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We revisit the main results from [6,7] and [23] about the impossibility of dimension 
reduction for doubling subsets of �q for q > 2. We provide an alternative elementary 
proof of this impossibility result that combines the simplicity of the construction 
in [6,7] with the generality of the approach in [23] (except for L1 targets). One 
advantage of this different approach is that it can be naturally generalized to obtain 
embeddability obstructions into non-positively curved spaces or asymptotically 
uniformly convex Banach spaces.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The celebrated Johnson-Lindenstrauss [16] lemma asserts that any n-point subset of �n2 admits a bi-
Lipschitz embedding with distortion at most 1 + ε into �k2 , where k = O( logn

ε2 ). This dimension reduction 
phenomenon is a fundamental paradigm, as it can be used to improve numerous algorithms in theoretical 
computer science (cf. [29]), both in terms of running time and storage space. Johnson and Lindenstrauss 
observed that a simple volume argument gives that the dimension must be at least Ω(log logn). Later, 
Alon [1] showed that the bound in the Johnson-Lindenstrauss lemma was tight up to a log(1/ε) factor. 
Recently, Larsen and Nelson [25] were able to show the optimality of the dimension bound in the Johnson-
Lindenstrauss lemma. A common feature of the subsets exhibiting lower bounds on the dimension is that 
they have high doubling constants. In [26], Lang and Plaut raised the following fundamental question.

Problem 1. Does a doubling subset of �2 admit a bi-Lipschitz embedding into a constant dimensional Eu-
clidean space?
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Based on a linear programming argument, Brinkman and Charikar [4] proved that there is no dimension 
reduction in �1. An enlightening geometric proof was given by Lee and Naor in [22]. The subset of �1 that does 
not admit dimension reduction is the diamond graph Dk and has a high doubling constant. However, there 
does exist a doubling subset2 of �1, the Laakso graph Lk, for which existence of a bi-Lipschitz embedding 
with distortion D into �d1 implies that D = Ω(

√
log(n)/ log(d)), or equivalently, there is no bi-Lipschitz 

embedding of Lk with distortion D in �kp if k = O(n1/D2). Therefore, Problem 1 has a negative solution for 
�1-targets. That Problem 1 also has a negative solution for �q-targets for q > 2 was proved independently 
by Y. Bartal, L.-A. Gottlieb, and O. Neiman [6,7], and V. Lafforgue and A. Naor [23].

Theorem 1. For every q ∈ (2, ∞), there exists a doubling subset of �q that does not admit any bi-Lipschitz 
embedding into Rd for any d ∈ N.

In Section 2, we give a new proof of Theorem 1. In order to put our contribution into perspective and 
to highlight the advantages and limits of our alternative proof, we will discuss the two distinct approaches 
taken in [6,7] and [23], as well as their scopes of application.

The approach undertaken by Lafforgue and Naor is based on classical, albeit subtle, geometric properties 
of Heisenberg groups. In [23], Lafforgue and Naor construct for every ε ∈ (0, 12 ] and q ∈ [2, ∞), an embedding 
Fε,q : H3(Z) → Lq(Rs) such that Fε,q(H3(Z)) is 216-doubling and

∀x, y ∈ H3(Z), dW (x, y)1−ε � ‖Fε,q(x) − Fε,q(y)‖ � dW (x, y)1−ε

ε1/q , (1)

where dW is the canonical word metric on the discrete 3-dimensional Heisenberg group H3(Z), and Rs is 
some potentially high-dimensional Euclidean space equipped with the Lebesgue measure. The symbol �
will be conveniently used to hide a universal numerical mulitiplicative constant.

The map Fε,q is given by a rather elementary formula, but showing that it is a bi-Lipschitz embedding 
of the (1 − ε)-snowflaking of H3(Z) as in (1), and that the image is doubling requires some quite technical 
analytic computations.3 By taking ε = 1/ logn in (1), the map F1/ logn,q becomes a bi-Lipschitz embedding 
with distortion O((logn)1/q) of the ball of radius 4

√
n into Lq (whose image inherits the doubling property 

of Fε,q(H3(Z))). Since H3(Z) is a finitely generated group of quartic growth, for every n � 1, there exists 
a n-point subset Xn ⊂ H3(Z) lying in an annulus enclosed by two balls with radii proportional to 4

√
n. 

The image of Xn under F1/ logn,q, which will be denoted Hn(q), is 216-doubling. A significant advantage 
of the Heisenberg-based approach of Lafforgue and Naor is that it provides non-embeddability results for 
the doubling subset Hn(q) of �q for a wide class of Banach space targets. It is indeed possible to leverage 
some deep non-embeddability results available for the subset Xn of H3(Z) to derive lower bounds on the 
distortion of Hn(q) when embedding Hn(q) into any p-uniformly convex Banach space for 2 � p < q, and 
even into L1.

Let cY(X) denote the Y-distortion of X for two metric spaces (X, dX) and (Y, dY). The following theorem is 
a quantitatively explicit version (and updated according to the most recent available bounds) of Theorem 1.2 
in [23].

Theorem 2. For every q ∈ (2, ∞) and every n ∈ N, there exists a 216-doubling n-point subset Hn(q) of �q
such that

2 The results are asymptotic in nature and by doubling we mean that the doubling constant of Lk is O(1). The classical notation 
D = O(f(n)) (resp. D = Ω(f(n))) means that D � αf(n) (resp. D � αf(n)) for some constant α and for n large enough. And 
D = Θ(f(n)) if and only if [D = O(f(n))] ∧ [D = Ω(f(n))].
3 Lafforgue and Naor gave an alternate (and of similar difficulty) proof of (1) using the Schrödinger representation of Heisenberg 

groups that we do not discuss here.
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(1) cY(Hn(q)) = Ω((logn)
1
p− 1

q ) if Y is a p-uniformly convex Banach space for 2 � p < q,
(2) cL1(Hn(q)) = Ω((logn) 1

4 ).

Moreover, for every q ∈ (2, ∞), there exists a doubling subset H(q) of �q that does not admit a bi-Lipschitz 
embedding into L1 or into a p-uniformly convex Banach space for any p ∈ [2, q).

Assertions (1) and (2) in Theorem 2 follow from the above discussion of the Lafforgue-Naor approach 
and sharp non-embeddability of Heisenberg balls into p-uniformly convex spaces ([24], which refines earlier 
results from [2]), and into L1 (more specifically [30], which improves the lower bound in [12]). The moreover 
part of Theorem 2 follows from a standard argument where H(q) is a certain disjoint union of the sequence 
{Hn(q)}n∈N and which contains an isometric copy of a rescaling of Hn(q) for every n ∈ N.

The derivation of Theorem 1 from Theorem 2, which follows from the fact that we can assume without 
loss of generality that the constant finite-dimensional space is 2-uniformly convex, is standard. Another 
consequence of assertion (1) in Theorem 2 and classical estimates on the Banach-Mazur distance between 
finite-dimensional �r-spaces is the following corollary.

Corollary 1. For every q ∈ (2, ∞) and every n ∈ N, there exists a 216-doubling, n-point subset Hn(q) of �q
such that

(1) c�dq (Hn(q)) = Ω
((

logn
d

) 1
2− 1

q
)
,

(2) c�dp(Hn(q)) = Ω
((

logn
d

)min
{ 1

2 ,
1
p

}
− 1

q
)

if 1 < p < q.

It is worth pointing out that the case q = 2 in assertion (1) of Theorem 2 also follows from an important 
Poincaré-type inequality for the Heisenberg group [2, Theorem 1.4 and Corollary 1.6] which is a precursor 
of a groundbreaking line of research pertaining to Poincaré-type inequalities in terms of horizontal versus 
vertical perimeter in Heisenberg groups.

We now turn to the approach of Bartal, Gottlieb, and Neiman.

Theorem 3. [7] Let q ∈ (2, ∞), D � 1, and d ∈ N. For every n ∈ N, there exists a n-point subset 
Ln(p, q, D, d) of �q that is 232-doubling and such that any bi-Lipschitz embedding of Ln(p, q, D, d) with 
distortion D into �dp must satisfy

(1) D = Ω
((

logn
d

) 1
2− 1

q
)

if p = q

and
(2) D = Ω 

(
(logn)

1
2− 1

q

d
max{p−2,2−p}

2p

)
if 1 � p < q.

A conceptual difference between Theorem 3 and Corollary 1 is that in Theorem 3 the finite doubling 
subsets depend on the distortion, the dimension, and also the host space. Consequently, the sequence 
{Ln(p, q, D, d)}n�1 only rules out bi-Lipschitz embeddings for fixed distortion and dimension. Nevertheless, 
one can still derive Theorem 1 from Theorem 3. This derivation, which was omitted in [6,7], will be recalled 
at the end of Section 2. The doubling subset Ln(p, q, D, d) of �q is based on an elementary construction of 
a Θ(6k)-point Laakso-like structure in �kq that we will recall in Section 2, since our new proof of Theorem 1
uses the same construction. The combinatorial proof of Theorem 3 in [7] utilizes a newly introduced method 

based on potential functions, i.e. functions of the form Φp,q(u, v) =
‖f(u)−f(v)‖p

p

‖u−v‖p
q

for some p, q, where {u, v}
is an “edge” of Ln(p, q, D, d). The method of potential functions relies heavily on the fact that every map 
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taking values into �dp can be decomposed as a sum of d real-valued (coordinate) maps, and this method does 
not seem to be easily extendable to more general Banach space targets.

In Section 2, we present a new proof of Theorem 1. The doubling subsets are identical to the ones of Bartal-
Gottlieb-Neiman and they are described in Section 2.1. The proof uses a self-improvement argument, which 
was first employed for metric embedding purposes by Johnson and Schechtman in [17], and subsequently in 
[19], [11], [5], [34], and [35]; and is carried over in Section 2.2. Our proof has several advantages. We prove 
an analog of Theorem 3 where the n-point doubling subset can be chosen independently of the dimension 
and improve the estimates in assertion 2. Moreover, the self-improvement approach is rather elementary 
and yet covers the case of uniformly convex target spaces as in the work of Lafforgue-Naor. However, it 
does not allow the recovery of the case of an L1 target as in assertion (2) of Theorem 2. The fact that 
we will be dealing with abstract metric structures that are not graph metrics requires a significantly more 
delicate implementation of the self-improvement argument. In Section 2.3, we explain how the new proof 
allows us to derive known tight lower bounds for the distortion of �np into uniformly convex spaces. It is 
worth mentioning that the lower bounds that can be derived from the Bartal-Gottlieb-Neiman approach 
and the Lafforgue-Naor approach seem to be often suboptimal. In Section 2.4, we extend the technique 
to cover purely metric targets of non-positive curvature and, more generally, rounded ball metric spaces. 
Finally, in Section 3, we extend our approach to the asymptotic Banach space setting. For this purpose, we 
construct countably branching analogs of the structures introduced by Bartal, Gottlieb, and Neiman that 
provide quantitative obstructions to embeddability into asymptotically midpoint uniformly convex spaces.

2. Impossibility of dimension reduction in �q, q > 2

2.1. Thin Laakso substructures

Let us recall first a procedure to construct recursively certain sequences of graphs such as the classical 
diamond graphs {Dk}k∈N and Laakso graphs {Lk}k∈N , and their countably branching analogues {Dω

k}k∈N
and {Lω

k }k∈N .
A directed s-t graph G = (V, E) is a directed graph which has two distinguished vertices s, t ∈ V . To 

avoid confusion, we will also write sometimes s(G) and t(G). There is a natural way to “compose” directed 
s-t graphs using the 	-product defined in [27]. Informally, the 	 operation replaces all the edges of an s-t
graph by identical copies of a given s-t-graph. Given two directed s-t graphs H and G, define a new graph 
H 	 G as follows:

i) V (H 	 G) def= V (H) ∪ (E(H) × (V (G)\{s(G), t(G)})).
ii) For every oriented edge e = (u, v) ∈ E(H), there are |E(G)| oriented edges,

{
({e, v1}, {e, v2}) | (v1, v2) ∈ E(G) and v1, v2 /∈ {s(G), t(G)}

}
∪
{
(u, {e, w}) | (s(G), w) ∈ E(G)

}
∪
{
({e, w}, u) | (w, s(G)) ∈ E(G)

}
∪
{
({e, w}, v) | (w, t(G)) ∈ E(G)

}
∪
{
(v, {e, w}) | (t(G), w) ∈ E(G)

}
.

iii) s(H 	 G) def= s(H) and t(H 	 G) def= t(H).

It is clear that the 	-product is associative (in the sense of graph-isomorphism or metric space isometry), 
and for a directed graph G one can recursively define G�k for all k ∈ N as follows:

• G�1 def= G.
• G�k+1 def= G�k 	 G, for k � 1.
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Fig. 1. Distances in Laakso graph L1 and distances in ε-thin Laakso structure L1(ε, q) in �2q.

Note that it is sometimes convenient, for some induction purposes, to define G�0 to be the two-vertex 
graph with an edge connecting them. Note also that if the base graph G is symmetric, the graph G�k does 
not depend on the orientation of the edges.

If one starts with the 4-cycle C4, the graph Dk
def= C�k

4 is the diamond graph of depth k. The countably 

branching diamond graph of depth k is defined as Dℵ0
k

def= K�k

2,ℵ0
, where K2,ℵ0 is the complete bipartite infinite 

graph with two vertices on one side, (such that one is s(K2,ℵ0) and the other t(K2,ℵ0)), and countably many 

vertices on the other side.4 The Laakso graph Lk
def= L�k

1 where the base graph L1 is the graph depicted 
below.

The Laakso graphs do not admit bi-Lipschitz embeddings into any uniformly convex Banach space, in 
particular into �p when p ∈ (1, ∞). This is due to the fact that there are, at all scales, midpoints that 
are far apart. The idea of Bartal, Gottlieb, and Neiman was to slightly tweak the Laakso construction by 
reducing the distance between the midpoints so that these modified metric structures could fit into �kp for 
arbitrarily large dimension k but not into �dp for fixed d without incurring a large distortion. It will be 
convenient to abstract the construction of Bartal, Gottlieb, and Neiman. To that end, we introduce the 
following definition.

Definition 1 (Thin Laakso substructure). Let q ∈ [1, ∞] and ε > 0. For k ∈ N, we say that a metric space 
(X, dX) admits a (ε, q)-thin k-Laakso substructure if there exists a collection of points Lk(ε, q) ⊂ X indexed 
by Lk (and we will identify the points in Lk(ε, q) with the corresponding points in Lk) such that for every 
1 � j � k and for all {s, a, m1, m2, b, t} ⊂ Lk(ε, q) indexed by any copy of the Laakso graph L1 created at 
level j, the following interpoint distance equalities hold:

(c1) dX(s, a) = dX(b, t) = 1
2dX(a, b) = 1

4dX(s, t) > 0
(c2) dX(s, b) = dX(a, t) = 3

4dX(t, s)
(c3) dX(m1, a) = dX(m1, b) = dX(m2, a) = dX(m2, b) = 1

4 (1 + (2ε)q)1/qdX(s, t)
(c4) dX(s, m1) = dX(m2, s) = dX(m1, t) = dX(m2, t) = 1

2 (1 + εq)1/qdX(s, t)
(c5) dX(m1, m2) = ε · dX(s, t) (midpoint separation).

The distances in the combinatorial Laakso graph, which is the template for the construction, satisfy 
(c1) − (c4) with ε = 0, and (c5) with ε = 1

2 , and the distances for a path graph with 4 points would satisfy 
(c1) − (c5) with ε = 0. The diagram above can help visualize the differences between the distances in the 
Laakso graph L1 and the (ε, q)-thin 1-Laakso substructure L1(ε, q) construction (see Fig. 1).

The existence of (ε, q)-thin k-Laakso substructures in �q was proven in [7]. Since we use different notation 
and a slightly different thinness parameter, we will reproduce the proof for the convenience of the reader.

Lemma 1. Let q ∈ [1, ∞]. For all k ∈ N and ε > 0, �k+1
q admits a (ε, q)-thin k-Laakso substructure.

4 The level k countably branching diamond graph is also denoted by Dω
k in the literature.
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Proof. Let {ei}k+1
i=1 be the canonical basis of �k+1

q . The proof is by induction on k. If k = 1 then L1 =
{s, a, m1, m2, b, t} and identifying points in L1(ε, q) with the corresponding points in L1 we define

s = −e1 and t = e1,

a = −1
2e1 and b = 1

2e1,

m1 = εe2 and m2 = −εe2.

Observe that the vectors are in �2q and a straightforward verification shows that conditions (c1) − (c5) are 
verified. Assume now that Lk(ε, q) has been constructed in �k+1

q . Recall that Lk+1 is constructed by replacing 
every edge in Lk with a copy of L1. For every edge {s, t} in Lk we introduce 4 new points as follows:

a = 3
4s + 1

4 t and b = 1
4s + 3

4 t,

m1 = s + t

2 + ε

2‖s− t‖qek+2 and m2 = s + t

2 − ε

2‖s− t‖qek+2.

Then

‖b−m2‖q =
∥∥∥1

4s + 3
4 t−

s + t

2 + ε

2‖s− t‖qek+2

∥∥∥
q

=
∥∥∥ t− s

4 + ε

2‖s− t‖qek+2

∥∥∥
q

=
( 1

4q ‖s− t‖qq + εq

2q ‖s− t‖qq
)1/q

= ‖s− t‖q
4

(
1 + (2ε)q

)1/q
,

where in the penultimate equality we used the fact that 14 (s − t) ∈ �k+1
q . The other equalities can be checked 

similarly. �
Remark 1. It was proved in [7] that an (ε, p)-thin k-Laakso substructure is 232-doubling whenever ε < 2

17 .

2.2. A proof via a self-improvement argument

In this section we prove Theorem 1 using a self-improvement argument. Recall that a Banach space X
is uniformly convex if for all t > 0 there exists δ(t) > 0 such that for all x, y ∈ SX, if ‖x − y‖X � t then 
‖x+y

2 ‖X � 1 − δ(t). The modulus of uniform convexity of X, denoted δX, is defined by

δX(t) = inf
{

1 −
∥∥∥∥x + y

2

∥∥∥∥
X

: ‖x− y‖X � t

}
. (2)

Clearly, X is uniformly convex if and only if δX(t) > 0 for all t > 0, and we say that X is q-uniformly convex 
(or is uniformly convex of power type q) if δX(t) � ctq for some universal constant c > 0. A classical result 
of Pisier [32] states that a uniformly convex Banach space admits a renorming that is q-uniformly convex 
for some q � 2. The following key lemma is similar to a contraction result for Laakso graphs from [17].

Lemma 2. Let p ∈ (1, ∞). Assume that Lk(ε, p) is a (ε, p)-thin k-Laakso substructure in (X, dX) and 
that f : X → (Y, ‖ · ‖) is a bi-Lipschitz embedding with distortion D. Then for every 1 � � � k, if 
{s, a, m1, m2, b, t} ⊂ Lk(ε, p) is indexed by a copy of one of the Laakso graphs L1 created at step �, we 
have:

‖f(s) − f(t)‖ � DdX(s, t)(1 + εp)1/p
(

1 − δY

(
2ε

p 1/p

))
. (3)
D(1 + ε )
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Proof. Assume without loss of generality that for all x, y ∈ X,

dX(x, y) � ‖f(x) − f(y)‖ � DdX(x, y). (4)

Let α def= dX(s,t)
2 (1 + εp)1/p, and

x1
def= f(m1) − f(s), x2

def= f(m2) − f(s), y1
def= f(t) − f(m1), y2

def= f(t) − f(m2).

For all i ∈ {1, 2}, it follows from the upper bound in (4) and (c4) that ‖xi‖
Dα � 1 and ‖yi‖

Dα � 1. On the other 
hand, it follows from the lower bound in (4) and (c5) that

‖x1 − x2‖
Dα

� 2ε
D(1 + εp)1/p

and ‖y1 − y2‖
Dα

� 2ε
D(1 + εp)1/p

.

Therefore
∥∥∥x1 + x2

2Dα

∥∥∥ � 1 − δY

( 2ε
D(1 + εp)1/p

)
and

∥∥∥y1 + y2

2Dα

∥∥∥ � 1 − δY

( 2ε
D(1 + εp)1/p

)
.

Since

f(t) − f(s) = (f(t) − f(m1) + f(m1) − f(s) + f(t) − f(m2) + f(m2) − f(s))/2

= (y1 + y2 + x1 + x2)/2,

it follows from the triangle inequality that ‖ f(t)−f(s)
Dα ‖ � 2

(
1 − δY

(
2ε

D(1+εp)1/p

))
and the conclusion fol-

lows. �
By using the tension between the thinness parameter of a thin Laakso substructure and the power type 

of the modulus of uniform convexity of the host space, we can prove the following distortion lower bound.

Theorem 4. Let 2 � p < q and assume that (X, dX) admits a bi-Lipschitz embedding with distortion D into 
a p-uniformly convex Banach space Y. There exists ε := ε(p, q, D, Y) > 0 such that if (X, dX) admits a 
(ε, q)-thin k-Laakso substructure, then D = Ω(k1/p−1/q)

Proof. Assume that for all x, y ∈ X,

dX(x, y) � ‖f(x) − f(y)‖ � DdX(x, y), (5)

and let Lk(ε, q) be a (ε, q)-thin k-Laakso substructure with ε > 0 small enough such that (1 + εq)1/q � 2. 
The self-improvement argument uses the self-similar structure of the Laakso graphs. For 1 � j � k, consider 
the decomposition Lk−j 	 Lj of Lk, i.e. Lk is formed by replacing each of the 6k−j edges of Lk−j by a copy 
of Lj . We define Dj to be the smallest constant such that

‖f(x) − f(y)‖ � DjdX(x, y) (6)

for all 4 × 6k−j pairs of points {x, y} in Lk(ε, p) that are indexed by vertices of a copy of Lj in Lk of the 
form {s, mi} or {mi, t} for some i ∈ {1, 2}, where s and t are the farther apart vertices in Lj whose two 
distinct midpoints are m1 and m2.

It is clear that for all j ∈ {1, . . . , k}, the inequalities 1 � Dj � D hold. Assume that δY(t) � ctp for 
some constant c > 0 (that depends on Y only). Fix L0

j as one of the 6k−j copies of Lj in the decomposition 
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Lk−j 	 Lj of Lk. Observe that L0
j = L1 	 Lj−1 and let {s, a, m1, m2, b, t} denote the vertices of L1 in this 

decomposition of L0
j . Consider the pair {s, m1} as defined above (the 3 other pairs can be treated similarly) 

and the two copies of Lj−1 which contain either s or m1 and have the vertex a in common. In the proof of 
Lemma 2 we only used the upper bound in (4) for pairs of points of the form described in the definition of 
Dj−1, and because we assumed that δY(t) � ctp and (1 + εq)1/q � 2, we have

‖f(s) − f(a)‖ � Dj−1dX(s, a)(1 + εq)1/q
(
1 − cεp

Dp
j−1

)
, (7)

and

‖f(a) − f(m1)‖ � Dj−1dX(a,m1)(1 + εq)1/q
(
1 − cεp

Dp
j−1

)
. (8)

Then, it follows from the triangle inequality that

‖f(s) − f(m1)‖ � Dj−1(dX(s, a) + dX(a,m1))(1 + εq)1/q
(
1 − cεp

Dp
j−1

)
. (9)

By (c1) and (c3) in the construction of the thin Laakso substructures, we have

dX(s, a) + dX(a,m1) = 1
4dX(s, t) + 1

4(1 + (2ε)q)1/qdX(s, t).

Since q � 1, we have (1 + (2ε)q)1/q � 1 + (2ε)q, and thus

dX(s, a) + dX(a,m1) � 1
4dX(s, t)(2 + (2ε)q) = 1

2dX(s, t)(1 + 2q−1εq) (c4)= 1 + 2q−1εq

(1 + εq)1/q
dX(s,m1).

Substituting this last inequality in (9), we obtain

‖f(s) − f(m1)‖ � Dj−1dX(s,m1)(1 + 2q−1εq)
(
1 − cεp

Dp
j−1

)
.

By symmetry of the (ε, q)-thin Laakso substructures, the other pairs of points in the definition of Dj can 
be treated similarly, and hence we have proved that

Dj � Dj−1(1 + 2q−1εq)
(
1 − cεp

Dp
j−1

)
.

Then,

Dj � Dj−1(1 + 2q−1εq) − (1 + 2q−1εq)cεp

Dp−1
j−1

� Dj−1 + D(2ε)q − cεp

Dp−1 , (10)

where in (10) we used the fact that Dj−1 � D and 1 + 2q−1εq � 1. Rearranging we have

Dj−1 −Dj � D

(
cεp

p
− (2ε)q

)
, (11)
D
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If we let ε = γD− p
q−p for some small enough γ to be chosen later (and that depends only on p, q, and c), 

then

Dj−1 −Dj � D

⎛
⎝cγpD

− p2
q−p

Dp
− (2γ)qD− pq

q−p

⎞
⎠ (12)

� D ·D− pq
q−p (cγp − 2qγq). (13)

If we choose γ ∈
(
0, 
(

c
2q+1

)1/(q−p))
, and since p < q, we have cγp − 2qγq � c

2γ
p > 0. Hence Dj−1 −Dj �

cγp

2 D1− pq
q−p and summing over j = 2, . . . , k we get

D � D1 −Dk �
k∑

j=2

cγp

2 D1− pq
q−p � cγp

2 (k − 1)D1− pq
q−p , (14)

and hence D � k1/p−1/q. �
Corollary 2 below improves Theorem 3 in several ways. The dependence in the dimension for the thinness 

parameter is removed. Assertion 1 extends to all p-uniformly convex Banach spaces the bound in assertion 

2 of Theorem 3 while improving the bound. Indeed, if Y = �dp then D = Ω
(( logn

d

)min
{ 1

2 ,
1
p

}
− 1

q

)
.

Corollary 2. Let q ∈ (2, ∞), Y be a Banach space, and fix D � 1. For every n ∈ N there exists an n-point 
subset Ln(q, D, Y) of �q that is 232-doubling and such that any bi-Lipschitz embedding with distortion D
into Y must incur

(1) D = Ω
(
(logn)

1
p− 1

q

)
if p ∈ [2, q) and Y is a p-uniformly convex Banach space,

and
(2) D = Ω

((
logn
d

) 1
2− 1

q
)

if Y = �dq .

Proof. Assertion (1) follows immediately from Theorem 4 and Lemma 1. The second assertion follows from 
the fact that n = Θ(6k) and that the Banach-Mazur distance between the 2-uniformly convex spaces �d2 and 
�dq is at most d1/2−1/q. �

It remains to show how Theorem 1 can be derived from Corollary 2. First observe that for all q > 2, 
D � 1, and every n ∈ N, the n-point doubling subsets Ln(q, D, �2) of �q belong to the unit ball of �q. 
Now consider the subset Zq

def=
⋃

(k,n)∈N2 Ln(q, k, �2) × {(4k, 4n)} ⊂ �q ⊕q R2 ≡ �q. Clearly, Zq contains an 
isometric copy of Ln(q, k, �2), and it can be verified that Zq is doubling. If Zq ⊂ �q admits a bi-Lipschitz 
embedding with distortion D into �dq for some d ∈ N, then the proof of assertion (2) in Corollary 2 shows 

that D = Ω
((

logn
d

) 1
2− 1

q
)
, since Zq contains an isometric copy of Ln(q, k, �2) for all n ∈ N, where k ∈ N is 

such that k � D < k + 1. Hence D cannot be finite.

2.3. Quantitative embeddability of �kq into uniformly convex Banach spaces

The alternative proof of Theorem 1 that we proposed has several noteworthy applications. One application 
concerns the non-embeddability of �q into Lr for r ∈ (1, ∞), and more generally bounding below the 
quantitative parameter cY(�kq ) whenever Y is a p-uniformly convex Banach space. It is well known that when 
2 � p < q, if Y is p-uniformly convex (or merely has cotype p), then supk�1 cY(�kq ) = ∞. Quantitatively,
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cY(�kq ) = Ω
(
k

1
p− 1

q

)
for all 2 � p < q. (15)

Since Lp is max{p, 2}-uniformly convex when p ∈ (1, ∞) (and L1 has cotype 2), we have

cLp
(�kq ) = Ω

(
k

1
max{p,2}− 1

q

)
for all 1 � p < q and q > 2. (16)

The fact that these lower bounds are tight follows from simple estimates of the norm of the formal identity 
(and its inverse) (e.g. ‖I�kq→�kp

‖ · ‖I−1
�kq→�kp

‖ � k1/p−1/q is a consequence of Hölder’s inequality and the 

monotonicity of the �r-norms). Since the thin k-Laakso substructure lives in �k+1
q and has Θ(6k) points, the 

lower bound in (15) (for p-uniformly convex spaces) and the one in (16) (when p 
= 1) follow directly from 
the first assertion of Corollary 2. As we point out below, the approaches in [23] and [7] seem to only give 
suboptimal results.

The n-point doubling subset Hn(q) of Lafforgue and Naor lies in some Lq(Rk)-space and hence in �n(n−1)/2
q

by a result of [3]. Therefore, if one uses the Heisenberg-type 
√
n-point doubling subset of �nq one can derive 

that, for example, c�2(�nq ) = Ω
(

log(n)
1
2− 1

q

)
which is suboptimal. To get the optimal lower bound one would 

need to be able to show that the doubling subset can actually be embedded into �Θ(logn)
q , which is the best 

we can hope for due to assertion 1 in Theorem 2. This does not seem to be known and we do not know if 
this is true.

Following Bartal-Gottlieb-Neiman’s approach, one could obtain partial and suboptimal results as follows. 
Assume that �kq admits a bi-Lipschitz embedding into �kp. Then one can construct a subset in �kq , namely 
Ln(q, D, k − 1), having n = Θ(6k) points and witnessing the fact that D must be large. The estimates in 

Theorem 3 yield c�kp (�kq ) = Ω
(
k

1
p− 1

q

)
for all 2 � p < q. Therefore, the right order of magnitude is captured 

in the range 2 � p < q but in the (very) restricted case of a finite-dimensional �p target that has the same 

dimension as the source space. In the range 1 < p < 2 < q, one gets c�kp(�kq ) = Ω
(
k1− 1

p− 1
q

)
, which does not 

capture the right order of magnitude and is clearly suboptimal.

2.4. Quantitative embeddability of �kq into non-positively curved spaces

Another advantage of the proof via self-improvement is that it can be extended, with a little bit more 
care, to cover maps taking values into non-positively curved spaces, and more generally to the context of 
rounded ball metric spaces.

Recall that the η-approximate midpoint set of x, y ∈ (X, dX) is defined as

Mid(x, y, η) def=
{
z ∈ X : max

{
dX(x, z), dX(y, z)

}
� 1 + η

2 dX(x, y)
}

= BX

(
x,

1 + η

2 dX(x, y)
)
∩BX

(
y,

1 + η

2 dX(x, y)
)

As usual, for an arbitrary set A ⊂ X, diam(A) def= sup
{
dX(x, y) : x, y ∈ A

}
. The following definition is 

due to T. J. Laakso [21].
A metric space (X, dX) is a rounded ball space if for all t > 0, there exists η(t) > 0 such that for all 

x, y ∈ X,

diam
(
Mid(x, y, η(t))

)
< t · dX(x, y). (17)

Remark 2. Note that for all x, y ∈ X and η > 0, diam(Mid(x, y, η)) � (1 +η)dX(x, y) always holds. Therefore 
the rounded ball property is non-trivial only for t ∈ (0, 1], and in this case η ∈ (0, 1) necessarily.
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Note that a Banach space is a rounded ball space if and only if it is uniformly convex [21, Lemma 5.2]. 
We can define a rounded ball modulus ηX as follows

ηX(t) def= sup{η(t) : (17) holds for all x, y ∈ X}. (18)

We will say that (X, dX) is a rounded space with power type p if ηX(t) � ctp for all t ∈ (0, 1).
The following contraction lemma is an extension, to the purely metric context of rounded ball spaces, of 

the contraction phenomenon in Lemma 2.

Lemma 3. Let (Y, dY) be a metric space and ε > 0 such that (1 + εq)1/q � 2. Assume that Lk(ε, q) is a 
(ε, q)-thin k-Laakso substructure in (X, dX) and that f : X → Y satisfies

1
A

dX(x, y) � dY(f(x), f(y)) � BdX(x, y) (19)

for some constants A, B > 0. Then for every 1 � � � k, if {s, a, m1, m2, b, t} ⊂ Lk(ε, q) is indexed by a copy 
of one of the Laakso graphs L1 created at step �, we have:

dY(f(s), f(t)) � BdX(s, t)(1 + εq)1/q
(
1 − 1

2ηY(ε/2AB)
)
. (20)

Proof. Let r > 0 be the smallest radius such that BY(f(s), r) ∩BY(f(t), r) ⊇ {f(m1), f(m2)}. Then

r � max{dY(f(s), f(m1)), dY(f(s), f(m2)), dY(f(t), f(m1)), dY(f(t), f(m2))},

and it follows from (19) and (c4) that r � B
2 (1 + εq)1/qdX(s, t). On the other hand,

diam (BY(f(s), r) ∩BY(f(t), r)) � dY(f(m1), f(m2)), (21)

and thus

diam (BY(f(s), r) ∩BY(f(t), r)) � 1
A

dX(m1,m2)
(c5)= 1

A
εdX(s, t)

(c4)= 1
A
ε
( dX(s,m1)

(1 + εq)1/q
+ dX(t,m1)

(1 + εq)1/q
)

� ε

AB(1 + εq)1/q
(
dY(f(s), f(m1)) + dY(f(t), f(m1))

)

� ε

2AB
dY(f(s), f(t)),

where in the last inequality we used our assumption on ε and the triangle inequality. Therefore, r �
1+ηY(ε/(2AB))

2 dY(f(s), f(t)) by definition of the rounded ball modulus, and

dY(f(s), f(t)) � 2r
1 + ηY(ε/2AB) � B(1 + εq)1/qdX(s, t)

1 + ηY(ε/2AB)

� BdX(s, t)(1 + εq)1/q
(
1 − 1

2ηY(ε/2AB)
)
.

where in the last inequality we used Remark 2. �
A slightly different implementation of the self-improvement argument gives the following extension of 

Theorem 4 to metric spaces with rounded ball modulus with power type. We only emphasize the few points 
in the proof that are different.
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Theorem 5. Let 1 < p < q and let (Y, dY) be a rounded ball metric space with power type p. For all D � 1, 
there exists ε := ε(D, p, q, Y) > 0 such that if (X, dX) admits a (ε, q)-thin k-Laakso substructure and embeds 
bi-Lipschitzly with distortion at most D � 1 into Y, then D = Ω(k1/p−1/q).

Proof. Assume that for all x, y ∈ X

1
A

dX(x, y) � dY(f(x), f(y)) � BdX(x, y), (22)

with AB � D.
This time we define Bj to be the smallest constant such that

‖f(x) − f(y)‖ � BjdX(x, y), (23)

for all 4 × 6k−j pairs of points {x, y} in Lk(ε, q) that are indexed by vertices of a copy of Lj in Lk of the 
form {s, mi} or {mi, t} for some i ∈ {1, 2}, where s and t are the farther apart vertices in Lj whose two 
distinct midpoints are m1 and m2.

It is clear that for all j ∈ {1, . . . , k}, the inequalities 1 � Bj � B hold. Since in the proof of Lemma 3 we 
have only used the upper bound in (22) for pairs of points of the form described in the definition of Bj−1, 
proceeding as in the proof of Theorem 4, we show that

ABj−1 −ABj � AB

(
cεp

2p+1(AB)p − (2ε)q
)
.

If we let ε = γ(AB)−
p

q−p for some small enough γ to be chosen later (and that depends only on p, q, and 
c), then

ABj−1 −ABj � (AB)1−
pq

q−p ( c

2p+1 γ
p − 2qγq).

If we choose 0 < γ <
(

c
2p+q+2

)1/(q−p)
we have c

2p+1 γ
p − 2qγq � c

2p+2 γ
p > 0. Hence ABj−1 − ABj �

c
2p+2 γ

p(AB)1−
pq

q−p and summing over j = 2, . . . , k we conclude that AB � k1/p−1/q. �
We now identify a 4-point inequality that implies the rounded ball property with power type p.

Lemma 4. Let (X, dX) be a metric space and p ∈ (0, ∞). If there exists C ∈ (0, 2p] such that for all 
x1, x2, x3, x4 ∈ X, we have

dX(x1, x3)p + dX(x2, x4)p � C

4

(
dX(x1, x2)p + dX(x2, x3)p + dX(x3, x4)p + dX(x4, x1)p

)
, (24)

then X is a rounded ball space with ηX(t) � tp/(2p − 1) if p � 1 and with ηX(t) � t if p ∈ (0, 1).

Proof. Fix t > 0 and let x, y ∈ X and η ∈ (0, 1). If Mid(x, y, η) is empty or reduced to a single point, there 
is nothing to prove. Otherwise, let w 
= z ∈ Mid(x, y, η). It follows from (24) that

dX(x, y)p + dX(w, z)p � C

4 (dX(x,w)p + dX(w, y)p + dX(y, z)p + dX(z, x)p),

and by the definition of Mid(x, y, η), we have

dX(w, z)p �
(
C

(1 + η)p − 1
)
dX(x, y)p.
2p
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Since C � 2p,

dX(w, z) � ((1 + η)p − 1)
1
p dX(x, y).

If p � 1 then ((1 + η)p − 1)
1
p � (2p − 1)1/pη1/p, and if η = tp/(2p − 1), then

diam(Mid(x, y, η)) < tdX(x, y).

If p ∈ (0, 1) then ((1 + η)p − 1)
1
p � η, and η = t implies that

diam(Mid(x, y, η)) < tdX(x, y). �
Inequality (24) when p = 2 and C = 4 is well known under various names: quadrilateral inequality, 

roundness 2, Enflo type 2 with constant 1. It was proved by Berg and Nikolaev [9] (see also [10] or [33]) that 
the quadrilateral inequality characterizes CAT(0)-spaces amongst geodesic metric spaces and that CAT(0)-
spaces coincide with Alexandrov spaces of non-positive curvatures; and this provides a rather large class of 
metric spaces which are rounded ball with power type 2. It is not difficult to show that ultrametric spaces 
satisfy inequality (24) with p = 1 and C = 2. We give one example of an application of Theorem 5.

Corollary 3. If q > 2 and (Y, dY) is a metric space with roundness 2, in particular an Alexandrov space of 
non-positive curvature, then

cY(�kq ) = Ω
(
k

1
2− 1

q

)
.

Remark 3. To the best of our knowledge, the only known proof of Corollary 3 can be found in the work of 
Eskenazis, Mendel, and Naor in [14], where it was shown that Alexandrov spaces of non-positive curvature 
have metric cotype 2. This is a particular case of a much deeper result which says that q-barycentric metric 
spaces have sharp metric cotype q, and whose proof partly relies on a version of Pisier’s martingale inequality 
in the context of nonlinear martingales.

3. Embeddability obstruction via thin ℵ0-branching diamond substructures

Using the self-improvement argument together with the smallness of approximate midpoint sets to prove 
Theorem 1 has the other advantage of being easily generalizable to the asymptotic setting. It is well-known 
that the size of a t-approximate metric midpoint set in an asymptotically uniformly convex Banach spaces 
is “small”. By “small”, we mean that the set is included in the (Banach space) sum of a compact set and 
a ball of small radius. Therefore the techniques from the previous sections can be adequately modified to 
show that the presence of countably branching versions of the Laakso-type substructure is a bi-Lipschitz 
embeddability obstruction. A similar fact for countably branching diamond and Laakso graphs was first 
proved in [5] and generalized in [34].

The only reason to work with Laakso-type substructures in the previous sections was to produce spaces 
with the doubling property. In the asymptotic setting, we need to work with substructures whose underlying 
graphs have vertices with countably many neighbors and fail the doubling property altogether. Therefore, 
we will only consider simpler diamond-type substructures.

As noted in [5], it is more convenient to work with the notion of asymptotic midpoint uniform convexity. 
Let X be a Banach space and t ∈ (0, 1). Define

δ̃X(t) def= inf
x∈SX

sup inf
z∈SZ

max{‖x + tz‖, ‖x− tz‖} − 1.

Z∈cof(X)
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The norm of X is said to be asymptotically midpoint uniformly convex if δ̃X(t) > 0 for every t ∈ (0, 1). Being 
asymptotically midpoint uniformly convexifiable is formally weaker than being asymptotically uniformly 
convexifiable. However, it is still open whether asymptotic uniform convexity and asymptotic midpoint 
uniform convexity are equivalent notions up to renorming. We now recall some facts that we will need 
which can be found in [5]. A characterization of asymptotic midpoint uniformly convex norms was given in 
[13] in terms of the Kuratowski measure of noncompactness of approximate midpoint sets. Recall that the 
Kuratowski measure of noncompactness of a subset S of a metric space, denoted by α(S), is defined as the 
infimum of all ε > 0 such that S can be covered by a finite number of sets of diameter less than ε. Note 
that it is a property of the metric.

In [13], it was shown that a Banach space X is asymptotically midpoint uniformly convex if and only if

lim
t→0

sup
x∈SX

α(Mid(−x, x, t)) = 0.

To prove the main result of this section, we need the following lemma, which is a particular case of Lemma 
4.3 in [5].

Lemma 5. If the norm of a Banach space X is asymptotically midpoint uniformly convex, then for every 
t ∈ (0, 1) and every x, y ∈ X, there exists a finite subset S of X such that

Mid(x, y, δ̃X(t)/4) ⊂ S + 2t‖x− y‖BX. (25)

We define thin diamond substructures that can be used to prove non-embeddability results.

Definition 2 (Thin κ-branching diamond substructure). Let p ∈ [1, ∞), ε > 0, κ be a cardinal number, and I
a set of cardinality κ. For k ∈ N, we say that a metric space X admits a (ε, p)-thin κ-branching k-diamond 
substructure if there exists a collection Dκ

k (ε, p) of points indexed by Dκ
k such that for every 1 � � � k if 

{s, {mi}i∈I , t} ⊂ Dκ
k is indexed by a copy of one of the diamond created at step �, then:

(d1) dX(s, mi) = dX(mi, t) = 1
2 (1 + (2ε)p)1/pdX(s, t) for all i ∈ I.

(d2) dX(mi, mj) = 21−1/pε · dX(s, t) for all i 
= j.

In Lemma 6 below, we provide a construction of a (ε, p)-thin ℵ0-branching k-diamond substructure in 
Lp-spaces, which in turns implies for all p ∈ [1, ∞), k ∈ N, and ε > 0 the existence of an (ε, p)-thin 
ℵ0-branching k-diamond substructure.

Lemma 6. For every p ∈ [1, ∞), every ε > 0, and every k ∈ N, Lp admits a (ε, p)-thin ℵ0-branching 
k-diamond substructure.

Proof. Let χi,j,k stand in for the characteristic function χ[
k+ i−1

2j
,k+ i

2j

], where 1 � i � 2j and j ∈ N. 

Fix ε > 0. The (ε, p)-thin ℵ0-branching k-diamond substructure in Lp with parameter ε > 0 is defined 
recursively as follows. For simplicity, we start the induction with the 0-diamond graph Dℵ0

0 to be a single 
edge with endpoint s and t, and (again identifying the points in Dℵ0

k (ε, p) with the vertices of Dℵ0
k ) we define 

Dℵ0
0 (ε, p) := {s, t} by s 

def= χ[0,1] and t 
def= −χ[0,1]. The conditions are vacuously satisfied. Suppose now that 

Dℵ0
k has already been defined such that Dℵ0

k ⊆ Lp[0, k + 1]. To construct Dℵ0
k+1, we introduce for every edge 

{s, t} ∈ Dℵ0
k and i ∈ N a “midpoint” as follows:

mi = s + t

2 +
2i∑

(−1)rε‖s− t‖pχr,i,k+1. (26)

r=1
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Then,

‖s−mi‖pp =
∥∥∥s− t

2 −
2i∑
r=1

(−1)rε‖s− t‖pχr,i,k+1

∥∥∥p
p

=
∥∥∥s− t

2

∥∥∥p
p

+
∥∥∥

2i∑
r=1

(−1)rε‖s− t‖pχr,i,k+1

∥∥∥p
p

=
∥∥∥s− t

2

∥∥∥p
p

+ εp‖s− t‖pp = (1 + (2ε)p)
2p ‖s− t‖pp,

wherein the second equality we used the fact that the vectors have disjoint supports (in [0, k + 1] and 
[k + 1, k + 2], respectively).

For i < j, observe that χr,i,k+1 =
∑r2j−i

�=(r−1)2j−i+1 χ�,j,k+1, and so

‖mi −mj‖pp =
∥∥∥

2i∑
r=1

(−1)rε‖s− t‖pχr,i,k+1 −
2j∑
r=1

(−1)rε‖s− t‖pχr,j,k+1

∥∥∥p
p

= εp‖s− t‖pp

∥∥∥∥∥∥
2i∑
r=1

r2j−i∑
�=(r−1)2j−i+1

(
(−1)r − (−1)�

)
χ�,j,k+1

∥∥∥∥∥∥
p

p

= εp‖s− t‖pp

⎛
⎜⎜⎝

2i∑
r=1

r2j−i∑
�=(r−1)2j−i+1

k+1+ �
2j∫

k+1+ �−1
2j

∣∣(−1)r − (−1)�
∣∣p dx

⎞
⎟⎟⎠

= εp‖s− t‖pp

⎛
⎝ 2i∑

r=1

2j−i

2 · 2−j · 2p
⎞
⎠

= εp‖s− t‖pp ·
1
2 · 2p

= 2p−1εp‖s− t‖pp �
Next, we prove the contraction principle that is needed in the asymptotic setting.

Lemma 7. Let ε > 0 such that (1 + (2ε)p)1/p � 2 and let κ be an infinite cardinal. Assume that Dκ
k (ε, p)

is a (ε, p)-thin κ-branching k-diamond substructure in (X, dX) and that f : X → (Y, ‖ · ‖) is a bi-Lipschitz 
embedding with distortion D. Then for every 1 � � � k, if {s, {mi}i∈I , t} ⊂ Dκ

k is indexed by a copy of one 
of the diamond graphs Dκ

1 created at step �, we have:

‖f(s) − f(t)‖ � DdX(s, t)(1 + (2ε)p)1/p
(

1 − 1
5 δ̃Y

( ε

16D

))
. (27)

Proof. Assume that for all x, y ∈ X,

dX(x, y) � ‖f(x) − f(y)‖ � DdX(x, y). (28)

We claim that there exists j ∈ N such that

f(mj) /∈ Mid
(
f(s), f(t), 1

4 δ̃Y
( ε

16D

))
. (29)

Assuming for a moment that (29) holds, then we have either

‖f(mj) − f(t)‖ >
1
(

1 + 1
δ̃Y

( ε ))
‖f(s) − f(t)‖
2 4 16D
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or

‖f(mj) − f(s)‖ >
1
2

(
1 + 1

4 δ̃Y
( ε

16D

))
‖f(s) − f(t)‖.

In both cases, it follows from (28) and condition (d1) above that

‖f(s) − f(t)‖ < DdX(s, t)(1 + (2ε)p)1/p
(

1 + 1
4 δ̃X

( ε

16D

))−1

� DdX(s, t)(1 + (2ε)p)1/p
(

1 − 1
5 δ̃X

( ε

16D

))
.

It remains to prove (29). By Lemma 5, there exists a finite subset S := {z1, . . . , zn} ⊂ Y such that

Mid
(
f(s), f(t), 1

4 δ̃Y
( ε

16D

))
⊂ S + ε

8D‖f(s) − f(t)‖BY.

If for every i ∈ N,

f(mi) ∈ Mid
(
f(s), f(t), 1

4 δ̃Y
( ε

16D

))
,

then f(mi) = zni
+ yi with zni

∈ S and yi ∈ Y such that

‖yi‖ � ε

8D‖f(s) − f(t)‖.

Therefore, for all i 
= j,

‖zni
− znj

‖ � ‖f(mi) − f(mj)‖ − ‖yi − yj‖

� dX(mi,mj) −
ε

4D‖f(s) − f(t)‖

� dX(mi,mj) −
ε

4D (‖f(s) − f(mi)‖ + ‖f(mi) − f(t)‖)

� 21−1/pε · dX(s, t) − ε

4(1 + (2ε)p)1/pdX(s, t)

� 21−1/pε · dX(s, t) − ε

2dX(s, t)

� 1
2ε · dX(s, t) > 0,

which contradicts the fact that S is finite. �
Since in the proof of Lemma 7 we were careful to only use the upper bound in (28) for pairs of points of 

the form {s, mi} or {t, mi}, the derivation of Theorem 6 below from Lemma 7 is by now standard and thus 
omitted.

Theorem 6. Let 1 � p < q and assume that (X, dX) admits a bi-Lipschitz embedding with distortion D into 
a p-asymptotically midpoint uniformly convex Banach space Y. There exists ε := ε(p, q, D, Y) > 0 such that 
if X admits a (ε, q)-thin ℵ0-branching k-diamond substructure, then D = Ω(k1/p−1/q).

The following consequence is immediate.
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Corollary 4. Lq[0, 1] does not bi-Lipschitzly embed into any p-asymptotically midpoint uniformly convex 
Banach space if q > p � 1. In particular, Lq[0, 1] does not bi-Lipschitzly embed into �p if q > p � 1.

Remark 4. Corollary 4 is not new, since it can be shown using classical approximate midpoint techniques 
(see [8, Chapter 10, Section 2] or [20] for instance). The classical approximate midpoint technique provides 
an obstruction of qualitative nature and relies on some linear arguments, but it can handle weaker notions 
of embeddings. Our proof of Theorem 6, and in turn of Corollary 4, identifies concrete and purely metric 
structures that provide quantitative obstructions to bi-Lipschitz embeddings.

4. Concluding remarks

If for some 1 � p < r < q < ∞, a Banach space X bi-Lipschitzly embeds into Lp and into Lq, then it follows 
from the classical work of Kadec and Pełczyński [18] combined with classical differentiation techniques 
[28,15,8] that necessarily X admits a bi-Lipschitz embedding into Lr. The metric Kadec-Pełczyński problem, 
a long-standing open problem in metric geometry, asks whether a similar phenomenon still holds for metric 
spaces, i.e. whether for 1 � p < r < q < ∞, a metric space that admits a bi-Lipschitz embedding into Lp

and into Lq necessarily admits a bi-Lipschitz embedding into Lr.
Very recently, Naor and Young [31] gave the first partial counter-example to the metric Kadec-Pełczyński 

problem. Naor and Young produced a Heisenberg-type space that does embed into �1 and into �q but does 
not embed into �r for any 1 < r < 4 � q. The fact that what happens for �r in the range 4 � r < q is not 
understood seems inherent of the Heisenberg approach.

The following problem seems open.

Problem 2. Let q > 2. Is there ε > 0 such that the (ε, q)-thin k-Laakso substructures equi-bi-Lipschitzly 
embed into �1?

A positive solution to Problem 2 would provide a second partial counter-example to the metric Kadec-
Pełczyński problem, which would resolve the issue mentioned above.
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