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This study investigates how the insertion of multimaterial circular regions embracing the tip of a finite V-notch
can be used to reduce the Notch Stress Intensity Factors (NSIFs) in structures subjected to antiplane shear or
torsion. Towards this goal, this work presents a novel theoretical framework to calculate stress distributions
and NSIFs in closed-form. Thanks to the new solution, it is shown that by tuning multimaterial region radii
and elastic properties it is possible to significantly reduce the NSIFs and stress concentrations at the material
interfaces.

To investigate whether the proposed multimaterial system translates into increased structural capacity
even in the presence of significant nonlinear deformations, computational simulations were conducted using
nonlinear hyperelastic-damage and elasto-plastic-damage models. The preliminary results show increases of
structural capacity up to 46% and of nominal strain at failure of up to 86% at the expenses of only a 8%
reduction in structural stiffness.

It is expected that a similar approach can be extended to other loading conditions (e.g. mode I and mode
II, and fatigue) and that even larger gains can be obtained by performing thorough optimization studies.

1. Introduction

The advent of multimaterial additive manufacturing has given re-
searchers and designers the opportunity to explore unprecedented ways
to increase the damage tolerance of structural components (Bandy-
opadhyay and Heer, 2018; Rafiee et al., 2020). Ubaid et al. (2018),
for instance, investigated multimaterial jetting additive manufacturing
to realize strength and performance enhancement of multilayered ma-
terials by spatial tailoring of adherend compliance and morphology.
Compared to the baseline homogeneous system, they were able to
obtain an increase of strength by 20%, toughness by 48%, and strain
at failure by 18%.

Lin et al. (2014) leveraged multimaterial additive manufacturing to
explore the mechanical behavior of suture interfaces inspired by the
intricate, hierarchical designs of ammonites. They showed that proper
combinations of soft and hard materials along with proper selection of
the order of hierarchy of the interface can lead to significant stiffness,
tensile strength, and toughness compared to conventional interfaces.

Suksangpanya et al. (2018) used multimaterial additive manufac-
turing to reproduce the Bouligand structure present in the dactyl club
of the smashing mantis shrimp. Leveraging experiments on three-
point bend specimens and semi-analytical modeling, they showed that,
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thanks to changes in local fracture mode and increases in crack surface
area, the initiation fracture toughness can be increased almost twofold
while the fracture toughness at catastrophic failure can be increased
of an order of magnitude. Zaheri et al. (2018) showed that similar mi-
crostructures are the secrets for the outstanding stiffness and toughness
of the cuticle of the figeater beetle (Cotinis mutabilis).

Raney et al. (2018) developed a novel rotational 3D printing method
that enables spatially controlled orientation of short fibers in polymer
matrices by varying the nozzle rotation speed relative to the printing
speed. Using this technology, they fabricated carbon fiber-epoxy com-
posites composed of volume elements with defined fiber arrangements.
By tailoring the fiber orientation in select areas, the authors were
able to demonstrate the possibility of increasing damage tolerance and
capacity of several structural components.

Martin et al. (2015) proposed a new additive manufacturing tech-
nology called “3D magnetic printing” that is capable of printing dense
ceramic/polymer composites in which the direction of the ceramic-
reinforcing particles can be finely tuned. Thanks to this new method,
the authors explored the mechanics of complex bioinspired reinforce-
ment architectures showing the possibility of steering cracks using
controlled mesostructures and increase damage tolerance.
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Fig. 1. Examples of the systems investigated in this work: (a) component under antiplane shear and (b) three-quarter section view of a circular shaft under torsion. Both systems
are weakened by a V-notch featuring a circular region made of a different material embracing the tip.

Leveraging 3D printing of continuous carbon fiber composites
Sugiyama et al. (2020) investigated the optimization of curved fiber
trajectories to realize variable fiber volume fraction and stiffness com-
posites to increase the capacity of composite structures. They were
able to show that proper selection of the fiber paths can increase the
ratio between the structural capacity and its overall weight of almost
60% compared to traditional designs. Using a novel isogeometric
computational framework Suzuki et al. (2021) showed that the stress
concentration factor of notched additively manufactured composites
can be reduced to almost half without affecting the structural stiffness.

Inspired by the foregoing recent advances in additive manufactur-
ing, this work aims at exploring the use of multimaterial configurations
to increase the capacity and toughness of V-notched structural com-
ponents under antiplane shear or torsion. In fact, several structural
engineering components including e.g. power transmission shafts for
automotive or wind energy, levers, springs, brackets, and screws for
power transmission are subjected to antiplane shear or torsion as
the predominant loading conditions. In such components, geometrical
variations are ubiquitous. These lead to the presence of notches -such as
the finite V-notch- and grooves which may lead to crack formation and
final failure. The idea explored in this study and shown in Fig. 1(a,b)
is to investigate the addition at the tip of the notch of multiple cir-
cular regions made of different material combinations to reduce the
Notch Stress Intensity Factor (NSIF) (Gross and Mendelson, 1972) and
promote higher energy dissipation by plastic deformations. The goal
is to increase the resistance to fracture thus improving the structural
performance of these important engineering components.

In pursuit of this goal, the problem is initially investigated within
the framework of Linear Elastic Fracture Mechanics (LEFM) to deter-
mine the effects of the material properties and notch configuration on
the NSIF. Recently, significant studies have investigated the stress field
and stress intensity factors in multimaterial structures under antiplane
shear and torsion. Leveraging a complex potential approach Zappalorto
and Salviato (2019) developed closed form and approximate solutions
to describe the antiplane shear stress distribution in orthotropic plates
with lateral blunt notches. They later extended this approach for the
case of in-plane shear loading (Pastrello et al., 2022).

Salviato et al. (2018) and Zappalorto et al. (2019) investigated the
mode III stress distribution ahead of cracks initiated at sharp and blunt
notch tips. They were able to provide closed form solutions for the
calculation of the Stress Intensity Factors (SIF) for a number of notch
configurations.

However, notwithstanding the efforts devoted in the past decades,
a theoretical framework for the calculation of the displacement and
stress distributions for multimaterial V-notches as the ones shown in
Fig. 1(a,b) is still elusive. This is the topic of the first part of the
present study in which, combining conformal mapping and complex
potentials, a new general method for calculating the stress distribution
in such multimaterial systems in closed form is presented. Thanks to
the proposed theoretical framework, the present study investigates the
effects of the material properties and region radii on the NSIF providing
clear guidelines for the mitigation of the stress intensity at the notch
and the stress concentration at the material interfaces. It is worth men-
tioning here that such theoretical framework is key to fully understand
how the geometrical and material parameters of the problem affect the
process of failure and to build on this knowledge to investigate more
complex configurations numerically. The understanding obtained via
analytical solutions of a simple representative problem is way deeper
than any computational simulation. In fact, closed-form solutions pro-
vide an explicit description of the fundamental relationships describing
the problem while computational modeling only provides a mean to
perform experiments “virtually” but does not provide the researcher
with a final law synthesizing the results. Only after shedding light
to the physical laws of a simple-yet-representative problem such as
the one presented in this work can one leverage this knowledge to
investigate more complex configurations numerically and to obtain a
proper comprehension of the problem.

Finally, in the second part of the study, advanced elastoplastic-
damage and hyperelastic-damage models are implemented to inves-
tigate the efficacy of the proposed multimaterial system even in the
presence of significant inelastic strains which are likely to occur un-
der the investigated loading conditions. The results confirm that the
concept of multimaterial notch blunting can lead to significant reduc-
tions of the NSIF, which translates into higher structural capacity and
toughness.

The article is organized as follows. Section 2 presents a novel
general theoretical framework for the analytical solution of the stress
field in multimaterial domains subject to antiplane shear and torsion.
Section 3 discusses the application of the approach to the case of a
bimaterial system. It provides closed form solutions for stresses, NSIFs,
and displacement as function of the geometrical configuration of the
notch and the elastic properties of the materials. Section 4 presents the
application of the theoretical framework to the case of a trimaterial
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Fig. 2. (a) 2D domain QU 02 subjected to a remote antiplane shear stress 7., and (b) example of the conformal transformation z = &4 with ¢ =2 (x — a) /7 and & = u+iv typically

used for the description of deep hyperbolic notches (Neuber, 1958a,b).

configuration. Several contour plots are presented to discuss the com-
plex influence on the NSIF of the radii of the regions and their elastic
properties. Section 5 discusses the implementation of elastoplastic-
damage and hyperelastic-damage models for the nonlinear simulation
of torsion in bimaterial system composed of vulcanized rubber and
epoxy. The models allow to capture the plastic deformation close to the
notch tip and enable the evaluation of the effectiveness of the proposed
multimaterial system in the presence of realistic deformations. The
manuscript ends with Section 6 where a thorough analysis of the main
conclusions of this work is presented.

2. Unified solution for the stress fields in antiplane shear and
torsion problems in multi-material domains

2.1. Governing equations in isotropic and homogeneous media

Let us consider first a semi-infinite 2D domain 2 U d22 made of a
isotropic and homogeneous material featuring a linear elastic behavior
and assume that the domain is subjected to a remote antiplane shear
stress 7, Fig. 2(a). Considering the Cartesian coordinate system (x, y, z)
defined in Fig. 2b, the equilibrium equation assuming the absence of
body forces can be written as follows:

0t 0Ty

a5 o = 0 @
where 7_;(i = x, y) = shear stress components in x— and y— directions.
The shear stress components are linked to the engineering shear strains
through Hooke’s law: z,; = 1/Gy,;(i = x,y) where G represents the
elastic shear modulus of the material. Introducing the kinematic rela-
tionships, the stresses can be written as a function of the displacement
in the z-direction, w: 7,, = Gow/dx and 7,, = Gow/dy. Then, if
one substitutes the foregoing expressions into Eq. (1), the governing
equation in terms of the displacement becomes a two-dimensional
Laplace equation:

Viw =0 @)

where V? = 9% /dx? + 9?/dy* = the laplacian operator.

The solution of Eq. (2) in the two-dimensional domain Q U dQ2 in
the presence of Dirichlet or von Neumann boundary conditions on 00
can be particularly cumbersome except for cases in which the domain
is simple. To overcome this problem, it is convenient to leverage

conformal mapping to transform the complex domain in one for which
it is easier to apply the boundary conditions. Conformal maps can
be described by complex analytic functions (Fisher, 1999; Brown and
Churchill, 2009) so that the change of coordinates takes the form:
z = z(&) with z = x +iy and & = u + iv. It can be shown that the
transformation is always bijective and satisfies the Cauchy-Riemann
(C-R) conditions du/dx = dv/dy, du/dy = —dv/dx in Q. Since the
Laplace equation is conformally invariant, the advantage of using a
conformal map is that the governing equation in the new coordinates
takes the same form as the one in Cartesian coordinates:

Pw 0w

e o =0 ®
while making it easier to apply the boundary conditions (Fisher, 1999;
Brown and Churchill, 2009). The curvilinear stress components in the
new coordinate system can be calculated as follows:
. _Goaw __Gow

o hoou’ T hoov

4

where h = h, = \/(0x/0u)* + (dy/ou)* = h, = 1/ (0x/dv)* + (dy/dv)* are

the metric coefficients of the transformation (Sokolnikoff, 1956).

Salviato and Zappalorto (2016) showed that a significant simplifi-
cation to the solution can be provided by considering conformal maps
in which the condition v = v, (with v, being a real constant) describes
the portion of boundary, d£2,,, where the shear stress normal to the
boundary is null: 7, = 0. In fact, in such a case:

w = Au 5)

and the curvilinear stress components can be calculated as follows:
W

T,, = N T = O (6)

oGl =
where ||z/ (¢)|| = h is the magnitude of the first derivative of the
conformal map and y = AG is a constant to be determined by imposing
the remote stress conditions. Then, the expression for the Cartesian

stress components takes the following form (Salviato and Zappalorto,
2016):

dé(z
Ty — ity =W fl(z ) @
The mathematical proof in support of the foregoing equations can
be found in Salviato and Zappalorto (2016) or Salviato and Phenisee
(2019) where a similar framework was used to solve problems in

electrostatics.
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Fig. 3. Example of semi-infinite domain Q = Q4 U 2% with a finite notch featuring
one or more regions of different materials surrounding the tip. The 7, = 0 condition is
applied to !2:0 and Qfo for regions A and B respectively. 248 represents the interface
between regions A and B.

2.2. Governing equations for notches featuring multi-material regions em-
bracing the tip

In this work, we seek to develop a new solution for the antiplane
shear stress field for notches featuring multi-material regions embrac-
ing the tip (Fig. 3). In fact, expressions linking the geometrical and
material parameters to the stress distribution and related Notch Stress
Intensity Factors (NSIFs) are still elusive.

With reference to Fig. 3, let regions 24 and 27 be made of different
linear elastic materials featuring shear elastic moduli G, and G re-
spectively. Let a.QA and a.QB be the portions of boundary subjected to
no stresses for reglons A and QB respectively while 0248 represents
the interface boundary between the two regions. Let also w, and wg
be the displacement components in the z—direction in regions 24 and
08 respectively.

Taken singularly, each region can be considered as homogeneous.
Hence, the same governing equation for homogeneous materials, Eq.
(2), can be applied to each region separately. Accordingly, the system
of equations to be solved reads:

Viw, =0, for (x,y) € Q4 (a)

A =0, for (x,y) € 0920 (b)

Viwp =0, for (x,y) € 2F © ®
3 =0, for (x,y) €022, (d)

73, = Tg,, for (x,y) € 0248 (e)

w, =wg, for(x,y)€dR48 (f)

where Egs. (8)(b), (8)(d), and (8)(e) represent equilibrium conditions
on the boundaries and Eq. (8)(f) guarantees the compatibility of the
displacement field. This latter condition, along with Eq. (8)(e), is
necessary since 2 = 24 U Q2 is not homogeneous.

The solution of the foregoing system of equations can be generalized
and significantly simplified by taking advantage of proper conformal
maps as described next.

2.3. General solution framework

The new solution presented in this work relies on the use of a set of
conformal maps describing each multimaterial region. Let us consider
two conformal mappings z = z(&,) and z = z (&) with &, = u, + iv,
and £ = u+iv. The two maps are defined so that the condition v, = v,
describes 0.(2"‘ UBQB while v = v, describes a.QB UaRA~B (see Fig. 3).
Furthermore, the complex function ¢, = p(.f) deflnlng the relation
between the two curvilinear variables is an analytic function. Taking
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advantage of the proposed conformal maps, the system of governing
Egs. (8)(a)-(8)(f) can be significantly simplified as follows:

6;1:? 6;;‘%,4 =0, for¢, € (-0, 00)X [v,0,00) (a)
?;)A =0 for v, = vy (b)
6;:;3 0;2‘23 =0, for¢ € (—o,00)X [vy, o) © ©
as)UB =0, for v = v, @
G, 0;0A =Gy f);‘)UB’ for & € 9QAB ©
w4 =wg, for £ € 0QA-B ®

where w, (u,v) = w, [u, ,v), v, (u,v)| represents the displacement in
region Q4 written as a function of the curvilinear coordinates u, v.

For the solution of Egs. (9)(a)-(9)(f) one can note that an easy
way to satisfy compatibility, Eq. (9)(f), and Egs. (9)(a)-(9)(d) at the
same time would be to extend the solution for 24 to Q8 (subproblem
1 in Fig. 4). In fact, let w, = wy (“w uu) satisfy Egs. (9)(a) and
(9)(b). Then, as composed function of two harmonic functions, wp =
w4 (U, v) = wy [u, w,0),v, )] would be harmonic in &. Considering
the definitions of &, and ¢, this means that wy would also satisfy
both Egs. (9)(c) and (9)(d). However, a simple extension would not be
enough to fulfill the equilibrium condition, Eq. (9)(e), on the interface
04-8 which also depends on the elastic properties of each region. To
solve this problem, the solution for the displacement in 2% must be
augmented by an additional term. Such term should still satisfy the
equilibrium condition in a.QBO A natural choice is to use Bu since
it automatically satisfies the condition that d(Bu)/dv = 0 in anO.
It is interesting to note that, following the derivations presented in
Section 2.1, Bu would be the solution for the displacement field in
region B if region A were eliminated and the same remote boundary
conditions were applied (subproblem 2 in Fig. 4).

Following Eq. (5), it is easy to derive the expression for the displace-
ment w in Q = Q4 U QB:

foré, e Q4 (a)
for e QB (b)
10)

wA( Uy, v) Cu,,
wpg (u,v) = Aw 4 (u,v) + Bu = Au,, (u,v) + Bu,

where A, B,C are real constants to be determined by imposing the
remote stress, and the equilibrium and compatibility conditions on the
interface. Finally, leveraging Eq. (7), the Cartesian components of the
stresses can be calculated by taking the real and imaginary parts of the
following equation:

CcG, d, (Z), foré, € Q4 (a)
Tzx — isz = C(liéz (2) dé (2) 1)
Gp|A=—+B dzz , forée QB (b)

In summary, the displacement and stress distributions in multi-
material domains as the one shown in Fig. 3 can be obtained by
performing the following three-step procedure (Fig. 4):

Step 1: Using the analytical approach described in Section 2.1, find
the solutions for the displacement and stress distributions
underlain by the transformations z = z(fv) and z = z (&)
(subproblems 1 and 2 in Fig. 4).

Find the general solution for the displacement of the original
problem, defined except for the constants A, B, and C, by
combining the solutions of the subproblems, Egs. (9)(a)-(9)
(see Fig. 4, Step 2). Then, calculate the stress distribution
leveraging Egs. (11)(a) and (11)(b).

Step 2:
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( Step 1 ) ( Step 2 ) ( Step 3 )
find solution for each subproblem combine subproblem solutions impose compatibility & remote BCs
N A N y N )
subproblem (1) original problem
o ® Too = Toe compatibility & equilibrium
T QOQ ® Too @ Q ® A - B
® /" \ ® O] @ ® T@wA:wBZ”_ T Q®
soly 1 w = kuy, » ® ® * “® & T
O] ®
subproblem (2) solution: .
©) ® o lim" 7.2 = 7o remote BC
To® ® Too wy = Csol; in ) llz]|—00
O/ ~—0© wp = Asoly + Bsoly, in QP find: constants A,B,and C
L soly 1w =mu ) L ) L )

Fig. 4. Flowchart summarizing the three-step strategy for calculating the stress distribution. Step 1 requires the calculation of the stresses for the subproblems defined by the
transformations z = z (5,{.) and z = z(&). In Step 2, the general solution of the original problem is obtained as a combination of the subproblem solutions. Finally, in Step 3, the
final solution is uniquely defined by imposing the equilibrium and compatibility conditions on the interface, and the remote conditions.

10,4
z (&v)
7~
O >
-1 0 1 Uy

| 2a I .
—btana btan o

Fig. 5. Conformal map, Eq. (12), transforming the upper half plane, v, > 0 into a semi-infinite domain weakened by a finite V-notch of depth » and opening angle 2a.

Step 3: Find the values of the constants A, B, and C by imposing
compatibility and equilibrium along the interface 9248, and
by imposing the remote stress condition: lim),_q 7.y = 7o
(Fig. 4, Step 3).

The application of the general framework to the particular case
of a multi-material V-notch as the one shown in Fig. 3 requires the
solutions of two subproblems: the finite V-notch and the finite V-notch
with a circular end hole (see Fig. 4, Step 1). Such solutions are derived
in the next sections for the first time.

2.4. Finite V-notch

As discussed in the previous sections, the solution for the displace-
ment and shear stress distributions for the finite V-notch can be easily
obtained from Eq. (7) provided that one knows the conformal map Z =
z (50) transforming the upper half-plane (v, > 0) into a semi-infinite
plane featuring a finite V-notch (Fig. 5). With reference to the coordi-
nate system shown in Fig. 5, such mapping can be derived leveraging
a Schwarz—-Christoffel transformation (Driscoll and Trefethen, 2002):

A,z exp [i (a- %)] 2

a
2(77:—a) §U<]_”)H(a,§u)+l‘b

where b represents the depth of the V-notch, 2a € [0, x] is the notch
opening angle, and the boundary featuring zero shear stress compo-
nents in the normal direction, 0%, , is defined by the condition v, = 0

Z©= 12)

(Fig. 5). Furthermore,

by/z
A= SaT U —ajm T (/2 a)n) (13)

is a constant depending on the notch depth » and notch opening angle «

with I'(r) = i x'~! exp(~x)dx being the gamma function (Abramowitz
and Stegun, 1964). Finally:

- L ey a, an
H(ag)=oF (;-2.1-22-2.2) a4

where , F\(a,b;c;z) = Z,‘io(a)k(b)k /(c)z¥/k! is the Gaussian hypergeo-
metric function (Andrews et al., 1999; Yoshida, 2013).

Starting from the conformal map, Eq. (12), the Cartesian stress
components written as a function of the curvilinear coordinates can be
calculated taking advantage of Eq. (7):

dz (fv):|_l _ (55_1)1/2—11/:!

Tox T2y =W [— 2a/x
v

i, 1%

from which one can note that the remote boundary condition gives
limye oo (724 —i7;y) = W = 7. Then, the equations for the stress
components can be rewritten as a function of the remote stress 7, by
extracting the real and imaginary parts of Eq. (15) as follows:

(2= 7= 1) + 4o

)1/2—a/7r

] 1/4—a /27

Tox (U V) = Toq cosy (16)

(uf + 07
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Fig. 6. Normalized stress distribution for a finite V-notch of depth » =5 mm and opening angle 2a = 90° subjected to a remote stress lim__, 7., = —7: (a) 7,4/7, and (b) z,, /7.

1/4—a/2n
(@2 =02 = 1) + 4o
sinn a7

7oy (0 0) = Too (12 +02) Pl
where n = (a/m—1/2)arg (> — v —1+2iu,v,) + (1-2a/7)
arg (u, +iv,). It is worth mentioning that, leveraging Eqgs. (16) and
(17), the polar components can be calculated easily: z,. = cosfz,, +
sinfz,, and 7,5 = cos 7., — sin f7,,.

Contour plots of the shear stress components calculated by means
of Egs. (16) and (17) are shown in Fig. 6.

2.4.1. Near-tip stress field

The stress distribution described by Egs. (16) and (17) is written
as a function of the curvilinear coordinates u, and v,. However, for
practical uses, it would be convenient to express the stress components
as a function of a Cartesian coordinate system centered at the tip, (x, y),
or a polar coordinate system (r,0). This would require the inversion
of the conformal map expressed in Eq. (12): &, (x,y) = Z7'(x,y).
However, considering the complexity of the transformation, a closed-
form solution would not be attainable. A possible way to overcome this
issue is to acknowledge that the failure behavior of the structure will
mostly depend on the stress distribution close to the notch tip rather
than away from it. Furthermore, for the calculation of the Notch Stress
Intensity Factor (NSIF), only the near-tip stress field is of relevance.
Accordingly, one can focus on the calculation of the stress components
in a region sufficiently close to the tip where significant simplifications
can be introduced. In fact, expanding Eq. (12) in Laurent series around
&, = 0 (which is the condition describing the location of the notch tip),
retaining only the linear terms, and substituting into Eq. (15) one can
find the following expression for the stresses closed to the tip (Salviato
and Zappalorto, 2016):

1/g-1

Tox = iT;, = To €XP [1%‘;1)] (%) z!/a-1 (18)

where the equality 2a = 7 (2 — ¢) has been used. Using the foregoing

equation, the Notch Stress Intensity Factor (NSIF) (Gross and Mendel-

son, 1972) can be easily determined leveraging its definition K; =
2z limy,_o 7., (0, y) y'=1/4 which leads to the following expression:

Ky =1, b "k, 19)
where:
1-1/q
N
ky=V2r (20)
qcosaf(l - %)F (% + %)
is a dimensionless function depending solely on the notch opening
angle. After calculating the NSIF and extracting the real and imaginary

parts of Eq. (18), the near-tip Cartesian stress components can be
written in polar coordinates as follows:

_ K; 1 7
TZX—RCOS [(1—;) (9—5)] (21)

10
- Symbols: exact solution, Eq. (31)

Solid lines: near-tip sol., Eq. (43)
O 200 =225°
15 @) 200 = 900
A 20 =135°

1

1_
q

normalized stress, 7,9/7oob

D
g
D
5§

0.01 0.1 I
normalized distance from the tip, r/b

Fig. 7. Double-logarithmic plot showing the normalized stress, 7, /rwbifl, as a
function of the normalized distance from the notch tip, /b along the bisector (6 = 7 /2).

K5 . 1 T
=5 I--)(6-= 22
o= (-0 -3) 2

Finally, leveraging the relationship r,, — iz, = exp (if) (t,, — it,,), one
can derive the equations for the polar stress components:

K; 1l (7 P
T, = ﬁcos [5 (5—19)—5] (23)
2zr 4
K .1
= %sm [5 (%—0)—%] 24)
\2rr 4

Fig. 7 shows the normalized stress, ||rzg||/rmb%_l, as a function of
the normalized distance from the notch tip along the bisector, r/b, in
double-logarithmic scale for various notch opening angles. The symbols
represent the exact solution calculated numerically by means of Eq.
(16) while the solid lines show the stresses calculated using the near-
tip solution, Eq. (24). As can be noted, the stresses feature a singularity
of order 1 — 1/q with ¢ = 2 — 2a/x for r — 0 as abundantly reported
in previous literature (Neuber, 1958a,b; Zappalorto et al., 2008). The
strength of the singularity increases with decreasing values of the notch
opening angle, 2a and takes the maximum value of 1/2 for the case
of a crack, 2a = 0. Another interesting observation that can be drawn
from Fig. 7 is that the near-tip solution, Eq. (24), provides a remarkably
good approximation of the exact solution for distances up to one tenth
of the notch depth, b. Considering that for brittle materials the size
of the Fracture Process Zone (FPZ) is generally considerably smaller
than typical notch depths, the use of the near-tip solution for the
application of failure criteria is more than justified. The same holds
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Fig. 8. Normalized stress distributions 7_, /wai-l and 7,/ rmbi_1 along circular paths
of radii r = 1/20b and r = 1/5b centered at the tip and embracing the notch. The notch
opening angle, 2q, is equal to 90° in both cases.

true for quasibrittle media featuring a finite FPZ provided that Irwin’s
characteristic length, 1., = G;;;.G/f? (Irwin, 1958) with G = shear
modulus, G;;;, = mode-III fracture energy, and f, = shear strength, is
smaller than »/10 (Bazant and Planas, 1997; Bazant et al., 2021). Of
course, for all the other cases one can always use the exact solution,
Eq. (16), which captures the transition from the singular field to the

remote stress 7, (Fig. 7).

1_ 1_
Fig. 8 shows the normalized stresses 7,4/t b4 " and T,/ Toob !

along circular paths of radii »r = 1/20b and r = 1/5b centered at the
tip and embracing the notch for an opening angle 2« = 90°. Again, the
symbols represent the exact solution calculated numerically by means
of Eq. (16) while the solid lines show the stresses calculated using the
near-tip solution, Egs. (23) and (24). It is interesting to note that the
near-tip solution provides a very good approximation of the stresses for
both the radii.

2.5. Finite V-notch with circular end hole

The mapping for the finite V-notch with a circular end hole can
be obtained introducing the following transformation on the V-notch
curvilinear coordinates:

& =uy+iv, = p@n =5 (-ig+ Var - &) (25)

where &, represents the curvilinear coordinates of the conformal map
describing a finite V-notch of depth b (see Eq. (12)), and ¢ represents
the curvilinear coordinates of the finite V-notch of depth » and a final
circular end hole of radius a as shown in Fig. 9. By introducing the
change of coordinates in Eq. (12), the following expression can be
found:

Z@) = w [ (—i§+ Va2 —52)]2_27“ 7 (@, 1,6 +ib

i
2(r—a) 2
(26)
where:
x (@, 1,8)=Hla,p 0] =,F

x {1_9,1_1,2_5,[1 (_ig+m)]2}

2 T 2

27)

and ¢ is a parameter depending on the ratio between the notch radius
and depth, a/b, while the constant A, was defined in Eq. (13). Fig. 9
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shows how Eq. (26) transforms the upper half-plane into the desired
semi-infinite plane weakened by a V-notch with a circular end hole.

Once the conformal mapping of the notch is known, the stresses
can be calculated by extracting the real and imaginary parts from the
following simple expression:

d dz @\
Tzx isz =y iiZ) =y (%) = T8 (5) (28)
where:
g n=

2a
T

2 VAT =g (e iar - ) 29)
[—2 (1+12) +¢ (.»: + im)]’%*g [2i12 +é (—i§ + \/W)]

and 7, = limyg o7, — i7;, is the applied remote stress. Eq. (28)
provides the expression of the stresses as a function of curvilinear
coordinates in the whole domain. Contour plots of the shear stress
components calculated by means of Eq. (28) are shown in Fig. 10a,b.

2.5.1. Maximum shear stress at the notch tip

Owed to the complexity of Egs. (26) and (28), providing explicit
expressions for the stresses as a function of Cartesian coordinates can be
particularly cumbersome. However, simple relationships can be easily
found to describe the stress fields close to the tip of the notch as it was
done in Section 2.4.1 for the finite V-notch. By expanding Eq. (29) in
Laurent series around ¢ = 0, which defines the location of the notch
tip, and retaining only the linear terms of the expansion one gets:

1/2-a/n ‘t2a/7t—2 [7[ (2 + 22) - 20{]
+i (1+t2)1/2+oz/ir]r

which, by setting the condition for the notch tip (¢ = 0) and combining
it with Eq. (28), gives the expression for the maximum shear stress:

1-2a/n
1/ 2
T =27 [—1 nald ] (31)

zx t

(30)

gED +1%)

2
t1-2a/7 (

This simple expression, presented for the first time in this work,
shows that the maximum shear stress depends on the remote stress
7, the notch opening angle 2a, and the notch radius/depth ratio a/b
through the parameter ¢. It is difficult to express the dependence of ¢
on the ratio a/b in closed-form however, a very accurate approximation
can be found in Appendix A.

Thanks to Egs. (31), (A.2), and (A.3), it is possible to calculate the
stress concentration factor, 7]\ /7., as a function of the ratio between
the notch depth and radius, p = a/b for various notch opening angles,
2a, as shown in Fig. 11. As can be noted from the figure, p has a sig-
nificant effect on the maximum stress regardless of the notch opening
angle. In particular, a smaller p leads to higher stress concentrations
with the limit case p — 0 leading to a stress singularity. On the
other hand, it is interesting to note that the dependence of the stress
concentration factor on the notch opening angle is more complex. In the
range p € (0,0.2] the opening angle has a significant effect on the stress
concentration, lower 2« leading to higher concentrations. However, for
p > 0.2, the effect of the notch opening angle becomes negligible, with
all the curves converging to one master curve regardless of the value
of 2a.

2.5.2. Near-tip stress field

After the maximum stress is found, the stress field close to the notch
tip can be found using the following conformal map describing an
infinite V-notch with an end hole:

z=i[% <—i§+ W)]q (32)

where ¢ = 2(x — «)/x. This transformation is obtained by introducing
the transformation defined in Eq. (25) into the conformal map z =
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Fig. 9. Schematic representation of the conformal map provided by Eq. (26), transforming the upper half-plane v > 0, into a semi-infinite domain featuring a finite V-notch with

circular end hole of depth b, radius a, and opening 2a.
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Fig. 10. Normalized stress distribution for a finite V-notch of depth b =5 mm and opening angle 2a = 90° with circular end hole of radius a = 0.3b subjected to a remote stress

lim,_, 7,, = —7: (@) 7,9/7, and (b) 7,, /7.
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Fig. 11. Stress concentration factor for a finite V-notch with a circular end hole as a
function of the ratio between the notch depth and radius, p = a/b, calculated leveraging
Egs. (31), (A.2), and (A.3).

i&% which describes a deep hyperbolic notch of opening 2a (Neuber,
1958a,b). Since only the stress field close of the tip is of interest and
the stress concentration factor is known from the previous calculations,
the effects of the finiteness of the V-notch portion can be neglected. This
makes it possible to express the curvilinear coordinate ¢ as a function

of z:

&=i[-a*/i(=iz)™V + (~iz)'/1] (33)

Now, the stresses can be easily calculated in polar coordinates as

follows:

d
Ty — iTz9 = wexp (i) il(ZZ)

v 34)
= i— exp (i9) [a?/9(=i) /71710 4 (—p)l/a 71414
q

which, after a few algebraic manipulations and extracting the real and
imaginary parts can be written as:

= [(2) im0 £) ~sin (0- 7] ()
T,p = er;kl [(%)Z/q cos (6 - %) + cos (0 - %)] (36)

By setting 6 = z/2 and r = a it is possible to find the relation between
the constant y and the maximum shear stress:

2pal~1/4
o = VL 37
Z

q

Finally, the stress equations can be rewritten as a function of the
maximum stress:

= B () (4) s (o-5) ~sn(o-2)]
= S (2)7 (2 cos (0- 5) wems (0 2)]

where Ty was derived from the full-field stress distribution, Eq. (28),

in the previous sections and can be calculated leveraging Egs. (A.2) and
(A.3).

(38)

(39
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the notch tip along the bisector, (r —a)/a for a = 1/20b.
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Fig. 13. Normalized stresses, ‘rﬂq/'rmbi_1 and rz,/rwh%_l, along circumferential paths

embracing a V-notch with a circular end hole of radius a = 1/20b.

It is worth noting that Egs. (38) and (39) agree with the equations
proposed by Zappalorto and Lazzarin (2011) for the analysis of deep
V-notches with circular end holes. However, the solution presented for
the first time in this work is more comprehensive since it can be applied
to both finite and deep notches and it accounts for the effects of the
depth of the notch and the radius of the end hole. The latter condition
is necessary to be able to calculate the maximum stress z7;™* without
relying on numerical approaches such as the Finite Element Method
(FEM).

The stress distributions calculated by means of the exact and near-
tip solutions are shown in Figs. 12 and 13. Fig. 12 shows the normalized
1

stress, ||zl /rmbTI, as a function of the normalized distance from
the notch tip along the bisector, (r — a)/a in semi-logarithmic scale for
various notch opening angles and a = 1/20b. The symbols represent
the exact solution calculated numerically by means of Eq. (28) while
the solid lines show the stresses calculated using the near-tip solution,
Eqg. (39). As can be noted, the near-tip solution, Eq. (39), provides a
remarkably good approximation of the exact solution.

1_ 1_
Fig. 13 shows the normalized stresses 7,4/t b4 " and T, [Toob '

along circular paths of radii » = 1.1a and r = 2a embracing the notch
for an opening angle 2a = 90°. Again, the symbols represent the exact
solution calculated numerically by means of Eq. (28) while the solid
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lines show the stresses calculated using the near-tip solution, Egs. (38)
and (39). It is interesting to note that the near-tip solution provides a
very good approximation of the stresses for both the radii.

3. V-notch with circular region of a different material embracing
the tip

The previous sections analyzed the displacement and stress distribu-
tions for the case of a V-notch and a V-notch with a circular end hole.
As explained in Section 2.3, these distributions are required to find the
solution for a V-notch featuring a circular region of a different material
embracing the tip (Fig. 3). Hence, after obtaining the foregoing novel
results, the next step is to characterize the constants A, B, and C utilized
in Egs. (9)(e) and (9)(f) to calculate the displacements in regions 24
and Q8. This can be accomplished by imposing the equilibrium and
compatibility conditions on the interface, Egs. (10)(a) and (10)(b),
and the remote condition lim,_ 7,, = 7. Towards this goal, it is
convenient to note that v = 0 on the interface 248 so that the
following relation between the coordinates £, and & holds:

1

. u
uU+lUU=5+2

which means that at the interface, where r = a, the following simple
relation between the curvilinear coordinates applies: u = 2u,,. Substitut-
ing this result into Egs. (9)(e) and (9)(f) and performing a few algebraic
manipulations gives the following system of equations:

42 —u (40)

G,C=GpA
A B (@ (41)
C=A+2B (b

which leads to C = 2B/(1-G4/Gp) and A = G,/Gy[2B/

(1-G,/Gg)]. To determine the value of the constant B, one can
impose the remote condition:
. Gpowg
T = lim —2 = =Gy (A+B) (42)
Then, after combining Egs. (41)(a), (41)(b), and (42) it is finally
possible to get the following expressions:
2G
A= % (43)
G (1+G,/Gy)

7, (1-G4/Gp)
B=2>2—— — - 44
Gy (1+G,/Gp) “o
27
C=——— (45)
Gp (1+G,/Gp)

Substituting into Egs. (10)(a) and (10)(b) the displacement can be
calculated as follows:

27
— =, foré, e Q4 (a)
Gy (1+G,/Gp)
= 26,7 e (1-G,/Gy)
— A o+ foree QP (b)
G2 (1+G,/Gp) Gy (14+G,/Gp)

(46)

showing that the displacement depends on the domain geometry
through the curvilinear coordinates u,, u, and v, the remote stress 7,
and the shear moduli G, and G.

After deriving the equation for the displacement, the stresses in
region 24 can be calculated using the following relation:

-1
dz
zx_iTZy=GACd§(IiZ(Z) =GAC( défu)>

1/2-a/n

(47)
2,G4/Gp (8- 1)
(1+G4/Gg)  gl2al=
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2.0

Fig. 14. Normalized stress distribution for a finite V-notch of depth » = 5 mm and opening angle 2a = 90° with circular region made of different material of radius a = 0.3b

embracing the tip. The notch is subjected to a remote stress lim,_, ., 7.

o Tox = —To- The material inside the circular region Q24 features a shear modulus G, = 1500 MPa while the outer
region, 27, has a shear modulus G, = 3000 MPa: (a) 7.,/7,, (b) magnified view, (¢) r,,/7,, and (d) magnified view. Note the discontinuity on 7, /7., on the interface between

Q4 and QF while 7, /7, is perfectly continuous for equilibrium.

By extracting the real and imaginary parts of the equation, the stresses
can be written as follows:

) ) 2 2 5 1/4-a/2n
2r,,G,/Gp [(“u—%—l) +4”UUU]

el (1+G,/Gy) (2 + Uz)l/z“’/” cosn (48)
v v
3 1/4—a /27
20,6y /Gy (202 = 1) +de?] |
o (1o 00) = (1+G4/Gp) (12 + uz)l/z“’/” sin(49)
v v

where n = (a/mr—1/2)arg (¥ —v? —1+2iu,v,) + (1-2a/n)
arg (u, + iv,). It is worth mentioning that Eqs. (48) and (49) differ from
the expressions for the homogeneous case, Egs. (16) and (17), only
for the factor 2G,/[Gg(1 + G,/Gp)]. It is interesting to note that for
G,/Gp — 1, Egs. (48) and (49) tend to the homogeneous case. On
the other hand, for the case in which region Q4 is significantly stiffer
than Q%, G,/Gp — oo, the multiplying factor tends to 2. This means
that, in such scenario, the stresses in 24 tend to be two times larger
than the homogeneous case for the same remote stress 7. As expected,
the case in which region Q4 is significantly more compliant than Q5,
G4/Gp — 0, leads to negligible stresses.

For region Q8, the stresses can be calculated starting from the
following equation:

d¢, (2) +B d¢ (Z)]

T, —iT,, =Gp [A iz i

-1 _ 50
_oa(EE)) | g dz@) 0
- de, de
which, after inserting Egs. (43)-(45), gives:
e 21,G4/Gp 1-G4/Gg
Tox — 1Tz = 1+GA/GBf( v)+foo1+GA/GBg(§vt) (51)

10

where:

(52 _ 1)1/2—a/7r
v

1-2a/7 (52)
v

f(&)=
and g (&,1) was defined in Eq. (29). By taking the real and imaginary
parts of the equation, it is possible to extract the stress components
as a function of the curvilinear coordinates &, and &. In regard to the
stresses, it is interesting to note that for G,/Gp — 0 the stresses in Eq.
(51) tend to the ones of the homogeneous case of the V-notch with a
circular end hole, Eq. (28). Of course, this is expected since in this case
region Q4 acts as an empty space. Furthermore, G, /Gy — 1 gives the
homogeneous case of a finite V-notch, Eq. (15). Finally, for G, /Gy —
co the stresses depend on the contribution of both the domains 24 and
QB:r it =1, [2f (&) - @)

Contour plots of the shear stresses calculated by means of Eqgs. (47)
and (51) for b =5 mm, a = 0.3b, 2a = 90°, and G4 /Gy = 1/2 are shown
in Fig. 14(a—d). As can be noted, the difference in material properties
leads to a significant discontinuity in the tangential component of the
stress Fig. 14(a,b). On the other hand, the radial component of the stress
is continuous throughout the entire domain for equilibrium as shown
by Fig. 14(c, d).

3.1. Near-tip stress field

The stress field near the tip of the V-notch can be calculated lever-
aging the equation for the near-tip stress field of the homogeneous case,
Eq. (18). Noting that for the multi-material case the stresses in region
QA differ from the homogeneous case only for a multiplying factor, one
can easily obtain the following expression:

(53)

_200G4/Gp  [x@=D] (AN e
T — ity = oy — z
(14 G4/Gp) 2q q
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Fig. 15. Evolution of the dimensionless Notch Stress Intensity Factor (NSIF), Eq. (56),
as a function of the notch opening angle for various ratios G,/Gg. Note that, for a
given opening angle, stiffer materials in region €4 lead to higher dimensionless NSIFs.

Based on the foregoing equation, the NSIF (Gross and Mendelson, 1972)
can be easily determined leveraging its definition:

20,G,/Gg \/_,,< >1—1/q

Ky = V2rli -lg o — = AL B
= Varlimrey (1+G,/Gp)
_ 27,,G4/Gp
(1+G,/Gyp)

[ b\/;/cosa ]1 V4
X V2«
ar (I—a/m) T (1/2+a/n)

(54)
or, in a more compact form:
Ky = Toobl_l/qk3 (“aGA/GB) (55)
where:
ks (a,GA/GB) _ Z@GA/GB [ \/;/COSa ]l_l/q 56)
(1+G4/Gp) |al A —a/n) I (1/2+a/7)

is a dimensionless function that, different from the homogeneous case,
depends not only on the opening angle 2a but also the ratio between
the shear moduli G,/Gp. It is interesting to note that the dependence
of K; on the notch depth, b, features the same exponent 1 — 1/4 as the
homogeneous case which only depends on the notch opening angle.

Fig. 15 shows the dimensionless Notch Stress Intensity Factor
ks (a,G4/Gg) as a function of the notch opening angle for various
sets of elastic properties. As can be noted, the elastic properties have
a significant effect on the NSIF, regardless of the opening angle. In
particular, the figure shows that increasing the ratio G,/Gj leads to
higher values of the NSIF. This result is particularly interesting since
it means that it is possible to reduce the NSIF of the notch by finely
controlling the material introduced in the circular region embracing
the tip.

After calculating the NSIF leveraging Egs. (55) and (56), the Carte-
sian and polar stress distributions can be calculated leveraging Egs.
(21), (22) and (23), (24) respectively.

3.2. Maximum stress in QB

In addition to the NSIF, it is important to investigate how the
maximum stress in QF is affected by the material and geometrical
configurations. Towards this goal, it is useful to note that v =u =u, =0
at the point of maximum stress. Considering Eq. (25), this means that

11
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Fig. 16. Stress concentration factor in region Q25 calculated by means of Eq. (57) as
a function of the notch aspect ratio, p = a/b, for various sets of elastic properties. The
notch opening angle is 2a = 90°. Note that, for a given p, lower G,/G ratios lead to
higher concentration factors.

v, =t in the location of maximum stress. Inserting this result into Eq.
(51) and extracting the real part of the equation leads to the following
expression for the maximum stress:

2a

1-2
Tmax - 2Teo < V 1 + t2> "

® T 1+G,/Gg t

(57)

It is interesting to note that the foregoing equation differs from the
homogeneous case, Eq. (31), only for the multiplying factor 1/(1 +
G ,/Gp). As expected, when G, /G — 0, the stress concentration tends
to the homogeneous case of V-notch with a circular end hole. For the
case in which the material in Q4 is very stiff compared to the one in
Q8, G, /Gy — o, the maximum stress in 27 becomes negligible.

It is noteworthy that the maximum stress in Q% decreases for
increasing values of G,/Gp which is an opposite trend compared to
the evolution of the NSIF. This means that particular care must be
devoted to the selection of the combination of materials in 24 and Q5.
Selecting a very soft material in 24 does reduce the NSIF but it does
so at the expenses of the stress concentration in 28, which increases.
Ultimately the best combination is the one that leads to the maximum
structural capacity by striking the right balance between NSIF reduction
and stress concentration increase.

A summary of these observations is provided in Fig. 16 which shows
the evolution of the stress concentration factor as a function of p = a/b
for various G, /G and an opening angle of 90°.

4. V-notch with two circular regions of a different material em-
bracing the tip

The general theoretical framework introduced for the first time in
the present study can be used for any number of circular domains
embracing the notch tip.

Let us consider three conformal mappings z = z (&,), z = z (&),
and z = z (&) with &, = u, +iv,, & = uj +iv}, and & = u, + iv,. The
three maps are defined so that the condition v, = v, describes ().QA
027, v 0Q<, the condition v; = v, describes 027 U QS U ()_QA B
wh11e vy = u20 describes 0Q2C U 025~ (see Fig. 17) This means that
¢, represents the curvilinear coordlnates of the map for a finite V-notch
of opening angle 2« and depth b as described in Eq. (12) while &; and
&, describe the curvilinear coordinates for a finite V-notch with circular
end hole of radii a; and a, respectively as described by Eq. (26).
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Fig. 17. Example of semi-infinite domain 2 = 24UQ#uQC with a finite notch featuring
two regions of different materials surrounding the tip. The 7, = 0 condition is applied

to @4, QF and QF for regions A, B, and C. Q4-% represents the interface between

regions A and B while Q8-C represents the interface between regions B and C.

The relation between the three curvilinear variables is as follows:

b=t (e ai-q) =1 (-e+i-3)

where 7, and #, are parameters that depend on the ratio between the
radius of the circular regions and the depth of the notch. They can both
be calculated leveraging Egs. (A.2) and (A.3).

Similar to what was done in Section 2, one can impose the equilib-
rium equations in each region of the multimaterial domain along with
the related compatibility and equilibrium conditions on the interfaces.
This leads to the following system of equations:

(58)

Pw, FPw,
=0, foré, € (—00,0)X |v,q, 0 a
22 "ok & el )X [v,9,00) (@)
a
;5" =0, for v, = b, (b)
v
0w *w
0uzB 6023 =0, foré € (—o0,00)X%X [UI,O’ oo) (c)
7]
;UB =0, for v=v,, (d
> X
0w w
] 5 ZC 5 ZC =0, foré e (—00,0)X [vy9,0) (e) (59)
u 125
d
% =0, for v=10,, ®
0w 4 Jwpg
G,—— =G , foré&eonA-B
A v, B du; ¢ (8)
6,278 G2 for £ € 00BC (h)
Bov, ~ S ov,’
w0, = wp, for & € 048 (6]
wp = wc, for & € 0QB-C ()

where w, (uy,v,) = wy [u, (u;,v,),v, (4;,v,)] represents the displace-
ment in region 24 written as a function of the curvilinear coordinates
uy,v;. On a similar note, wp (uy,v,) = wp [u; (up, v,) . v) (up,0)] rep-
resents the displacement in region 2% written as a function of the
curvilinear coordinates u,, v,. The shear moduli in regions 24, Q#, and
Q€ are G4, G, and G. In the foregoing system, Egs (59)(a), (59)(c),
and (59)(e) represent the equilibrium equations in 24, 28, and Q€.
Egs. (59)(b), (59)(d), and (59)(f) are the equilibrium conditions on the
stress-free boundary. Egs. (59)(g) and (59)(h) describe the equilibrium
condition on the interfaces 0248 and 0Q8-C respectively. Finally,
Egs. (59)(i) and (59)(j) represent the compatibility condition on the
interfaces.

Following the same theoretical framework described in Sections 2
and 3, the solution of Egs. (59)(a)-(59)(j) can be found leveraging the

12
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following displacement function:

wy (u,,v,) = Cu,, foré, e @4 (a)
w=qwg (uy,v;) = Au, (u;,v)) + Buy, for & € @B (b) (60)
we (uy,05) = Muy (uy,05) + Gup,  for & € Q€ (o)

where A, B,C, M, G are real constants to be found by imposing equi-
librium and compatibility conditions on the interfaces and the remote
stress condition.

At this point, it is useful to point out that, as discussed in the
foregoing sections, u; = 2u, along the interface Q4~8. Along the
interface 22-C, on the other hand, v, = 0. Combining this result with
Eq. (58) and extracting only the real part of the equation provides the
following simple relation between the curvilinear coordinates u; and
uy:

(61)

Substituting this expression into Egs. (59)(a)-(59)(j) and imposing the
remote stress condition:

. Geow
oo = Jim TC a_c =G (M +G) (62)
one obtains the following system of equations:
C=A+2B @
A Bl (0Y] oM | (2)] a6 )
2 1 T2 1
G,C=GgA (© (63)
m\? 1\?
Gp{ A+B 1—<—1> =G4 M 1—(-‘) ()
153 5
T = Gc (M +G) (e)

After a few algebraic manipulations, the system allows the calculation
of the desired constants:
4¢ o2ty
A= pcnr . 64)
(¢ac = ¢oe) (Coc — 1) t+ (¢ac +¢ae) (Coe +1) L
2 - 1y,
B= (¢ac . bac) 3 . (65)
(¢ac —¢ge) (Soe —1) n+ (Cac +¢e) (Epe +1) [
4¢potity,
c= pet . (66)
Ge [(CAC - CBC) (CBC - 1) n+ (CAC + é’Bc) (CBC + 1) fz]

[(¢se = Cac) (Epe — 1) 1} =204 (Coe +1) ne - (Cac +Eae) (Epe = 1) t;] Too
Ge [(CBC - gAC) (CBC - 1) f? -2 (Cf;c + CAC) ’%’% + (CAC + CBC) ((BC + 1) fi_‘]

G= 67)

2 pc 70 [(Cac = Eac) 17+ (Sac +Eac) 1]

Ge [(CBC —ac) (Eoe = 1) ’? -2 (é’lzgc +8ac) ’?’% + (Cac +Cae) (Cae +1) f‘ﬁ]
where {4, = G4/Gc and {pc = Gp/Gc. Substituting the foregoing
equations into the displacement equations, Egs. (60)(a)-(60)(c), it is
possible to fully characterize the displacement field except for rigid
body motions. The final equations are not shown for conciseness. As
can be noted from Egs. (64)—(68), the displacement constants depend
on the ratios between the radii of the circular regions and the notch
depth through the parameters 7, and #,, the elastic moduli of the various
regions through the dimensionless parameters ¢, and (., and the
remote stress 7,,. On the other hand, the effect of the notch opening
angle, 2a¢ on the displacement is automatically included by having
written w as a function of the curvilinear coordinates &,, £, and &,
which properly describe the border of the notch.

After deriving the equations for the displacement, the stresses in
region 24 can be calculated using the following relation (see Eq. (7)):
(fg _ 1)1/2—01/7!

d¢, (2)
C—gz =0aC 1-2a/7

M =

(68)

(69

T

zx T 1Tz = Gy
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where C is given by Eq. (66). By extracting the real and imaginary parts
of the equation, the stresses can be written as follows:

1/4—a /27
[ = 2 = 1)+ 4ue?]

T (U 0,) = G4C e Uz)l/z—“/” cosy (70)
U U
1/4—a/2
(62— 2= 1)+ aae]
7y (4, 0,) = G4,C s Uz)l/z—“/” siny 71)
v v

where 7 =
arg (uv + iuv).

For region QB the stresses can be calculated starting from the
following equation:

dé, (2) + Bdéfl (Z)]

(a/m —1/2)arg (1> — 2 = 1+ 2iu,v,) + (1-2a/7)

T, — irzy =Gp [A iz iz

-1 -1 72
o lufaz@ ", () 72
B de, d¢,
which can be rewritten in a more compact form as follows:
T, —it,, = AGyf (&,) + BGpg (£.1)) (73)

where A and B can be calculated by means of Egs. (64) and (65) and
g (&,,1;) and f (&,) were defined in Eqs. (29) and (52) respectively. By
taking the real and imaginary parts of the equation, it is possible to ex-
tract the stress components as a function of the curvilinear coordinates
&, and &.

The stresses in region Q€ can be calculated in a similar way by
starting from the following equation:

o () o 22)
d¢ dé,
This equation can be rewritten as follows:
T ity = MGeg (6.1)) + GGeg (&.1) (75)

where the constants G and M are computed via Egs. (67) and (68)
respectively. By taking the real and imaginary parts of the equation, it is
possible to extract the stress components as a function of the curvilinear
coordinates ¢, and &,.

Contour plots of the shear stresses calculated by means of Egs. (70),
(71), (73), and (75) for b = 5 mm, a; = 0.3b, a, = 0.4b, 2a = 90°,
G, = 1500 MPa, Gz = 3000 MPa, and G- = 4500 MPa are shown in
Fig. 18(a—d). As can be noted, the difference in material properties leads
to a significant discontinuity in the tangential component of the stress
Fig. 18(a,b). On the other hand, the radial component of the stress is
continuous throughout the entire domain for equilibrium as shown by
Fig. 18(c, d).

4.1. Near-tip stress field

The stress field near the tip of the V-notch can be calculated
leveraging the equation for the near-tip stress field of the homogeneous
case, Eq. (18). Noting that for the multi-material case the stresses in
region Q4 differ from the homogeneous case only for the multiplying
factor C, one can easily obtain the following expression:

1/q-1
-1.] (A
Hpclact e X [”(gq )l] (T) 1
= Z1/a-1

(ﬁfAc - CBC) (CBC - 1) ’? + (CAC + §Bc) (‘:Bc + 1) ’%

T —iTyy

(76)
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Based on the foregoing equation, the NSIF (Gross and Mendelson, 1972)
can be easily determined leveraging its definition:

Ky =2z lirr(l)’rzxyl_l/q
y=

\/545364146%%0 (%)l/qil
- (¢ac = ¢oe) (Epe = 1) 17 + (Sac + Cac) (Ee + 1) 13 @7)
1-1/9
4\/ECBCgACt§Too [%]

B (¢ac —¢ae) (Epe - 1) ’% + (Cac +¢oe) (Coe +1) t%
or, in a more compact form:
K; = Toobl_l/qul) () kf) (a1/b,ay/b,Cuc. Cae) (78)
where:

1-1/q
K@= Var [ql"(l —a\jz;r)/lc"(zsl(;2+a/ﬂ)] 79)
kf) (ar/b,ay/b,Eacs Sne)
4Cpclact (80)

(¢ac = ¢ae) (e = 1) 13 + (Sac +¢ae) (Cae +1) 13

are dimensionless functions. It is worth noting that k(;) is a purely
geometrical function that accounts for the effect of the opening angle
2« and takes the same form as the homogeneous case, Eq. (20). On
the other hand, the other dimensionless function kgz) accounts for the
effect of the size of the circular regions and their elastic properties on
the NSIF. It is interesting to note that this function has the following
asymptotic values:

2¢
k(32) = ﬁ for {ue = e (@
4¢pot?
kP = 5 B¢ for ¢4c = 1 (b)
3 2 20
(1+¢pe) 55— (1-&pe) 1
4 pet?
@ = 2 for {4 >0 (0)
3 (1+§BC)I§_(1_§BC)I%
k(32) =0 for {4 — 0 ()
( (81
k(;) =0 for ¢pe — 0 (e)
2¢
@ _ 26ac
k3 —m for é’BC_)l (f)
kP =0 for {pe >0 (8)
2¢
KD = ﬁ for t, — 1, )
4
o _ Caclae for 1, — oo o)
(¢ac +¢ac) (Coe +1)

Egs. (81)(d) and (81)(e) show that if any of the circular regions has
elastic moduli tending to zero then the dimensionless NSIF will also
tend to zero. On the other hand, Eq. (81)(g) indicates that if the outer
shell, region Q&, is very stiff compared to the outer region then it will
shield the tip of the notch from the stresses and the NSIF will also
tend to zero. For cases in which the modulus of the first circular region
coincides with the modulus of the second region 28 or the modulus of
the second region coincides with the one of the outer region 2¢, Egs.
(81)(a) and (81)(f) show that the dimensionless function will tend to
28pe/(1+¢pe) or 284 /(14 4) which combined with kgl) give exactly
the dimensionless function for the bimaterial case, Eq. (56). As Eq.
(81)(h) shows, a similar result is obtained when the radius of the second
circular region tends to the radius of the first region, ¢, — f,. Finally, if
the first circular region features the same modulus of region Q€ or if its
modulus is significantly larger then the dimensionless function depends
on the radii of 24 and Q¥ and the ratio {p- = Gy/G according to Egs.
(81)(b) and (81)(c).
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Fig. 18. Normalized stress distribution for a finite V-notch of depth » =5 mm and opening angle 2a = 90° with circular regions made of different material of radii a, = 0.36 and

a, = 0.4b embracing the tip. The notch is subjected to a remote stress lim,

Z—00 TZX

= —7,. The material inside the circular region ©Q* features a shear modulus G, = 1500 MPa while

the material inside the circular region 27 features a shear modulus G = 3000 MPa. The outer region, 2, has a shear modulus G = 4500 MPa: (a) t,,/7.,, (b) magnified view,
(¢) 7.,/7, and (d) magnified view. Note the discontinuity on 7_,/7,, on the interface 2-QF and Q#-QC while r,, /7 is perfectly continuous for equilibrium.
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Fig. 19. Contour plot of the dimensionless kgz) (ay/b.ay/b,Cyc-Cpc) as a function of
the elastic property ratios {, = G,/G¢ and {pc = Gp/Ge for 2a = 90°, b =5 mm,
a,/b=023, and a,/b = 0.4.

The foregoing equations enable a thorough investigation of the
evolution of the NSIF as a function of the geometrical and mate-
rial parameters of the problem. Fig. 19 presents a contour plot of
kgz) (a1/b,ay/b.S4c.Cpe) as a function of the elastic parameters of the
circular regions, {4 = G4 /G and (- = G/G, for an opening angle
2 = 90°, a notch depth b = 5 mm, a;/b = 0.3, and a,/b = 0.4. As
can be noted, the relation between k;z) and the material parameters
is quite interesting. For a given ratio between the shear modulus of
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region 28 and region QC€, decreasing the shear modulus of region Q4
always leads to a reduction of the dimensionless function and hence
the NSIF. This shows that utilizing softer materials in the inner region
embracing the notch flanks is an effective way to mitigate the intensity
of the stress field close to the tip. On the other hand, for a given ratio
{ac between the shear modulus of the inner circular region 24 and
QC€, the dependence of the dimensionless function is more complex.
For (e < \/Cac, the k;z) decreases smoothly with increasing values
of {pc. In other words, for a constant ¢4, increasing the stiffness of
the outer circular region 28 can reduce the NSIF down to a minimum
corresponding to the case in which (- = \/m. For {pc > \/Q,
increasing the stiffness of the outer circular region can only increase the
NSIF. These observations along with Egs. (78)—(80) provide significant
guidance for the effective design of multimaterial notches with low
NSIF and potentially higher damage tolerance compared to traditional
designs.

A contour plot of kgz) (ay/b,ay/b.84c.Cpe) as a function of the sizes
of the multimaterial circular regions as expressed by the ratios a, /b and
a, /b is presented in Fig. 20(a,b) for 2¢ = 90° and b = 5 mm.

Fig. 20(a) considers the case in which the inner circular region is
softer than Q€ while the outer circular region is stiffer: ¢, = 1/2 and
{pc = 2. It is interesting to note that, for a given size of the outer
circular region a, /b, increasing the radius of the inner region a, /b leads
to an increase in the NSIF. This is explained by the fact that the stiffer
outer region tends to partially shield the inner region from the remote
stress. By increasing the radius of the inner region, the volume fraction
of the outer region decreases leading to a slight increase of the stress
intensity close to the tip. For a given a,/b the maximum increase in
the NSIF is obtained when the inner radius tends to the critical value:
a; /b — a,/b. On the other hand, increasing a, /b for a given inner radius
a, /b leads to a reduction of the dimensionless function k2, and hence
the NSIF. This due to the increase in shielding effect of region 28 by
increasing its extent.
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Fig. 20. Contour plots of the dimensionless k(;) (a,/b,ay/b,Csc.Cpc) as a function of the radii of the circular regions embracing the tip for two combinations of elastic properties:
(a) 24 is softer than Q€ while Q8 is stiffer than Q€, (b) Q4 is stiffer than Q€ while 22 is softer than Q€. For all the cases, b =5 mm and 2a = 90°.
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Fig. 21. Contour plot of the stress concentration in region Q2 as a function of the
elastic property ratios {, = G,/Go and {pc = Gp/G for 2a = 90°, b = 5 mm,
a;/b=03, and a,/b=04.

Fig. 20(b) considers the case in which the inner circular region is
stiffer than Q€ while the outer circular region is softer: {, = 2 and
{pc = 1/2. The first observation that can be made by comparing (20b)
to (20a) is that for any combination of a,/b and a,/b, the values of
k§ are always large then in the previous case. This confirms that the
most effective way to reduce the NSIF is to have softer materials in the
region close to the tip. Similar to what was observed before, increasing
the size of the outer region while keeping a;/b constant leads to a
reduction of the NSIF. This is again due to an increase in shielding
of Q4 by the outer circular region 28. On the other hand, increasing
the size of the inner region while keeping a,/b constant leads to an
increase of the NSIF. These results suggest that it is possible to design
the multimaterial domain to mitigate the Notch Stress Intensity Factor
(NSIF) without excessively load the other outer regions by finding a
suitable combination of a; /b and a, /b.

Finally, it is important to note that, thanks to Egs. (78)-(80), it
is possible to calculate the Notch Stress Intensity Factor (NSIF) as a
function of the material and geometrical parameters of the problem.
Once the NSIF is calculated, the Cartesian stresses near the tip can be
calculated taking advantage of Egs. (21) and (22) while the polar stress
components can be calculated using Egs. (23) and (24).

4.2. Maximum stress in Q8

The analysis performed in Section 3 revealed that in addition to
the NSIF, also the maximum stress in the other region depends on the
material and geometrical parameters of the problem. Soft materials in
04 can lead to lower NSIFs but also higher stress concentrations in
Q8. This can potentially undermine the benefits of reducing the NSIF
if the failure is initiated at the point of maximum stress concentration
instead of the notch tip. Accordingly, it is important to investigate how
the maximum stress in Q2 is affected by the material and geometrical
configurations now that there are three regions made of different
materials instead of only two. Towards this goal, it is useful to note
that v; = u; = u, = 0 at the point of maximum stress. Considering
Eq. (25), this means that v, = ¢, in the location of maximum stress.
Inserting this result into Eq. (73) and extracting the real part of the
equation leads to the following expression for the maximum stress:

2 42
4T°°§BCIZ

=B (¢ac = ¢oe) (Soe —1) t? + (Cac +¢ae) (Coe +1) t%
|2

[2
n+1

3|

max

(82)

X

It is interesting to note that the foregoing equation differs from the
homogeneous case, Eq. (31), only for a multiplying factor. As expected,
when {4 — 0 and {pc — 1 the stress concentration tends to the
homogeneous case of V-notch with a circular end hole of radius q;.
Fig. 21 provides a contour plot of the stress concentration factor,
T;I:?)l(? /7« as a function of the elastic property ratios {4 = G,/C and
{pc = G/Cc for a given opening angle 2a = 90°, b =5 mm, a,/b = 0.3,
and a;/b = 0.4. As can be noted, there is a strong dependence of
the stress concentration on the elastic parameters. In particular, for
a given {pc, increasing the ratio between the shear modulus of the
inner circular region 24 and the shear modulus of Q€ always leads
to a reduction of the stress concentration. This result can be explained
by considering that increasing the stiffness of ©4 allows this region to

15
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Fig. 22. Contour plots of the stress concentration in region 2% as a function of the radii of the circular regions embracing the tip for two combinations of elastic properties: (a)
Q4 is softer than Q€ while Q2 is stiffer than Q€, (b) 24 is stiffer than Q€ while Q2 is softer than Q€. For all the cases, b =5 mm and 2a = 90°.
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Fig. 23. Contour plot of the stress concentration in region Q€ as a function of the
elastic property ratios {,- = G,/G. and (g = Gyz/Go for 2a = 90°, b = 5 mm,
a,/b=03, and a,/b=0.4.

take more load hence relieving the stresses in Q8. On the other hand,
increasing the stiffness of 2f while keeping ¢, constant always leads
to an increase of the stress concentration. This result is particularly
important because it was shown in the previous section that one of the
most effective ways to reduce the NSIF is to increase the shear modulus
of Q8. However, Fig. 21 clearly shows that this leads to an increase of
the stress concentration in the region. A conclusion that can be drawn
here is that, in order to increase the overall capacity of the structure,
the combination of material properties of the regions embracing the
notch will need to be selected carefully to make sure that by reducing
the NSIF one does not trigger an unwanted failure in Q5.

Fig. 22(a,b) show the effects on the stress concentration in Q2
of the radii of the circular regions 24 and Q7 for an opening angle
2¢ = 90°, b = 5 mm, and two combinations of elastic properties.
Fig. 22(a) considers the case in which the inner circular region Q4 is
softer than Q€ while the outer circular region Q7 is stiffer: {,c = 1/2

and (- = 2. It can be noted that for a given a, /b increasing the radius
of the outer circular region always leads to a decrease of the stress
concentration in 8. On the other hand, for a given a,/b increasing
the inner radius generally leads to a decrease of the stress concentration
except for cases in which both a, /b and a, /b are very close to 1 (upper
right portion of the contour plot). Intuitively, this can be explained by
considering the extreme case in which {4~ — 0. This would correspond
the case of a V-notch with an end hole of radius a4; and a circular
shell of shear modulus G and radius a, surrounding it. Increasing
the radius a; would reduce the sharpness of the notch decreasing the
stress concentration. Although the case represented in Fig. 22(a) is
not as extreme and ¢, = 1/2, the same trend can be noted. Similar
conclusions can be drawn from Fig. 22(b) which describes the case in
which the inner region 24 is stiffer than Q€ while the outer circular
region Q8 is softer: {4 = 2 and (g = 1/2. The main difference
compared to the previous case is that, for given a,/b and a,/b, the
use of a soft material in region 22 in lieu of a stiff material reduces
significantly the stress concentration.

4.3. Maximum stress in Q€

The calculation of the maximum stress in 2¢ can be done following
the same procedure outlined in Section 4.2. This time, it is useful to
note that in the position of maximum stress u, = v, = 0 while u; = 0.
Leveraging Eq. (58) it is easy to show that this means that:

2_ 02
L=h

(83)

v = &
at the location of maximum stress. Substituting this result into Eq. (74),
introducing Egs. (67) and (68), and taking the real part leads to the
following equation for the maximum stress:
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Fig. 24. Contour plots of the stress concentration in region 2¢ as a function of the radii of the circular regions embracing the tip for two combinations of elastic properties: (a)
Q4 is softer than Q€ while Q7 is stiffer than QC€, (b) Q4 is stiffer than Q€ while Q7 is softer than QC€. For all the cases, =5 mm and 2a = 90°.

The foregoing equation is very similar to the homogeneous case except
for a multiplying factor that depends on the interplay between the radii
of the circular regions and their elastic shear moduli. It is worth noting
that for {4 — {pc — 0 the stress concentration tends to the one of
a V-notch with an end hole of radius a,. On the other hand, the case
Cac — {pe leads to the same stress concentration of the bimaterial case
discussed in Section 3.

To investigate more thoroughly the effects of the mechanical and
geometrical parameters of the problem on the stress concentration in
Q€, Fig. 23 shows Toee/Te @s a function of the elastic parameters
{4c and {pe for an opening angle 2« 90°, a depth b 5 mm,
a;/b = 0.3, and a,/b = 0.4. As can be noted, the elastic parameters
have a very significant effect on the stress concentration. In particular,
it is worth noting that for a given ¢, increasing the elastic modulus of
the inner circular region Q4 tends to reduce the stress concentration in
region QC. This is because, for a given remote stress z,, increasing the
modulus of 24 increases the load taken by such region thus relieving
part of the stress concentration in Q€. Similarly, for a given (pc,
increasing the modulus of the outer circular region Qf always reduces
the stress concentration in Q€. This is again due to the increased load
taken by 28 which leads to a decrease of the stresses in the other two
regions.

Fig. 24(a,b) show the stress concentration "¢, /7, as a function of
a;/b and a,/b for an opening angle 2a = 90°, a notch depth b = 5 mm,
and two combinations of elastic parameters. In particular, Fig. 24(a)
shows the case in which the inner circular region is softer than Q¢
while the outer circular region Q2 is stiffer: {4, = 1/2 and {pc = 2.
From the figure, it can be noted that, for a given a,/b, increasing the
size of the outer circular region QF always leads to a reduction of
the stress concentration in Q€. This is because the volume fraction of
material with a high shear modulus increases. This more load can be
taken by w® relaxing part of the stresses in 2€. On the other hand, for
a given a, /b, increasing the radius of the inner circular region always
increases the stress concentration. This is because, increasing the radius
of Q4, the volume fraction of softer material increases. This means that
more load has to be taken by the other two region with the result that
the stress concentration in Q€ increases.

Fig. 24(b) shows the case in which the inner circular region is stiffer
than Q€ while the outer circular region Q2 is softer: {4, = 2 and
{pc = 1/2. Similar to the previous case, it can be noted that increasing
the size of the outer circular region 2% for a given a, /b tends to reduce
the stress concentration. On the other hand, for a given a,/b, larger
radii of the inner circular region 24 lead to a decrease of the stress
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concentration. This trends, opposite to the one presented in (24a), is
explained by the fact that the inner region is stiff in this case. Hence,
increasing its radius increases the volume fraction of stiff material that
can take more load and relieve region Q€ from some of the stress.

5. Nonlinear computational modeling

The analytical study presented in Sections 3 and 4 was performed
within the framework of Linear Elastic Fracture Mechanics (LEFM).
One of the fundamental hypotheses of LEFM is that the material is
brittle so that the sizes of the Plastic and Fracture Process Zones are
negligible compared to the portion of the structure that still behaves
elastically. Such conditions are met also by materials such as high-
strength steel which might exhibit some plasticity at the notch tip but
obey to the conditions of small-scale yielding. The fact that most of
the structure still behaves elastically makes the Notch Stress Intensity
Factor (NSIF) still an accurate parameter to describe the process of
failure. However, when the small-scale yielding condition is not met
or when the materials exhibit complex quasibrittle behavior, the NSIF
might not be enough to describe the failure process. This is because the
size of the Plastic Zone or the Fracture Process Zone is not negligible
for these materials and the stresses inside these regions can be highly
nonlinear (Bazant et al., 2021). The NSIF cannot account for any
nonlinearity since it was derived based on the assumption of linear
elastic behavior.

Extensive studies from the literature have pointed out that materials
that behave in a relatively brittle way under plane loading conditions
can exhibit more ductile behavior under antiplane shear. Berto et al.
(2012), for instance, reported significant plastic deformations in torsion
tests at room temperature on notched specimens made of polymethyl
methacrylate (PMMA), which is generally considered a rather brittle
material. In light of this, it is important to investigate the structural
behavior using nonlinear computational modeling to understand if the
reduction of the NSIF using the multimaterial concept presented in this
work can still lead to an increase in structural capacity even in the
presence of the enhanced ductility induced by the Mode III loading.
In fact, in such scenario, it is not guaranteed that the concept would
work or would be as effective. For instance, if the induced ductility is
enough to generate a large plastic zone in front of the notch already in
the single-phase system, there is a possibility that this would already
significantly reduce the severity of the notch. At this point, having a
multimaterial configuration might not be effective compared to the
single-phase case since the “blunting” of the sharp V-notch is already
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Fig. 25. Circular shaft weakened by a finite V-notch under torsion investigated in this
work. All the dimensions are in mm.

performed by the plastic stresses rather than the circular region. Hence,
the motivation for the computational study is to investigate if the NSIF
reduction is still enough to lead to a significant increase in the capacity
of the structure.

Towards this goal, this section focuses on the nonlinear computa-
tional modeling of the proposed multimaterial system. As a case study,
a circular shaft featuring a finite V-notch under torsion was investi-
gated. For simplicity, only two configurations were analyzed. The first
configuration is the homogeneous case, where the system is made of an
epoxy polymer, a material commonly used in additive manufacturing.
This is used as a benchmark to evaluate the performance of the second
configuration which is a bimaterial system like the one shown in Fig. 3
where a circular region of radius a is made of vulcanized rubber while
the rest of the structure is made of epoxy. As can be noted from Fig. 25,
which provides all the geometrical details of the problem, the circular
shaft has a radius 100 mm and a length of 400 mm and it features a
V-notch of opening angle 2a = 90° and depth b = 20 mm. A circular
partition of radius ¢ = 5 mm centered at the tip of the notch and
embracing it was created to allow the assignment of a different material
behavior.

It is worth mentioning that this section serves the only purpose of
validating the performance of the proposed multimaterial system in
the presence of realistic inelastic deformation. No optimization studies
were performed to identify the ideal combination of radii and material
properties. Furthermore, only a system composed of a soft and an hard
phase was investigated. It is likely that thorough optimization studies
can lead to more significant differences between the performance of
homogeneous and the bimaterial system. However, this is beyond the
scope of the present study.

5.1. Finite element model

For the nonlinear simulation of the torsion problem a finite element
model was created in ABAQUS/Explicit. In order to allow the fracture
pattern to be non-axisymmetric, a full three-dimensional problem was
solved in ABAQUS/Explicit as shown in Fig. 26(a,b). A mesh of 926,223
hexahedral elements with reduced integration was used to accurately
resolve the stress and strain fields. As the insert in Fig. 26(a) shows,
particular care was devoted to getting a very regular and fine mesh
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close to the notch tip. A thorough convergence study confirmed that
this allowed an objective description of the stress and strain fields
before localization. On the other hand, as described in Appendices B
and C, mesh objective results in the presence of localization were
guaranteed by the use of the crack band model at the constitutive level
(Bazant and Oh, 1983; Bazant and Planas, 1997; BaZant et al., 2021).
To simulate the behavior of epoxy and vulcanized rubber elasto-plastic-
damage and hyperelastic-damage models were implemented as user
subroutine in ABAQUS/Explicit. The details of the models are provided
in Appendices B and C. To capture possible delamination at the rub-
ber/epoxy interface, the ABAQUS cohesive interaction algorithm with
a linear mixed-mode traction separation law was used. The interface
was assumed to have a normal strength of 50 MPa and a shear strength
of 15 MPa. The Benzeggagh and Kenane (1996) mixed-mode initiation
criterion was used with an exponent of 2.

For the application of the boundary conditions, two reference points
were assigned at the center of the top and bottom surfaces respectively.
A tie constraint to the reference point at the top was assigned to all the
nodes on the top surface while the nodes of the bottom surface were
tied to the reference point at the bottom. To simulate a torsional load,
the reference point at the bottom was completely fixed. The simulation
was performed in rotation-control by applying a linearly increasing
rotation along the axis, #, on the top reference point and measuring
the reaction torque, T. A typical von Mises stress distribution at peak
load for the bimaterial case is shown in Fig. 26(b) as an example.

5.2. Discussion on possible failure scenarios

The simplest failure scenario is when both the material in the circu-
lar region and the material outside of it are extremely brittle. In such
a case, the nonlinear Plastic Zone and Fracture Process Zone are small
compared to the geometrical dimensions of the problem. The brittle
failure can independently be triggered either in the material at the tip
of the V-notch (material A) or in the material at the maximum stress
location at the tip of the circular region (material B). Initiation at the
V-notch will occur if the NSIF reaches a critical value, K3, for material
A before the maximum stress outside the circular region reaches the
strength of material B, ¢,. Vice versa, in case the maximum stress in
Material B reaches the strength before the NSIF in material A reaches
K;,, the initiation will occur directly at the tip of the circular region.
In summary, for purely brittle materials it is almost straightforward to
describe the failure process and increase the structural capacity. The
key is to select a material in the circular region so that the multimaterial
combination reduces the NSIF without increasing excessively the stress
concentration in material B. Furthermore, if the material A can also be
selected so that it features a larger K;,, this would contribute to a larger
capacity.

Now, if materials A and B are elasto-plastic instead of very brittle
the fracture becomes significantly more complicated. If the base mate-
rial features already large ductility, the large Plastic Zone forming at
the tip of the V-notch may contribute already to the reduction of the
intensity of the stress field. Furthermore, the PZ can also contribute
to additional energy dissipation upon failure. At this point, adding a
circular region of a different material might not lead to significant
benefits in terms of structural capacity. In fact, if the PZ is large enough
to cover the circular region, the reduction on the stress intensity at the
V-notch due to the elastic deformation might be even lower than the
one induced by the plastic deformations.

In case both materials A and B are quasibrittle and the FPZ is small
enough compared to the size of the circular region and the depth of
the V-notch, the failure process gets even more complex. In fact, prior
to reaching the critical load of the structure, the FPZ will be partially
developed in both material A and B. If the failure starts in the material
B and the FPZ in material A is fully developed then the fracture energy
dissipated by material A will also contribute to the fracture process.
Hence, utilizing a tougher material in the circular region might help
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Tvon Mises

Fig. 26. FE model of the circular shaft weakened by a finite V-notch under torsion: (a) FE mesh with 926,223 hexahedral elements (the insert shows a magnification of the mesh
at the notch tip), (b) von Mises stress distribution for the bimaterial system at peak load.

increasing the structural capacity. On the other hand, if when the
failure starts in material B the FZP in material A is not developed, then
fracture energy of material A will have a minimum contribution to the
capacity of the structure. In other words, in such case, using a very
tough material in region A will not contribute much to an increase in
structural capacity.

5.3. Results and discussion

Thanks to the nonlinear computational models it was possible to
investigate the structural behavior of the homogeneous and bimaterial
systems under torsion. As mentioned in the foregoing sections, the
bimaterial system featured a circular region surrounding the notch tip
made of vulcanized rubber while the rest of the structure was made of
epoxy. Rubber was chosen since the linear elastic solution for the NSIF
showed that the use of soft materials at the tip can help reduce the
stress intensity. In addition, rubber features a very large fracture energy
compared to epoxy which helps achieving higher ultimate loads.

The results of the simulations are summarized in Fig. 27 which
shows the torque as a function of the torsion angle for the two con-
figurations investigated. As can be noted, the addition of a soft phase
to mitigate the intensity of the stress field indeed improves the perfor-
mance of the structure. In fact, it is worth noting that the structural
capacity of the bimaterial system made of rubber and epoxy is almost
50% higher of the homogeneous system made of epoxy. At the same
time, the blunting of the notch enabled by the soft phase seems to
promote large plastic deformations before reaching the peak load.
This translates into a larger rotation at failure which is almost 90%
higher than the homogeneous case. Another interesting result shown
in Fig. 27 is that, since the soft phase occupies only a very limited
region surrounding the notch tip, the overall stiffness of the structure
decreases of only 8% compared to the homogeneous case. This is an
additional benefit considering that several other approaches to increase
the capacity and damage tolerance of structural components often lead
to a significant stiffness loss. It is worth stressing here again that the
circular region was made of a hyperelastic medium which unloads
to zero. In other words, the additional phase did not feature any
permanent deformation in contrast to ductile materials. This means that
no energy dissipation occurred in the circular region prior to fracture.
The only plastic dissipation could occur in the epoxy phase. In this
context, the fact that the capacity is increased is all but guaranteed. The
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Fig. 27. Nonlinear simulation of the structural response (Torque vs rotation angle) for
the case of a homogeneous structure and a bimaterial notch. Note that the addition of
a soft phase in front of the notch increases the structural capacity of 46% while the
rotation at failure is increased of 86% compared to the homogeneous case.

simulation presented in this work showed that, at peak, no cohesive
zone was able to form in the rubber. The failure occurred when the
Fracture Process Zone (FPZ) in the epoxy phase reached a critical value
after which unstable crack propagation occurred. In such scenario, the
fact that rubber features a larger fracture energy compared to epoxy
did not contribute to the increase in structural capacity. The main
reason for the increase in capacity is that with the addition of a very
complaint circular region the failure was forced to happen in epoxy by
the formation of a large FPZ ahead of the blunt notch rather than a
sharp V-notch.

Finally, it is worth stating here again that the goal of the nonlinear
simulations was to demonstrate the validity of the proposed multima-
terial system in increasing the structural capacity also in the presence
of realistic inelastic strains. It is expected that different material com-
binations as well as geometrical configurations can lead to different
results. It is also envisioned that the use of multiple circular regions
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like shown in Fig. 17 instead of just one can lead to higher tunability of
the system and enhanced performance. Thorough optimization studies
can lead to even larger gains in performance compared to the simple
case investigated in this work. However, this was not in the scope of
the present work and it will be the subject of future studies.

6. Conclusions

This study investigated the addition of circular regions embracing
the tip of finite V-notches to reduce the Notch Stress Intensity Factor
(NSIF) and increase the capacity of structures subjected to antiplane
shear and torsion. Towards this goal, a general framework for finding
the closed-form solution for stresses, displacements, and NSIFs was
presented for the first time. Moreover, nonlinear simulations using
elasto-plastic-damage and hyperelastic-damage models were performed
to investigate the increase of structural capacity.

Based on the results presented in this work it is possible to elaborate
the following conclusions:

1. The stress and displacement distributions for finite V-notches
featuring N circular regions of different materials embracing
the tip under antiplane shear and torsion can be calculated in
closed-form by combining the solutions of N homogeneous sub-
problems. The first sub-problem is a homogeneous finite V-notch
with the same depth and opening of the original problem. Each
of the other N —1 sub-problems is a finite V-notch with a circular
end hole of radius corresponding to the circular region surround-
ing the notch in the original problem. Once the N solutions are
combined, the remaining parameters can be uniquely identified
by imposing the compatibility conditions on the interfaces and
the remote stress condition.

2. For the proposed configuration, the multimaterial regions do not
affect the order of the singularity of the stress field close to the
tip which, like in the homogeneous case, depends only on the
opening angle of the notch: o;; « 1/r!™% with r = distance
from the notch tip, 4; = 7/ (27 — 2a), and 2a = notch opening
angle. This is in stark contrast to the case in which the bimaterial
interface does not embrace the notch (see e.g. Bogy 1971, Hein
and Erdogan 1971, Yu et al. 2010, Le et al. 2010).

3. The Notch Stress Intensity Factor (NSIF) and the stress concen-
trations at the material interfaces are shown to be significantly
influenced by the combination of material properties and radii
of the circular regions. For the bimaterial case, the NSIF de-
creases with decreasing ratios between the shear modulus of
the region surrounding the notch tip and the one of the outer
region. In contrast, the stress concentration at the bimaterial
interface increases. This shows that it is possible to decrease the
intensity of the stress field by using softer materials close to the
notch tip. However, particular care must be devoted to avoid
excessive stress concentrations which can trigger early failures
at the material interfaces. For the multimaterial case, the NSIF
and stress concentration factors show a complex dependence on
a combination of elastic moduli and region radii.

4. A significant advantage of the closed-form solution presented in
this work compared to numerical approaches is that it allows
to explicitly account for the effects of all the material and
geometrical parameters of the problem on the NSIFs and the
stress concentrations. This makes it a valuable tool for design
of multimaterial structures under antiplane shear and torsion.

5. Advanced hyperelastic-damage and elasto-plastic-damage com-
putational models confirmed the benefits of the proposed multi-
material system also in the presence of nonlinear deformations.
Investigating a bimaterial system under torsion made of vul-
canized rubber and epoxy showed that the structural capacity
can be effortlessly increased of almost 50% while the nominal
rotation at failure can be increased of almost 90% compared to
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the homogeneous case. Since the soft region is limited to the
notch tip, the foregoing results are obtained at the expenses of
a structural stiffness reduction of only 8%. It is expected that
even larger benefits can be achieved by performing thorough
optimization studies.

6. It is expected that a similar approach to increase the structural
capacity and damage tolerance can be extended to other loading
conditions including Mode I and II. Furthermore, it is expected
that the proposed system can be used to significantly increase
the fatigue life of notched structural components. Considering
the low stresses in high-cycle fatigue and the fact that most of
the life is spent in damage initiation, it is probably possible
to avoid the use of nonlinear computational models and rely
completely on the closed-form solution presented in this work
for design. The proposed solution e.g. can be used within the
Strain Energy Density (SED) fatigue failure criterion by Lazzarin
and co-workers which has been extremely successful in the
description of high-cycle fatigue failure for a number of brittle
material systems (Lazzarin and Zambardi, 2001; Lazzarin et al.,
2008; Berto and Lazzarin, 2009).
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Appendix A. Stress concentration for a finite V-notch with end
hole

In Section 2.5.1, a very simple closed-form equation for the calcula-
tion of the stress concentration in finite V-notches with end holes was
provided for the first time. As can be noted in Eq. (31), such expression
indicates that the stress concentration depends on the notch opening
angle 2a and the ratio between the notch root radius ¢ and the notch
depth b via the parameter 7.

For practical design consideration, it is desirable to express the
stress concentration as an explicit function of a/b. For a/b € [0,0.1],
such relationship can be obtained by imposing the condition for the
notch tip, ¢ = 0, and expanding Eq. (26) in Taylor series around ¢ = 0:

A, 2w _2a
ZOn=i—2r +(9<t4 x ) (A1)
2(xr —a)
Then, after retaining only the first term of the equation, imposing the
condition that Z = i(a+b), and rearranging, one can find a direct
relationship between the parameter ¢ and the shape ratio a/b:
2 —a) |7 a
tn | ————= f = - €[0,0.1 A.2
[nAu/bP orp=~y [ ] (A.2)

For a/b € (0.1, 1], the following polynomial approximation can be used:

zc3p3+czp2+c1p+c0 for p = % € (0.1,1] (A.3)

This expression was obtained by best fitting of numerical results ob-
tained from Eq. (26). Table A.1 provides a summary of the coeffi-
cients ¢; used in Eq. (A.3) for various notch opening angles while
Fig. A.28(a,b) show the relation between the parameter ¢ and p = a/b.
The symbols represent the exact solution solved numerically by means
of Eq. (26) while the solid lines show the excellent approximation
provided by Egs. (A.2) and (A.3).
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epoxy, a thermoset polymer that can exhibit significant plastic behavior 100 L s
followed by strain softening. Several seminal studies which investigated -
-100 -50 0 50 100

the behavior of epoxy polymers under significant biaxial and triaxial
stress conditions have shown that yielding strongly depends on the
interplay between hydrostatic and deviatoric components of the stress
field (see e.g. Asp et al., 1995, 1996). This is confirmed by the fact
that the yielding stress in uniaxial tension is generally lower than
the yielding stress in uniaxial compression (Werner and Daniel, 2014;
Poulain et al.,, 2014; Hu et al., 2003; Xia et al., 2003). Recently, it
was also shown that the hydrostatic stress strongly affects the strain at
failure (Qiao et al., 2020). Furthermore, the hydrostatic stress has been
shown to affect the ultimate stress. This has led to the development
of a number of different failure criteria that account for the effect of
the volumetric stress including e.g. Christensen’s failure criterion for
glassy polymers (Christensen, 2013), the paraboloidal yielding/failure
criterion (Tschoegl, 1971; Raghava et al., 1973) or the adaptation of
other models such as Drucker-Prager model (Canal et al., 2009) and
Mohr-Coulomb (Gonzélez and LLorca, 2007) to simulate polymers. For
large dilatational stresses, it was shown that the failure of the polymer
occurs by microcavitation and the Dilatational Energy Density (DED)
criterion provides a superior prediction of the failure behavior (Asp
et al., 1996). For an interesting recent comparison between some of the
foregoing failure criteria to predict the failure initiation in the matrix
of fiber composites, the reader is referred to (Kumagai et al., 2020).

For the loading conditions investigated in this work the dilatational
stress is not significant and failure by microcavitation is very unlikely.
Accordingly, the yield surface of the polymer is assumed to follow the
paraboloidal criterion (Tschoegl, 1971; Raghava et al., 1973):

fs(0.6,.0,) =6J,+2(0,. —0,) I, - 20,0, (B.1)
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principal stress, o7 [MPa]

Fig. B.1. Example of biaxial yield surface, (o3 =0), predicted by the paraboloidal
criterion (Tschoegl, 1971; Raghava et al., 1973).
Source: Yielding stresses taken from (Poulain et al., 2014).

where 6, and o, are the absolute values of the tensile and compressive
yield stresses, J, = %s,— ;5i; is the second invariant of the deviatoric
stress tensor s (note that repeated indexes imply summation), and
I, = Tr (o) is the first stress invariant. Fig. B.1 exemplifies the biaxial
yield surface for o, = 48.64 MPa and o,, = 68.12 MPa which are
typical values of the initial yield stresses in tension and compression
for epoxy (Poulain et al., 2014). This model has been shown to capture
the multiaxial behavior of thermosets extremely well except for cases
of large dilatational stresses (Asp et al., 1996).

To avoid positive volumetric strain under hydrostatic pressure, a
non-associative flow rule characterized by the following plastic poten-
tial is used in this work:

g (0)=0cly +ap’ (B.2)
with o,,, = 4/3J, = von Mises equivalent stress, p = 1/3I;, =
hydrostatic pressure, and @ = 9/2 (1 -2v,) / (1 +v,) with v, = plastic
Poisson’s ratio. Then, the non-associative flow rule reads (Jirasek and
Bazant, 2001):

P
AP = 4228 (B.3)
Jdo
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Fig. B.2. Calibration of the elasto-plastic model in tension and compression for Epoxy 3501-6.
Source: Experimental data taken from (Werner and Daniel, 2014).

where A4 is the increment of the plastic multiplier, subjected to the
Kuhn-Tucker consistency conditions and to be updated via the return
mapping algorithm. After a few algebraic manipulations, it is easy to
show that:

085
‘9o
Substituting the foregoing equation in the non-associative flow rule, it
is possible to find the following direct relationship for the plastic strain
increment:

=3s+ %apﬁ (B.4)

2
4e, = As (3s n 5a,us) (B.5)

From the plastic strain increment, it is possible to define an equiv-
alent plastic strain as follows:

£ = L £ 1 &
4 1+2v1§""’

which is used to link the hardening behavior of the polymer as char-
acterized from uniaxial tests to the hardening in the presence of a
general multiaxial stress state (Jirasek and Bazant, 2001). In this work,
isotropic hardening is assumed with hardening equations for both ten-
sion and compression written in terms of the equivalent plastic strain

=0y, (e;), Oy = Oy (e;). Fig. B.2(a,b) show the uniaxial tension

(B.6)

oy

and compression curves utilized in this work to obtain the hardening
laws. The symbols represent the experimental data provided in (Werner
and Daniel, 2014) while the solid lines represent the fitting obtained by
the proposed elasto-plastic model.

The model is implemented within an elastic predictor—plastic cor-
rector algorithm (Belytschko et al., 2014). At the beginning of the
(n+ 1)—th time increment, an initial trial stress is calculated assuming
an elastic behavior:

ir —_ e .
6,,,=0,+D°: Ae

(B.7)

from which it is possible to extract the deviatoric and volumetric parts:

{s;’+ | =5,+2G4e (a) .8

p;’_H =p,+Kde, (b)

where ¢, = volumetric strain, e = deviatoric strain tensor, G = shear
modulus, and K = bulk modulus.

After calculating the trial stress, the yielding condition is checked
using the current tensile and compressive yield stresses. If f, (o, Gy oy,)
< 0 the material is still in the elastic regime and the trial stress can
be considered as the correct stress: ¢,,; = o, ,. On the other hand,

if £, (6.0,..0,) = 0, the material has entered the plastic regime and
the stress is not admissible. Hence, stresses and plastic strain must are
recalculated to guarantee the yielding condition f, (c,6,.,06,) = 0
using the closest point projection (Belytschko et al., 2014).

In addition to the curves shown in Fig. B.2(a,b), the other data used
for the calibration of the model is E = 4600 GPa, v = 0.35. These
properties were obtained from (Werner and Daniel, 2014).

B.0.1. Damage model
The combination of the damage model with the elasto-plastic model
can be described by means of the following equation:

c=(l-w)o=(1-w)D,: (e—-¢,) (B.9)

where o is a scalar describing the amount of isotropic damage, D, is
the elastic stiffness, ¢ is the total strain, ¢, is the plastic strain, & is the
effective stress and o is the nominal stress. Eq. (B.9) underlies two dif-
ferent ways to combine stress-based plasticity with strain-based scalar
damage. One possible approach is to have the plastic part expressed in
terms of the effective stress (i.e. in the undamaged space). The other
approach consists in having the plasticity part written in terms of the
nominal stress (in the damage space). As was shown by Grassl and
Jirdsek in an excellent study (Grassl and Jirdsek, 2006), only the first
class of models provides local uniqueness without any restrictions on
the model parameters. Accordingly, in this work, it was decided to have
the plastic component of the model written in terms of the effective
stress.

The evolution of the damage variable w was calculated as a function
of the equivalent plastic strain, €, assuming a linear strain softening
leading to the following expression:

e _ e
() —£0)
T e —g°

7~ %
In the foregoing equation, e is the equivalent plastic strain at damage
initiation and &€ is the equivalent plastic strain when the element is
fully damaged. In the context of the crack band model (Bazant and
Oh, 1983; Bazant and Planas, 1997; Bazant et al., 2021), the strain at
complete failure must be adjusted as a function of the material fracture
energy and the element size to guarantee a mesh-independent energy
dissipation upon fracture:

2G Oy (58) B.11)

o, (e(e)) h, E

(B.10)
€

e _ _e
ef—£0+

where o, (eg) is the yield stress at damage initiation, G is the fracture

energy, and A, is the characteristic length of the element. The crack
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Fig. C.1. Uniaxial tensile behavior of the hyperelastic material considered in region
Q4. The symbols represent data on vulcanized rubber taken from (Treloar, 1948). The
solid line shows the fitting by the 3-term Ogden’s model (Ogden, 1972). Note that the
model has been modified to include strain softening using an improved version of the
framework presented in (Volokh, 2007). Shown is the regularized softening curve for
an element size of 0.3 mm using the crack band model (Bazant and Oh, 1983).

band model has been shown to accurately and objectively capture strain
localization phenomena in a variety of materials including e.g. concrete
(Bazant and Oh, 1983; Bazant et al., 2000; Caner and Bazant, 2013a,b),
composites (Salviato et al., 2016b,a), and polymers (Qiao and Salviato,
2019a,b; Qiao et al., 2020). For the simulations performed in this
work, the fracture energy was assumed to be G, = 1 N/mm which
is a typical value for epoxy polymers (Qiao and Salviato, 2019a). The
elasto-plastic-damage model was implemented as a VUMAT subroutine
in ABAQUS/Explicit.

Appendix C. Hyperelastic-damage model

In this work, the material in £ is assumed to be vulcanized rubber.
Considering the large deformations that can occur at the tip of the
notch, a nearly-incompressible hyperelastic model was implemented
with the strain energy density following a 3-term Ogden model (Ogden,
1972):

3
20 (o  —a;  —a K
W=Za_2'(,11+,12+,13—3)+3(1—1)2 €1

i=1 i
In the foregoing expression 4; = A;/J'/3, 2, with i = 1...3 are the stretch
ratios, J = det (F) is the Jacobian, K is the bulk modulus for small
deformations, and y; and «; are material properties to be calibrated via
experimental data. Starting from the strain energy density, the Cauchy
stress tensor can be easily calculated as follows (Bower, 2009):
oo LpoW

J OF
where F is the deformation gradient.

The strain energy density obtained from Eq. (C.1) increases indefi-

nitely with increasing stretch ratios. Accordingly, it is not suitable to
describe damage and fracture. To enable to capture strain softening

a modified version of the strain energy function proposed in (Volokh,
2007) is used in this work:

(C.2)

w
Wy +@ [1 —exp (—W;W")]

for w<w, (@

Y (W)=
W) )

(C.3)

for w > W,
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where W is calculated by means of Eq. (C.1), and W, and @ are
parameters that describe the softening behavior of the material. W
controls the damage initiation while @ controls the initial slope of the
softening curve. Following the crack band model (Bazant and Oh, 1983;
Bazant and Planas, 1997; Bazant et al., 2021), these parameters must be
adjusted as a function of the total fracture energy, G, and the element
characteristic length, A,.

Substituting Egs. (C.3)(a) and (C.3)(b) into (C.2), the Cauchy stress
tensor now reads:

) < <W—Wo>>
c=—F—exp|———
J OF [

where (x) = max(x,0). Fig. C.1 shows the calibration of Eq. (C.4)
using uniaxial tensile experimental data from (Treloar, 1948) using the
Levenberg—Marquardt algorithm (Levenberg, 1944; Marquardt, 1963).
As can be noted, Eq. (C.4) can accurately capture the experimental
data with a; = 046, a, = 1581, a3 = 3.52, y; = 1.79 MPa, u, =
1.75 x 10713 MPa, y; = 2.13 x 102 MPa and K = 2 GPa. The figure also
shows the exponential strain softening predicted by the hyperelastic
model for an element size of 0.3 mm for which W;, = 1.22x 10~ J/mm?
and @ = 1.00 x 1072 J/mm?>. For this work, the fracture energy was
assumed to be G, = 3.7 N/mm which is a typical value for vulcanized
rubber.

The foregoing model was implemented as a VUMAT subroutine in
ABAQUS/Explicit.

(C4
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