O(f(n)) (resp. D = Q(f(n))) means that D < af(n) (resp. D > af(n)) for some constant a and for n large enough. And
D = ©(f(n)) if and only if [D = O(f(n))] A[D = Q(f(n))].

3 Lafforgue and Naor gave an alternate (and of similar difficulty) proof of (1) using the Schrédinger representation of Heisenberg
groups that we do not discuss here.
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(1) cpy(Hn(q)) = Q((log n)%fi) if 9 is a p-uniformly convex Banach space for 2 < p < g,
(2) 1, (Ha(9) = ((logn)3).

Moreover, for every q € (2,00), there exists a doubling subset H(q) of £y that does not admit a bi-Lipschitz
embedding into Ly or into a p-uniformly convex Banach space for any p € [2,q).

Assertions (1) and (2) in Theorem 2 follow from the above discussion of the Lafforgue-Naor approach
and sharp non-embeddability of Heisenberg balls into p-uniformly convex spaces ([24], which refines earlier
results from [2]), and into Ly (more specifically [30], which improves the lower bound in [12]). The moreover
part of Theorem 2 follows from a standard argument where #(q) is a certain disjoint union of the sequence
{H.(q)}nen and which contains an isometric copy of a rescaling of H,(q) for every n € N.

The derivation of Theorem 1 from Theorem 2, which follows from the fact that we can assume without
loss of generality that the constant finite-dimensional space is 2-uniformly convex, is standard. Another
consequence of assertion (1) in Theorem 2 and classical estimates on the Banach-Mazur distance between
finite-dimensional /,.-spaces is the following corollary.

Corollary 1. For every q € (2,00) and every n € N, there exists a 2'°-doubling, n-point subset Hn(q) of £,
such that

(1) et =0((252)" ).
(@) cogtata) = 2((22)™" ) 1 <p <

It is worth pointing out that the case ¢ = 2 in assertion (1) of Theorem 2 also follows from an important
Poincaré-type inequality for the Heisenberg group [2, Theorem 1.4 and Corollary 1.6] which is a precursor
of a groundbreaking line of research pertaining to Poincaré-type inequalities in terms of horizontal versus
vertical perimeter in Heisenberg groups.

We now turn to the approach of Bartal, Gottlieb, and Neiman.

Theorem 3. [7] Let ¢ € (2,00), D > 1, and d € N. For every n € N, there exists a n-point subset
L,(p,q,D,d) of £, that is 232-doubling and such that any bi-Lipschitz embedding of L, (p,q,D,d) with
distortion D into ég must satisfy

(1) D= Q((k’%)%ié) ifp=gq

and L
@) D=0 (-t ) <<

A conceptual difference between Theorem 3 and Corollary 1 is that in Theorem 3 the finite doubling
subsets depend on the distortion, the dimension, and also the host space. Consequently, the sequence
{L,(p,q, D, d)}n>1 only rules out bi-Lipschitz embeddings for fixed distortion and dimension. Nevertheless,
one can still derive Theorem 1 from Theorem 3. This derivation, which was omitted in [6,7], will be recalled
at the end of Section 2. The doubling subset £,(p, ¢, D, d) of ¢, is based on an elementary construction of
a ©(6")-point Laakso-like structure in Z’; that we will recall in Section 2, since our new proof of Theorem 1
uses the same construction. The combinatorial proof of Theorem 3 in [7] utilizes a newly introduced method
= % for some p, g, where {u,v}
is an “edge” of L, (p,q, D,d). The method of potential functions relies heavqily on the fact that every map

based on potential functions, i.e. functions of the form @, ,(u,v)
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taking values into Kg can be decomposed as a sum of d real-valued (coordinate) maps, and this method does
not seem to be easily extendable to more general Banach space targets.

In Section 2, we present a new proof of Theorem 1. The doubling subsets are identical to the ones of Bartal-
Gottlieb-Neiman and they are described in Section 2.1. The proof uses a self-improvement argument, which
was first employed for metric embedding purposes by Johnson and Schechtman in [17], and subsequently in
[19], [11], [5], [34], and [35]; and is carried over in Section 2.2. Our proof has several advantages. We prove
an analog of Theorem 3 where the n-point doubling subset can be chosen independently of the dimension
and improve the estimates in assertion 2. Moreover, the self-improvement approach is rather elementary
and yet covers the case of uniformly convex target spaces as in the work of Lafforgue-Naor. However, it
does not allow the recovery of the case of an L, target as in assertion (2) of Theorem 2. The fact that
we will be dealing with abstract metric structures that are not graph metrics requires a significantly more
delicate implementation of the self-improvement argument. In Section 2.3, we explain how the new proof
allows us to derive known tight lower bounds for the distortion of ¢} into uniformly convex spaces. It is
worth mentioning that the lower bounds that can be derived from the Bartal-Gottlieb-Neiman approach
and the Lafforgue-Naor approach seem to be often suboptimal. In Section 2.4, we extend the technique
to cover purely metric targets of non-positive curvature and, more generally, rounded ball metric spaces.
Finally, in Section 3, we extend our approach to the asymptotic Banach space setting. For this purpose, we
construct countably branching analogs of the structures introduced by Bartal, Gottlieb, and Neiman that
provide quantitative obstructions to embeddability into asymptotically midpoint uniformly convex spaces.

2. Impossibility of dimension reduction in £4, ¢ > 2
2.1. Thin Laakso substructures

Let us recall first a procedure to construct recursively certain sequences of graphs such as the classical
diamond graphs {Dy}ren and Laakso graphs {Li}ren, and their countably branching analogues {D% }ren
and {LY}ren-

A directed s-t graph G = (V, E) is a directed graph which has two distinguished vertices s,t € V. To
avoid confusion, we will also write sometimes s(G) and ¢(G). There is a natural way to “compose” directed
s-t graphs using the @-product defined in [27]. Informally, the @ operation replaces all the edges of an s-¢
graph by identical copies of a given s-t-graph. Given two directed s-t graphs H and G, define a new graph
H© G as follows:

i) V(HO G) € V(H) U (B(H) x (V(G)\{s(G). 1(G)))).
ii) For every oriented edge e = (u,v) € E(H), there are |E(G)| oriented edges,

{({e,v1},{e,v2}) | (v1,v2) € E(G) and v1,v2 ¢ {s(G),t(G)}}
U{ (u, {e,w}) | (s(G),w) € E(G)} U {({e,w},u) | (w,s(G)) € E(G)}
U{({e,w},v) | (w,t(G)) G} U{(v,{e,w}) | (¢(G),w) € E(G)}.
iii) s(Ho G) % s(H) and t(H® G) % ¢(H).

Tt is clear that the @-product is associative (in the sense of graph-isomorphism or metric space isometry),
and for a directed graph G one can recursively define G2" for all k € N as follows:

1
. G® def

« G9

G.
k41 dcf

G?" 0 G, for k >



F. Baudier et al. / J. Math. Anal. Appl. 504 (2021) 125407 5

Fig. 1. Distances in Laakso graph L; and distances in e-thin Laakso structure £i (e, q) in Z?I.

Note that it is sometimes convenient, for some induction purposes, to define G2’ to be the two-vertex
graph with an edge connecting them. Note also that if the base graph G is symmetric, the graph G2" does
not depend on the orientation of the edges.

If one starts with the 4-cycle Cy4, the graph Dy def ka is the diamond graph of depth k. The countably
branching diamond graph of depth k is defined as Dzo def Kg:07 where K y, is the complete bipartite infinite

graph with two vertices on one side, (such that one is s(Ks x,) and the other t(Kz x,)), and countably many

vertices on the other side.* The Laakso graph L def L1®]c where the base graph L; is the graph depicted

below.

The Laakso graphs do not admit bi-Lipschitz embeddings into any uniformly convex Banach space, in
particular into ¢, when p € (1,00). This is due to the fact that there are, at all scales, midpoints that
are far apart. The idea of Bartal, Gottlieb, and Neiman was to slightly tweak the Laakso construction by
reducing the distance between the midpoints so that these modified metric structures could fit into f’; for
arbitrarily large dimension k£ but not into Eg for fixed d without incurring a large distortion. It will be
convenient to abstract the construction of Bartal, Gottlieb, and Neiman. To that end, we introduce the
following definition.

Definition 1 (Thin Laakso substructure). Let ¢ € [1,00] and € > 0. For k € N, we say that a metric space
(X,dx) admits a (e, q)-thin k-Laakso substructure if there exists a collection of points Lj(e,q) C X indexed
by Li (and we will identify the points in Lj(e, q) with the corresponding points in L) such that for every
1 < j < k and for all {s,a,my,ma,b,t} C Li(e,q) indexed by any copy of the Laakso graph L; created at
level 7, the following interpoint distance equalities hold:

(c1) dx(s,a) =dx(b,t) = %dx(a,b) = idx(s,t) >0

(c2) dx(s,b) = dx(a,t) = 2dx(t,s)

(c3) dx(mi,a) = dx(m1,b) = dx(ma,a) = dx(ma,b) = (1 + (26)7)Y/9dx (s, )
(ca) dx(s,m1) = dx(ma,s) = dx(m1,t) = dx(ma,t) = 3(1 4 £9)"/9dx(s,1)
(c5) dx(my,m2) =€ -dx(s,t) (midpoint separation).

The distances in the combinatorial Laakso graph, which is the template for the construction, satisfy
(c1) — (ca) with e = 0, and (c5) with e = 3, and the distances for a path graph with 4 points would satisfy
(c1) — (¢5) with € = 0. The diagram above can help visualize the differences between the distances in the
Laakso graph Ly and the (e, ¢)-thin 1-Laakso substructure £;(e,q) construction (see Fig. 1).

The existence of (e, ¢)-thin k-Laakso substructures in ¢, was proven in [7]. Since we use different notation
and a slightly different thinness parameter, we will reproduce the proof for the convenience of the reader.

Lemma 1. Let g € [1,00]. For allk € N and e > 0, (5T! admits a (¢, q)-thin k-Laakso substructure.

4 The level k countably branching diamond graph is also denoted by D} in the literature.
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Proof. Let {e;}*™! be the canonical basis of €51 The proof is by induction on k. If k = 1 then Ly =
{s,a,my,ma,b,t} and identifying points in £, (e, q) with the corresponding points in £; we define

s=—e; and t=eq,
= d b= L
a = 261 an = 261,

mi1 =cey and Mmo = —ces.

Observe that the vectors are in £2 and a straightforward verification shows that conditions (¢;) — (c5) are
verified. Assume now that Ly (e, ¢) has been constructed in é’;“. Recall that Ly, is constructed by replacing
every edge in Ly with a copy of L;. For every edge {s,t} in Ly we introduce 4 new points as follows:

> +1t d b L +3t

a=-s+-1 an = -5+ -

4 4 4 47

s+t ¢ s+t ¢
mi = ——+glls —tleenrz and ma=———clis —tllgenta.
Then
1 3 s+t ¢ t—s €

b=mallg= | 3o 3t =57+ Glls —tlaensal =75+ 5lls ~ thaerss
1 gl Va ||s—t] 1/q
- (g7lls =g+ Slls —tlg) " = == (14 29)7)

where in the penultimate equality we used the fact that §(s—t) € 65‘*‘1. The other equalities can be checked
similarly. O

Remark 1. It was proved in [7] that an (e, p)-thin k-Laakso substructure is 232-doubling whenever & < 1—27
2.2. A proof via a self-improvement argument

In this section we prove Theorem 1 using a self-improvement argument. Recall that a Banach space X
is uniformly convez if for all ¢ > 0 there exists d(¢) > 0 such that for all z,y € Sx, if ||z — y||x > t then

| 252l x < 1 — 6(t). The modulus of uniform convexity of X, denoted %, is defined by

Tty
R 2
X

5x(t):inf{1—

Clearly, X is uniformly convex if and only if dx(t) > 0 for all ¢ > 0, and we say that X is g-uniformly convex
(or is uniformly convex of power type q) if dx(¢) > ct? for some universal constant ¢ > 0. A classical result
of Pisier [32] states that a uniformly convex Banach space admits a renorming that is g-uniformly convex
for some ¢ > 2. The following key lemma is similar to a contraction result for Laakso graphs from [17].

Lemma 2. Let p € (1,00). Assume that Ly(e,p) is a (g,p)-thin k-Laakso substructure in (X,dx) and
that f: X = (D, || - |I) is a bi-Lipschitz embedding with distortion D. Then for every 1 < ¢ < k, if
{s,a,m1,ma9,b,t} C Li(e,p) is indexed by a copy of one of the Laakso graphs Ly created at step £, we
have:

1) = £ < D)1+ ) (10 (=i ))- 3)
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Proof. Assume without loss of generality that for all x,y € X,
dx(2,y) < [If(z) = f(W)Il < Ddx(x,y). (4)
Let a % —dX(;’t) (1+ 51’)1/1), and

def def def def

1 = f(mi) = f(s), w2 = f(m2) = f(s), w1 = f(t) = flm1), y2 = f(t) — f(ma).

For all ¢ € {1, 2}, it follows from the upper bound in (4) and (c4) that Hg_;ll <1and 1l <1, On the other

hand, it follows from the lower bound in (4) and (c5) that

Lyl
D«

21 — 2] > 2e and llyr — w2l > 2e .
Do D(1 +¢epr)i/p Do D(1 +er)l/p
Therefore
“sba| (5 77) |55 (52 a77)
<1-90p(——"-—"-—+ d N <<l -y ——————— ).
H 2Da WD reryip) ™ 2Da Y\ DA ter)i/p
Since

f@) = f(s) = (f() = f(ma) + f(ma1) = f(s) + f(t) — f(m2) + f(m2) — [(s))/2
= (y1 +y2 + 21 +$2)/2,

it follows from the triangle inequality that ||%|| < 2(1 - 523(

E /p)) and the conclusion fol-
lows. O

2e
D(1+er

By using the tension between the thinness parameter of a thin Laakso substructure and the power type
of the modulus of uniform convexity of the host space, we can prove the following distortion lower bound.

Theorem 4. Let 2 < p < q and assume that (X,dx) admits a bi-Lipschitz embedding with distortion D into
a p-uniformly convex Banach space ). There exists ¢ := e(p,q,D,%)) > 0 such that if (X,dx) admits a
(¢,q)-thin k-Laakso substructure, then D = Q(k'/P~1/a)

Proof. Assume that for all x,y € X,

dx(z,y) <|[f(x) = FW)Il < Ddx(z,y), (5)

and let £ (e, q) be a (g, q)-thin k-Laakso substructure with € > 0 small enough such that (1 4 £7)Y/7 < 2.
The self-improvement argument uses the self-similar structure of the Laakso graphs. For 1 < j < k, consider
the decomposition L,_; @ L; of Ly, i.e. Ly is formed by replacing each of the 6*~7 edges of Ly_; by a copy
of L;. We define D; to be the smallest constant such that

/() = F)ll < Djdx(z,y) (6)

for all 4 x 6°~J pairs of points {z,y} in Lj(e,p) that are indexed by vertices of a copy of L; in Ly of the
form {s,m;} or {m;,t} for some i € {1,2}, where s and t are the farther apart vertices in L; whose two
distinct midpoints are m; and ms.

It is clear that for all j € {1,...,k}, the inequalities 1 < D; < D hold. Assume that dy(t) > ct? for
some constant ¢ > 0 (that depends on ) only). Fix Lg as one of the 6°J copies of L; in the decomposition



8 F. Baudier et al. / J. Math. Anal. Appl. 504 (2021) 125407

Lkx—j @ L; of Lg. Observe that L? =L, ©L;—1 and let {s,a,mi,ms,b,t} denote the vertices of L; in this
decomposition of LY. Consider the pair {s,m1} as defined above (the 3 other pairs can be treated similarly)
and the two copies of L;_; which contain either s or m; and have the vertex a in common. In the proof of
Lemma 2 we only used the upper bound in (4) for pairs of points of the form described in the definition of
D;_1, and because we assumed that dg(t) > ct? and (1 +¢9)'/9 < 2, we have

1(5) = @)l < Dymadx(s. )1+ (1= ). (7)
and
1@) = Fm)l € Dymadlanmi)(1 -+ (1 - ). (¥

Then, it follows from the triangle inequality that

17(5) = Fma )| < Dy-as.) + delama)) (14 291721 - 55, 9)

By (c1) and (e3) in the construction of the thin Laakso substructures, we have
1 1 y
dx(s,a) +dx(a,m1) = ZdX(S7t) + Z(l + (26)7) "/ dx (s, ).

Since ¢ > 1, we have (14 (2¢)9)Y/? < 1 + (2¢)9, and thus

(ca) 14207 1gd

dx(s,a) +dx(a,m1) < idx(s,t)(Q +(26)7) = %dx(s,t)(l + 2q*15q) = dx(s,mq).

(1 +e0)t/a "

Substituting this last inequality in (9), we obtain

- < D ydy(s,m)(1 420120y (1= <2,
1£(5) = S ma) | < Dy (s, ma) (1 + 207 2e)( D;.:l)

By symmetry of the (e, ¢)-thin Laakso substructures, the other pairs of points in the definition of D; can
be treated similarly, and hence we have proved that

< q-1_9 ce?
j—1

Then,

(1 + 29 1e%)ceP

p—1
D;_y

Dj < Dj_l(l + 2q71€q) —

ceP

S Djo1+D(2)1 = 5

(10)

where in (10) we used the fact that D;—; < D and 1+ 297! > 1. Rearranging we have

Dj.1—D;>D (5 - (25)q> : (11)
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If we let € = 7D7ﬁ for some small enough v to be chosen later (and that depends only on p,q, and c),
then

p2
Djy~D;>D | ey? == — (29)'D" 77 (12)
> DD (e — 2097), (13)

1/(a—»p)
If we choose v € (0, (#) ), and since p < ¢, we have cy? — 2997 > §+4P > 0. Hence D; 1 — D; >

%Dl_% and summing over j = 2,... k we get
a C’yp P C'Yp 1— P4
D>Dy—Dpy>)» —D ¢ >—(k—-1)D >, 14
1 k ];2 5 2( ) (14)

and hence D > k/P=1/a, g

Corollary 2 below improves Theorem 3 in several ways. The dependence in the dimension for the thinness
parameter is removed. Assertion 1 extends to all p-uniformly convex Banach spaces the bound in assertion

min {1 11_1
2 of Theorem 3 while improving the bound. Tndeed, if 9 = £0 then D = @ (l22)™" (33177},

Corollary 2. Let g € (2,00), 9 be a Banach space, and fix D > 1. For every n € N there exists an n-point
subset L,,(q, D,) of £, that is 232-doubling and such that any bi-Lipschitz embedding with distortion D
into ) must incur

(1) D= Q((log n)ii%) if p €12,q) and Q) is a p-uniformly convex Banach space,
and

Q=

1
ogn 27 .
() p=a((*5)" ) -
Proof. Assertion (1) follows immediately from Theorem 4 and Lemma 1. The second assertion follows from
the fact that n = ©(6*) and that the Banach-Mazur distance between the 2-uniformly convex spaces £ and
fg is at most d'/2-1/¢, O

It remains to show how Theorem 1 can be derived from Corollary 2. First observe that for all ¢ > 2,
D > 1, and every n € N, the n-point doubling subsets £, (g, D, {2) of ¢, belong to the unit ball of ¢,.
Now consider the subset Z, def Uk myenz Ln(a, k, £2) % {(4*,4")} C ¢, &, R? = {,. Clearly, Z, contains an
isometric copy of £,(q, k,¢2), and it can be verified that Z, is doubling. If Z, C ¢, admits a bi-Lipschitz
embedding with distortion D into Eg for some d € N, then the proof of assertion (2) in Corollary 2 shows

11
that D = Q((k’%) : q), since Z, contains an isometric copy of £, (g, k,¢2) for all n € N, where k € N is
such that k < D < k + 1. Hence D cannot be finite.

2.3. Quantitative embeddability of 6’; into uniformly convex Banach spaces

The alternative proof of Theorem 1 that we proposed has several noteworthy applications. One application
concerns the non-embeddability of ¢, into L, for r € (1,00), and more generally bounding below the
quantitative parameter cy (E’;) whenever ) is a p-uniformly convex Banach space. It is well known that when
2 < p < g, if P is p-uniformly convex (or merely has cotype p), then sup,; cy (E’;) = 0o. Quantitatively,
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1

c@(ES):QOc%*q) forall 2 < p<gq. (15)
Since L, is max{p, 2}-uniformly convex when p € (1,00) (and L; has cotype 2), we have

cLP(KZ) = Q(kmax%%2}7%) forall1 <p<gqandq>2. (16)

The fact that these lower bounds are tight follows from simple estimates of the norm of the formal identity
(and its inverse) (e.g. || el - HI[’;L&’;H < kY/P=Y/4 is a consequence of Holder’s inequality and the
monotonicity of the ¢,-norms). Since the thin k-Laakso substructure lives in E’;‘H and has ©(6%) points, the
lower bound in (15) (for p-uniformly convex spaces) and the one in (16) (when p # 1) follow directly from
the first assertion of Corollary 2. As we point out below, the approaches in [23] and [7] seem to only give
suboptimal results.

The n-point doubling subset ., (q) of Lafforgue and Naor lies in some L, (R¥)-space and hence in 42(”‘”/ 2
by a result of [3]. Therefore, if one uses the Heisenberg-type 1/n-point doubling subset of £y one can derive

that, for example, cy, (£3) = € ( log(n) 3 _%) which is suboptimal. To get the optimal lower bound one would

need to be able to show that the doubling subset can actually be embedded into Eq@(logn), which is the best

we can hope for due to assertion 1 in Theorem 2. This does not seem to be known and we do not know if
this is true.

Following Bartal-Gottlieb-Neiman’s approach, one could obtain partial and suboptimal results as follows.
Assume that Ef; admits a bi-Lipschitz embedding into é’;. Then one can construct a subset in 65,
L,(q, D,k — 1), having n = ©(6") points and witnessing the fact that D must be large. The estimates in

1

Theorem 3 yield Cex (E’;) =0 k%75> for all 2 < p < gq. Therefore, the right order of magnitude is captured

namely

in the range 2 < p < ¢ but in the (very) restricted case of a finite-dimensional ¢, target that has the same
1

dimension as the source space. In the range 1 < p < 2 < g, one gets ¢y« (Z’;) = Q(kl_%_a), which does not
P
capture the right order of magnitude and is clearly suboptimal.

2.4. Quantitative embeddability of E’; into non-positively curved spaces

Another advantage of the proof via self-improvement is that it can be extended, with a little bit more
care, to cover maps taking values into non-positively curved spaces, and more generally to the context of
rounded ball metric spaces.

Recall that the n-approximate midpoint set of z,y € (X,dx) is defined as

e 1
Mo, ) 2 {5 € X: o {ae(o.2) 0t )} < 1 M)}

1+ 1+
- BX (.T, 2 ndx(xvy)) me (ya 2 ndx(‘r7y))

As usual, for an arbitrary set A C X, diam(A) dof sup {dx(z,y): x,y € A}. The following definition is
due to T. J. Laakso [21].

A metric space (X,dx) is a rounded ball space if for all ¢t > 0, there exists n(t) > 0 such that for all
r,y € X,

diam (Mid(z,y, n(t))) < t-dx(z,y). (17)

Remark 2. Note that for all x,y € X and n > 0, diam(Mid(z,y,n)) < (14+n)dx(z,y) always holds. Therefore
the rounded ball property is non-trivial only for ¢ € (0,1}, and in this case n € (0, 1) necessarily.
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Note that a Banach space is a rounded ball space if and only if it is uniformly convex [21, Lemma 5.2].
We can define a rounded ball modulus nx as follows

nx(t) def sup{n(t): (17) holds for all z,y € X}. (18)

We will say that (X,dx) is a rounded space with power type p if nx(t) = ct? for all t € (0, 1).
The following contraction lemma is an extension, to the purely metric context of rounded ball spaces, of
the contraction phenomenon in Lemma 2.

Lemma 3. Let (Y,dy) be a metric space and € > 0 such that (1 4+ e7)'/9 < 2. Assume that Ly(e,q) is a
(€, q)-thin k-Laakso substructure in (X,dx) and that f: X =Y satisfies

Sx(9) < dv(f(2), £ (1) < Box(z,) (19)

for some constants A, B > 0. Then for every 1 < £ < k, if {s,a,m1,ma,b,t} C Li(e,q) is indexed by a copy
of one of the Laakso graphs Ly created at step £, we have:

dv (f(s), £(8)) < Bax(s,1)(1 +9)/7(1 %ny(E/QAB)). (20)
Proof. Let r > 0 be the smallest radius such that By(f(s),r) N By(f(t),r) 2 {f(m1), f(m2)}. Then

r < max{dy (f(s), f(m1)), dv(f(s), f(ma)), dv (£ (t), f(m1)), dv (f(t), f(m2))},

and it follows from (19) and (c4) that r < £(1+ £7)1/9dy (s,t). On the other hand,

diam (By (f(s),7) 0 By (f(t),r)) = dv(f(m1), f(mz)), (21)

and thus

dinm (By(£(s),7) 1 By(£(1),7)) > Srox(ma,mz) 2 Lede(s,1)
(ca) 17 dx(s,m1) dx (t,m;)
= Z&:((l—l—gq)l/q (1+€q)1/q)
> m(dv(f(s%f(ml)) +dv(f(t),f(m1)))

> g ), f0).

where in the last inequality we used our assumption on ¢ and the triangle inequality. Therefore, r >
wd\((ﬂs)7 f(t)) by definition of the rounded ball modulus, and

2r B(1 + &%) /9dy(s,t)

dy(f(s), f(2)) < 1+mv(e/2AB) = 1+ ny(¢/24B)

1
< Bdy (s, 1)(1 + Eq)l/q(l - 5ny(g/zAJ_ts)).
where in the last inequality we used Remark 2. O

A slightly different implementation of the self-improvement argument gives the following extension of
Theorem 4 to metric spaces with rounded ball modulus with power type. We only emphasize the few points
in the proof that are different.
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Theorem 5. Let 1 < p < q and let (Y,dy) be a rounded ball metric space with power type p. For all D > 1,
there exists € :== (D, p,q,Y) > 0 such that if (X,dx) admits a (g, q)-thin k-Laakso substructure and embeds
bi-Lipschitzly with distortion at most D > 1 into Y, then D = Q(k*/P=1/a),

Proof. Assume that for all z,y € X

Sx(0) < dv(F(@), £ (1) < Box(z, ), (22

with AB < D.
This time we define B; to be the smallest constant such that

1f(x) = FW)ll < Bjdx(x,y), (23)

for all 4 x 6877 pairs of points {x,y} in Ly (e,¢) that are indexed by vertices of a copy of L; in Ly, of the
form {s,m;} or {m;,t} for some i € {1,2}, where s and ¢ are the farther apart vertices in L; whose two
distinct midpoints are m; and ms.

It is clear that for all j € {1,...,k}, the inequalities 1 < B; < B hold. Since in the proof of Lemma 3 we
have only used the upper bound in (22) for pairs of points of the form described in the definition of B;_4,
proceeding as in the proof of Theorem 4, we show that

ceP

If we let € = ’y(AB)_ﬁ for some small enough + to be chosen later (and that depends only on p, g, and
¢), then

_ _Pq_ C
ABj1 — AB; > (AB) Q@P(Qpﬂ 7P —=217).

1/(g—p)
) we have 5:577P — 2999 > 55%57P > 0. Hence AB;  — AB; >

If we choose 0 < v < (W
557" (AB)' 7% and summing over j = 2,...,k we conclude that AB > k'/»~1/4, ¢

We now identify a 4-point inequality that implies the rounded ball property with power type p.

Lemma 4. Let (X,dx) be a metric space and p € (0,00). If there exists C € (0,2P] such that for all
x1,%2,23,24 € X, we have

Q

dx(z1,23)P + dx (2, 24)" < Z<dx(l‘1,$2)p+dx($27$3)p+dx($37$4)p+dx($47$1)p)7 (24)

then X is a rounded ball space with nx(t) = t* /(2P — 1) if p > 1 and with nx(t) >t if p € (0,1).

Proof. Fix t > 0 and let z,y € X and n € (0, 1). If Mid(x,y,n) is empty or reduced to a single point, there
is nothing to prove. Otherwise, let w # z € Mid(z,y,n). It follows from (24) that

C
dX(xv y)p + dX(wa Z)p < Z(dX(xa ,w)p + dx(U/, y)p + dX(yv Z)p + dX(Zv x)p)v

and by the definition of Mid(z,y,n), we have

(L+n)P

dx(w, z)? < (C 5

l)dx(x,y)p.
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Since C' < 2P,
dx(w,2) < (1+0)? = 1) dx(z.y).
If p > 1 then ((147n)? — 1)¥ < (27 — 1)Y/Ppl/P and if n = t7/(2P — 1), then
diam(Mid(x,y,n)) < tdx(z,y).
If p e (0,1) then ((1+n)? — 1)% < 1, and n = t implies that
diam(Mid(x,y,n)) < tdx(z,y). O

Inequality (24) when p = 2 and C' = 4 is well known under various names: quadrilateral inequality,
roundness 2, Enflo type 2 with constant 1. It was proved by Berg and Nikolaev [9] (see also [10] or [33]) that
the quadrilateral inequality characterizes CAT(0)-spaces amongst geodesic metric spaces and that CAT(0)-
spaces coincide with Alexandrov spaces of non-positive curvatures; and this provides a rather large class of
metric spaces which are rounded ball with power type 2. It is not difficult to show that ultrametric spaces
satisfy inequality (24) with p = 1 and C' = 2. We give one example of an application of Theorem 5.

Corollary 3. If ¢ > 2 and (Y,dy) is a metric space with roundness 2, in particular an Alexandrov space of
non-positive curvature, then

ov (£4) :Q(k%—%).

Remark 3. To the best of our knowledge, the only known proof of Corollary 3 can be found in the work of
Eskenazis, Mendel, and Naor in [14], where it was shown that Alexandrov spaces of non-positive curvature
have metric cotype 2. This is a particular case of a much deeper result which says that g-barycentric metric
spaces have sharp metric cotype ¢, and whose proof partly relies on a version of Pisier’s martingale inequality
in the context of nonlinear martingales.

3. Embeddability obstruction via thin Ng-branching diamond substructures

Using the self-improvement argument together with the smallness of approximate midpoint sets to prove
Theorem 1 has the other advantage of being easily generalizable to the asymptotic setting. It is well-known
that the size of a t-approximate metric midpoint set in an asymptotically uniformly convex Banach spaces
is “small”. By “small”, we mean that the set is included in the (Banach space) sum of a compact set and
a ball of small radius. Therefore the techniques from the previous sections can be adequately modified to
show that the presence of countably branching versions of the Laakso-type substructure is a bi-Lipschitz
embeddability obstruction. A similar fact for countably branching diamond and Laakso graphs was first
proved in [5] and generalized in [34].

The only reason to work with Laakso-type substructures in the previous sections was to produce spaces
with the doubling property. In the asymptotic setting, we need to work with substructures whose underlying
graphs have vertices with countably many neighbors and fail the doubling property altogether. Therefore,
we will only consider simpler diamond-type substructures.

As noted in [5], it is more convenient to work with the notion of asymptotic midpoint uniform convexity.
Let X be a Banach space and ¢ € (0,1). Define

ox(t) 4f inf sup inf max{||z +tz||, ||z — tz||} — 1.

TESx Zecof (%) 2€87
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The norm of X is said to be asymptotically midpoint uniformly convex if dx () > 0 for every t € (0,1). Being
asymptotically midpoint uniformly convexifiable is formally weaker than being asymptotically uniformly
convexifiable. However, it is still open whether asymptotic uniform convexity and asymptotic midpoint
uniform convexity are equivalent notions up to renorming. We now recall some facts that we will need
which can be found in [5]. A characterization of asymptotic midpoint uniformly convex norms was given in
[13] in terms of the Kuratowski measure of noncompactness of approximate midpoint sets. Recall that the
Kuratowski measure of noncompactness of a subset S of a metric space, denoted by «(5), is defined as the
infimum of all € > 0 such that S can be covered by a finite number of sets of diameter less than . Note
that it is a property of the metric.

In [13], it was shown that a Banach space X is asymptotically midpoint uniformly convex if and only if

lim sup a(Mid(—z,z,t)) =0.

t—0 TE€Sx

To prove the main result of this section, we need the following lemma, which is a particular case of Lemma
4.3 in [5].

Lemma 5. If the norm of a Banach space X is asymptotically midpoint uniformly convex, then for every
t € (0,1) and every x,y € X, there exists a finite subset S of X such that

Mid(z, y, 5x(£)/4) €  + 2t — || Bx. (25)
We define thin diamond substructures that can be used to prove non-embeddability results.

Definition 2 (Thin k-branching diamond substructure). Let p € [1,00), € > 0, £ be a cardinal number, and I
a set of cardinality x. For k € N, we say that a metric space X admits a (g, p)-thin k-branching k-diamond
substructure if there exists a collection Dy (e, p) of points indexed by Dy such that for every 1 < £ < k if
{s,{mi}icr,t} C Dy is indexed by a copy of one of the diamond created at step ¢, then:

(d1) dx(s,m;) = dx(m;,t) = 2(1 + (2)P)/Pdx(s,t) for all i € I.
(d2) dx(mi,m;) = 2171/Pe . dx(s,t) for all i # j.

In Lemma 6 below, we provide a construction of a (g, p)-thin Ro-branching k-diamond substructure in
L,-spaces, which in turns implies for all p € [1,00), k& € N, and ¢ > 0 the existence of an (g, p)-thin
No-branching k-diamond substructure.

Lemma 6. For every p € [1,00), every € > 0, and every k € N, L, admits a (e,p)-thin No-branching
k-diamond substructure.

Where1<i<2jandj€N.

Proof. Let x; j, stand in for the characteristic function X[k+";j1,k+2%]’
Fix € > 0. The (e, p)-thin Rg-branching k-diamond substructure in L, with parameter ¢ > 0 is defined
recursively as follows. For simplicity, we start the induction with the 0-diamond graph D§ ° to be a single
edge with endpoint s and ¢, and (again identifying the points in D,f“ (e, p) with the vertices of Dz(’) we define
Dy°(e,p) := {s,t} by s def Xo,1] and ¢ def —X[0,1]- The conditions are vacuously satisfied. Suppose now that
Dy° has already been defined such that D;° C L,[0, k + 1]. To construct D9

rq1» We introduce for every edge
{s,t} € D;° and i € N a “midpoint” as follows:

9t
s+t r
mi =25 31 ells ~ Hlpxaki (26)
r=1
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Then,

. 1y B ‘ P tp L 1y 3 . P
s = ml (17ells = thpxinn | | rels = e |
r=1

r=1

(1+2))
S s -,

s—t|Pp
ey A

wherein the second equality we used the fact that the vectors have disjoint supports (in [0,k + 1] and
[k + 1,k + 2], respectively).
. . Jj—i
For i < j, observe that x,; x+1 = 252 (r—1)2i-i4+1 X,j,k+1, and so

2 27
p
I = my = | S0l = Hxesier = 3ol = e
r=1 r=1
r23 =t p
= &|ls — ¢l Z > (0 = D) xwen
r=1¢=(r—1)2i—i+1 »

¢
roi—i ktltor

oy S [l -

- v
e FE N

2 9i=i
=els—tI2 [ > 52
r=1

1
— Pllg —¢||P.Z.9P
=eP||s t||p 5 2
= 2p716p\|3—t||5 m|
Next, we prove the contraction principle that is needed in the asymptotic setting.

Lemma 7. Let ¢ > 0 such that (14 (2¢)P)Y/? < 2 and let & be an infinite cardinal. Assume that Df(e,p)
is a (g,p)-thin k-branching k-diamond substructure in (X,dx) and that f: X — (D, - ||) is a bi-Lipschitz
embedding with distortion D. Then for every 1 < € <k, if {s,{mi}icr,t} C Dy is indezed by a copy of one
of the diamond graphs DY created at step ¢, we have:

176 = 10l < Dt 1+ 2 (1= 1 (155 ). (27)
Proof. Assume that for all z,y € X,
dx(2,y) < [If(z) = f(W)Il < Ddx(z,y). (28)
We claim that there exists j € N such that
;) ¢ 3 (1060 10 350 (155) ) (20)

Assuming for a moment that (29) holds, then we have either

I5m) = 10 > 5 (14 390 (555) ) 1760) = 70
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or

I5m) = F > 5 (14 130 (155) ) 1F6) = 0,

In both cases, it follows from (28) and condition (d;) above that

-1
1 (s) = F(8)]| < Delx(s, £)(1+ (22)")"/ (1 + isx ( %))

< Ddx(s,£)(1 + (2)P)1/7 (1 - éSX (16%» :

It remains to prove (29). By Lemma 5, there exists a finite subset S := {z1,...,2,} C 9 such that

3

Mid (f(s),f(t), 352, (16—D)) cS+ —Hf( ) — f(t)|| By.

If for every ¢ € N,

fomi) € Mid (19,500 30 (155 )

then f(m;) = zn, + y; with z,, € S and y; € 9 such that

lwill < 551£(s) = FOII
Therefore, for all i # j,
2 = 2 | = £ ma) = £m5)]l = i = 5
> dx(mi.m;) = 15 17() = J(0)]
> dx (mi, my) — %(Hf(s) = fma) ||+ [If(mqi) — f@)]])
> 21 1Pe . dy (s, 1) — Zu + (26)P)/Pdy (s, 1)
> 217172 dx(s,1) = Sdx(s.1)
> %5 ~dx(s,t) > 0,

which contradicts the fact that S is finite. O

Since in the proof of Lemma 7 we were careful to only use the upper bound in (28) for pairs of points of

the form {s,m;} or {t,m;}, the derivation of Theorem 6 below from Lemma 7 is by now standard and thus

omitted.

Theorem 6. Let 1 < p < q and assume that (X,dx) admits a bi-Lipschitz embedding with distortion D into
a p-asymptotically midpoint uniformly convex Banach space ). There exists € :== e(p,q, D,2)) > 0 such that

if X admits a (g, q)-thin Ro-branching k-diamond substructure, then D = Q(k'/P=1/1),

The following consequence is immediate.
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Corollary 4. L,[0,1] does not bi-Lipschitzly embed into any p-asymptotically midpoint uniformly convex
Banach space if ¢ > p > 1. In particular, Ly[0,1] does not bi-Lipschitzly embed into £, if ¢ >p > 1.

Remark 4. Corollary 4 is not new, since it can be shown using classical approximate midpoint techniques
(see [8, Chapter 10, Section 2] or [20] for instance). The classical approximate midpoint technique provides
an obstruction of qualitative nature and relies on some linear arguments, but it can handle weaker notions
of embeddings. Our proof of Theorem 6, and in turn of Corollary 4, identifies concrete and purely metric
structures that provide quantitative obstructions to bi-Lipschitz embeddings.

4. Concluding remarks

Iffor some 1 < p <7 < ¢ < 00, a Banach space X bi-Lipschitzly embeds into L, and into L, then it follows
from the classical work of Kadec and Pelczyniski [18] combined with classical differentiation techniques
[28,15,8] that necessarily X admits a bi-Lipschitz embedding into L,. The metric Kadec-Pelczyniski problem,
a long-standing open problem in metric geometry, asks whether a similar phenomenon still holds for metric
spaces, i.e. whether for 1 < p < r < ¢ < 00, a metric space that admits a bi-Lipschitz embedding into L,
and into L, necessarily admits a bi-Lipschitz embedding into L.

Very recently, Naor and Young [31] gave the first partial counter-example to the metric Kadec-Pelezyniski
problem. Naor and Young produced a Heisenberg-type space that does embed into ¢; and into ¢, but does
not embed into ¢, for any 1 < r < 4 < q. The fact that what happens for ¢, in the range 4 < r < ¢ is not
understood seems inherent of the Heisenberg approach.

The following problem seems open.

Problem 2. Let ¢ > 2. Is there £ > 0 such that the (g, ¢)-thin k-Laakso substructures equi-bi-Lipschitzly
embed into /17

A positive solution to Problem 2 would provide a second partial counter-example to the metric Kadec-
Pelczynski problem, which would resolve the issue mentioned above.
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