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Abstract— Electroencephalography (EEG) has been used as
a gold standard in various clinical and research applications
including disease diagnoses and cognitive understanding. It is
also being used as brain-machine interfaces in robotics and
assistive technologies. Wearable EEG systems provide a good
solution for out-of-hospital recording; however, they are still
not suitable for long-term monitoring due to the bulky
placement of electrodes over the scalp. The goal of this study is
to develop an adaptive spatial resolution framework for
wearable EEG systems that can use a limited number of EEG
electrodes to achieve high spatial resolution detection. It also
shows the high feasibility for achieving high-density and ultra-
high-density EEG from traditional 10-20 or 10-10 systems. The
proposed method utilized the matrix completion technique to
recover high-resolution EEG field from only a limited number
of electrodes, which enables simplification of hardware design
for wearable EEG that can achieve a compatible performance
of P300 detection. The results show that 75% reduced
electrodes can achieve a comparable performance as regular
EEG with the RMSE under 5%.
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I. INTRODUCTION

Electroencephalography (EEG) is a standard technique
for measuring scalp electrical signals generated by brain
activities, which is widely used for disease diagnoses and
treatments as well as brain-machine interfaces. Clinical EEG
systems normally adopt standard electrode placements such
as the international 10-20 or 10-10 system with 10 to 64
electrodes over the scalp. Biomarkers are then extracted
from the detected multi-channel signals for different
diagnosis purposes. Compared to other imaging techniques
for neurological measurement, EEG offers a less invasive,
less expensive, and more convenient solution for brain
activity measurement. In recent years, high-density EEG
(HD-EEQG) and ultra-high-density EEG (UHD-EEG) with
256 to 1000 electrodes are successfully developed and
utilized in clinical and research applications [2]-[4], which
enable EEG as a high temporal resolution imaging modality

[1].

Clinical EEG systems normally use wet electrodes and
usually require abrasion of human skin to reduce skin-
electrode impedance and increase signal quality. Wearable
EEG systems developed from ambulatory EEG are smaller
and lighter devices for EEG recording in daily applications.
Wearable EEG  systems have higher comfort,
biocompatibility, and operability, and thus provide an
excellent solution for identifying potential biomarkers
beyond clinical settings. However, low spatial resolution in
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wearable conditions may not meet clinical standards for
diagnosis whereas high spatial resolution can cause
wearable issues and high power consumption in long-term
monitoring in out-of-hospital settings.

In such cases, it is valuable to reconstruct an EEG
recording with high spatial resolution from a lower spatial
resolution electrode placement. Mathematically, it is an ill-
posed inverse problem without analytical solutions to infer
the full-field (high spatial resolution) signals with only
limited (low spatial resolution) measurements. A traditional
super-resolution approach is to acquire a low-resolution grid
of measurements at the uniform locations, and then use an
averaging-based interpolation function (such as bi-cubic) to
construct a high-resolution approximation. However, the
averaging process can easily lose the local, fine-detailed
information.

In this study, we propose a matrix completion based
computational framework for adapting spatial resolution of
EEG signals. We propose to use the state-of-the-art
interpolation approach that exploits the implicit feature
structure of the two-dimensional (2D) signals and
formulates it as a matrix completion problem, which is
solved by the emerging convex optimization techniques [5],
[6]. The proposed method is capable of significantly
enhancing the spatial resolution of international 10-10 EEG
systems and lowering power consumption simultaneously.
The results show that 75% reduced electrodes can achieve a
comparable performance as regular EEG with the RMSE
under 5%. This study provides the theoretical basis and
computational method for using traditional EEG signals to
achieve HD-EEG and UHD-EEG as well as reducing the
usage of electrodes for wearable EEG system design
towards an adaptive spatial resolution computational
framework.

II. THEORETICAL BASIS

A. EEG Systems

EEG systems measure the surface electrical potentials on
the scalp caused by neuronal action within the brain. The
clinical wet electrodes are based on Silver/Silver-Chloride
and usually require skin preparation. In recent years,
wearable EEG systems are commercially available, which
often use dry electrodes held in place by a cap. For EEG
recording, there are multiple electrode placement standards
including the most commonly used international 10-10 or
10-20 systems. In this study, we adopted the EEG
measurement using the international 10-10 system with the
electrode placement shown in Fig. 1.
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Fig. 1. EEG electrode placement using 10-10 system [7].

B. Computational Framework for Adaptive Spatial
Resolution EEG

The proposed computational framework is based on
matrix completion and convex optimization. Theoretically it
can exploit the implicit feature of the spatiotemporal EEG
signals. Assuming we perform measurements at a limited set

of random positions of the unknown full-field X € R™" (m
channels and N time samples for each channel), the
available measurement data B is a random subset (2 of the
complete X € R™,

B =F,(X) )

where is an operator that randomly (following a uniform
random distribution) selects a subset of elements from X
such that B, =X, (i,/))e Q ; B; =0 elsewhere. Using

,j b
only the available information of a limited set of randomly
positioned measurements B with M ' (<<mXx M )entries and

P,(-) containing the random measurement positions,
XeR™ can be accurately recovered with an

overwhelming probability of success by solving the
following convex optimization program:

(P¥): X' = argmin"f("* subject to "F’Q (X)- B"F <d (2

provided that the measurement number exceeds
M ' Nrlog N , or roughly speaking if the true unknown
Xe R™ is sufficiently low-rank. |X], =Y 0,(X) is

termed the nuclear norm of the matrix X, which summates

its singular values; ||X || = Jz ,0/ is the Frobenius norm

of X, and 0 is some bounding parameter related to the
small dense noise level.

The nuclear norm is the tightest convex approximation
to the rank of a matrix. (P+) can be interpreted as finding an

X" e R™" with minimal nuclear norm (lowest rank) that

explains the available measurements B, = X *I.j, (i,j)e Q

within a bounded noise level . The convex (Px) program
can be implemented using a fixed-point continuation (FPC)
method. From the virtue of the convex program, the solution
to (P») found by FPC is always globally optimal. Note that
(P+) is implemented without knowledge of the distribution,
magnitudes, and number of singular values of the original
strain matrix X. The only assumption is that its rank is low,
so those missing (unmeasured) entries of X can be
accurately recovered from the limited set of randomly
positioned available measurements B. Thus, with limited
EEG channel recordings, it is theoretically highly possible
to recover the overall EEG recordings over the field. Also,
with commonly used 20-64 electrode systems, it is feasible
to infer high-density EEG.

C. Evaluation Metrics

To evaluate the performance of using low spatial
resolution EEG to recover higher resolution, we used the
measured dataset [8] to compare the original signal with the
recovered signal using our proposed method. We use the
root-mean-square error (RMSE) as the evaluation metrics,
which is widely used for performance evaluation and can be
calculated using (3) and (4) for 1D and 2D, respectively.

Y (R -R"
2 (R R
N

RMSE = x100% 3)

x100% (4)

RMSE = \/Zi_lzj_l(R(i’j)_RNM (l,j))
NxM

where R is the original EEG signal for one or more
channels; R is the recovered EEG signal using our method.
The RMSE computes the reconstruction error and evaluates
how accurate the reconstructed data is in representing the
original data.

III. EXPERIMENT AND RESULTS

A. Data

In this study, we used the EEG data available in the MIT-
BIH database [8] in which subjects performed different
motor/imagery tasks while 64-channel EEG signals were
recorded using the BCI2000 system [9], [10]. The data
contains 64 EEG signals per the international 10-10 system
with the sampling frequency of 160 Hz excluding electrodes
Nz, F9, F10, FT9, FT10, A1, A2, TP9, TP10, P9, and P10.

B. Validation Experiment

To validate our result, we use the above dataset of
measured EEG. During the experiment, we reduced the EEG
channels and used partial EEG recordings to recover the
original 64-channel EEG. First of all, we reduced the total
EEG recordings to 50% (32 channels), 25% (16 channels),
and 10% (6 channels) to simulate the limited electrode
placement for EEG measurement. Then we recovered 64-
channel EEG signals from these reduced cases using our
proposed method described in Section II-B. To better
evaluate the performance, we calculated the RSME with
channel reduction for recovering. The results are shown in
the following Section III-C.
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C. EEG Recovery Results

Figure 2 shows the spatiotemporal recovery results with
50%, 25%, and 10% electrode placement compared to the
original 64-channel EEG. Each image is a spatiotemporal
visualization of the 64-channel data recovered from
different percentages. With a 50% or 75% channel
reduction, the recovered 64-channel results are still close to
the original 64-channel EEG; whereas with a 90% reduction
which means recovering 64 channels from only 6 electrodes,
the major patterns can still be seen but some features are
lost.

To quantitively evaluate the recovery performance with
reduced EEG electrodes, we also calculated the RMSE
between the original 64-channel EEG signals and the
recovered 64 channel signals in different electrode
placement percentages (percentage of partial measurement)
as shown in Fig. 3. The y-axis is 1-RMSE to show the
closeness to the original EEG. The x-axis shows the
percentage of electrode placement percentage. With the
increase of electrode placement percentage, the recovered
EEG is closer to the original 64 channel recordings.

IV. CONCLUSION

In this study, we developed a computational framework
for adaptive spatial resolution EEG systems, which is
capable of using a limited number of EEG electrodes to
achieve high spatial resolution measurement. The method
can be directly applied for guiding wearable EEG system
design as well as achieving HD-EEG from traditional
clinical systems. The proposed method is based on the
matrix completion technique that can exploit the implicit
feature structure of the spatiotemporal EEG signals. The
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Fig. 3 RMSE increasing with the decrease of the percentage of
electrode placement. The y-axis is 1-RMSE to show the
closeness to the original EEG. The x-axis shows the percentage
of electrode placement percentage. With the increase of
electrode placement percentage, the recovered EEG is closer to

the original 64 channel recordings.

results validate the high recovery accuracy with the RMSE
under 5% with 75% electrode placement reduction.
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Fig.2 Recovered spatiotemporal EEG with different percentage of EEG placement. (a) Orlglnal EEG; (b) recovered EEG with
50% placement (32 channels); (c) recovered EEG with 25% placement (16 channels); (d) recovered EEG with 10% placement (6
channels).
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