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ABSTRACT

Developing suitable approximate models for analyzing and simulating complex nonlinear systems is practically important. This paper aims
at exploring the skill of a rich class of nonlinear stochastic models, known as the conditional Gaussian nonlinear system (CGNS), as both a
cheap surrogate model and a fast preconditioner for facilitating many computationally challenging tasks. The CGNS preserves the underlying
physics to a large extent and can reproduce intermittency, extreme events, and other non-Gaussian features in many complex systems arising
from practical applications. Three interrelated topics are studied. First, the closed analytic formulas of solving the conditional statistics pro-
vide an efficient and accurate data assimilation scheme. It is shown that the data assimilation skill of a suitable CGNS approximate forecast
model outweighs that by applying an ensemble method even to the perfect model with strong nonlinearity, where the latter suffers from filter
divergence. Second, the CGNS allows the development of a fast algorithm for simultaneously estimating the parameters and the unobserved
variables with uncertainty quantification in the presence of only partial observations. Utilizing an appropriate CGNS as a preconditioner sig-
nificantly reduces the computational cost in accurately estimating the parameters in the original complex system. Finally, the CGNS advances
rapid and statistically accurate algorithms for computing the probability density function and sampling the trajectories of the unobserved state
variables. These fast algorithms facilitate the development of an efficient and accurate data-driven method for predicting the linear response
of the original system with respect to parameter perturbations based on a suitable CGNS preconditioner.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0081668

Analyzing and simulating complex nonlinear systems is often
very challenging due to high-dimensionality, multiscale features,
and strong nonlinear interactions between different state vari-
ables. Therefore, developing suitable approximate models is a
practically important topic to advance the understanding and
prediction of these complex systems. In this paper, the focus is on
introducing a stochastic nonlinear modeling framework, known
as the conditional Gaussian nonlinear system (CGNS), that can
be used as suitable approximate models for many complex non-
linear systems. One key feature of the CGNS is that closed analytic
formulas are available for solving the conditional statistics, which
facilitate the development of rigorous mathematical analysis
and efficient numerical algorithms for handling such nonlinear

systems. Different from many purely data-driven models, the
CGNS preserves the underlying physics to a large extent. In addi-
tion, the nonlinear nature of the CGNS allows it to reproduce
the observed intermittency, extreme events, and other non-
Gaussian features in many complex systems arising from prac-
tical applications. In addition to playing the role of a cheap
surrogate model, the CGNS can also be served as a fast precon-
ditioner for facilitating many computationally challenging tasks
of the original complex nonlinear systems. The advantages of
the CGNS as both a cheap surrogate model and a fast precondi-
tioner are demonstrated in several important broad applications,
including data assimilation and ensemble forecast, parameter
estimation in the presence of only partial observations, and
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efficiently predicting the model response due to internal or exter-
nal perturbations.

I. INTRODUCTION

Complex nonlinear systems are ubiquitous in many areas,
including geophysics, climate science, engineering, neuroscience,
and material science.52,117,120,126,131 Mathematical modeling plays an
important role in characterizing and discovering the underlying
physics of these complex systems.41,84 With suitable mathematical
models in hand, effective parameter inference, state estimation, and
data assimilation become fundamental tasks that serve as the pre-
requisites for analyzing these systems.3,53,65,74,92 Accurate forecasts
of future states and successful prediction of the system response
due to external perturbations are also central topics that have many
practical implications.75,81,89,110,124

However, there exist quite a few mathematical and computa-
tional challenges in analyzing and simulating complex nonlinear
systems. First, the intrinsic nonlinearity in these complex nonlinear
systems often triggers strongly chaotic or turbulent behavior.39,106,112

As a consequence, intermittency, extreme events, and non-Gaussian
probability density functions (PDFs) are some of the typical features
in these systems,44,82,96,98,125 which impede the use of many tradi-
tional mathematical tools to analyze the model properties. Second,
due to the nonlinear interactions between state variables across dif-
ferent scales, many of these complex nonlinear systems are high
dimensional and have multiscale spatiotemporal structures.85,90,123,131

Therefore, developing new efficient numerical algorithms to accel-
erate the computational efficiency becomes essential. Particularly,
enhancing the computational efficiency by reducing the complex-
ity of these systems via effective stochastic parameterizations is
practically important and is widely used in, for example, climate
sciences. Third, it is often the case in practice that only partial
observations of the state variables are available,65,73 which result in
additional difficulties for model calibration, state estimation, and
prediction where systematic uncertainty quantification needs to be
addressed.35,36,40,86,87

Since many complex dynamical systems are too expensive to
be handled directly, it is of practical importance to develop suitable
approximate models, which capture certain features of nature and
are easier to deal with. Exploiting systematic reduced order mod-
eling strategies and effective (stochastic) parameterizations is often
a prerequisite for the development of approximate models. Linear
regression models are arguably the simplest class of approximate
models,46,136 which can already provide certain skills for short-term
forecasts although they usually suffer in characterizing the underly-
ing nonlinear physics. Physics-constrained regression models are a
set of nonlinear approximate models,59,69,93 which take into account
the energy conserving nonlinear interactions in the model devel-
opment that guarantees the well-posedness of long-term behavior
of the system. Another commonly used approach to developing
approximate models is to project the starting complex nonlinear sys-
tem to the leading a few energetic modes in light of the Galerkin
proper orthogonal decomposition methods63 or other empirical
basis functions such as the principal interaction patterns60,72 and
the dynamic mode decomposition.111,116 With a careful design of the

closure terms to compensate for the truncation error, these reduced
order models are skillful in resolving certain problems in fluids and
turbulence.8,104,121,135

Meanwhile, many data-driven approximate modeling strate-
gies have recently been developed.1,14,16,61,76,101,109,118 One of them is
the sparse identification of nonlinear dynamical systems (SINDy),7

which leads to nonlinear regression models with parsimonious
structures via sparse regression and compressed sensing. Many
other approximate modeling approaches have also been designed
for specific scientific purposes. For example, the past noise fore-
casting method17 was developed as a data-driven forecast model for
stochastic climate processes that exhibit low-frequency variability.
Reduced-space Gaussian process regression forecast129 was designed
for data-driven probabilistic forecast of chaotic dynamical systems.
Small-scale parameterization based on a data-informed optimal
homotopic deformation of invariant manifolds was developed to
design low-dimensional models for both deterministic chaotic sys-
tems and stochastic systems.13,15 Physically consistent data-driven
weather forecasting techniques were proposed and applied to oper-
ational models.10,11 Recently, a strong link between the stochastic
parameterization approach based on perturbation expansions of the
Koopman operator134 and the data-driven empirical model reduc-
tion (EMR) methodology70 was established in Ref. 114. In addition,
machine learning methods nowadays have been extensively incor-
porated into the reduced order models to further improve the
approximation and forecast skill.12,20,99,108,113

The objective of this paper is to explore the skill of a rich class
of nonlinear stochastic models, known as the “conditional Gaussian
nonlinear system” (CGNS),21 as approximate models for complex
nonlinear systems. The CGNS includes many physics-constrained
nonlinear stochastic models (e.g., the stochastic versions of various
Lorenz models, low-order models of Charney–DeVore flows, and a
paradigm model for topographic mean flow interaction), quite a few
stochastically coupled reaction–diffusion models in neuroscience
and ecology [e.g., stochastically coupled FitzHugh–Nagumo (FHN)
models and stochastically coupled susceptible-infectious-removed
(SIR) epidemic models], and several large-scale dynamical models
in engineering and geophysical flows (e.g., the Boussinesq equa-
tions with noise and stochastically forced rotating shallow water
equation). See Ref. 21 for a gallery of examples of the CGNS. The
CGNS has also been applied to modeling and forecasting several
important climate phenomena, such as the Madden–Julian oscil-
lation and the monsoon,26,27 and has been utilized for Lagrangian
data assimilation.28 Yet, most of the previous work focused on per-
fect model scenarios, where utilizing the CGNS as an approximate
model has not been systematically studied.

The CGNS has several unique features that allow it to be dis-
tinct from many existing approximate modeling strategies. First,
the CGNS aims at preserving the underlying physical mechanism
to the greatest extent. Specifically, the nonlinearity involving the
large-scale or slow variables is by design retained, which includes
not only the self-interactions among the large-scale variables but
also the cross-scale interactions between large- and small-scale vari-
ables, while suitable approximations are imposed primarily on the
nonlinear self-interactions between small-scale, fast-varying or
unresolved state variables via effective stochastic parameteriza-
tions. This is fundamentally different from many purely data-driven
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nonlinear regression models, which may miss certain crucial under-
lying physics of the original complex nonlinear systems. Second, the
stochastic parameterizations of the self-interactions between small-
scale variables lead to an important feature of the CGNS. That is, the
distribution of the small-scale variables conditioned on the large-
scale ones is Gaussian. One remarkable consequence is that the
associated conditional Gaussian distribution can be calculated using
closed analytic formulas,77 which considerably facilitate the math-
ematical analysis and numerical simulations of the CGNS. In fact,
the closed analytic formulas of the conditional Gaussian distribu-
tions allow the development of efficient and statistically accurate
algorithms for parameter estimation, data assimilation, and ensem-
ble forecast in light of only partial observations. Note that, despite
the conditional Gaussianity, the joint and marginal distributions of
the CGNS remain highly non-Gaussian. Thus, the intermittency,
extreme events, and turbulent features can all be preserved in a suit-
ably designed CGNS. Third, the CGNS is also adaptable to many
data-driven scenarios. Physics constraints, localizations, and sparse
identification together with many other mathematical and com-
putational strategies can be possibly incorporated into the CGNS.
Finally, information theory67,83 can be applied to quantify the uncer-
tainty and the statistical error of the CGNS in approximating the
original complex nonlinear systems.

The specific goal of this paper is twofold. First, by taking
advantage of its analytically solvable properties, the CGNS can be
served as a fast preconditioner for facilitating many computation-
ally challenging tasks associated with the original complex nonlinear
system. Important applications include estimating the parameters
of the original system in the presence of only partial observations
and recovering the non-Gaussian PDFs as a crucial intermediate
step for computing the model sensitivity and response. Second, the
CGNS is exploited as a surrogate model by exploiting systematic
reduced order modeling strategies and suitable stochastic parame-
terizations, aiming at spending a much lower computational cost
to create comparably accurate results as those obtained from the

original complex system. This includes, for example, the state
estimation of unobserved variables and the statistical forecast.
Figure 1 shows a schematic illustration of utilizing the CGNS as
a fast preconditioner and a cheap surrogate model for a general
nonlinear system.

The rest of the paper is organized as follows. The general
mathematical framework of CGNS and its analytic properties are
described in Sec. II. Several systematic strategies for the development
of the CGNS are included in Sec. III. Sections IV–VI consist of three
important tasks in complex nonlinear systems, showing the roles of
the CGNS both as a surrogate model and a preconditioner for the
original complex system. Specifically, Sec. IV focuses on the data
assimilation and ensemble forecast, Sec. V aims at efficient parame-
ter estimation, and Sec. VI illustrates the use of CGNS in facilitating
the study of model sensitivity and response theory. The paper is
concluded in Sec. VII.

II. GENERAL MATHEMATICAL FRAMEWORK OF THE

CGNS

Let us start with the general formulation of the turbu-
lent dynamical systems motivated from fluid and geophysical
applications,65,85,112,126

du

dt
= (L + D) u + B (u, u) + F (t) + σ (u, t) Ẇ (t) , (1)

where the state variable u ∈ C
N is in a high dimensional phase space.

In (1), the first two components, (L + D) u, represent linear disper-
sion and dissipation effects, where L∗ = −L is a skew-symmetric
operator (with ·∗ being the complex conjugate transpose), and D
is a negative-definite matrix. The nonlinear effect is introduced
through an energy-conserving quadratic form, B (u, u). In addition,
the system is subject to external forcing effects that are decomposed
into a deterministic component, F (t), and a stochastic component
represented by a Gaussian random process, σ (u, t) Ẇ (t), where
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FIG. 1. A schematic illustration of utilizing the CGNS as a fast preconditioner and a cheap surrogate model for a general nonlinear system.
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σ ∈ C
N×K is the noise matrix and Ẇ ∈ C

K is the white noise. The
two components (L + D) u + B (u, u) + F (t) and σ (u, t) on the
right hand side of (1) are also known as the drift part and the
diffusion coefficients, respectively.

A. The CGNS

Despite being highly nonlinear and possessing strongly non-
Gaussian statistics in both the marginal and joint distributions of
the state u, many complex nonlinear dynamical systems (1) have or
can be approximated by the following nonlinear system with condi-
tional Gaussian structures. The general mathematical framework of
the CGNS is as follows:21,22,77

dX

dt
= [A0(X, t) + A1(X, t)Y(t)] + B1(X, t)Ẇ1(t), (2a)

dY

dt
= [a0(X, t) + a1(X, t)Y(t)] + b2(X, t)Ẇ2(t), (2b)

where the original model state u is decomposed into multi-
dimensional state variables X ∈ C

N1 and Y ∈ C
N2 , with N1 + N2

= N. In (2), A0, a0, A1, a1, B1, and b2 are vectors or matrices that can
depend nonlinearly on the state variables X and time t, while Ẇ1

and Ẇ2 are independent white noise sources that can have different
dimensions from X and Y. Typically, the decomposition of u into X
and Y is organized so that X is the projection of u onto some suitable
subspace that captures the large-scale dynamics of u, and Y denotes
the small-scale dynamics that is orthogonal to X.

The name “conditional Gaussian” comes from the fact that
once a time series of X(s) for s ≤ t is given, then the conditional
distribution p(Y(t)|X(s ≤ t)) is Gaussian. This can be seen by notic-
ing that, with a given X, the process of Y is linear (with respect to the
variable Y itself since X has been given) with Gaussian white noises.
It is worthwhile to highlight that, from the general form of the
complex turbulent system (1) to the CGNS (2), the nonlinear self-
interactions of X and the cross-interactions between X and Y in (1)
are both completely retained. The only simplification in the CGNS is
to approximate the nonlinear self-interactions between Y by a com-
bination of nonlinear functions of X, conditional linear functions of
Y, and effective stochastic noises. Nevertheless, if Y represents small-
scale or fast variables, then such a manipulation is expected to be an
effective approximation that preserves the underlying physics to a
large extent.

It should be noted that the CGNS in (2) is still highly nonlinear
due to the nonlinearity in A0, a0, A1, and a1 as well as the nonlinear
coupling between the latter two with Y. Such nonlinearities preserve
the non-Gaussian statistics in (1) and allow us to reproduce many
observed features in nature such as extreme events with the more
tractable conditional Gaussian structure. A gallery of examples of
the CGNS, including many physics-constrained nonlinear stochastic
models, quite a few stochastically coupled reaction–diffusion mod-
els in neuroscience and ecology, and some large-scale dynamical
models in engineering and geophysical flows can be found in Ref. 21.

Despite being highly nonlinear and non-Gaussian, one of the
important features of the CGNS (2) is that the conditional distribu-
tion of Y given one realization of the time series X can be solved

via closed analytic formulas. Such a unique analytic property signif-
icantly facilitates the analysis and calculations of state estimation,
data assimilation, and forecast. This feature also makes the CGNS
to be quite different from general nonlinear or non-Gaussian sys-
tems. For the latter, particle methods have to be applied for state
estimation,9,62,105 in which many empirical tunings are required to
mitigate the numerical sampling errors.

Before presenting the aforementioned closed analytic formu-
las, it is also worth pointing out some similarities and differ-
ences between the CGNS framework and the closure modeling
approaches. While both approaches aim to provide surrogate mod-
els that are computationally more efficient than the original high-
or infinite-dimensional nonlinear system, there is a fundamental
difference in how the small-scale Y is handled.

A closure model of the resolved large-scale variable X is a
closed system for X that does not depend on Y. For such mod-
els, the nonlinear coupling between X and Y in the original system
are approximated/parameterized using “diagnostic” terms that can
involve past values of X as well as noise forcing. A theoretical under-
pinning of closure modeling is the Mori–Zwanzig (MZ) formal-
ism originated from statistical mechanics100,137 and later extended
to non-Hamiltonian systems as well.30,31 Nevertheless, how to effi-
ciently construct the terms appearing in the MZ formalism is still
not clear, and several different approaches have been proposed that
aim to approximate its constituent terms (see e.g., Refs. 30, 58, 119,
132, 133, 69, 32, 80, 18, 79, 114, 127, and references therein).

Instead of using diagnostic terms, the CGNS keeps a simpli-
fied prognostic equation for Y. It takes the form of a linear forced
equation where both the coefficients in the draft part and the diffu-
sion coefficient can still depend on X in a highly nonlinear way as
encapsulated in the a0(X, t), a1(X, t) and b2(X, t) terms in (2b). The
CGNS also requires Y to enter the X-equation linearly, through the
term A1(X, t)Y(t) in (2a). Since the CGNS does not allow memory
terms to appear in its vector field in order to have access to closed
analytic formulas of the conditional statistics to be presented next, it
is expected that the CGNS would be very effective when the memory
terms in the exact MZ closure can be replicated using the prognostic
Eq. (2b).

B. Closed analytic formulas for computing the

conditional statistics and data assimilation

1. Nonlinear filter

For the CGNS (2), given one realization of the time series X(s)
for s ∈ [0, t], the conditional distribution

p(Y(t)|X(s), s ≤ t) ∼ N (µf(t), Rf(t)) (3)

becomes Gaussian, where the conditional mean µf and the condi-
tional covariance Rf are given by the following explicit formulas:77

dµf

dt
= (a0 + a1µf) + (RfA

∗
1)(B1B

∗
1)

−1

(
dX

dt
− (A0 + A1µf)

)
,

(4a)

dRf

dt
= a1Rf + Rfa

∗
1 + b2b

∗
2 − (RfA

∗
1)(B1B

∗
1)

−1
(A1Rf), (4b)
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with ·∗ being the complex conjugate transpose. The subscript “f” in
the conditional mean µf and conditional covariance Rf is an abbre-
viation for “filter.” The explicit formulas in (3)–(4) correspond to
the optimal nonlinear filter solution of the state variable Y(t) given
a realization of the observed time series X(s) for s ∈ [0, t]. Thus, µf

and Rf in (4) are also known as the filter posterior mean and the
filter posterior covariance. The classical Kalman–Bucy filter64 is the
simplest special example of (4).

The closed analytic formula (4) provides an efficient algorithm
for the nonlinear data assimilation of the CGNS, which avoids using
the ensemble or particle methods that may suffer from sampling
errors. In Sec. IV, the closed analytic data assimilation formula (4)
will be used for an accurate state estimation of the initial value that
facilitates effective ensemble forecast. It also allows the development
of an efficient Gaussian mixture algorithm for calculating the non-
Gaussian PDFs of the CGNS (see Sec. II C), which overcomes the
curse of dimensionality. Such non-Gaussian PDFs are crucial in ana-
lyzing the model sensitivity and predicting the system response, the
details of which will be discussed in Sec. VI.

2. Nonlinear smoother

Filtering exploits the observational information up to the cur-
rent time instant for an online state estimation. On the other hand,
given the observational time series within an entire time interval,
the state estimation can become more accurate. This is known as the
smoother.115

Given one realization of the observed variable X(t) for
t ∈ [0, T], the optimal smoother estimate p(Y(t)|X(s), s ∈ [0, T]) of
the CGNS (2) is also Gaussian,19

p(Y(t)|X(s), s ∈ [0, T]) ∼ N (µs(t), Rs(t)), (5)

where the conditional mean µs(t) and conditional covariance Rs(t)
of the smoother at time t satisfy the following backward equations:

←−−
dµs

dt
= −a0 − a1µs + (b2b

∗
2)R

−1
f (µf − µs), (6a)

←−−
dRs

dt
= −(a1 + (b2b

∗
2)R

−1
f )Rs − Rs(a

∗
1 + (b2b

∗
2)Rf) + b2b

∗
2 , (6b)

with µf and Rf given by (4). Here, the subscript “s” in the condi-
tional mean µs and conditional covariance Rs is an abbreviation for
“smoother,” which should not be confused by the time variable s in

X(s). The notation
←−
d·/ dt corresponds to the negative of the usual

derivative, which means that system (6) is solved backward over
[0, T] with (µs(T), Rs(T)) = (µf(T), Rf(T)) with the starting value
of the nonlinear smoother (µs(T), Rs(T)) being the same as the filter
estimate (µf(T), Rf(T)).

The nonlinear smoother plays an important role for an unbi-
ased state estimation and postprocessing of the data. It is also able to
quantify the uncertainty in the unobserved variables in the parame-
ter estimation given only partial observations, which will be a topic
to be studied in Sec. V. In addition, the nonlinear smoother is the
basis to the development of a nonlinear sampling formula, which
will be shown below and is a necessary step in analyzing the model
sensitivity and predicting the system response in Sec. VI.

3. Nonlinear sampling formula

Associated with the nonlinear smoother, a nonlinear condi-
tional sampling formula can be derived. In addition to satisfying the
point-wise optimal estimate (6), i.e., a distribution formed by con-
ditional mean and conditional distribution at each time stamp, the
conditional sampled trajectories further take into account the path-
wise temporal correlation. These sampled trajectories in the CGNS
framework can be regarded as the analogs of the ensemble members
in the ensemble Kalman smoother,43 but the former can be obtained
via a closed analytic formula.

Conditioned on one realization of the observed variable X(s)
for s ∈ [0, T], the optimal strategy of sampling the trajectories asso-
ciated with the unobserved variable Y satisfies the following explicit
formula:25

←−
dY

dt
=

←−−
dµs

dt
−

(
a1 + (b2b

∗
2)R

−1
f

)
(Y − µs) + b2ẆY(t), (7)

where ẆY(t) is a random noise that is independent from Ẇ2(t) in
(2). The conditional sampling formula is another necessary compo-
nent in analyzing the model sensitivity and predicting the system
response in Sec. VI.

C. Semi-analytic and statistically accurate formulas

for solving the non-Gaussian PDFs via mixtures

The closed analytic formula (4) in calculating the conditional
distribution p(Y(t)|X(s), s ≤ t) in (3) also provides an extremely
useful way to compute the marginal distribution p(Y(t)). In fact,
assuming there are L trajectories of X(s ≤ t), denoted by Xobs

i

(s ≤ t) for i = 1, . . . , L, then in the limit with L → ∞, the marginal
distribution p(Y(t)) is given by

p(Y(t)) = lim
L→∞

1

L

L∑

i=1

p
(
Y(t)|Xobs

i (s ≤ t)
)
. (8)

See Ref. 24 for the detailed derivation of (8). While the above iden-
tity is in the asymptotic form with L → ∞, it has been shown that
the error bound in approximating p(Y(t)) with a finite L does not
depend on the dimension of Y.29 In other words, fundamentally dif-
ferent from the traditional Monte Carlo simulations, the method in
(8) avoids the curse of dimensionality. If it is further assumed that
the dimension of X is low, then the following efficient and statisti-
cally accurate approach can be utilized to compute the joint PDF at
any transient phase p(X(t), Y(t)):23

p(X(t), Y(t)) = lim
L→∞

1

L

L∑

i=1

(
KH(X(t) − Xobs

i (t)) p(Y(t)|Xobs
i (s ≤ t))

)
.

(9)

Here, the distribution of X is approximated by a mixture distri-
bution that is solved via a kernel density estimation, which is a
non-parametric way to estimate the probability density function
of a random variable. The mixture distribution is the probability
distribution of a random variable that consists of different simple
components. One of the simplest choices, which is also the one used
in this paper, is that each mixture component is a Gaussian func-
tion centered at Xobs

i (t). The same bandwidth H, which is essentially
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the covariance matrix of each mixture component, is utilized for
different Gaussian mixture components and it is determined via the
“solve-the-equation” method,5 which is a method that is designed
for dealing with non-Gaussian PDFs. In addition to the advantage of
applying (9) in solving high-dimensional PDF (especially when the
dimension of Y is large), the semi-analytic formula in (9) also allows
a smoothed PDF, which reduces the sampling error compared with
other approaches even for systems with moderate or low dimen-
sions. Note that the assumption of the low-dimensionality of X is
needed here, since otherwise the kernel density estimation suffers
from the curse of dimensionality. See Ref. 29 for the detailed error
analysis.

It is important to note that if the underlying system contains
model error, then the PDF provided by (9) is very different from the
one created by simply running the imperfect model. This is because
the model error in the marginal distribution p(Y(t)) is mitigated
with the help of the observations Xi(s ≤ t). Such a unique feature
plays a crucial role in improving the results for computing the model
response and sensitivity analysis, where the perfect model is seldom
known in practice. The details will be illustrated in Sec. VI. As a
final remark, only the equilibrium PDF is required in many appli-
cations, including the study of the model response. Therefore, if the
system is ergodic, then only a single (sufficiently long) trajectory of
X(0 ≤ t ≤ T), denoted by Xobs(0 ≤ t ≤ T), is needed in computing
the equilibrium distribution peq(X, Y),

peq(X, Y) = lim
J→∞

1

J

J∑

j=1

(
KH(X − Xobs(tj)) p(Y|Xobs(s ≤ tj))

)
, (10)

where [t1, . . . , tJ] is a partition of the time interval [T0, T] with some
burn-in time T0.

III. STRATEGIES OF DEVELOPING CGNS

The goals of developing approximate models for solving dif-
ferent problems in practice are often distinct to each other. For
example, some applications require a skillful forecast model while
others seek for a suitable model to reproduce certain statistics. While
there is not a universal criterion to build the “optimal” CGNS as
an approximate model for all applications, a few potentially useful
strategies are provided below for constructing CGNS, which will be
applied in Secs. III A–III C.

A. Fast wave averaging

Recall the general form of the complex systems with quadratic
nonlinearity (1). Writing it into the form of state variables (X, Y)

yields

dX

dt
= L11X + L12Y + B1

11(X, X) + B1
12(X, Y) + B1

22(Y, Y) + F1(t)

+ σ 1(X, Y, t)Ẇ1(t),
(11)

dY

dt
= L21X + L22Y + B2

11(X, X) + B2
12(X, Y) + B2

22(Y, Y) + F2(t)

+ σ 2(X, Y, t)Ẇ2(t).

In (11), Lij are constant matrices while Bk
ij are vector functions with

the entries being quadratic functions of the state variables. In some
applications, there exists a scale separation of the state variables,
where X and Y represent slow and fast variables, respectively. In
such a case, it is natural to apply a fast wave average such that
the terms representing the self-interaction between the fast vari-
ables, i.e., B1

22 (Y, Y) and B2
22 (Y, Y), are approximated by stochastic

damping and noise.94,95 By further approximating the diffusion coef-
ficients σ 1 (X, Y) and σ 2 (X, Y) by functions of only X, the resulting
system becomes

dX

dt
= L̃11X + L̃12Y + B1

11 (X, X) + B1
12 (X, Y) + F1(t)

+ σ̃ 1 (X, t) Ẇ1(t),
(12)

dY

dt
= L̃21X + L̃22Y + B2

11 (X, X) + B2
12 (X, Y) + F2(t)

+ σ̃ 2 (X, t) Ẇ2(t),

which belongs to the CGNS (2). Note that, if the scale separation is
not strong enough to apply the fast wave averaging, then B1

22 (Y, Y)

and B2
22 (Y, Y) can be approximated by additional closure terms102,113

that include nonlinear functions of X and bilinear functions of X and
Y to fit the CGNS framework.

B. Stochastic parameterizations

The fast wave averaging or closure approximations are suit-
able approaches to build CGNS if the starting complex nonlinear
system is completely known. However, in many practical applica-
tions, the information of the perfect model is not entirely available.
Specifically, while the large-scale dynamics of nature is often acces-
sible, the details of the small- or unresolved-scale features are not
fully understood in many applications. In such a situation, suitable
stochastic parameterizations can be adopted to approximate the pro-
cesses of the unobserved variables Y such that the feedback from
small/unresolved to large/resolved scales are well characterized and
the parameterized system follows the CGNS structure.

One of the simplest strategies is to apply a linear stochas-
tic model with Gaussian white noise to describe each component
of the hidden processes of Y while the processes of X remain
highly nonlinear. This parameterization strategy has been utilized
in data assimilation and short-term statistical prediction.6,48,49 The
model with such a simple stochastic parameterization automati-
cally fits the CGNS as there is no quadratic function of Y involved.
A more sophisticated stochastic parameterization is to incorpo-
rate the physics-constrained nonlinear regression model59,93 into the
CGNS. This allows a more accurate way in characterizing the non-
linear dynamics of the small-scale features in Y, influenced by the
large-scale variables X. In addition, the coupled system with physics
constraints also prevents finite-time blow up of the solutions and
facilitates a skillful medium- to long-range forecast.

C. System augmentation

Another strategy to derive approximate CGNS is via a sim-
ple system augmentation technique detailed below. As has been
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discussed in Sec. III A that the most significant difference between
the general nonlinear system (1) and the CGNS (2) is the quadratic
nonlinear self-interactions of Y, namely, the terms B1

22 (Y, Y) and
B2

22 (Y, Y) appearing in (11). After suitable regrouping of the terms
in (11) and assuming for simplicity that the diffusion coefficients
depend only on X, we can rewrite this system (11) into the following
form:

dX

dt
=

[
A0(X, t) + A1(X, t)Y + B1

22(Y, Y)
]

+ σ 1(X, t)Ẇ1(t),

(13a)

dY

dt
=

[
a0(X, t) + a1(X, t)Y + B2

22(Y, Y)
]

+ σ 2(X, t)Ẇ2(t), (13b)

which differs from the CGNS (2) by the two quadratic terms
B1

22(Y, Y) and B2
22(Y, Y). Instead of approximating these two terms

directly via fast wave averaging as proposed in Sec. III A, we con-
sider here the situation that the scale separation between X and Y is
not pronounced.

We will still handle B2
22(Y, Y) in (13b) via suitable stochastic

parameterization in terms of X, leading to an approximate equation
for Y of the form

dY

dt
=

[
ã0(X, t) + ã1(X, t)Y

]
+ σ̃ 2(X, t)Ẇ2(t). (14)

The term B1
22(Y, Y) is then dealt with through a system aug-

mentation strategy as explained below. Denote by Z = ((Y1)
2,

Y1Y2, Y1Y3, . . .)
> the N2(N2 + 1)/2-dimensional vector whose com-

ponents consist of all possible quadratic monomials involving the
components of the N2-dimensional small-scale variable Y. Using
Itô’s formula47 and (14), we can obtain the corresponding equation
for Z, which takes the following form:

dZ

dt
=

[
c0(X, t) + c1(X, t)Y + c2(X, t)Z

]
+ σ 3(X, Y, t)Ẇ2(t).

(15)

Note that the quadratic term B1
22(Y, Y) in (13a) can be rewritten as a

linear function of Z, denoted by LZ, thanks to the very choice of
Z. Thus, if we further approximate Y in the diffusion coefficient
σ 3(X, Y, t) of (15) by, e.g., its global mean Y, the augmented system
for (X, Y, Z) consisting of (13a), (14), and (15) fits into the form of
CGNS given by (2) with (Y, Z) here playing the role of Y in (2), after
replacing B1

22(Y, Y) in (13a) by LZ and approximating σ 3(X, Y, t) in
(15) by σ 3(X, Y, t).

With the CGNS structure available through this augmented
system, the conditional distribution such as p(Y(t)|X(s ≤ t)) can
now be approximated by first computing the conditional distribu-
tion p(Y(t), Z(t)|X(s ≤ t)) for the augmented system using formulas
provided in Sec. II B and then marginalizing it over Z. The essence of
this simple approach is, thus, to increase the dimension of the system
in exchange of analytic formulas of the conditional distributions,
which would otherwise be computationally expensive to compute
even for models with moderate dimensions.

When the dimension, N2, of Y is very high, one may prefer
to identify only a subset of Y to apply the system augmentation
technique in order not to inflate too much the number of vari-
ables since the auxiliary variable Z has dimension N2(N2 + 1)/2.

Such an extension goes beyond the scope of the current article and
will be addressed in a separate communication. Note also that if
B2

22(Y, Y) ≡ 0, then Eq. (14) is reduced to (13b). In this case, there is
no approximation involved in the drift part of (15).

We demonstrate now the efficiency of this approach in the
context of data assimilation and ensemble forecast using a low-
dimensional truncation of a stochastic Burgers-type equation.

IV. DATA ASSIMILATION AND ENSEMBLE FORECAST

Data assimilation concerns the problem of estimating the
state variables of a given, usually nonlinear and possibly stochas-
tic, dynamical system when observations of certain related output
variables are available.43,65,74,92 One major challenge in data assim-
ilation is the strong nonlinearity and the associated non-Gaussian
statistics in the underlying dynamics, in which a direct applica-
tion of the particle methods may be inaccurate, especially in the
high dimensional situations. The development of cheap and effec-
tive approximate models that capture the main characteristics of the
underlying dynamics is thus an important topic in state estimation
and data assimilation. Since the data assimilation solution corre-
sponds to the initialization of the subsequent forecast, an efficient
and accurate data assimilation scheme is also essential to advancing
the forecast skill. Note that there is usually a stronger demand in
developing suitable approximate models for data assimilation than
the subsequent short- or medium-range forecast since the former
often involves many numerical or sampling issues in the presence of
strong nonlinearity and non-Gaussianity.

In this section, a particular type of approximate models for this
purpose obtained by the method of system augmentations presented
in Sec. III C is studied. The resulting approximate model has the
form of a CGNS. Thus, the associated data assimilation solutions
can be calculated using the closed analytic formula (4) as was dis-
cussed in Sec. II B. To simplify the presentation, the idea is illustrated
using a low-dimensional stochastic differential equation (SDE) with
energy-conserving quadratic terms. The data assimilation results
from the CGNS, which is an approximate model, will be compared
with that by applying a classical ensemble data assimilation method
directly to the perfect model. The goal is to illustrate the efficiency
and accuracy of the data assimilation scheme using the CGNS, espe-
cially in avoiding the potential sampling and other numerical issues
that appear in the ensemble-based approaches.

A. A truncated stochastic quadratic system and its

CGNS approximation through system augmentation

The model considered here is the following three-dimensional
SDEs with energy-conserving quadratic nonlinear terms and subject
to additive white noise forcing:

dx

dt
= βxx + αxy + αyz + σxẆx, (16a)

dy

dt
= βyy − αx2 + 2αxz + σyẆy, (16b)

dz

dt
= βzz − 3αxy + σzẆz. (16c)
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Here, the coefficients for the linear terms are chosen such that βx

is positive to introduce linear instability into the system, while βy

and βz are negative, representing linear damping effects. The coeffi-
cient α > 0 controls the strength of the nonlinearity; and the noise
strength coefficients σx, σy, and σz are positive constants. This sys-
tem can for instance be obtained as a Fourier-Galerkin projection of
the stochastic Burgers–Sivashinsky equation

∂u

∂t
=

(
ν∂xxu + λu − u∂xu

)
+ Ẇ(t, x)

posed on a bounded interval x ∈ (0, L) subject to homogeneous
Dirichlet boundary conditions. In this context, βx, βy, and βz are
simply the three largest eigenvalues of the linear operator and α is

linked to the domain size L via α = π/(
√

2L3/2) (see, e.g., Chap. 6 of
Ref. 15).

In the following, the largest scale variable x is treated as the
observed variable while there is no direct observations for the state
variables (y, z). Under this splitting of the state variables, system
(16) does not have the conditional Gaussian structure due to the
quadratic nonlinear term αyz between the unobserved variables that
appears in (16a). Following the idea presented in Sec. III C, in
order to obtain a CGNS to approximate the system (16), three auxil-
iary variables are introduced for the possible quadratic interactions
between the two unobserved variables,

p = y2, q = yz, r = z2. (17)

Using (16) and applying the Itô’s formula yields

dp

dt
= (σy)

2 + 2
(
βyp − αx2y + 2αxq

)
+ 2σyyẆy,

dq

dt
= (βy + βz)q − αx2z − 3αxp + 2αxr + σyzẆy + σyyẆz,

(18)

dr

dt
= (σz)

2 + 2
(
βzr − 3αxq

)
+ 2σzzẆz.

Assume that the global mean values of the unobserved variables
y and z are accessible (from a period of training data). Then, in com-
bination with (16), and after replacing y and z in the state-dependent
noise terms of (18) by their respective global mean, the following
augmented system is arrived at

dx

dt
= βxx + αxy + αq + σxẆx,

dy

dt
= βyy − αx2 + 2αxz + σyẆy,

dz

dt
= βzz − 3αxy + σzẆz,

(19)
dp

dt
= (σy)

2 + 2
(
βyp − αx2y + 2αxq

)
+ 2σyyẆy,

dq

dt
= (βy + βz)q − αx2z − 3αxp + 2αxr + σyzẆy + σzyẆz,

dr

dt
= (σz)

2 + 2
(
βzr − 3αxq

)
+ 2σzzẆz,

where yz in (16a) becomes the state variable q. This augmented sys-
tem (19) fits into the CGNS form of (2) with now the unobserved
variables taken to be Y = (y, z, p, q, r)>.

Although the dimension of the approximate system is increased
compared with the original system, closed analytic equations are
now accessible for the evolution of the corresponding conditional
statistics for the data assimilation solutions [see Eq. (4) in Sec. II B].
As will be shown below, the approximate system (19) can provide
a significantly more accurate estimation of (y, z) compared with
another conditional Gaussian approximation obtained by simply
removing the term αyz in (16a), called the bare truncation (BT)
system below. The skill of the proposed method is comparable and
sometimes even more accurate than the ensemble Kalman–Bucy fil-
ter (EnKBF)4 while being more efficient thanks to the availability of
analytic formulas.

B. Dynamical regimes and numerical setup

In the following, we consider two dynamical regimes by
varying σx,

Regime I: σx = 1, Regime II: σx = 0.1, (20)

while keeping the other parameters to be

σy = 1, σz = 2, βx = 0.1, βy = −0.5, βz = −1, α = π/
√

2.

In particular, we have a relatively strong nonlinear effects with
α ≈ 2.2, and a relatively small spectral gap between the observed
and the hidden variables with βx − βy = 0.6. The two hidden vari-
ables y and z are both subject to strong noise perturbations. The
two regimes differ only in the value of the noise strength σx in the
x-equation.

The same numerical setup is adopted for both parameter
regimes. The true signal is obtained by integrating the original
SDE system (16) for an arbitrarily fixed noise path using the
Euler–Maruyama scheme with a uniform time step size δt = 5
× 10−4 and initialized at (x, y, z) = (0, 0, 0).

For the state estimation of the unobserved variables (y, z), we
compare three methods:

Method 1: Apply the nonlinear filtering formula (4) for the general
CGNS (2) to the augmented system (19), with X = x and
Y = (y, z, p, q, r)>. This method will be referred as the
CG method below.

Method 2: Apply the nonlinear filtering formula (4) to a bare trun-
cation of (16) in which we simply remove the term αyz

in (16a) to obtain a CGNS, with X = x and Y = (y, z)>.
This method will be referred as the BT method below.

Method 3: Apply the ensemble Kalman–Bucy filtering (EnKBF)
method to (16). See (24) below for its formulation.

The data assimilation for each of the above methods is per-
formed over the time window [0, 400] with the same time step size δt
as the true signal. For the CG method, the global mean values y and z
in (19) are taken to be the mean values of the corresponding true sig-
nal over the interval [0, 200]. For both CG and BT, the initial values
of the conditional mean and conditional covariance are taken to be
zero. For EnKBF, the size of ensemble is taken to be N = 100 and the
unobserved variables are initialized at (y, z) = (0, 0). For the sake of
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clarity, we provide below some details about the EnKBF applied to
(16). We introduce the following notations for the drift part of the
system (16):

g(x, y, z) = βxx + αxy + αyz,

f1(x, y, z) = βyy − αx2 + 2αxz,

f2(x, y, z) = βzz − 3αxy.

(21)

Denote by y = (y1, y2, . . . , yN)> and z = (z1, z2, . . . , zN)> the collec-
tion of all the N ensemble members. We define also

N1(xobs(t), y, z) = 1

σ 2
x (N − 1)

N∑

j=1

(yj − y(t))(g(xobs(t), yj, zj)

− g(xobs(t), y, z)),
(22)

N2(xobs(t), y, z) = 1

σ 2
x (N − 1)

N∑

j=1

(zj − z(t))(g(xobs(t), yj, zj)

− g(xobs(t), y, z)),

where

y(t) = 1

N

N∑

`=1

y`(t), z(t) = 1

N

N∑

`=1

z`(t),

g(xobs(t), y, z) = 1

N

N∑

`=1

g(xobs(t), y`, z`).

(23)

Then, each ensemble member (yi, zi), i = 1, 2, . . . , N, of the EnKBF
is computed using

dyi

dt
= f1(xobs(t), yi, zi) + σyẆy,i

− N1(xobs(t), y, z)
[
g(xobs(t), yi, zi) − ẋobs(t) + σxẆx,i

]
,

(24)

dzi

dt
= f2(xobs(t), yi, zi) + σzẆz,i

− N2(xobs(t), y, z)
[
g(xobs(t), yi, zi) − ẋobs(t) + σxẆx,i

]
,

where Wx,i, Wy,i, and Wz,i, i = 1, 2, . . . , N, are all mutually indepen-
dent one-dimensional Brownian motions, and xobs is the observed
signal of x.

For regime II, we will also compare the ensemble forecast skills.
The forecast is performed over the time window [200, 400], which
is chosen to avoid overlap with the training window [0, 200] from
which the global mean values of y and z appearing in (19) are com-
puted. The forecast model is taken to be the true SDE system (16),
and the initial conditions (ICs) of (y, z) are drawn from multivariate
Gaussian distributions with mean and covariance Estimated, respec-
tively, from BT, CG, and EnKBF described above. For x, its initial
value is taken to be that of the true signal at the corresponding time
instant. We will also compute the results when the forecast is ini-
tialized with the true signal for all the three variables, which serves
as the reference of the theoretic forecast/predictability limit and will
be referred to as the case with the perfect IC. The time locations at
which to issue the forecasts are equally spaced over the chosen time

interval, with a gap of 0.01 between two adjacent forecasts, leading,
thus, to a total of 2 × 104 forecast locations. Each forecast is com-
puted up to a lead time of 1 time unit, and a total of 40 ensemble
members are generated at each forecast location. This procedure is
repeated for each of the methods used to construct the IC.

C. Numerical results

We present now the results obtained based on the numerical
procedure described above. For the two regimes given by (20), due
to the larger noise strength parameter σx used in regime I for the
observed variable, the corresponding DA exercise is less challenging
and will be presented first.

Results for regime I. As is shown in Fig. 2 for regime I, the
dynamics of x exhibits intermittent behavior with relatively qui-
escent episodes punctuated by large excursion events. Due to the
relatively small spectral gap, the dynamics of y also exhibits highly
nonlinear oscillations sustained by noise. In contrast, the dynamics
of z is mainly a damped oscillation sustained by noise due to the
relatively strong linear stabilizing effects, and it is the variable that
decays the fastest.

The posterior mean states of (y, z) for regime I obtained by
CG and EnKBF are fairly close to each other as is shown in Fig. 3.
The conditional covariance matrices of (y, z) estimated by these two
methods are also close to each other for this regime (not shown).
In contrast, for BT, there are prolonged time windows over which
the posterior mean of y deviates significantly from the true signal
as is shown in panel (a) of Fig. 4. An inspection of the time series
of yz shown in panel (b) of Fig. 4 reveals that such deviation typi-
cally occurs when the value of yz is large, which is expected, since
the omission of the term αyz in (16a) is the only difference between
the BT system and the full system. The posterior mean of z obtained
by BT is similar to those obtained by CG and EnKBF shown in panel
(c) of Fig. 3, which is thus not presented.

Results for regime II. The dynamics of the true system (16)
in regime II exhibits similar features as in regime I shown in Fig. 2,
although the amplitude of each variable is slightly reduced due to
the smaller noise intensity σx used for this regime. The shapes of
both PDFs and ACFs of all the three variables are similar to those
shown in Fig. 2, except that the decorrelation time of x becoming
comparable with that of y in this regime. The analog of Fig. 2 for
regime II is thus omitted.

For this regime, CG and EnKBF still provide comparable poste-
rior mean state of z as shown in panel (c) of Fig. 5, although the PDF
of the posterior mean obtained by EnKBF approximates slightly bet-
ter the PDF of the true signal of z. However, CG is significantly more
skillful in estimating the conditional mean of y [Fig. 5, panels (b)
and (d)].

The deterioration of the skill from EnKBF in this regime is asso-
ciated with a false bimodal behavior appearing in the posterior mean
of the y variable [see panel (d) of Fig. 5], whereas the true signal is
unimodal, skewed toward negative values. It has also been checked
that the bimodality is always there for EnKBF by further increas-
ing the total number of ensemble members N or decreasing the
numerical integration time step δt. Such a pathological behavior is
associated with the filter divergence,55,66 which often occurs for the
ensemble-based filters when the noise in the observational process
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FIG. 2. Panel (a): solution of (16) in regime I given by (20) for one arbitrarily fixed realization of the noise. Panel (b): the probability density functions (PDFs) of the solution.
Panel (c): the autocorrelation functions (ACFs) of the solution. This solution trajectory is taken to be the true signal for the DA and prediction experiments presented below.
See Sec. IV B for details about the numerical setup. The ACFs and PDFs are estimated based on the solution trajectory over the time window [0, 104], corresponding to
2 × 107 data points for the time step used.

is small and the observational process is highly nonlinear. In fact,
the small noise in the observational process x makes the filter trusts
more toward the information provided by the observations. How-
ever, the strong nonlinear and non-Gaussian features of x make it
very difficult to accurately recover the states of y and z by inferring
mainly from the x process. In contrast, CG tracks well the modu-
lations of the true signal, leading to a much better reproduction of
the PDF of the true signal of y [see again panel (d) of Fig. 5]. It is
worth pointing out that the original system (16) can also exhibit
bimodal dynamics in a broad range of dynamical regimes, even
though bimodality is not observed in the true signals of (x, y, z) for
neither of the two regimes considered here. This bimodality that can
occur in the dynamics of (16) is induced by the additive noise that
drives the system to switch from the two locally stable steady states
of the corresponding deterministic system produced from a super-
critical pitchfork bifurcation, although when occurs, the bimodality
is mainly visible in the x variable.

Regarding BT, compared with the corresponding result shown
in Fig. 4 for regime I, its performance here is even worse and is,
thus, not shown. In particular, the posterior mean state of y not only
deviates significantly from the true signal but also has spurious fast
oscillations presenting throughout the whole time window. Such fast
oscillations also appear in the filtered posterior mean of z, although
to a lesser extent.

For this regime, we also compared the skills of ensemble fore-
cast with the forecast model simply taken to be the true SDE system

(16), and the initial conditions (IC) of (y, z) drawn from multivari-
ate Gaussian distributions in which the mean and covariance are
estimated, respectively, from BT, CG, and EnKBF described above
(see Sec. IV B for further details). In addition, we compute the
results when the forecast is initialized with the true signal for all the
three variables, which serves as the reference of the theoretic forecast
limit.

In Fig. 6, we presented the normalized root mean square error
(RMSE; normalized by the standard deviation of the true signal) and
correlation coefficients of the forecasts for all the methods used. As
is expected, the better skills of CG at the DA stage carries over to
the ensemble forecast as well. BT performs the worst due to large
spurious oscillations appearing in its DA stage. While the RMSE is a
convenient way of ranking the performance, to provide a better visu-
alization of the skills, we also show in Fig. 7 the forecasted ensemble
mean trajectories at a given lead time, chosen here to be τ = 0.4
time unit, which corresponds roughly to one half of the decorre-
lation time of the y-variable. The results in Fig. 7 show that the
forecast based on initial conditions provided by CG (middle row)
actually performs fairly well for all the three variables compared with
those when perfect initial conditions are used (top row), although
the uncertainty in the y variable is slightly higher for CG. The results
for EnKBF are correlated with its performance at the DA stage, with
significant error in the x and y variables over the time windows
when the filtered posterior mean of y deviates from the true signal
as was previously shown in the middle panel of Fig. 5. For BT, large
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FIG. 3. Panel (a): the true signal of x, which is the same as the x-time series shown in panel (a) of Fig. 2. Panel (b): the filtered posterior mean of y for regime I obtained
from CG (green) and EnKBF (orange); the corresponding true signal previously shown in Fig. 2 is plotted in blue. Panel (c): analog of panel (b) for z.

spurious oscillations appear in the forecasted ensemble mean time

series for all the variables, especially for x and y. Such oscillations are

inherited from those appearing in the assimilated y variables, which

propagate to the other two variables due to nonlinear interactions.

V. PARAMETER ESTIMATION

Parameter estimation is an important topic and a necessary
precursor for effective state estimation, data assimilation, and pre-
diction. Maximum likelihood estimation (MLE) and maximum a
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FIG. 4. Panel (a): the filtered posterior mean of y obtained from BT (red) and the true signal of y (blue). Panel (b): The true signal of yz. The deterioration of the estimated y
using BT occurs over time windows when the magnitude of yz gets large.
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FIG. 5. Panel (a): the true signal of x, which is the x-component of the solution to (16) in regime II (i.e., σx = 0.1) initialized from (x, y, z) = (0, 0, 0) for an arbitrarily fixed
realization of the noise. Panel (b): the filtered posterior mean of y for regime II obtained from CG (green) and EnKBF (orange) with the corresponding true signal shown in
blue. Panel (c): the analog of panel (b) for z. Panel (d): PDFs of the filtered posterior mean of y from CG (green) and EnKBF (orange) compared with that of the true signal.
Panel (e): the analog of panel (d) for z.
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FIG. 6. Panels (a)–(c): RMSE of the forecast skills for regime II when the ICs are chosen either to be the perfect values from the true signals, or are drawn from multivariate
Gaussian distributions in which the mean and covariance are estimated, respectively, from BT, CG, and EnKBF; the RMSE is normalized by dividing by the standard deviation
of the respective true signal. Panels (d)–(f): the correlation coefficients of the forecast skills. The vertical dashed line corresponds to lead time τ = 0.4 for which the
corresponding forecasted ensemble mean time series are shown in Fig. 7.
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FIG. 7. Panels (a)–(c): the forecasted ensemble mean time series of x, y, and z, respectively, for regime II at lead time τ = 0.4 time unit. The ICs are from either the true
signal (top row), or assimilated from the CG method (middle row), or the EnKBF (bottom row). The gray area on each panel marks the spread between 5 and 95 percentile
of the corresponding ensemble forecast. The true signals are plotted in black. For BT, large spurious oscillations appear in the forecasted ensemble mean time series for all
the variables; and the corresponding results are, thus, not shown here.

posteriori (MAP) estimation are often adopted to infer the param-
eter values if the observed time series for all the state variables
are accessible.33,71,103 However, only partial observations are avail-
able in many complex nonlinear systems. In such a situation, data
augmentation is widely used to simultaneously estimate the model
parameter and recover the unobserved state variables.122 In partic-
ular, data augmentation has been extensively incorporated into the
Markov Chain Monte Carlo (MCMC) algorithms for improving the
Bayesian inference.42,54,107,130 In contrast to targeting the global opti-
mal solution based on the MCMC, many other parameter estimation
algorithms seek locally optimal solutions. One of the widely used
local optimal parameter estimation approaches is the expectation-
maximization (EM) algorithm.38,50,51,97 The EM algorithm is an iter-
ation method that aims to find the parameter values that maximize
the likelihood function and compute certain statistical expectations
of the unobserved state variables in an alternating fashion. Note
that, due to the local optimality property, the EM algorithm often
requires fewer iterations than the MCMC algorithm. Unfortunately,
both methods are computationally expensive for general complex
nonlinear systems since neither the data augmentation in MCMC
nor the computation of the statistical expectation in the EM can be
easily obtained.

Unlike the general complex nonlinear systems, the closed
analytic formulas offered by the CGNS facilitate the acceleration of

the computational efficiency in parameter estimation. In particu-
lar, the conditional sampling formula (7) has the potential to allow
a rapid data augmentation in the MCMC method while the ana-
lytic state estimation formula (6) offers an exact and accurate way
to compute the statistical expectation, which is an essential com-
ponent in the EM algorithm. Note that appropriately incorporating
the CGNS into the MCMC may require several additional manip-
ulations, which deserves a separate topic to study. Therefore, the
focus below is on applying the CGNS to accelerate the parameter
estimation utilizing the EM algorithm, where detailed mathematical
justifications are more accessible. The CGNS in this entire proce-
dure acts as a preconditioner to seek a suitable approximation of
the statistical expectation of the unobserved state variables given the
observational time series via the EM algorithm. With such a sta-
tistical expectation available from the CGNS, the original complex
nonlinear system is only essential in computing the maximum like-
lihood solution at the last iteration step, leading thus to a significant
speedup of the computational time required.

A. Accelerating the EM algorithm with a CGNS

preconditioner

As before, denote by (X, Y) the state variables of a complex
nonlinear system of the form (11), where only a time series of X is
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observed while there is no direct observations for the state variable
Y. Let θ be a vector consisting of all the model parameters. Denote
by X̂ = {X0, . . . , Xj, . . . , XJ} and Ŷ = {Y0, . . . , Yj, . . . , YJ} a discrete
approximation of the continuous time series of X and Y, respec-
tively, within the time interval t ∈ [0, T], where T = J1t, Xj = X(tj)

and Yj = Y(tj), with tj = j1t.
The goal is to seek an optimal estimation of the unknown

parameters θ by maximizing the log-likelihood function. Since only

the time series of X is observed (denoted by the discrete sequence X̂
above), the log-likelihood estimate is obtained by averaging over the
state variable Y at the corresponding instants,

L(θ) = log q(X̂|θ) = log

∫

Ŷ

p(X̂, Ŷ|θ) dŶ. (25)

Due to the unknown state variable Y, there is, in general, no
simple formula for a direct calculation of the log-likelihood. To
find the optimal parameter θ that maximizes L, the EM iteration
algorithm19,38,68 operates on the following function instead which is
obtained as a lower bound of L(θ) by applying Jensen’s inequality
(cf. Sec. 3.1 of Ref. 19)

∫

Ŷ

Q(Ŷ) log p(Ŷ, X̂|θ) dŶ −
∫

Ŷ

Q(Ŷ) log Q(Ŷ) dŶ, (26)

where Q(Ŷ) is a distribution over the unobserved variable Ŷ. It alter-
nates between performing an expectation (E) step to update Q(Ŷ)

and a maximization (M) step to update θ until the estimated param-
eter θ converges. Denote by θ k the updated parameters after the kth
iteration. The EM algorithm at step k + 1 is the following:

E-Step. Computing the conditional distribution p(Ŷ|X̂, θ k) using
the previously estimated parameters θ k. In fact, the max-
imization in the E-Step is reached when Q(Ŷ) is exactly
the conditional distribution of Ŷ corresponding to the
smoother estimates.

M-Step. Updating the parameters θ k+1 by maximizing the cost func-
tion Q defined by

Q(θ ; θ k) =
∫

Ŷ

p(Ŷ|X̂, θ k) log p(Ŷ, X̂|θ) dŶ. (27)

That is,

θ k+1 = arg max
θ

Q(θ ; θ k). (28)

Note that in (27), p(Ŷ|X̂, θ k) is treated as a known distribu-
tion that is solved in the E-step. Therefore, Q(θ ; θ k) is a func-
tion of θ only. The distribution p(Ŷ|X̂, θ k) can be regarded as the
weight function for computing the average (i.e., the integration) of
log p(Ŷ, X̂|θ).

In many situations, the M-Step usually involves solving a
quadratic optimization problem, the analytic formula of which is
available. However, for general nonlinear systems, the conditional
distribution p(Ŷ|X̂, θ k) in the E-Step is extremely difficult to solve.
Note that such a conditional distribution is precisely the smoother
estimate of the complex nonlinear system. Particle methods can be
applied. Yet, repeatedly using these particle methods through the
iteration procedure can be computationally expensive, and careful
tuning is required, especially for systems with large dimensions.

To overcome this most significant barrier of computing the
conditional distribution p(Ŷ|X̂, θ k) in the above EM algorithm, we
exploit a suitable CGNS model as a preconditioner to accelerate this
calculation in the E-Step. To that end, denote by θM the collection
of the parameters in the chosen CGNS model. In stark contrast to
p(Ŷ|X̂, θ k), we can now use the closed analytic formula in (6) to
efficiently compute the conditional distribution pM(Ŷ|X̂, θM

k ) for the
CGNS at each EM iteration. When θM

k is converged after a suffi-
cient number of EM iterations based on the CGNS, to obtain an
approximation of the optimal θ for the original system, we sim-
ply perform another EM cycle, but this time using log p(Ŷ, X̂|θ)

instead of log pM(Ŷ, X̂|θM) in the M-Step. The above procedure is
summarized in Algorithm 1; and we refer to Appendix A for further
technical details. Throughout this section, a quantity with the super-
script M indicates that it is a quantity related to the approximate
CGNS model instead of the original model (see also Ref. 138 with
the exception of the notation Ŷ). Note also that θM can be different
from θ , since the CGNS can involve new parameters not appearing
in the original system and vice versa.

Note that θopt obtained from Algorithm 1 should be viewed
as an approximation of the true optimal parameters for the origi-
nal nonlinear system. Its quality relies obviously on the quality of
the CGNS in approximating the true dynamics. It is also worth
mentioning that additional (physics) constraints can be naturally
incorporated into the CGNS for parameter estimation while still
preserving the closed analytic formulas in the corresponding EM
algorithm; and under certain conditions, a block decomposition of
the conditional covariance can be devised to further reduce the com-
putational efforts when high dimensional systems are considered.19

We illustrate now the approach on the classical two-layer Lorenz
1996 model.

B. A multiscale turbulent test model

In this subsection, a two-layer inhomogeneous Lorenz model
is utilized to demonstrate that a suitable CGNS can serve as both
a preconditioner and a surrogate model in parameter estimation to
speed up the computation. First, we show that a simple approximate
model that belongs to CGNS can accelerate the EM algorithm as a
preconditioner by following Algorithm 1. Then, we show that this
approximate model itself can be used as a surrogate model for pre-
diction once the involved parameters, θM, are optimized through the
EM cycles in lines 4–6 of Algorithm 1.

1. The perfect model

The two-layer Lorenz 96 (L96) model78 is a conceptual rep-
resentation of geophysical turbulence that is commonly used as
a testbed for various stochastic parameterization and dimension
reduction techniques.2,32,34,45,56,57,90,91,128 The model mimics a coarse
discretization of atmospheric flow on a latitude circle. It supports
complex wave-like and chaotic behavior, and the two-layer structure
schematically depicts the interactions between small-scale fluctua-
tions and large-scale motions. The stochastic version of the model
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ALGORITHM 1. EM algorithm for nonlinear systems with CGNS as a preconditioner.

subject to additive noise forcing reads

dui

dt
=


−ui−1 (ui−2 − ui+1) − ui + f − hci

J

J∑

j=1

vi,j


 + σui

Ẇui
,

i = 1, . . . , I, (29a)

dvi,j

dt
=

(
−bcivi,j+1

(
vi,j+2 − vi,j−1

)
− civi,j +

hci

J
ui

)
+ σvi,j

Ẇvi,j
,

j = 1, . . . , J, (29b)

where I denotes the total number of large-scale variables, J the
number of small-scale variables corresponding to each large-scale
variable, f, h, ci, b, σui

, and σvi,j
are given scalar parameters while Ẇui

and Ẇvi,j
are white noise. The large-scale variables ui are periodic

in i with ui+I = ui−I = ui. The corresponding small-scale variables
vi,j are periodic in i with vi+I,j = vi−I,j = vi,j and satisfy the following
cyclic conditions in j: vi,j+J = vi+1,j and vi,j−J = vi−1,j.

The model discussed here uses variables ui to describe large-
scale or slow movements, which are resolved; small scales or rapid
fluctuations represented by vi,j are often unresolved ones. The cou-
pling of fast and slow variables is regulated by the parameter h. The
parameter f controls the magnitude of external large-scale forcing,
while b determines the amplitude of nonlinear interactions between
the fast variables. The parameter ci specifies how quickly the fast
variables are damped in comparison to the slow variables. We take
I = 40, corresponding to a discretization of the latitude circle into a
total of 40 sites/sectors, and choose J = 4 small-scale variables asso-
ciated with each ui. The constant forcing is set to be f = 4, which
makes the system chaotic for the parameter regime chosen here. The
parameters h, ci, and b are chosen in such a way that the small-scale
variables have a comparatively significant impact on the large-scale
ones. In other words, the perfect model only has a weak scale sep-
aration. The reason that we consider such a weak scale separation
is that it better mimics the real atmosphere with chaotic/turbulent
behavior. The parameter ci varies across the spatial sites, which aims

to mimic the fact that the coupling across the variables above the
ocean is weaker than that above the land since the latter usually have
stronger friction or dissipation. In this sense, the model is inhomo-
geneous. Finally, additional stochastic noise is added to the system,
representing the contribution of the variables that are not explic-
itly modeled. The noise also interacts with the deterministic part
via nonlinear terms, introducing additional complexity that mim-
ics nature. To summarize, the parameters used in the perfect model
(29) are as follows:

I = 40, J = 4, h = 2,

ci = 2 + 0.7 cos(2π i/I), b = 2, f = 4,

σui
= σu = 0.2, σvi,j

= σv = 1.

(30)

2. The approximate model

Since in general the perfect model is not always fully known, or
it is too complicated to be used in practice, it is essential to develop
a simple and computationally tractable approximate model, which
is nevertheless able to capture the key nonlinear feedback from the
unobserved variables (vi,j here) to the observed variables (ui here).
As was discussed in Sec. III, stochastic parameterization is widely
used in describing chaotic signals,22 which replaces the nonlinear
eddy terms by quasilinear stochastic processes on formally infinite
embedded domains where the stochastic processes are Gaussian
conditional to the large scale mean flow. In addition, physics con-
straints are adopted in designing approximate models, which also
include the effects from the large-scale ui to the small-scale variables
vi,j. Therefore, such approximate models can potentially be used as
surrogate models of the perfect model.

The approximate model that we introduce for (29) is as follows:

dui

dt
=


−ui−1 (ui−2 − ui+1) − ui + f̂i − âi

J∑

j=1

vi,j


 + σ̂ui

Ẇui
,

i = 1, . . . , I, (31a)
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FIG. 8. Learning the parameters of the approximate L96 model (31). The panels (a)–(d) and (i)–(k) in the first and third rows show the trace plots of the estimated parameters
of the EM Algorithm 1 at site i = 2. The panels (e)–(h) and (l)–(n) in the second and fourth rows show the final estimated parameters θM

K (blue) after the Kth step of the
EM algorithm with K taken here to be 200; also shown are the initial guesses of the parameters (red) as well as the reference parameter values (back) chosen as follows:

f̂ i , âi (=hci/J), σ̂ui
, and ĉi are set to be the corresponding true values used in the perfect model, while d̂ i,j = d̂ i , v̂i,j = v̂i , and σ̂vi,j

= σ̂vi
are calibrated by the true statistics

according to (32).

dvi,j

dt
= −d̂i,jvi,j + v̂i,j + ĉiui + σ̂vi,j

Ẇvi,j
, j = 1, . . . , J, (31b)

where f̂i, âi, σ̂ui
, d̂i,j, v̂i,j, ĉi, and σ̂vi,j

are unknown constants. Com-

pared with the original system (29), the main simplification here
is in the small-scale equations, where we have replaced the small-
scale nonlinear interaction and linear damping terms −bcivi,j+1

(vi,j+2 − vi,j−1) − civi,j in (29b) by a simple linear term −d̂i,jvi,j + v̂i,j.

The equations for ui are essentially the same as before, although f̂i is
allowed now to vary from site to site. In the numerical experiments

below, we will enforce âi = ĉi for the consistency of the dynamical
property with the original system (29).

One desirable feature of this approximate model is that the
direct coupling of the state variables only involves ui and the cor-
responding vi,j for each fixed i. This is different from the original
system (29), where ui can have direct interactions with vi+1,1 and
vi−1,J due to the cyclic boundary conditions of the small scale vi,j

over j. Such a property allows to use a block decomposition of
the covariance matrix of the smoother estimate during both E-step
and M-step.19 The entire state space for all the variables {ui, vi,j|
i = 1, . . . , I, j = 1, . . . , J} can be decomposed into I subspaces, where
each subspace can be dealt with in parallel.
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3. Setup of the numerical simulations

The true signal is obtained by integrating the inhomogeneous
L96 model (29) using the Euler–Maruyama scheme with the param-
eters given by (30), a uniform time step size δt = 2 × 10−3, and zero
initial condition. The same time step size and initial condition are
adopted for the approximate model (31) as well as the identified
model, where the latter takes the same form as (29) but with esti-
mated parameters. The true signals of ui with 100 time units are used
as the observations for parameter estimation while longer data with
1000 time units are used to compute their statistics. This latter length
is also adopted when computing the statistics of the variables in the
approximate and the identified models. The total number of the EM
loops with CGNS is fixed to be 200.

4. CGNS as a preconditioner for identifying

parameters in the perfect model

We first discuss the results of applying Algorithm 1 to estimate
the parameters, θM, in the approximate model (31). Figure 8 shows
that the EM algorithm with the approximate model (31) provides a
very accurate approximation of the parameters corresponding to the
Gaussian fit of vi,j in the true signal. The quantities shown in Fig. 8
are the trace plots at the site i = 2 corresponding to the variables
u2 and v2,j (in the first and the third rows) and the final estima-
tion of the parameters in (31) (in the second and the fourth rows).
The trace plots at other spatial locations have similar behavior; the
parameters involved in the ui-equations all converge quickly (within
ten iteration steps), and those involved in the vi,j-equations con-
verge at a relatively slower speed, but all stabilized after about 100

iterations. The black curves are shown as a reference, where f̂i, âi

(=hci/J), σ̂ui
, and ĉi are taken to be those in the perfect model and

d̂i,j = d̂i, v̂i,j = v̂i, and σ̂vi,j
= σ̂vi

are calibrated by the true statistics,

i.e., the mean, the variance, and the decorrelation time, in the per-
fect model of vi,j averaged over j. More precisely, denoting by µi, ri,
and τi these averaged mean, variance, and decorrelation time in the

perfect model of vi,j, the parameters v̂i, d̂i, and σ̂vi
are then obtained

via

τi = 1

d̂i

, ri =
σ̂ 2

vi

2d̂i

, µi = v̂i + hci/Jūi

d̂i

, (32)

where ūi is the mean value of ui.
The conditional distribution of the approximate model (31)

with the estimated parameters is shown in Fig. 9. Panels (a) and
(c) show the true signal of two large-scale modes u10 and u20, and
panels (c) and (d) show the true signal, and smoother estimate of
two hidden modes. The smoother mean is given by the dashed-
black curves, and one, two, and three standard derivations of the
uncertainty are shown by the light, moderate, and dark shading
areas, respectively. The shading areas cover most of the true signal,
which indicates appropriate amount of uncertainties are obtained
by combining the true observations of the large scale variables ui

and the optimized approximate model. In fact, characterizing appro-
priate amount of uncertainty plays an important role in the EM
algorithm when the hidden process contains large uncertainty. If the
uncertainty is totally ignored in computing the optimization in the

M-Step, for example, replacing p(Ŷ|X̂, θM
k ) by its mean state, then

the estimated parameters can be very biased. In fact, the solution of
the estimation even blows up in the test model used here.

Figure 10 shows the estimated parameters θopt for the perfect
model, where the CGNS (31) is utilized as a preconditioner follow-
ing Algorithm 1. Due to the intrinsic model error of the approximate
CGNS model where the hidden variables are fully decomposed, in
the sense that the correlation between the small scales correspond-
ing to different large scales are omitted, the estimated value for the
bci term is zero. However, other parameters, for example, f and ci,
are adjusted accordingly. It is shown in Figs. 11 and 12 that the
identified full model with the estimated parameters θopt produces
dynamics that resembles the truth to a remarkable extent. Indeed,
Fig. 11 shows that the Hovmoller plot of the large scale variables
from the identified model [panel (b)] is almost the same as that
from the true signal [panel (a)] over the given time window. Time
series comparison and PDF and ACF comparisons are also shown
in the first four row of Fig. 12. Both the dynamical properties and
the statistics are recovered with high accuracy. Of course, the time
series from the identified model should not be expected to follow the
true time series at all time instants since the original model is placed
in a regime with chaotic dynamics.

5. CGNS as a surrogate model

Finally, we mention that the approximate model (31) with the
estimated parameters itself can be exploited as a surrogate model of
the perfect system, which can be applied for ensemble forecast and
other tasks. Indeed, (31) with the optimally estimated parameters
θM

K from Algorithm 1 recovers the dynamical properties of the true
model to an extent that is almost the same as the full model with the
identified parameters θopt as shown in Fig. 11 and the last four rows
in Fig. 12.

VI. PREDICTING THE STATISTICAL RESPONSE

Yet, another important topic in studying complex nonlinear
systems is to predict the model response to the perturbation of the
external forcing. Developing efficient and accurate approaches to
study such a key issue facilitates understanding model sensitivity,
regime-switching behavior, and nonlinear interactions across dif-
ferent scales. Resolving this problem using advanced mathematical
tools also has significant practical implications, such as coping with
the climate change scenario. Due to various uncertainties from the
internal instability and external forcing, a probabilistic description is
more suitable for characterizing the complex turbulent systems (1).

However, there exist several challenges in predicting the sta-
tistical response of complex nonlinear systems. First, solving the
high-dimensional Fokker–Planck equation is the prerequisite of
obtaining the model statistics, which, however, often suffers from
the curse of dimensionality. Second, since simulating the perfect
system is not always computationally feasible in practice, the pre-
dicted model response may become inaccurate when an approxi-
mate model is utilized. It is then important to take advantage of a
suitable combination of partial observations with the approximate
model to mitigate error in calculating the model statistics. Third,
for general nonlinear systems, computing the statistical response in
terms of the perturbations with different strengths and categories
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FIG. 9. Smoother estimate of the approximate model in the Kth iteration in Algorithm 1, with K = 200. The blue curves: true signals; the black dashed curves: the smoother
mean time series of the hidden variable; the light, moderate, and dark shading areas show the one, two, and three standard derivations (STDs) of the uncertainty in the
smoother estimate. Panel (a): true signal of u10; Panel (b): true signal of v10,1 with one, two, and three, standard derivations of the uncertainty. Panels (c) and (d): same as
panels (a) and (b) but for u20 and v20,1.

requires repeatedly solving the Fokker–Planck equation. As a con-
sequence, even with a relatively fast solver of the Fokker–Planck
equation, the total computational cost can still remain significant.

The advantage of the exact and statistically accurate solver of
the equilibrium PDF (9) makes the CGNS a natural framework for
the development of approximate models for efficiently computing
the model statistics and the associated response. One important fea-
ture in finding the PDF of the CGNS based on formula (9) is that
the available partially observed time series X is used to compute the
conditional distribution of Y given X. As a consequence, the model
error in the PDF associated with the direct simulation of the approx-
imate model is mitigated with the help of observations in computing
the PDF based on (9). In other words, the resulting PDF from (9)
is, in general, closer to the truth than that computed purely based
on the approximate model without taking into account any input
information from observations.

What remains is the third challenge mentioned above. To over-
come such a difficulty, the linear statistical response is utilized as an
approximate method for computing the exact statistical response.
The linear response only requires a linearization of the statistical
equation while there is no linearization involved in the original
nonlinear dynamics. Therefore, the nonlinear features of the under-
lying dynamics is preserved. In addition, the linear response can
be computed utilizing the fluctuation–dissipation theorem (FDT),83

which involves only a single PDF for computing different linear
responses. Note that such a PDF is the equilibrium distribution
of the unperturbed state, which can be efficiently solved using the
formula (10).

A. Computing the linear statistical response via the

fluctuation–dissipation theorem (FDT)

Consider the general complex nonlinear systems in (1). Defin-
ing G(u, t) = (L + D) u + B (u, u) + F(t), the model can be written

in a concise form

du

dt
= G(u, t) + σ (u, t)Ẇ. (33)

The equilibrium statistics of some functional A(u) associated with
(33) is formulated as

〈A(u)〉 =
∫

A(u)peq(u) du, (34)

where peq(u) is the equilibrium PDF of u in (33).
Now consider the dynamics in (33) by a small time separable

external forcing perturbation δw(u)f(t), where δ is a small scalar w
is a general nonlinear function of u. The perturbed system reads

du

dt
= G(u, t) + δw(u)f(t) + σ (u, t)Ẇ. (35)

The FDT states that if δ is small enough, then the leading-order
correction to the statistics in (34) is given by

δ〈A(u)〉(t) = δ

∫ t

0

R(t − s)f(s) ds, (36)

where R(t) is the linear response operator, which is calculated
through correlation functions in the unperturbed dynamics,

R(t) = 〈A(u(t))B(u(0))〉, B(u) = −divu(w(u)peq(u))

peq(u)
. (37)

See Chap. 2 of Ref. 83 for a rigorous derivation of (36) and (37).
In particular, the above procedure of computing the linear response
via the FDT does not require the linearization of the underlying
complex nonlinear systems. Therefore, the features of the nonlin-
ear dynamics are preserved. Note also that if the functional A(u) in
(36) is given by A(u) = u, then the response computed is for the sta-
tistical mean. Likewise, A(u) = (u − ū)2 is used for computing the
response in the variance.
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FIG. 10. Panels (a)–(f): the estimated parameter θopt using Algorithm 1 for the perfect L96 model (29). Here, θopt is a vector consisting of the parameters f , hci/J, σu, bci , ci ,
and σv in (29). The true values given by (30) are marked by the dashed black curves, and the estimated parameters are shown by the blue curves.

B. Calculating the linear statistical response via the

CGNS preconditioner

According to (37), the calculation of the linear statistical
response via the FDT requires the information of

1. the equilibrium PDF peq(u),
2. the time series A(u), and
3. the correct formulation of B(u).

Even if the perfect model is known, directly solving the high-
dimensional Fokker–Planck equation is often not computationally
affordable. Therefore, a suitable CGNS, serving as a preconditioner,
is utilized to find a suitable approximation of the non-Gaussian
equilibrium PDF peq in an efficient way. Specifically, the explicit for-
mula in (10) is utilized to achieve this goal. Besides, the observations
also need to be incorporated in computing the equilibrium peq [and
later in recovering the hidden components in A(u)] to reduce model
error from the approximate model free run. We denote one realiza-
tion of the observational variable by Xobs, the posterior distribution
(filter and smoother) given Xobs by pM|obs where the superscript M
indicates that an approximate model is used in computing the filter
distribution (4), the explicit formula (10) becomes

pM|obs
eq (X, Y) = lim

J→∞

1

J

J∑

j=1

(
KH(X − Xobs(tj))p

M|obs(Y|Xobs(s ≤ tj))
)
,

(38)

where peq
M|obs is an efficient and effective approximation of the true

equilibrium PDF peq.
Next, in the presence of partial observations, the conditional

sampling formula (7) is exploited to calculate the unobserved com-
ponent of the time series in A(u). Note that the approximate model
is used to compute the filter distribution (4), the smoother distri-
bution formula (6), and the conditional sampling formula (7). Note
that the partial observations are involved in computing both peq(u)

and A(u), which aims to mitigate the model error in the approximate
model in both equilibrium PDF and time series of the unobserved
components. In addition, with peq(u) and A(u) obtained from the
CGNS preconditioner, the original nonlinear system structure is uti-
lized to form B(u) to compute the linear response R(t). The entire
procedure of the FDT via CGNS is given in Algorithm 2.

C. A 4D stochastic climate model

This section utilizes a four-mode stochastic model with key fea-
tures of atmospheric low-frequency variability to show how to use
CGNS as a preconditioner incorporated with partial observations to
calculate the linear statistical response.

1. The perfect model

The stochastic climate model is designed in such a way that
it involves many of the major dynamical properties of comprehen-
sive global circulation models (GCMs) but with only four degree of
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FIG. 11. Hovmoller diagram of the large scale variables ui from different models. Panel (a): perfect model (29) with parameters (30); panel (b): perfect model (29) with
estimated parameters θopt after line 8 using Algorithm 1; panel (c): approximate model (31) with parameters θM

K with K = 200.

freedom.83,88,94,95 The model reads as follows:

dx1

dt
=

(
−x2(L12 + a1x1 + a2x2) − d1x1 + F1 + L13y1 + b123x2y1

)

+ σ1Ẇx1 , (39a)

dx2

dt
=

(
+x1(L12 + a1x1 + a2x2) − d2x2 + F2 + L24y2 + b213x1y1

)

+ σ2Ẇx2 , (39b)

dy1

dt
=

(
−L13x1 + b312x1x2 + F3 − γ1y1

)
+ σ3Ẇy1 , (39c)

dy2

dt
=

(
−L24x2 + F4 − γ2y2

)
+ σ4Ẇy2 , (39d)

where b123 + b213 + b312 = 0. Consistent with many geophysical
flow models, the model has energy-conserving quadratic nonlin-
ear terms, a linear operator, and external forcing terms. The linear
operator contains two parts: one is a skew-symmetric component
formally related to the Coriolis effect and topographic Rossby wave
propagation; the other is a negative definite symmetric portion con-
ceptually analogous to dissipative processes such as surface drag and
radiative damping. The coupling in different variables is through
both linear and nonlinear terms, where the nonlinear coupling

through bijk produces multiplicative noise effects. In fact, the strate-
gies described in Sec. III A are applied to y1 and y2 that introduce the
stochastic noise and damping terms. The variables x1 and x2 can be
regarded as the climate variables and y1 and y2 represent the weather
variables. The parameters used to generate the true dynamics are as
follows:

d1 = 1, d2 = 0.4, γ1 = 0.5, γ2 = 0.5, L12 = 1,

L13 = 0.5, L24 = 0.5,

a1 = 2, a2 = 1, b123 = 1.5, b213 = 1.5, (40)

σ1 = 0.5, σ2 = 2, σ3 = 0.5, σ4 = 1, F1 = F2 = F3 = F4 = 0.

One realization of the true signal is shown in black color in Fig. 13.
Both climate variable x1 and weather variable y1 have intermittent
behavior with non-Gaussian PDFs. Note that this stochastic model is
CGNS with X = (x1, x2)

> and Y = (y1, y2)
>. We use a CGNS as the

perfect model such that the FDT based on the perfect model can be
computed in an accurate fashion, which can be served as a reference
solution.

2. The approximate model

In practice, running the entire perfect model is prohibitively
costly. As a result, simpler or reduced models are commonly uti-
lized in computing the responses. Linear stochastic models are
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FIG. 12. Comparison of time series and statistics obtained from the full two-layer L96 model (29) with the true parameters (30) (blue), the identified model (29) with the
estimated parameters θopt from Algorithm 1 (green), and the approximate CGNS model (31) with the estimated parameters θM

K (orange) after the Kth iteration in Algorithm 1
where K = 200. Panels (a)–(c): trajectory, PDF, and ACF, respectively.

widely used as approximate models for the unresolved variables.37

Therefore, the hidden processes are replaced by two linear Gaus-
sian equations, the parameters of which are calibrated by the true
equilibrium statistics, i.e., the mean, the variance, and the decorre-
lation time. In addition, the parameters in the observed processes
are assumed to be the same as those in the perfect model (39). The

approximate model reads

dx1

dt
=

(
−x2(L12 + a1x1 + a2x2) − d1x1 + F1 + L13y1 + b123x2y1

)

+ σ1Ẇx1 , (41a)
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ALGORITHM 2. FDT with the CGNS preconditioner.

1 Start with a given realization of the observations Xobs

2 Propose an approximate model that belongs to CGNS (2)
3 Compute the filter posterior distribution pM|obs(Y|Xobs(s ≤ ti))

via (4)
4 Form the equilibrium peq

M|obs via Eq. (38)
5 Compute the smoother posterior distribution pM|obs(Y(t)|Xobs(s),

s ∈ [0, T]) from (6)
6 Sample one realization of the hidden time series via (7) that is

used to approximate the unobserved component of A(u);
7 Compute the response operator R(t) via (37) and compute the

linear response via (36).

dx2

dt
=

(
+x1(L12 + a1x1 + a2x2) − d2x2 + F2 + L24y2 + b213x1y1

)

+ σ2Ẇx2 , (41b)

dy1

dt
= −γ̂3

(
y1 − ŷ1

)
+ σ̂3Ẇy1 , (41c)

dy2

dt
= −γ̂4

(
y2 − ŷ2

)
+ σ̂4Ẇy1 , (41d)

which belongs to the CGNS. Note that despite the simplicity of uti-
lizing linear Gaussian models to approximate the hidden processes,

one major issue in (41) is that the physics constraint is no longer sat-
isfied in (41). Therefore, the model in (41) can contain large errors
for a long-term simulation.

3. Calculating linear response via FDT

In this example, we aim at calculating the linear response
to the perturbation of the external forcing and linear interaction
parameters. Specifically, the following two perturbation cases are
considered:

Case 1: Perturbing parameters of forcing in the observed processes,
i.e., Fδ

1 = Fδ
2 = 0.3, δw(u)f(t) = (0.3, 0.3, 0, 0)>;

Case 2: Perturbing parameters in linear interaction terms, i.e.,
Lδ

13 = Lδ
24 = 0.1, δw(u)f(t) = (0.1y1, 0.1y2, −0.1x1, −0.1x2)

>.

Note that in the second case, the parameters appear in both the
observed and hidden processes. We compare the linear response in
the following models:

Perfect FDT (or perfect model): The equilibrium PDF peq(u), the
time series A(u), and the formulation of B(u) are all from the
perfect model (39).

Imperfect FDT (or imperfect model): The equilibrium PDF peq(u),
the time series A(u), and the formulation of B(u) are all from
the approximate model (41).

Concatenate FDT (or concatenate model): The equilibrium PDF
peq(u) and the time series A(u) are from the simple concate-
nation of the observations, i.e., the trajectories of observed
variables x1 and x2 from the perfect model (39), and the trajec-
tories of the hidden variables y1 and y2 from the approximate

FIG. 13. Comparison of the trajectories from the perfect 4D stochastic climate model (39), approximate model (41), the smoother mean time series, and the sampled
trajectories based on the approximate model. Blue curves: perfect model trajectories; red curves: approximate model trajectories; orange curves: the smoother mean time
series; green curves: sampled trajectories. Panel (a): trajectories; panel (b): PDFs.
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FIG. 14. Comparison of covariance matrices in different scenarios. Panel (a): the perfect model where the equilibrium PDF is from the perfect model (39); panel (b):
preconditioner model where equilibrium PDF is from (4) where true observations and approximate model are utilized in computing KH(X − Xobs(ti)) and p

M|obs(Y|X(s ≤ ti));
panel (c): concatenate model where the equilibrium PDF peq is from the simple concatenation of the observations, i.e., the trajectories of observed variables x1 and x2 from
the perfect model (39) and the trajectories of the hidden variables y1 and y2 from the approximate model (41) free-run; panel (d): the imperfect model where the equilibrium
PDF is from the approximate model (41).

model (41) free-run. The formulation of B(u) is from the
approximate model (41).

FDT with preconditioner (or preconditioner model): The equi-
librium PDF peq(u) is calculated via (10) where true observa-
tions and the CGNS approximate model (41) are utilized in
computing KH(X − Xobs(ti)) and pM|obs(Y|X(s ≤ ti)). The time

series A(u) are generated by Eq. (7) with the CGNS approxi-
mate model and the true observations. The formulation ofB(u)

is from the perfect model.

The details of the B(u)’s forms from the perfect model and approxi-
mate model can be found in Appendix B. In this experiment, the true

FIG. 15. Response operator R(t) in (37) for the response of the first four moments of the 4D climate model (39) when perturbing parameters in the observed processes with
Fδ
1 = Fδ

2 = 0.3. In each panel, the blue and red curves show the linear response from the perfect model (39) and the free-run of the approximate model (41), respectively.
The magenta curves show linear response from simply concatenating the trajectories of observed variables x1 and x2 from the perfect model (39) and the trajectories of the
hidden variables y1 and y2 from the approximate model (41). The green curves show the linear response from the procedure discussed in Sec. VI B. Panels (a)–(d): x1, x2,
y1, and y2, respectively.

Chaos 32, 053122 (2022); doi: 10.1063/5.0081668 32, 053122-23

© Author(s) 2022

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 16. Similar to Fig. 15 but perturbing parameters in the linear interaction terms Lδ
13 = Lδ

24 = 0.1. Panel (a)–(d): x1, x2, y1, and y2, respectively.

signal is obtained using Euler–Maruyama scheme with a uniform
time step δt = 5 × 10−3 and the total length is 1000 time units.

Before discussing the linear response using CGNS as a precon-
ditioner, we start by showing some prerequisites, the equilibrium
covariance, and time series A(u) from different models. The tra-
jectories from the approximate model (41) free-run (red color) are
shown in Fig. 13. Note that due to the violation of the energy-
conserving constraint of the nonlinear terms in (41), the amplitude
of x1 and x2 from the approximate model is much larger than the
one from the perfect model (39). In addition, the PDF of y1 is Gaus-
sian by design, which is also different from the skewed PDF as in the
perfect model. The model error can also be found in the comparison
of the equilibrium covariance matrices of the perfect model [panel
(a)] and the approximate model [panel (d)] in Fig. 14. Due to large
error caused by the simple parameterization of the hidden processes,
one may consider concatenating the observations (from the perfect
model) and the trajectories of the hidden variables y1 and y2 from
the approximate model (41) free-run to approximate the required
equilibrium PDF peq and the unobserved time series. However, it is
expected that the correlation between the observations from the per-
fect model and trajectories from the approximate model free-run is
neglected [see panel (c) of Fig. 14].

In contrast, in light of the desired structures of CGNS, the
partial observations can be incorporated with both approximating
the equilibrium PDF and recovering the unobserved times series.

Therefore, the model error is significantly mitigated, and the corre-
lation between the observed and unobserved variables is preserved.
The green curves in Fig. 13 show one sampled trajectories of y1

and y2 using conditional sampling formula (7) from the approx-
imate model (41) and observations. The overall dynamics of the
recovered sampled trajectories are very similar to those in the per-
fect model. In addition, the skewed PDF of y1 can be found in the
green curve but the appropriate model free run only brings Gaus-
sian statistics by design. More importantly, the correlation between
the sampled trajectories and the observations is consistent with that
in the perfect model as shown in panel (b) of Fig. 14. A final remark
is that the smoother (or filter) mean time series is widely used as
a surrogate of the true signals, which, however, underestimate the
uncertainty as shown in the orange color in Fig. 13. Therefore, con-
ditional sampling is essential in approximating the time series of
A(u).

Figure 15 shows the linear response operator R(t) in (37)
for the response of the first four moments when perturbing the
external forcing parameters in the observed processes. Here, the
blue and red curves show the linear response from the perfect
model (39) and the free-run of the approximate model (41), respec-
tively. The magenta curves show the linear response from simply
concatenating the trajectories of observed variables x1 and x2 from
the perfect model (39) and the trajectories of the hidden variables
y1 and y2 from the approximate model (41). The green curves show
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the linear response from the procedure discussed in Sec. VI B. The
imperfect FDT contains huge errors in capturing higher moments
for the observed variables x1 and x2. Concatenate FDT works well
for computing the four moments of x1; however, it is gradually away
from the perfect FDT from lower moments to higher moments. For
example, the gap between the concatenate FDT and the perfect FDT
is obvious in the last row of x2. This is because the strong correla-
tion between the x2 and y1 [shown in panel (a) in Fig. 14] is omitted
in this simple concatenation [shown in panel (c) in Fig. 14]. In
contrast, the response operator R(t) of the two observed variables
from preconditioner FDT is very close to the perfect FDT. Due to
the indirect perturbation of the unresolved variables, the response
is expected to be small. The preconditioner FDT can still capture
the trend of the linear response operator as that using perfect FDT.
Figure 16 shows the second perturbation case, i.e., perturbing the
linear interaction parameters appearing in both the observed and
the hidden processes. In addition to the model error of the approx-
imate model being mitigated and correlation between observations
and hidden dimensions of the approximate model being preserved,
the perfect model structure is utilized to calculate the B(u) in FDT
with preconditioner. Therefore, the performance of the FDT with
preconditioner outperforms concatenate FDT and imperfect FDT.

VII. DISCUSSION AND CONCLUSIONS

In this paper, the skill of a rich class of nonlinear stochas-
tic models, known as the “conditional Gaussian nonlinear system”
(CGNS) (2), as both a cheap surrogate model and a fast precon-
ditioner is explored to advance many computationally challenging
tasks in complex nonlinear systems. The CGNS not only preserves
the main underlying physics of nature but also reproduces the
observed intermittency, extreme events and other non-Gaussian
features as well. The closed analytic formula of solving the condi-
tional statistics facilitates the development of many mathematical
theories and fast numerical algorithms. Three topics are covered
in this paper. First, the closed analytic formulas of the conditional
statistics of the CGNS allow an efficient and accurate data assim-
ilation scheme. It is shown in Sec. IV that the data assimilation
skill of a suitable CGNS approximate forecast model outweighs the
EnKBF applying directly even to the perfect model in the presence of
strong nonlinear and turbulent features. The latter may suffer from
filter divergence when the observational process is highly nonlin-
ear with small observational uncertainties. Second, as is shown in
Sec. V, the CGNS allows the development of a fast algorithm for
simultaneously estimating the parameters and the unobserved state
variables with uncertainty quantification in the presence of only par-
tial observations. Utilizing an appropriate CGNS as a preconditioner
significantly reduces the computational cost in accurately estimat-
ing the parameters in the original complex system. The same CGNS
can also serve as a surrogate model for reproducing the large-scale
dynamics and statistics of nature and can be applicable to ensemble
forecast. Finally, the CGNS advances rapid and statistically accu-
rate algorithms for both computing the probability density function
and sampling the trajectories of the unobserved state variables. As
shown in Sec. VI, these fast algorithms facilitate the development
of an efficient and accurate data-driven method for predicting the

linear response of the original system with respect to parameter
perturbations based on a suitable CGNS preconditioner.

Several important topics remain as future work. First, it is cru-
cial to systematically determine the CGNS approximate model. A
promising approach is to write down the general structure of (12)
and then apply a parameter estimation algorithm together with cer-
tain sparse identification method to prevent the overfitting issue.
Second, it is of practical significance to develop further pathways
that allow us to apply the CGNS to more complicated systems and
explore the approximate errors. Incorporating the CGNS into inter-
mediate complicated models or even certain versions of the general
circulation models (GCMs), say for climate science or geophysics,
can be interesting and practically useful tasks. Finally, the CGNS
may have the potential to combine with machine learning algo-
rithms to advance the ensemble forecast. One possible direction
is to exploit the analytic formula in (9) for the ensemble forecast,
where the complicated nonlinear interactions in solving the condi-
tional distributions can be replaced by a cheaper machine learning
architecture.
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APPENDIX A: DETAILS OF THE EM ALGORITHM FOR

PARAMETERS ESTIMATION

1. The EM algorithm for the CGNS

In this appendix, we provide some technical details about
Algorithm 1, which concerns the use of CGNS as a preconditioner
in the EM approach for parameters estimation. To fix ideas, we will
focus on a special case in which the original nonlinear system (11)
is subject to diagonal and additive noise, which is sufficient for the
applications considered in Sec. V. For the simplicity of discussions,
we will also consider only the real-valued variables and systems. We
refer to Ref. 19 for more general settings (see also Ref. 51).

We first generate the discrete partial observations X̂ using
for instance the Euler-Maruyama scheme47 applied to the original
nonlinear system (11), with a sufficiently small time step size 1t.
Given a CGNS approximation of the form (2), we explain now how
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the conditional distribution pM(Ŷ|X̂, θM
k−1) and the cost function

Q̃(θM; θM
k−1) in lines 5 and 6 of Algorithm 1 are formed at each EM

iteration for the CGNS.
Due to the above choice of the noise terms in (11), B1

and b2 in its corresponding CGNS approximation (2) are simply
diagonal matrices with unknown diffusion coefficient parameters
appearing on the corresponding main diagonal. In the follow-
ing, we also denote by ξ the parameters in the drift part of the
CGNS. Then, the collection θM of the parameters in the CGNS is
θM = (ξ , diag(B1), diag(b2))

>. The discretization of (2) using the
Euler–Maruyama scheme reads

Xj+1 = Xj + (A0(X
j, t; ξ) + A1(X

j, t; ξ)Yj)1t + B1

√
1tε

j
1, (A1a)

Yj+1 = Yj + (a0(X
j, t; ξ) + a1(X

j, t; ξ)Yj)1t + b2

√
1tε

j
2, (A1b)

where j = 0, . . . , J for some fixed positive integer J. Here, ε
j
1 and ε

j
2

are independent and identically distributed Gaussian white noises.
They have the same dimensions as X and Y, respectively, due again
to the way the noise forcing is chosen. Assume also all the param-
eters in the drift part appear as multiplicative prefactors of some
functions of Xj and Yj.

We introduce now some additional notations in order to put
(A1) into a more compact form to be used below. Denote by Mj

the matrix that includes those linear/nonlinear functions in the drift
part, which are multiplied by the parameters ξ . Denote also by §j

those terms that do not involve parameters such as the first terms
Xj or Yj in (A1). Finally, let R be the covariance matrix associated
with the noise terms in (A1), namely, the diagonal matrix whose
diagonal consisting of those from the diagonal matrices B1B

>
1 1t and

b2b
>
2 1t. Apparently, there is a one-to-one correspondence between

the diagonal of R and the parameters in the diffusion terms. With
these notations, we can rewrite (A1) into

uj+1 = Mjξ + §j + R1/2εj, j = 0, . . . , J, (A2)

where uj+1 = (Xj+1, Yj+1)
>

and εj = (ε
j
1, ε

j
2)

>
. Thus, at each time

step, given Mj and §j, uj+1 follows a Gaussian distribution with mean
µj = Mjξ + §j and variance given by R,

pM(uj+1|Mj, §j, θM)

= 1√
(2π)N

|R|− 1
2 exp

(
−1

2
(uj+1 − µj)

>
(R)−1(uj+1 − µj)

)
,

(A3)

where N is the dimension of the phase space.
At the kth EM iteration for each k = 1, . . . , K, the parameters

θM
k−1 is already computed. We can, thus, use (6) to compute the

optimal smoother estimate pM(Y(t)|X(s), s ∈ [0, T], θM
k−1) or equiv-

alently its “discretized” form pM(Yj|X̂, θM
k−1) for j = 0, . . . , J in the

E-Step. On the other hand, by exploiting the relationship in (A2) for
all j, the M-Step (line 6 in Algorithm 1) is solved via minimizing the

following cost function:

L̃ = 1

2

J−1∑

j=J1

〈
(uj+1 − Mjξ − §j)

>
(R)−1(uj+1 − Mjξ − §j)

〉

+ J′

2
log |R|, (A4)

where the summation of j starts from a certain non-zero integer J1

to eliminate the inaccuracy from the burn-in period and J′ = J − J1.
Note that (A4) corresponds to the negative of Q(θ ; θ k) defined
by (27) if J1 = 1, after dropping some constant terms independent of
ξ and R. In (A4), 〈·〉 denotes the expectation over the uncertain com-
ponent of uj and uj+1, namely, Yj and Yj+1, while the expectations of
the observed component Xj and Xj+1 are simply themselves since the
time series of them are given. Since the hidden variables Yj appear
in a linear way in the matrix Mj due to the structure of the CGNS,

only the quadratic terms of Yj, namely, 〈Yj+1, (Yj+1)
>〉, 〈Yj+1, (Yj)

>〉,
〈Yj, (Yj)

>〉, need to be solved in the expectation in (A4). These terms
can be solved via some manipulations of the results from the closed
formulas of the smoother estimates (6). Details can be found in
Appendix A of Ref. 19. To find the minimum of L̃, we set ∂L̃

∂ξi
= 0

and ∂L̃

∂R``
= 0 for each component ξi of ξ and each diagonal element

R`` of R, which leads to

R = 1

J′

J−1∑

j=J1

〈
(uj+1 − Mjξ − §j)(uj+1 − Mjξ − §j)

>
〉
, (A5a)

ξ = D−1 ,̧ (A5b)

where

D =
J−1∑

j=J1

〈
(Mj)

>
R−1Mj

〉
and =̧

J−1∑

j=J1

〈
(Mj)

>
R−1(uj+1 − §j)

〉
.

(A6)

Note that we solve (A5) based on an iteration method, where ξ is
obtained given R from the previous step and then R is calculated
from the updated ξ .

2. The last M-step in Algorithm 1

Recall Algorithm 1. The last M-Step (line 8 in the algorithm)
requires to solve the minimization of the cost function, which is
based on the original nonlinear system. The main difference here
compared with minimizing the cost function associated with the
CGNS (line 6 in the algorithm) is that higher order moments of
Y, resulting from the general nonlinear structure of the original
complex system, may be involved. If the nonlinearity of the origi-
nal complex system is up to quadratic, then the expectation in the
analog of (A4) for the original system may involve up to the fourth
moments of Y.

Note that these moments are calculated based on the smoother
estimate from the E-Step (line 7), which still utilizes the CGNS.
In other words, the smoother estimate only provides a conditional
Gaussian distribution. The higher order moments are, thus, com-
puted based on the quasi-Gaussian closure approximation, which
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are represented by the known information from the mean and the
variance of the conditional Gaussian smoother estimate. For exam-
ple, denote by Yi a scalar component of Y. So does Yj, Yk, and
Ym. Then, the third order moment 〈YiYjYk〉 and the fourth order
moment 〈YiYjYkYm〉 can be obtained as follows:

〈YiYjYk〉 = µiµjµk + µkσij + µiσkj + µjσik,
(A7)

〈YiYjYkYm〉 = 〈YiYjYk〉µm + µiµjσkm + µiµkσjm + µkµjσim

+ σijσkm + σikσjm + σjkσim,

where µi and σij are mean and covariance of corresponding compo-
nents.

APPENDIX B: CALCULATING B(u) IN THE LINEAR

RESPONSE OPERATOR

In light of (37) and (38), one has the following explicit expres-
sion of B(u):

B(u) = −
divu(w(u)pM|obs

eq (u))

p
M|obs
eq (u)

= −
N∑

i=1

∂

∂ui

wi(u) −
N∑

i=1

wi

∂

∂ui

pM|obs
eq (u). (B1)

When perturbing the parameters of forcing in the observed pro-
cesses, the forms of B(u) from the perfect model and the approx-
imate model are the same since the parameters F1 and F2 appear
exactly the same way as in both the perfect and the approximate
model. The B(u) term reads as follows:

B(u) = − ∂

∂x1

pM|obs
eq (u) − ∂

∂x2

pM|obs
eq (u) . (B2)

When perturbing the parameters in linear interactions terms that
appear in both the observed and hidden processes, the formula-
tion of B(u) from the perfect and approximate models are different.
Given the perturbation vector w(u) = (y1, y2, −x1, −x2)

>, the B(u)

from the perfect model is as follows:

B(u) = −y1

∂

∂x1

pM|obs
eq (u) − y2

∂

∂x2

pM|obs
eq (u) + x1

∂

∂y1

pM|obs
eq (u)

+ x2

∂

∂y2

pM|obs
eq (u). (B3)

However, since there are no L13 and L24 parameters in the hidden
processes of the approximate model, the formulation of B(u) from
the approximate model remains

B(u) = −y1

∂

∂x1

pM|obs
eq (u) − y2

∂

∂x2

pM|obs
eq (u). (B4)
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