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Abstract

We study the statistical seriation problem, where
the goal is to estimate a matrix whose rows satisfy
the same shape constraint after a permutation of
the columns. This is a important classical prob-
lem, with close connections to statistical literature
in permutation-based models and also has wide
applications ranging from archaeology to biology.
Specifically, we consider the case where the rows
are monotonically increasing after an unknown per-
mutation of the columns. Past work has shown that
the least-squares estimator is optimal up to loga-
rithmic factors, but efficient algorithms for com-
puting the least-squares estimator remain unknown
to date. We approach this important problem from
a heuristic perspective. Specifically, we replace the
combinatorial permutation constraint by a contin-
uous regularization term, and then use projected
gradient descent to obtain a local minimum of the
non-convex objective. We show that the attained
local minimum is the global minimum in certain
special cases under the noiseless setting, and pre-
serves desirable properties under the noisy setting.
Simulation results reveal that our proposed algo-
rithm outperforms prior algorithms when (1) the
underlying model is more complex than simplistic
parametric assumptions such as low-rankedness,
or (2) the signal-to-noise ratio is high. Under par-
tial observations, the proposed algorithm requires
an initialization, and different initializations may
lead to different local minima. We empirically ob-
serve that the proposed algorithm yields consistent
improvement over the initialization, even though
different initializations start with different levels
of quality.

1 INTRODUCTION

Seriation refers to the problem of identifying a sequential or-
dering of the data such that “the position of each unit reflects
its similarity to other units” [Marquardt, 1978]. For example,
in archaeology seriation is used to identify the chronolog-
ical ordering of historical artifacts (see [Marquardt, 1978]
and references therein). Other applications include ecology
(identifying ages of fossil sites [Mannila, 2008]), biology
(discovering gene expression patterns [Caraux and Pinloche,
2004]), and operations research (understanding the inter-
actions between organizations [McCormick et al., 1972]),
just to name a few. From the statistical perspective, termed
“statistical seriation”, seriation is formulated as a matrix esti-
mation problem, where the rows of the matrix are assumed
to satisfy the same shape constraint after an unknown per-
mutation of the columns [Flammarion et al., 2019]. One
common shape constraint is that the rows are monotoni-
cally increasing after the permutation of the columns, and
in this paper we focus on this monotonic case. We refer the
reader to the papers [Liiv, 2010, Flammarion et al., 2019]
for surveys of (statistical) seriation in various applications.

Statistical seriation also forms a fundamental building block
for many other problems, and ideas on solving statistical
seriation may be applicable to estimation under closely-
related “permutation-based” models, which involve matrices
that are monotonic up to unknown permutations of rows
and/or columns. Permutation-based models arise in a variety
of applications including estimating pairwise comparison
probabilities [Shah et al., 2017, Liu and Moitra, 2020, Mao
et al., 2020], crowdsourced labeling [Shah et al., 2020],
matrix completion [Shah et al., 2019], passive [Heckel et al.,
2019] and active ranking [Shah and Wainwright, 2017].
A key challenge in these applications, as well as in the
statistical seriation problem, is the presence of unknown
permutations.

An additional application of statistical seriation is miscali-
bration in peer review [Wang and Shah, 2019]. This appli-
cation involves a collection of reviewers and papers, where
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each reviewer provides ratings to their assigned subset of
papers. In this context, the ratings of each reviewer is rep-
resented by a row in a matrix, and the papers represented
by the columns inherit an ordering. The goal is to estimate
an underlying ordering of the papers. A key challenge is
that reviewers may be miscalibrated, that is, different re-
viewers may have different rating scales. One model for
miscalibration is to assume that there exists an underlying
true value for each paper, and each row of the matrix (resp-
resenting a reviewer) is some monotonic transformation of
these true values combined with noise. In such applications,
one prominent benefit of the statistical seriation model is
that the permutation-based assumption is general, and does
not impose overly-simplistic assumptions such as the ma-
trix being low rank or having a specific parameter-based
form. Hence, the seriation model is robust in modeling a
broad class of true matrices and has low bias in estimation
compared to specialized models that make parameter-based
assumptions.

1.1 PROBLEM FORMULATION

We now introduce the formulation of statistical seriation.
Let n and d be positive integers, and let Y ∈ Rn×d be a
real-valued matrix. Let Πd be the set of all permutations of
size d. For any permutation π ∈ Πd, letMπ ⊆ Rn×d be
the set of all matrices whose columns satisfy the ordering
given by π. That is, for every matrix A ∈ Mπ, we have
Ai,π(1) ≤ Ai,π(2) ≤ . . . ≤ Ai,π(d) for every i ∈ [n]. Let
M := ∪π∈Πd

Mπ denote the set of all (n × d) matrices
whose columns can be permuted such that every row is non-
decreasing from left-to-right after some permutation of the
columns. Statistical seriation assumes that observations are
made in the form of

Y = A∗ + Z, (1)

where we have an unknown true matrix A∗ ∈ M, and the
unknown matrix Z is a zero-mean sub-Gaussian random ma-
trix that represents the noise. The goal of statistical seriation
is to estimate the matrix A∗ (and/or the ordering π∗ ∈ Πd

associated with it). A natural estimator for this problem is
the least-squares estimator [Flammarion et al., 2019]

ÂLS ∈ argmin
A∈M

‖A− Y ‖2F . (2)

The aforementioned description assumed that the matrix
Y was fully observed, but this is rarely the case especially
in applications such as peer grading or peer review, where
each reviewer only evaluates a small subset of the items.
Therefore, we also consider the setting of partial observa-
tions, where only a subset of entries Ω ⊆ [n]× [d] in Y is
observed. To this end, for any matrix X ∈ Rn×d, let ‖X‖Ω
denote the Frobenius norm restricted to the set Ω, defined
as ‖X‖2Ω =

∑
(i,j)∈ΩX

2
ij . Then the least-squares estimator

under the case of partial observations finds the matrix within
the domainM that best fits the observed entries:

ÂLS ∈ argmin
A∈M

‖A− Y ‖2Ω. (3)

The least-squares estimators (2) and (3) have desirable sta-
tistical properties. When the noise is i.i.d. normal, then they
correspond to the maximum likelihood estimator (MLE).
Furthermore, Flammarion et al. [2019] shows that the least-
squares estimator (2) is optimal up to logarithmic factors
and adapts to matrices with a certain natural structure. How-
ever, despite the generality of the seriation model and the
strong theoretical guarantees of the least-squares estimator,
the unknown permutation π in (2) imposes computational
challenges in solving (2) efficiently. If the permutation π
were known, then A can be solved by isotonic regression
taking O(nd) time [Barlow et al., 1972]. However, in (2)
the permutation π is unknown, and naively brute-forcing all
possible choices of π takes exponential time in d. Computa-
tionally efficient algorithms for computing (2) are not known
to date [Flammarion et al., 2019]. Moreover, no algorithms
have been found that are both efficient and statistically op-
timal (whether using the least-squares formulation (2) or
not), showing an unclosed statistical-computation gap for
the statistical seriation problem.

1.2 OUR CONTRIBUTIONS

In this section, we outline the main contributions of this
paper and summarize our results.

Approach: A Heuristic Approximation The goal of our
work is to provide a practical algorithm that heuristically
approximates the solution to (3). Specifically, we approach
the problem by replacing the combinatorial permutation con-
straint in (3) by a continuous regularization term while still
capturing the permutation constraint. Formally, we define
the following objective function L : Rn×d → R, parameter-
ized by a tuning parameter λ ≥ 0:

L(A) = LY,Ω,λ(A) := ‖A− Y ‖2Ω + λR(A). (4)

where R : Rn×d → R≥0 is a carefully-designed regularizer
term to be explained in Section 2. Then our solution is
computed by minimizing the objective as

argmin
A∈[0,1]n×d

L(A). (5)

Following Shah et al. [2017], we assume Bernoulli noise Z
in (1), and therefore restrict the domain of optimization (5)
to [0, 1]n×d. Now that the objective is continuous and the
domain is a closed bounded set, we use projected gradient
descent to obtain a local minimum of this non-convex objec-
tive. Our approach is quite different from past work – past
work has primarily focused on designing efficient algorithms
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that reduce the gap from the optimal estimator in terms of
the statistical rates. On the other hand, we directly provide a
heuristic for approximating the optimal estimator. We thus
provide a new point of comparison in terms of the statistical
and computational trade-off. Our approach thus provides
new insights in terms of possible research directions to un-
derstand and address this statistical-computational gap.

Theoretical results We first theoretically analyze the sta-
tionary points of (5), and show that projected gradient de-
scent converges to a stationary point (Section 4). Specifi-
cally, the attained stationary point recovers the exact input
data in the noiseless case (Theorem 2) and has other desir-
able theoretical properties in the noisy case (Proposition 3
and Theorem 4). These theoretical results hold generally for
any λ ≥ 0. The theoretical results thus provide insights into
our approach (5) to approximating statistical seriation, and
provide justification for its validity.

Simulation results We then empirically evaluate our algo-
rithm by simulation. Specifically, we examine the following
aspects:

• Accuracy-computational tradeoff of λ We first ob-
serve that the tuning parameter λ induces an accuracy-
computational tradeoff (Section 5.2.1). Specifically,
when the value of λ increases, estimation achieves
higher accuracy but gradient descent takes more itera-
tions to converge.

• Advantage under non-parametric models and high
SNR We then compare our estimator with various base-
lines under various models (Section 5.2.2). We observe
that our estimator performs well when the true data
violates simplistic parametric assumptions. This is be-
cause our estimator inherits the general formulation
of statistical seriation, giving low bias in estimation.
On the other hand, although the parametric baselines
perform well when the true data is generated from such
parametric models, they incur a large bias when the
true data is not. In addition, our estimator especially
performs well when the SNR is high. This is also ex-
pected, as noise is of low-rank in nature. Therefore,
when the signal level relative to the noise is low, the
noise overshadows the non-parametric structure of the
true matrix.

• Partial observations and initialization of gradient
descent Finally, we consider the case when the data is
only partially observed (Section 5.3). In this case, the
gradient descent algorithm requires an initialization on
the unobserved entries of the matrix. Since the objec-
tive (4) is non-convex, gradient descent may converge
to different local optima based on the initialization. We
empirically observe that our algorithm consistently im-
proves the estimation accuracy for different choices
of initialization, although the amounts of error at the

beginning of gradient descent are different for different
initializations.

Putting the theoretical and empirical results together, our
work demonstrates the effectiveness of our approach to ap-
proximating the solution of the least-squares estimator, and
the generality of the approach inherited by the generality of
the seriation model.

2 OUR PROPOSED ALGORITHM

We propose the following regularizerR for the objective (4):

R(A) =
∑

i,i′∈[n]j,j′∈[d]

Ri,i′,j,j′(A), (6)

where Rii′jj′(A) is defined as

Ri,i′,j,j′(A) :=

{
0 if (Aij −Aij′)(Ai′j −Ai′j′) ≥ 0

(Aij −Aij′)2(Ai′j −Ai′j′)2 otherwise.
(7)

The goal of the regularizer R is to capture the permuta-
tion constraint of the matrix. The main challenge with the
constraint is that the permutation is unknown. In (7), we
consider the four matrix entries in rows {i, i′} ⊆ [n] and
columns {j, j′} ⊆ [d] of the matrix. We call these four en-
tries as the “quadruple” (i, i′, j, j′). We observe thatA ∈M
if and only if the terms (Aij −Aij′) and (Aij −Aij′) have
the same sign (or one or both of the terms equal 0) for all
the quadruples in the matrix (including quadruples where
some or all of the four entries are unobserved). Hence, the
regularizer Rii′jj′ is designed to penalize the difference
in the sign between the pairs of terms (Aij − Aij′) and
(Ai′j − Ai′j′). The quadratic form (7) of Rii′jj′ can be
viewed as a differentiable approximation to the step function
1{(Aij −Aij′)(Ai′j −Ai′j′) < 0}. Finally, the regularizer
R takes a summation over all the quadruples (i, i′, j, j′).
It can be verified that we have A ∈ M if and only if
R(A) = 0.

Putting (4), (5) and (6) together, our estimator is defined as

argmin
A∈[0,1]n×d

‖A− Y ‖2Ω + λ
∑

i,i′∈[n],j,j′∈[d]

Rii′jj′(A), (8)

where ties are broken arbitrarily. Equivalently, our estimator
can be viewed as first reformulating the original problem (3)
to an equivalent problem:

argmin
A∈[0,1]n×d

Rii′jj′ (A)=0 ∀i,i′∈[n],j,j′∈[d]

‖A− Y ‖2Ω. (9)

Then optimization (8) can be considered as the Lagrangian
of the optimization problem (9). Intuitively, a large value
of λ corresponds to stricter enforcement of the permutation
structure on the matrix A.
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To solve (8) we use projected gradient descent. The pro-
jected gradient descent algorithm consists of two steps in
each iteration. In the gradient step, the algorithm updates
its current estimate by computing gradient of the objective
and moving the current estimate in its objective-improving
direction for a stepsize. In the projection step, the algorithm
projects the current estimate back to the domain [0, 1]n×d.
Formally, we denote γt ∈ R as the stepsize in each iteration
t ≥ 1. We have

Gradient step: At = At−1 − γt∇LA(A). (10a)

Projection step:
At ← max{0, At},
At ← min{1, At}.

(10b)

Note that we choose a quadratic form in (7) instead of a lin-
ear form such as the hinge loss, because the quadratic form
is differentiable, and hence its gradient can be computed
straightforwardly.

3 RELATED WORK

Seriation and estimation under monotonicity Flammar-
ion et al. [2019] proposes the statistical model for seriation,
and then shows that the least-squares estimator (2) is opti-
mal up to logarithmic factors when the underlying constraint
is either monotonic or unimodal. More generally, there is
a rich line of literature on estimation under permutation
constraints, where the data obeys certain underlying order-
ings, but the orderings are unknown. For example, Mao
et al. [2020] consider the class of bivariate isotonic matrices,
where the matrix follows an unknown row permutation and
an unknown column permutation, and a subclass where one
of the two permutations is known. Shah et al. [2017] analyze
the class of stochastic transitivity (SST) matrices, which are
bivariate isotonic matrices that are (shifted) skew-symmetric.
A multivariate generalization is considered in Pananjady and
Samworth [2020]. For such problems, the least-squares esti-
mators are considered (e.g., [Shah et al., 2017, Flammarion
et al., 2019, Shah et al., 2020]). However, efficient algo-
rithms for computing such least-squares estimators are not
known [Flammarion et al., 2019, Mao et al., 2020, Liu and
Moitra, 2020]. Due to the computational inefficency of the
least-squares estimator, other computational efficient esti-
mators are proposed [Flammarion et al., 2019, Mao et al.,
2020, Liu and Moitra, 2020]. Many of these efficient estima-
tors are statistically suboptimal, with the exception of Liu
and Moitra [2020] and Pananjady and Samworth [2020].
Specifically, Liu and Moitra [2020] considers bivariate iso-
tonic matrix estimation where one of the two permutations
is known, and proposes an estimator that runs in linear time
achieving the optimal rate up to an no(1) factor. Pananjady
and Samworth [2020] proposes an estimator that is opti-
mal when the dimension of the problem is d ≥ 3 (but not
d = 2). For statistical seriation, positive or negative results
on efficient estimators achieving the optimal rate remains
unknown [Flammarion et al., 2019].

Landscape design and properties of local optima
Optimization-based approaches are widely used for many
problems, where the solution is posed as the minimizer
to an objective function and computed by standard tech-
niques such as gradient descent. The objective often includes
regularization terms. Designing proper regularization (also
termed “landscape design”) that has desirable properties
has been considered problems such as low-rank approxi-
mation [Ge et al., 2016] and neural networks [Ge et al.,
2018]. In particular, Ge et al. [2016] considers low-rank
approximation under a random design setting and proves
that all local minima are global minima. Ma et al. [2018]
considers a specific crowdsourced labeling setting with a
rank-1 (Dawid-Skene) model, and shows that under arbi-
trary fixed design, all local minima are global minima for
rank-1 matrix completion [Ma et al., 2018]. These theoret-
ical results suggest that gradient descent converges to the
global optimum for their problems. Ma et al. [2018] further
proposes an exponentiated gradient descent algorithm to
achieve polynomial-rate convergence. Since a rank-1 ma-
trix is monotonic by definition (where the permutation is
unknown), our theoretical results (Section 4) can be consid-
ered as a generalized setting of Ma et al. [2018]. Our idea
of using projected gradient descent is also inspired by Ma
et al. [2018].

On using regularization for permutation constraints, Tib-
shirani et al. [2011] proposes a regularizer to captures the
permutation constraint in isotonic regression, where the per-
mutation is known. On the other hand, we consider the case
where the permutation is unknown.

Data imputation In the partial observation setting, our
algorithm starts with an initialization. This initialization is
related to data imputation, which is used in domains such
as clustering. Methods such as naively taking the mean,
nearest-neighbor (NN) [Beretta and Santaniello, 2016] and
MICE [Azur et al., 2011] are proposed. In the simulation
results, we consider initializing the missing data by the mean
and the nearest-neighbor methods.

4 THEORETICAL PROPERTIES

In this section, we present theoretical properties of our al-
gorithm. Specifically, we analyze the stationary points of
the non-convex objective (8). We show desirable properties
of any stationary point under the noiseless and the noisy
settings. These results provide theoretical backing that the
regularized objective proposed in (8) provides a natural ap-
proach to approximating the solution of (2).

The following result connects stationary points and gradient
descent, stating that the gradient of the iterates obtained by
projected gradient descent converges to 0.

Theorem 1. Consider any matrix Y ∈ [0, 1]n×d, any non-
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empty observation set Ω ⊆ [n]× [d], and any value of the
parameter λ ≥ 0. With any initialization, the gradient of
the iterates given by projected gradient descent on objec-
tive (8) converges to 0. Specifically, with a proper choice
of a constant stepsize (dependent on n, d and λ), for any
ε > 0, the solution of projected gradient descent satisfies
limt→∞‖∇L(Ât)‖2F < ε.

The proof of this theorem is provided in Appendix B. In
what follows, we present properties of the stationary points
of the objective (8). Note that the objective (8) is continuous
and over a closed bounded set (that is, [0, 1]n×d). Therefore,
there always exists at least one global minimum [Rudin,
1976, Theorem 4.16], and hence at least one local minimum.
In Lemma 6 of Appendix A.2, we show that all local min-
ima on the boundary of the domain [0, 1]n×d are stationary
points, so there exists at least one stationary point.

4.1 THE NOISELESS SETTING

We first consider the noiseless setting where we have
Y ∈M. Our approach is inspired by the work of Ma et al.
[2018]. Specifically, Ma et al. [2018] considers rank-1 ma-
trix completion under any fixed-design, and shows that their
proposed algorithm can perfectly recover the rank-1 matrix
in the noiseless case. Without a second thought, one may be
tempted to write off this result – there is a straightforward al-
gorithm to perfectly recover noiseless rank-1 matrices, that
is, picking any non-zero row of the matrix, and writing each
remaining row as the product of a multiplicative factor and
this row. However, the theoretical results in Ma et al. [2018]
still provide non-trivial theoretical contributions and useful
insights – the straightforward algorithm is heavily tailored
to the noiseless case, and quickly becomes inapplicable
when the data deviates from being rank-1. On the contrary,
the theoretical guarantees by Ma et al. [2018] are shown
on a much more general algorithm with any initialization,
applicable to any arbitrary matrix Y .

In our problem, under the noiseless setting, the set of global
minima to (8) is the set of monotonic matrices whose entries
equal to Y on the observed set Ω. The following result shows
that all stationary points are global minima. Since rank-1
matrices are monotonic by definition, our result supplements
the result of Theorem 2 in Ma et al. [2018] by considering
general monotonic matrices in small matrix sizes.

Theorem 2. Consider any Y ∈M, any non-empty obser-
vation set Ω ⊆ [n] × [d] and any value of the parameter
λ ≥ 0. Consider n = 2 or d ≤ 3. Then any stationary point
to the objective (8) is a global minimum.

The proof of this theorem is provided in Appendix C. The
proof relies on the first-order optimality condition, and uses
combinatorial arguments to derive contradictions if any sta-
tionary point were not a global minimum.

Similar to the setting in Ma et al. [2018], under the noise-
less setting, there also exists a straightforward algorithm
to obtain all the global minima of (8) – by first finding the
total ordering of the columns (or the set of all such total
orderings) induced by the entries within each row, and fill-
ing each unobserved entry to be any value subject to this
total ordering. On the contrary, our algorithm is applicable
to any arbitrary matrix Y . With its generality, it is even un-
clear if the original noiseless matrix can be recovered under
any arbitrary initialization without Theorem 2. Furthermore,
the property of perfectly recovering noiseless data is not
only natural but also important – given the generality of the
seriation model, Theorem 2 contrasts our algorithm with
prior approaches in matrix estimation and completion such
as using parameter-based models or low-rank matrix decom-
position, where a non-zero bias is incurred in this noiseless
case.

4.2 THE NOISY SETTING

Now we move to consider the noisy setting where the ma-
trix Y is not guaranteed to be monotonic. A quadruple
(i, i′, j, j′) is called a “disagreement quadruple” if the signs
of (Aij −Aij′) and (Ai′j −Ai′j′) are different. The follow-
ing result shows that the set of disagreement quadruples at
any stationary point to (8) is a subset of the disagreement
quadruples in the original matrix Y .

Proposition 3. Consider any matrix Y ∈ [0, 1]n×d, any
non-empty observation set Ω ⊆ [n]×[d] and any value of the
parameter λ ≥ 0. Consider n = 2. Let Â be any stationary
point of the objective (8). For every {i, i′} = {1, 2} and any
j, j′ ∈ [d] such that

Âi,j < Âi,j′ and Âi′,j > Âi′,j′ ,

we have the same relation holds at the corresponding entries
of the matrix Y :

Yi,j < Yi,j′ , if (i, j), (i, j′) ∈ Ω

and Yi′,j > Yi′,j′ , if (i′, j), (i′, j′) ∈ Ω.

The proof of this result is provided in Appendix D. In words,
this result shows that our estimator only reduces the dis-
agreement quadruples in the observations Y and never in-
troduces new ones that do not exist in Y , thus revealing
another natural desirable property of our estimator (8).

Using Proposition 3 as a building block, the following result
considers the case where there is a partition of the columns,
and there is a total ordering describing the dominance re-
lation of these columns in the matrix Y . Specifically, a
set of columns S ⊆ [d] is said to “dominate” another set
of columns S′ ⊆ [d], if we have Yij > Yij′ , for every
i ∈ [n], j ∈ S and j′ ∈ S′ such that (i, j), (i, j′) ∈ Ω. The
following theorem shows that any stationary point to (8)
retains this dominance relation.
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Theorem 4. Consider any matrix Y ∈ [0, 1]n×d, any non-
empty observation set Ω ⊆ [n] × [d] and any value of the
parameter λ ≥ 0. Consider n = 2. Assume there exists a
partition of columns [d] = S1 ∪ . . . ∪ Sm, such that Sk+1

dominates Sk for each k ∈ [m− 1]. Assume that for each
k ∈ [m− 1], and each j ∈ Sk, j′ ∈ Sk+1, we have

∃i ∈ {1, 2} such that (i, j), (i, j′) ∈ Ω. (11)

Then at any stationary point Â to the objective (8), we have
Âij < Âij′ for any i ∈ {1, 2} and any j ∈ Sk, j′ ∈ Sk+1

with any k ∈ [m− 1].

The proof of this result is provided in Appendix E. In words,
the condition (11) in Theorem 4 requires that the ordering
of two columns are directly comparable. Note that in the
noiseless case, we can write the partition as [d] = {1} ∪
. . . ∪ {d}. Hence, this result is a generalization of our result
from the noiseless case (Theorem 2). Proposition 3 and
Theorem 4 thus together show that in the noisy setting, any
stationary point to the objective (8) has desirable properties
under certain special cases. These theoretical properties are
natural but at the same time non-trivial, providing theoretical
insights and validation to our proposed estimator (8).

5 SIMULATIONS

In this section, we evaluate the performance of gradient
descent on the objective (8) in different settings1. We first
discuss the simulation set-up for a full-observation setting
(Ω = [n]× [d])) in Section 5.1. We provide the associated
results in Section 5.2. In a nutshell, our algorithm performs
better than the baselines when the underlying models do not
satisfy specialized parametric assumptions, and also when
the signal-to-noise (SNR) is high so that the noise does not
overshadow the non-parametric structure of the data. We
then simulate settings with only partial observations in Sec-
tion 5.3. We consider several natural methods to initialize
the matrix Y and we find that our algorithm consistently
improves the performance as compared to the various com-
mon initialization methods. We also find that our algorithm
is quite robust to the choice of the initialization method,
although the choice of initialization could in theory lead to
very different local minima.

5.1 SIMULATION SETUP

We now describe the design choices made for our estima-
tor (8) and the simulation settings.

1The code for the implementation of our estimator and for eval-
uation is provided at https://github.com/jingyanw/
heuristic-seriation.

Reparameterizing the hyperparameter λ Instead of the
objective (8) that weighs the two terms by 1 and λ, we
reparametrize the hyperparameter λ and now weigh the two
terms by (1− λ̃) and λ̃ with λ̃ ∈ [0, 1). That is, we consider
the objective

argmin
A∈[0,1]n×d

(1− λ̃) · ‖Y −A‖2Ω + λ̃R(A). (12)

Note that this objective (12) is equivalent to the previous
objective (8), with a one-to-one correspondence between
the values of λ and λ̃. The reparameterized objective (12)
reduces the variation on the magnitude of the objective
through the range λ̃ ∈ [0, 1), making it easier to choose a
simple constant stepsize for gradient descent independent of
the specific choice of λ̃. For all the subsequent simulation
results, we consider this reparameterized objective (12).

Gradient descent For simplicity, we choose a constant
stepsize of 0.1 with a momentum of 0.9. We use the initial-
ization A0 = Y under full observations. The choice of the
initialization under partial observations is further discussed
in Section 5.3. We terminate the algorithm when the normal-
ized squared Frobenius norm of the gradient is smaller than
10−8, that is, when 1

nd‖∇AL̃(A)‖2F < 10−8, where L̃ de-
notes the reparameterized objective (12). We implement our
objective (12) and run gradient descent in PyTorch [Paszke
et al., 2019].

Models We follow the observation models studied in Shah
et al. [2017], but with an additional parameter that controls
the relative levels of signal and noise. We consider square
matrices with n = d. Let A∗ ∈ [0, 1]n×n represent the true
matrix whose value is specified later for different models.
Bernoulli observations Y are generated2 fromA∗, that is, we
have P(Yij = 1) = A∗ij for each i, j ∈ [n]. We use the five
SST models of A∗ described in Shah et al. [2017, Section
4]; we also include the descriptions below for completeness.

(a) Uniform: The diagonal entries are 0.5. Then
(
n
2

)
val-

ues are drawn independently and uniformly at random
from [β, 1], for a fixed choice of β ∈ [0.5, 1] , and
sorted in the increasing order. The entries immediately
above the diagonal are filled with the smallest (n− 1)
values uniformly at random. Then the entries in the
next diagonal above are filled uniformly at random
with the smallest (n− 2) of the remaining values, and
so on. The entries below the diagonal are filled in to
make A∗ skew symmetric.

(b) Thurstone: A vector w∗ ∈ Rn is chosen uniformly at
randomly from the set of w∗ such that 〈w∗, 1〉 = 0 and

2Note that Shah et al. [2017] only generates i.i.d. Bernoulli
observations in the upper diagonal with i ≤ j, and set the entries
in the lower diagonal as Yji = 1− Yij . This is because Shah et al.
[2017] requires the matrix to be skew-symmetric whereas with the
seriation model we do not have this restriction.
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all entries of w∗ are between −0.5 − β and 0.5 + β,
for a fixed choice of β. Then the matrix A∗ is filled in
via A∗ij = F (w∗i −w∗j ) for each i, j ∈ [n], where F is
the CDF of the standard normal distribution.

(c) BTL: Identical to the Thurstone model, except that F
is given by the sigmoid function.

(d) Noisy sorting: The diagonal entries are 0.5. All entries
above the diagonal are β, and all entries below the di-
agonal are 1− β, for a fixed choice of β ∈ [ 1

2 , 1]. This
is a classic model proposed by Braverman and Mos-
sel [2008] and studied subsequently in the literature
(e.g., Mao et al. [2018]).

(e) Independent bands: The diagonal entries are 0.5. The
entries immediately above the diagonal are chosen i.i.d.
uniformly at random from [β, 1], for a fixed choice of
β ∈ [0.5, 1]. The entries in the next diagonal is chosen
uniformly randomly from the range lower bounded by
the entries to its left and below. The entries below the
diagonal are filled in a manner that makes A∗ skew
symmetric.

Metrics For any estimator Â, we consider its risk in terms
of the normalized squared Frobenius norm, 1

nd‖Â−A
∗‖2F .

Baselines We compare our algorithm to the following
baselines:

1. Rank-1: The estimate Â is computed as the rank-1
approximation of Y .

2. Singular-value thresholding (SVT): This estimator is
studied in Shah et al. [2017, Section 3.2] (and also in
various other works such as Chatterjee [2015]), with
a parameter α denoting the (soft) threshold level ap-
plied on the singular values of Y . The value of α is
required to be strictly greater than 2

√
n, and Shah et al.

[2017] uses α = 2.01
√
n. For our settings, we consis-

tently observe that a smaller value of α gives better
performance, so we set α = 2.0000001

√
n.

5.2 RESULTS FOR FULL OBSERVATIONS

We now present the results from our simulations pertaining
to the full-observation setting.

5.2.1 Accuracy-computation tradeoff induced by λ̃

We first inspect the performance of our algorithm for differ-
ent choices of λ̃ ∈ [0, 1), in terms of the accuracy (measured
by the Frobenius error of estimation) and the computational
time (measured by the number of iterations taken till con-
vergence of gradient descent), shown in Figure 1. We use
n = 64 and β = 0.5 (which matches the setting in Shah
et al. [2017]). The error bars in Figure 1 and all subsequent
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Figure 1: Tradeoff between accuracy (estimation error) and
time (number of iterations) for different values of λ̃ ∈ [0, 1).

results represent the standard error of the mean, computed
over 10 trials. In Figure 1 and subsequent plots, the error
bars are small and therefore not visible.

We observe from Figure 1 that there is a tradeoff between
accuracy and the computational time. As the value of λ̃
increases, our algorithm attains a lower error (Figure 1(a)),
but takes more time (Figure 1(b)). This tradeoff is expected,
because the original least-square estimator intuitively cor-
responds to setting λ̃ = 1, which is known to be optimal in
estimation and conjectured computationally inefficient. On
the other hand, setting λ̃ = 0 is equivalent to outputting the
observation matrix Y without any computation. For clarity,
only a few models are shown in Figure 1, but we consistently
observe these trends for numerous settings not shown.

Consequently, for all subsequent simulations we set λ̃ =
0.9, which is a reasonably large value that attains low error
without excessively slowing down the convergence. We now
provide simulation results for the 5 models under the set-up
described in Section 5.1.

5.2.2 Comparison to baselines

We run simulations comparing the performance of our algo-
rithm with the baselines on the aforementioned models in
two ways: varying the matrix size n (for fixed β = 0.5) and
varying the signal relative to noise, β (for fixed n = 64).
The results are shown in Figure 2 and Figure 3, respectively.
The key findings from these simulations are as follows:

• The baselines work well when the underlying model
is parametric or similar (Figure 2(b)(c)), but are incon-
sistent when such parametric assumptions do not hold
(Figure 2(d)(e)). A similar observation about the Thur-
stone MLE is made in Shah et al. [2017]. The rank-1
estimator outperforms the (soft)-SVT estimator.

• Our estimator outperforms the baselines when the un-
derlying model is more complex.

• When the noise level is high relative to the signal
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Figure 2: Estimation error of different algorithms for different models of A∗.
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Figure 3: Estimation error of different algorithms under different levels of signal relative to noise.

(smaller values of β in Figure 3), the baselines perform
well. This is because the estimation error dominates,
and the baselines trim off a lot of noise.

• When the noise level is low relative to the signal (larger
values of β in Figure 3), our estimator offers substantial
improvements. In this regime, the approximation error
is the dominating source of error, and the baselines
incur a large approximation error since they also trim
off a large part of the signal.

5.3 PARTIAL OBSERVATIONS

In what follows, we simulate settings where Y has missing
entries, which is important in practice but has received much
less attention in the literature. We consider our algorithm (8)
and evaluate various initializations for gradient descent, as
well as compare it to the baselines. The initialization poten-
tially affects the performance of gradient descent, because
gradient descent may converge to different local optima
depending on the initialization.
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Figure 4: Performance with partial observations under different initialization methods.

5.3.1 Simulation setup

As before, we choose n = 64, and β = 0.5, matching the
setting in Shah et al. [2017].

Random-design observations We consider a random de-
sign to construct Ω so that each matrix entry is observed
with probability 0.3 independent of all else.

Initialization methods We consider the following initial-
ization methods:

• Row mean: Each unobserved entry is initialized to
the mean of the observed entries in its row.

• Column mean: Each unobserved entry is initialized
to the mean of the observed entries in its column.

• Row kNN: Each unobserved entry is imputed as the
mean of the 5 nearest rows among the rows. The dis-
tance between rows is measured in terms of the nor-
malized Euclidean distance.

• Column kNN: Each unobserved entry is imputed as
the mean of the 5 nearest columns among the columns.
The distance between columns is measured in terms of
the normalized Euclidean distance.

5.3.2 Results for partial observations

The simulation results for partial observations are shown in
Figure 4, where the bars for the same initialization before
and after running our algorithm are coded in a pair of similar
colors. We also compare the performance of our algorithm
with the baselines described earlier in Section 5.1. The figure
shows the performance of each baseline with the initializa-
tion method for which it performs the best (which happens
to be both row and column kNNs for both baselines). The
salient findings from the simulations are as follows:

• The choice of the initialization method does not have
strong influence on the performance of our algorithm.

• Our algorithm consistently improves upon different
initialization methods.

• Similar to the full-observation setting, our method out-
performs the baselines when the underlying model is
more complex, whereas the baselines perform well
when the underlying model is simpler.

6 CONCLUSIONS AND DISCUSSION

In this work, we contribute a heuristic-based perspective
with respect to the spectrum of the statistical-computational
gap in the statistical seriation problem. In terms of open
problems, on the theory front, it is still certainly of inter-
est to accurately characterize the statistical-computational
gap. On the applied side, a wide range of applications have
application-specific characteristics. For example, in peer
review, reviewers’ behaviors may not be entirely monotonic
due to subjectivity, so that the true matrix may have only a
partially monotonic structure. Our heuristic-based approach
can provide a useful tool to tackle such challenges that are
even more complex than the open problem of statistical
seriation.
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