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Abstract— Electroencephalography (EEG) has been used as 

a gold standard in various clinical and research applications 

including disease diagnoses and cognitive understanding. It is 

also being used as brain-machine interfaces in robotics and 

assistive technologies. Wearable EEG systems provide a good 

solution for out-of-hospital recording; however, they are still 

not suitable for long-term monitoring due to the bulky 

placement of electrodes over the scalp. The goal of this study is 

to develop an adaptive spatial resolution framework for 

wearable EEG systems that can use a limited number of EEG 

electrodes to achieve high spatial resolution detection. It also 

shows the high feasibility for achieving high-density and ultra-

high-density EEG from traditional 10-20 or 10-10 systems. The 

proposed method utilized the matrix completion technique to 

recover high-resolution EEG field from only a limited number 

of electrodes, which enables simplification of hardware design 

for wearable EEG that can achieve a compatible performance 

of P300 detection. The results show that 75% reduced 

electrodes can achieve a comparable performance as regular 

EEG with the RMSE under 5%. 

Keywords—High-density EEG, wearable EEG, super-

resolution, adaptive spatial resolution 

I. INTRODUCTION  

    Electroencephalography (EEG) is a standard technique 

for measuring scalp electrical signals generated by brain 

activities, which is widely used for disease diagnoses and 

treatments as well as brain-machine interfaces. Clinical EEG 

systems normally adopt standard electrode placements such 

as the international 10-20 or 10-10 system with 10 to 64 

electrodes over the scalp. Biomarkers are then extracted 

from the detected multi-channel signals for different 

diagnosis purposes. Compared to other imaging techniques 

for neurological measurement, EEG offers a less invasive, 

less expensive, and more convenient solution for brain 

activity measurement. In recent years, high-density EEG 

(HD-EEG) and ultra-high-density EEG (UHD-EEG) with 

256 to 1000 electrodes are successfully developed and 

utilized in clinical and research applications [2]-[4], which 

enable EEG as a high temporal resolution imaging modality 

[1].  

    Clinical EEG systems normally use wet electrodes and 

usually require abrasion of human skin to reduce skin-

electrode impedance and increase signal quality. Wearable 

EEG systems developed from ambulatory EEG are smaller 

and lighter devices for EEG recording in daily applications. 

Wearable EEG systems have higher comfort, 

biocompatibility, and operability, and thus provide an 

excellent solution for identifying potential biomarkers 

beyond clinical settings. However, low spatial resolution in 

wearable conditions may not meet clinical standards for 

diagnosis whereas high spatial resolution can cause 

wearable issues and high power consumption in long-term 

monitoring in out-of-hospital settings.   

    In such cases, it is valuable to reconstruct an EEG 

recording with high spatial resolution from a lower spatial 

resolution electrode placement. Mathematically, it is an ill-

posed inverse problem without analytical solutions to infer 

the full-field (high spatial resolution) signals with only 

limited (low spatial resolution) measurements. A traditional 

super-resolution approach is to acquire a low-resolution grid 

of measurements at the uniform locations, and then use an 

averaging-based interpolation function (such as bi-cubic) to 

construct a high-resolution approximation. However, the 

averaging process can easily lose the local, fine-detailed 

information.  

    In this study, we propose a matrix completion based 

computational framework for adapting spatial resolution of 

EEG signals. We propose to use the state-of-the-art 

interpolation approach that exploits the implicit feature 

structure of the two-dimensional (2D) signals and 

formulates it as a matrix completion problem, which is 

solved by the emerging convex optimization techniques [5], 

[6]. The proposed method is capable of significantly 

enhancing the spatial resolution of international 10-10 EEG 

systems and lowering power consumption simultaneously. 

The results show that 75% reduced electrodes can achieve a 

comparable performance as regular EEG with the RMSE 

under 5%. This study provides the theoretical basis and 

computational method for using traditional EEG signals to 

achieve HD-EEG and UHD-EEG as well as reducing the 

usage of electrodes for wearable EEG system design 

towards an adaptive spatial resolution computational 

framework.  

II. THEORETICAL BASIS 

A. EEG Systems 

    EEG systems measure the surface electrical potentials on 

the scalp caused by neuronal action within the brain. The 

clinical wet electrodes are based on Silver/Silver-Chloride 

and usually require skin preparation. In recent years, 

wearable EEG systems are commercially available, which 

often use dry electrodes held in place by a cap. For EEG 

recording, there are multiple electrode placement standards 

including the most commonly used international 10-10 or 

10-20 systems. In this study, we adopted the EEG 

measurement using the international 10-10 system with the 

electrode placement shown in Fig. 1.      
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B. Computational Framework for Adaptive Spatial 

Resolution EEG 

    The proposed computational framework is based on 

matrix completion and convex optimization. Theoretically it 

can exploit the implicit feature of the spatiotemporal EEG 

signals. Assuming we perform measurements at a limited set 

of random positions of the unknown full-field m NR ×∈X  (m 

channels and N time samples for each channel), the 

available measurement data B is a random subset  of the 

complete m NR ×∈X , 

( )
Ω

=B XP                                 (1) 

where is an operator that randomly (following a uniform 

random distribution) selects a subset of elements from X 

such that ,  ( , )
ij ij

B X i j= ∈ Ω ; 0
ij

B =  elsewhere. Using 

only the available information of a limited set of randomly 

positioned measurements B with 'M (<< m M× )entries and 

( )
Ω

⋅P containing the random measurement positions, 
m NR ×∈X can be accurately recovered with an 

overwhelming probability of success by solving the 

following convex optimization program: 

*

*

ˆ ˆ( ) :  arg  subject to ( )
F

P min δ
Ω

∗ = − <X X X BP       (2) 

provided that the measurement number exceeds 

' logM Nr N∝ , or roughly speaking if the true unknown 

m NR ×∈X  is sufficiently low-rank. 
*

: ( )
i i
σ=X X  is 

termed the nuclear norm of the matrix X, which summates 

its singular values; 
2

: i iF
σ= X  is the Frobenius norm 

of X, and δ  is some bounding parameter related to the 

small dense noise level. 

The nuclear norm is the tightest convex approximation 

to the rank of a matrix. (P*) can be interpreted as finding an 
* m NR ×∈X  with minimal nuclear norm (lowest rank) that 

explains the available measurements 
*

,  ( , )
ij ij

B X i j= ∈ Ω  

within a bounded noise level δ . The convex (P*) program 

can be implemented using a fixed-point continuation (FPC) 

method. From the virtue of the convex program, the solution 

to (P*) found by FPC is always globally optimal. Note that 

(P*) is implemented without knowledge of the distribution, 

magnitudes, and number of singular values of the original 

strain matrix X. The only assumption is that its rank is low, 

so those missing (unmeasured) entries of X can be 

accurately recovered from the limited set of randomly 

positioned available measurements B. Thus, with limited 

EEG channel recordings, it is theoretically highly possible 

to recover the overall EEG recordings over the field. Also, 

with commonly used 20-64 electrode systems, it is feasible 

to infer high-density EEG. 

C. Evaluation Metrics 

    To evaluate the performance of using low spatial 

resolution EEG to recover higher resolution, we used the 

measured dataset [8] to compare the original signal with the 

recovered signal using our proposed method. We use the 

root-mean-square error (RMSE) as the evaluation metrics, 

which is widely used for performance evaluation and can be 

calculated using (3) and (4) for 1D and 2D, respectively. 

( )
1

100%

N F

i ii
R R

RMSE
N

=
−

= ×


             (3) 

( )
2

1 1
( , ) ( , )

100%

N M F

NMi j
R i j R i j

RMSE
N M

= =
−

= ×
×

 
  (4) 

where R is the original EEG signal for one or more 

channels; RF is the recovered EEG signal using our method. 

The RMSE computes the reconstruction error and evaluates 

how accurate the reconstructed data is in representing the 

original data. 

III. EXPERIMENT AND RESULTS 

A. Data 

    In this study, we used the EEG data available in the MIT-

BIH database [8] in which subjects performed different 

motor/imagery tasks while 64-channel EEG signals were 

recorded using the BCI2000 system [9], [10]. The data 

contains 64 EEG signals per the international 10-10 system 

with the sampling frequency of 160 Hz excluding electrodes 

Nz, F9, F10, FT9, FT10, A1, A2, TP9, TP10, P9, and P10. 

B. Validation Experiment 

    To validate our result, we use the above dataset of 

measured EEG. During the experiment, we reduced the EEG 

channels and used partial EEG recordings to recover the 

original 64-channel EEG. First of all, we reduced the total 

EEG recordings to 50% (32 channels), 25% (16 channels), 

and 10% (6 channels) to simulate the limited electrode 

placement for EEG measurement. Then we recovered 64-

channel EEG signals from these reduced cases using our 

proposed method described in Section II-B. To better 

evaluate the performance, we calculated the RSME with 

channel reduction for recovering. The results are shown in 

the following Section III-C. 

 
Fig. 1. EEG electrode placement using 10-10 system [7]. 
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C.    EEG Recovery Results 

    Figure 2 shows the spatiotemporal recovery results with 

50%, 25%, and 10% electrode placement compared to the 

original 64-channel EEG. Each image is a spatiotemporal 

visualization of the 64-channel data recovered from 

different percentages. With a 50% or 75% channel 

reduction, the recovered 64-channel results are still close to 

the original 64-channel EEG; whereas with a 90% reduction 

which means recovering 64 channels from only 6 electrodes, 

the major patterns can still be seen but some features are 

lost. 

    To quantitively evaluate the recovery performance with 

reduced EEG electrodes, we also calculated the RMSE 

between the original 64-channel EEG signals and the 

recovered 64 channel signals in different electrode 

placement percentages (percentage of partial measurement) 

as shown in Fig. 3. The y-axis is 1-RMSE to show the 

closeness to the original EEG. The x-axis shows the 

percentage of electrode placement percentage. With the 

increase of electrode placement percentage, the recovered 

EEG is closer to the original 64 channel recordings. 

IV. CONCLUSION 

    In this study, we developed a computational framework 

for adaptive spatial resolution EEG systems, which is 

capable of using a limited number of EEG electrodes to 

achieve high spatial resolution measurement. The method 

can be directly applied for guiding wearable EEG system 

design as well as achieving HD-EEG from traditional 

clinical systems. The proposed method is based on the 

matrix completion technique that can exploit the implicit 

feature structure of the spatiotemporal EEG signals. The 

results validate the high recovery accuracy with the RMSE 

under 5% with 75% electrode placement reduction. 
 

 

ACKNOWLEDGMENT 

    This work is partially supported by National Science 

Foundation Grant No. 1710852 and No. 1751454. We 

appreciate the support to enable this research. 

         

        
Fig.2 Recovered spatiotemporal EEG with different percentage of EEG placement. (a) Original EEG; (b) recovered EEG with 

50% placement (32 channels); (c) recovered EEG with 25% placement (16 channels); (d) recovered EEG with 10% placement (6 

channels). 

(a) (b) 

(c) (d) 

 
Fig. 3 RMSE increasing with the decrease of the percentage of 

electrode placement. The y-axis is 1-RMSE to show the 

closeness to the original EEG. The x-axis shows the percentage 

of electrode placement percentage. With the increase of 

electrode placement percentage, the recovered EEG is closer to 

the original 64 channel recordings. 
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