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Abstract—We analyse multi-purpose audio using tools to vi-
sualise similarities within the data that may be observed via
unsupervised methods. The success of machine learning classifiers
is affected by the information contained within system inputs,
so we investigate whether latent patterns within the data may
explain performance limitations of such classifiers. We use the
visual assessment of cluster tendency (VAT) technique on a well-
known data set to observe how the samples naturally cluster, and
we make comparisons to the labels used for audio geotagging
and acoustic scene classification. We demonstrate that VAT helps
to explain and corroborate confusions observed in prior work to
classify this audio, yielding greater insight into the performance —
and limitations — of supervised classification systems. While this
exploratory analysis is conducted on data for which we know
the “ground truth” labels, this method of visualising the natural
groupings as dictated by the data leads to important questions
about unlabelled data that can help the evaluation and realistic
expectations of future (including self-supervised) classification
systems.

Index Terms—sound scene analysis, acoustic scene classifica-
tion, audio geotagging, feature extraction, visual assessment of
cluster tendency (VAT), audio data.

I. INTRODUCTION

Acoustic scene classification (ASC) [1] is an established
research task, classifying audio recordings according to a list
of scene labels. Audio geotagging is a related problem where
the labels correspond to the geographical location where the
recording was taken [2]. These are fundamentally different
machine learning problems, but they can be investigated with
the same data. To date, audio geotagging has proven more
difficult, suggesting that a data set may contain information
that may be more or less salient for a given task.

In multi-purpose data, is the discriminating information
equally easy to learn for different tasks? For an ASC model
which is trained on data all recorded in a single city, its
ability to discriminate scenes is not confounded by location
variation. (Other confounding variables are present; this is just
an example.) Yet, in order for an ASC model to be useful in
the real-world, it has to predict accurately for any location.
More complex data is needed to train robust systems, and this
comes with the cost of confounding variables.

This work focuses on understanding — and seeks to explain —
the information in the data before machine learning is un-
dertaken. State-of-the-art and conventional methods for these
problems use a traditional pipeline: 1) data collection, 2) fea-
ture extraction, 3) model training, 4) classification/prediction,
and 5) evaluation. Whilst the majority of recent research
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focuses on an end-to-end training (deep learning) [3], this
precludes understanding or interpretation at mid-way points,
which could in turn make model training more difficult than
necessary.

We are motivated by the inherent assumption that data from
the same class are discernible from data in other classes in
some way, however complex that function might be. Class
labels are often from a taxonomy that does not consider the
data; for example, in the data set used here, airport is so
labeled not because of the distinctive sounds in that environ-
ment, but rather because of the place and type of activity that
happens there. The goal of classifiers is to predict these labels
irrespective of the complexity of the data (by learning hidden
patterns within it), but there is value in identifying the nature
of that complexity. In multi-purpose data, tasks have different
inter-class and intra-class similarities, and this has a direct
impact on the difficulty of matching data inputs to annotations
(and thus discrimination between classes).

We are further motivated by Detection and Classification
of Acoustic Scenes and Events (DCASE) challenge reports
(surveyed in [4]). There is a pattern of participants training
audio machine learning (ML) models and spending significant
time optimising model parameters for minute performance
gains. In many papers, there is no discussion of why or how
the algorithms fail for certain predictions. This is unsurprising,
given that most participants use “black-box” machine learning
approaches which are inherently unexplainable. Also, in a lot
of prior work, predictions produce misclassifications between
class labels; we wonder if this may be due to similarities in the
raw data (between recordings that have different annotations).
This leads to the questions:

o does the data contain sufficient discriminatory data to
separate into the different sets of labels for different tasks,
despite the confounding factors in the data?, and

e are certain pairs or sub groups of classes getting confused,
e.g. metro and metro_station?

II. BACKGROUND
A. Prior work

In environmental audio processing research there are many
tasks: ASC [5], sound event detection (SED) [6], sound
event localisation [7], audio geotagging [8], audio tagging
[9], and audio captioning [10] to list but a few. All of these,
subject to labelling overhead, could be undertaken with the
same dataset — that is, a single collection of recorded sound



scenes. At present, many sound scene data sets exist but are
only annotated for single tasks, such as: URBAN-SED [11],
Audioset [12], and the various DCASE challenge datasets
[13]-[15]. With the popularity of deep learning approaches
dominating state-of-the-art solutions for sound scene analysis,
saliency maps can be used for determining which parts of
the sound scenes are the most useful for a neural network to
predict classes [16] — but this does not indicate whether the
training data contains enough information to discriminate be-
tween classes. The training data sets used for the state-of-the-
art sound scene analysis are currently real-world recordings.
These recordings are influenced by many factors in addition
to the location or scene (e.g., time of day or day of the week).
The data explored here is used for two tasks in the litera-
ture: ASC and audio geotagging. In the DCASE 2020 ASC
challenge, the participant with the highest accuracy [3] used
data augmentations with a triple parallel ResNet model. There
is no verification of the effect of the augmentations on the
inputs before model training. Prior work in audio geotagging
is limited. In [2], the highest accuracy is achieved with a multi-
task neural network which predicts both cities and scenes.

B. VAT analysis

We use Bezdek and Hathaway’s visual assessment of (clus-
ter) tendency (VAT) [17]. VAT is a simple unsupervised
method to visualise salient clusters of data points within a
dataset, and many variants and extensions have been developed
[18]. A key benefit of this method over others is that it does not
require an estimate & value as a target number of clusters. This
visualisation can help researchers to see if feature extraction
methods are selecting useful features or discarding them, the
latter making training an accurate classifier more difficult. To
date, VAT has been rarely applied to audio data, and only on
speech utterances [19].

VAT calculates the distance between all pairs of data points.
(We used Euclidean distance, though VAT is not constrained
to this choice.) The two furthest data points are identified,
allowing one to be selected as first in the reordering of points.
Each subsequent point in the reordering is selected by choos-
ing the point that is nearest to any point that has already been
reordered, and the resulting sequence of points is the same as
the order that points would be added to a minimal spanning
tree of the complete graph per Prim’s algorithm [20]. The
intensity values of the resulting ordered dissimilarity matrix
are the distance between all pairs of recordings. Rendered as
a grayscale image, the number of dark boxes visible on the
diagonal may suggest the number of clusters in the data. This
suggestion of how many distinct classes are in the data is based
solely on the data itself with no bias for any labelling system.

SpecVAT is an extension to VAT based on spectral graph
theory [21]. This extension attempts to better deal with
complex cluster structure by first mapping the dissimilarity
matrix D from VAT into a weighted affinity matrix (weighted
according to local neighborhood). This is followed by spectral
decomposition of the normalized Laplacian of the weighted
affinity matrix, resulting in an embedded feature space D’

based on the k largest eigenvectors. The embedded space D’
is then reordered using VAT. The optimal value for k£ may be
deduced by A-SpecVAT [22] or other means, seeking a value
that yields the clearest dark boxes on the diagonal. Images
produced by SpecVAT tend to yield clearer structure within
complex data than those produced directly by VAT.

There are two important decisions here: the choice of
distance metric, and the choice of feature space. Euclidean dis-
tance appeared to perform more robustly than other measures
attempted, and the log mel spectrogram feature is a commonly
used for both audio tasks.

III. METHOD

In this work the DCASE 2018 ASC Task la [23] dataset
(described in Sec III-A) is used. Beginning with the data
divided into subsets of scene specific or city specific subsets,
VAT analyses (described in in Sec II-B) are undertaken directly
on the log mel spectrogram features, producing 16 ordered
dissimilarity images for analysis one. From these images, both
the salient groups of recordings are counted and more easily
confused labels are identified. Also plotted in the visualisations
is the shortest path as a stacked bar chart to make inter-
class comparisons by colour-coding the desired labels. In these
stacked bars, larger blocks of the same colour show that
recordings within the same class are more similar in data
space to each other than they are similar to recordings of other
classes.

The second analysis uses all the data; that is, with the
confounding variables (all cities and all scenes). Using the
cluster count extraction (CCE) method of Sledge et al. [24],
this method works by first thresholding the VAT image using
Otsu’s algorithm and then constructing a histogram of an
off-diagonal slice of the image. For this work, default CCE
parameters are used except for the value b, which is set to one
half of the maximum value of the computed histogram (rather
than b = 0). The automatic counts yielded by the algorithm
are given in Table 1.

A. Data

Audio data is from the DCASE 2018 ASC subtask 1A
[23]. This data was recorded from ten different scenes (air-
port, bus, metro, metro_station, park, public_square, shop-
ping_mall, street_pedestrian, street_traffic, and tram) in six
cities (Barcelona, Helsinki, London, Paris, Stockholm, and
Vienna). The data was labelled for ten sound scenes and
relabelled for cities in [2]. It was recorded between 9am and
9pm on different days of the week in varied weather.

Each acoustic scene has 864 ten-second segments (giving
8640 segments across ten scenes). These were recorded using
a binaural Soundman OKM II Klassik/studio A3 electret in-
ear microphone and a Zoom F8 audio recorder using 24-bit
resolution. Using librosa [25], log mel spectrogram features
are extracted using 128 mel bands and a 2048-point STFT.
The input sampling rate was 22050 samples per second and
the hop length was 512. Each recording was transformed from
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Fig. 1. A VAT analysis for each subset of data. Each column represents a subset, e.g., only airport recordings for all six cities, or only Stockholm recordings
for all ten scenes. The labels are ordered by the rows of the VAT analysis (unsupervised) and colour coded to the annotations. Chunks of the same colour
show where recordings having the same label are most similar to each other. A particular colour distributed throughout a stack indicates that the intra-class
variation of that class is significant and will be difficult to discriminate from other annotations.



a 431 column matrix into a single vector by taking the feature-
wise mean over all time frames.

IV. ANALYSIS ONE: By CLASS

Fig. 1 is a series of stacked bars which represent the
annotated labels for each recording, reordered by VAT. Each
stack in Fig. la represents one of the ten scenes; each stack
in Fig. 1b represents a single city (as per audio geotagging
labels). For each set, recordings are represented by one row in
the stack, neighboured by its most similar recordings. Blocks
of colour show similarity within a class because recordings
from the same class are neighbours on the path.

In Fig. 1a, city blocks are visible within some single scenes.
In airport and shopping_mall, one can see consistent chunks of
colour (with relatively few short chunks), indicating groupings
of recordings which map to the city annotations. There is
something distinctive about the street_pedestrian recordings
taken in Paris, as they also group together. One interesting
point is from airport, that most of the Paris recordings are
grouped together. This may be explained by the fact that
Charles de Gaulle Airport has a unique announcement tone
which can be heard in a number of the recordings. In the
street_traffic stack, there are very few chunks of colour of any
noticeable size, and the colours are distributed throughout the
stack. This shows that street traffic sounds are very similar
regardless of the city.

In Fig. 1b, public_square, shopping_mall, airport, and
street_pedestrian cluster together for all cities, as seen by the
combination of reds and blues near the top of each stack.
metro, metro_station and bus are also often in close proximity;
this might be due to similar activities in these places. Overall,
park and airport are the most distinctive scenes when VAT is
run on a single city.

Table I shows the number of estimated clusters in VAT im-
ages for each of the stacked bars in Fig 1. These cluster counts
are estimates derived using the CCE algorithm mentioned in
Sec. III. When data is grouped by city, there are approximately
ten clusters. This is inspiring given the target ten scene labels,
but it would be naive to assume that the suggested partitions
of the data map exactly to those target labels. It is important to
recognize that this observation excludes the confounding factor
of recordings from different cities. When data is grouped by
scene, there is greater variability in the number of clusters.
This suggests that discriminating city recordings, even within
a single type of scene, is a more complex task where the type
of scene will have an effect on how to discriminate cities.

V. ANALYSIS TWO: ALL DATA

Analysis two uses the whole dataset. Fig. 2 contains a
series of VAT ordered dissimilarity matrices, where dark boxes
on the diagonal suggest possible clusters. To the left side
of each matrix are two ordered stacked bars for cities (‘C’)
and scenes (‘S’), labelled with the same ground truth colours
as in Fig. 1. CCE counts 42 clusters in Fig. 2 (top left).
This is over four times the possible target annotated labels
(six or ten). While these 42 clusters are not clear in the full

TABLE I
ESTIMATED CLUSTER COUNT BY CITY AND SCENE
City # Scene #
Barcelona 10 || airport 8
Helsinki 9 bus 2
London 11 metro 3
Paris 14 metro_station 4
Stockholm | 14 || park 12
Vienna 11 public_square 14
shopping_mall 15
street_pedestrian 11
street_traffic 5
tram 13

VAT, looking at the zoomed-in portion (bottom left) there are
clear dark blocks that correspond to particular scenes (e.g.,
street_traffic, public_square, and bus). This is consistent with
Fig. 1, suggesting useful clusters for these tasks in the presence
of confounding variables. Therefore, the problem is not as
simple as a 60-class classification; rather, it may be a multi-
label challenge. This suggestion is supported by results in
[2] where results showed that multi-task learning for jointly
classifying scenes and cities achieved the greatest accuracy.

Fig. 2 (top right) shows the same data run through Spec VAT
(eigenvectors k = 3 as suggested by A-SpecVAT [22]). Again,
the city and scene labels are on the left and a zoom is on
the bottom right. The dark blocks on the diagonal are more
obvious to see, and there appears to be less noise off the
diagonal line. Whilst there are fewer contiguous label chunks
for both scenes and cities, if each dark block is considered
a local ‘area’ within the scene stack, then each area contains
a prevalence of one colour, even if the order is interrupted
by a few other colours. Based on these observations, the final
analysis uses SpecVAT.

VI. ANALYSIS THREE: SEPARATE AUDIO TASKS

This final analysis demonstrates the difference when known
confounding factors are removed — that is, when multi-purpose
data is simplified for a single task. To do so, Fig. 3 presents
two final SpecVAT dissimilarity matrices. On the left is the
SpecVAT image using only fram recordings as could be used
for city classification (audio geotagging), and on the right is
the SpecVAT image using only London recordings that could
be used for ASC.

The key message from these figures is that the dark squares
on the diagonals are distinct and there are contiguous blocks of
colour on the label stacks. These squares/blocks are detected
in a purely unsupervised manner. The as-yet unsolved problem
is how one gets from the unsupervised blocks to corresponding
annotations, particularly where the neighboring recordings do
not have matching labels. This is future work.

VII. CONCLUSIONS

In this work, multi-purpose audio data have been analysed
to address the question of whether the same data contains
enough information to discriminate into different labelling
schemes. Whilst this work focused on ASC and geotagging,
other tasks like sound event detection could also benefit from
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Fig. 2. A series of ordered dissimilarity matrices produced by VAT and SpecVAT on multi-purpose audio data. At left of each dissimilarity image are stacked
bars showing labels for city labels (‘C’) and scene labels (‘S’). Clusters of very similar recordings are darkened squares on the diagonal.
Top left: a VAT ordered dissimilarity image created from all data in [23]. There are 42 clusters on the diagonal counted by CCE.

Bottom left: a zoomed-in section for recordings 3251-4750.

Top right: a SpecVAT (number of eigenvectors k = 3) ordered dissimilarity image created from all data in [23].

Bottom right: a zoom of indices 6751-8000 from the SpecVAT image above.

Apparent clusters seem to be comprised of data points with majority same label, though these chunks of color are interspersed with data points having other
labels — potentially explaining some sources of misclassification from ML models.

this approach. Using VAT has revealed that there is some
structure which relates to the different target classifications.
This structure is further visible with SpecVAT which appears
to denoise standard VAT. With our data, getting to scene labels
appears an easier task than city labels.

In practical terms, this structure can also explain some
common misclassifications seen in prior predictive work.
For example, in [2] the classes commonly confused by the
classification models were the same as detailed in Sec. IV,
such as airport and shopping_mall. Further VAT analysis
reveals class pairings that are similar in the data space but
not assumed to be similar by their labels (such as the airport
/ public_square | shopping_mall | street_pedestrian confusions
noted in Sec. IV).

This work enables researchers to better understand their
input data. Using visualisation techniques such as VAT and
SpecVAT to understand the relations within the data structure,
and comparing the results to target labels in the research
problem, will help post-classification performance evaluation.
Our data-driven approach to exploring patterns within the data
set is akin to the ideas behind self-supervised classification
methods. These models learn well without training labels,
suggesting that the raw data contains sufficient discriminatory
information. These models, however, do not yet show us the
data structure the classifier is learning without significant
training effort and the utilisation of further explainability
models. Our approach is much simpler and can inspire a model
design before it is trained.
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