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Washington, D.C. and Chicago. The focus of this paper is on the com
parison of taxi and rail transit; multimodal transit involving transfers 
between rail transit and other modes, such as bus, is not considered in 
this study. 

We first collect and process taxi trip data and rail transit travel in
formation. Then, the notion of travel gradient, based on the relation 
between the travel cost difference and the travel time difference, is 
proposed to quantify one mode’s comparative advantage over the other. 
A multiple linear regression model is used to explore how various trip 
characteristics relate to travel gradient. Then, we examine the spatial 
variation of the relations between the trip characteristics and travel 
gradient using geographically weighted regression. While there are a 
few important findings from our empirical analyses, the main takeaway 
is that due to the high competitiveness of rail transit in the urban 
environment, targeted rail transit marketing can be launched in certain 
urban areas to increase rail transit ridership by highlighting the relative 
advantage of rail transit over taxi. 

The remainder of this paper is structured as follows. After the review 
of relevant studies in Section 2, we describe how data are collected and 
cleaned in Section 3. Then, a metric is designed and interpreted in 
Section 4, which is used as the response variable in the regression an
alyses. Case studies are conducted and results are interpreted in Sections 
5, followed by discussions in Sections 6. The last section presents a brief 
summary and identifies prospective research directions. 

2. Literature review 

2.1. Taxi trip pattern analysis and its comparison with public transit 

Many studies have analyzed taxi trip patterns (e.g., spatial distri
bution of trip origins and destinations, temporal distribution of trips) 
based on taxi trip or trajectory data. We review only a few example 
studies, because a comparison is not involved in such taxi-only studies. 
With taxi trajectory data collected in Shanghai, China, Liu et al. (2012) 
analyzed the temporal and spatial distributions of pickup and drop-off 
locations, distribution of trip directions, and distribution of trip 
lengths. By noticing the close relations between intra-city travel patterns 
and city structures, Liu et al. (2015) used the community detection 
method (a method to partition a network into closely connected 
sub-networks) to identify the sub-regional city structure based on the 
taxi trip data in Shanghai. They then analyzed the hierarchical and 
polycentric structure of Shanghai. Hochmair (2016) explored basic taxi 
trip characteristics in NYC, such as temporal distribution of taxi trips, 
trip distance distribution, and temporal variations of travel speed. A 
negative binomial regression model was also presented to explore the 
relation between taxi trips and other explanatory variables, such as 
population and employment data, socioeconomic factors, built envi
ronmental variables and presence of airports. 

We continue to review some studies on the comparison of trip pat
terns of taxi and public transit. Kim (2018) compared the trip patterns of 
subway and taxi in Seoul, Korea. They found the number of subway trips 
was ten times larger than taxi trips. The temporal distributions of trips 
were quite different for two modes: subway had two distinct travel peaks 
in the morning and afternoon, respectively, while no sharp travel peaks 
were observed for taxis. The influence of various explanatory variables 
on the trip pattern was also explored through classification. Using 
Singapore as a case study, Zhang et al. (2018) conducted a comparative 
study of taxi and public transit based on (1) the spatial distributions of 
trips, (2) the distance decay of travels, and (3) the spatial interactions of 
urban spaces. They found the spatial distributions of taxi and public 
transit trips were highly correlated; the public transit travel distance 
tended to decay faster than taxi trips; travels by two modes also revealed 
the polycentric urban structure of Singapore. 

Based on the spatial relations between taxi trip origins/destinations 
and subway stations, Wang and Ross (2019) classified all taxi trips in 
NYC into three categories, namely transit-competing, 

transit-complementing, and transit-extending. For instance, for 
transit-extending taxi trips, taxis provide access to or egress from train 
stations; for transit-complementing trips, taxis serve passengers in areas 
and during times where transit is unavailable. Trips that could be 
replaced by taking transit are defined as transit-competing trips. The 
authors found that a substantial portion of taxi trips (58.53% of 1 million 
trips) were transit-competing. The authors also tried to explore the de
mographic characteristics of taxi riders and found that around 60% of 
taxi trips served economically and physically disadvantaged individuals. 
Jiang et al. (2018) adopted a similar analysis framework and conducted 
a case study using data from Beijing, China. Ma et al. (2015) studied a 
similar topic by exploring whether bike-sharing complemented rail 
transit or substituted it with data in Washington, D.C. Their regression 
analyses confirmed a positive correlation between transit ridership and 
bike-sharing demand at the station level and concluded that a 10% in
crease in bike-sharing demand would generate a 2.8% increase in rail 
transit demand. Irawan et al. (2020) followed this line of research and 
compared motorcycle-based ridesourcing, motorcycle taxi and public 
transit with survey data from the Jakarta metropolitan area in 
Indonesia. 

2.2. Comparison of nondriving modes by cost and time 

We then review empirical studies comparing nondriving trans
portation modes (e.g., public transit, taxi, active modes) by travel time 
and/or cost in the urban environment. Other modes such as bike-sharing 
are included in the review because there are very few empirical studies 
that directly compared taxi and rail transit. 

Faghih-Imani et al. (2017) compared two urban travel modes, taxi 
and bike-sharing, based on the empirical data on travel time in NYC in 
2014. Taxi trips with origins and destinations located in the service area 
of CitiBike (a bicycle sharing service provider in NYC) were selected for 
comparison. Travel times were compared by time of day and day of 
week. They concluded that on average taxi trips were slightly faster than 
bike-sharing trips in dense urban areas. They also used a logit model to 
better understand the effect of various factors on the competitiveness of 
those two modes. In Faghih-Imani et al. (2017), travel time is the only 
criterion with no consideration of travel cost. 

Yang et al. (2014) focused on the comparison of subway and taxi, 
which were two competing airport ground access modes. They built a 
binary logit model to analyze travels between Pennsylvania Station in 
NYC and three major airports serving NYC, namely John F. Kennedy 
International Airport, Newark Liberty International Airport, and 
LaGuardia Airport. Their results showed that transit dominated taxi in 
the airport ground access market for most of the time except during the 
midnight. They also examined the impact of group size and value of time 
on the choice between two modes. Although both travel cost and time 
were involved, Yang et al. (2014) focused on a special market, namely 
airport ground access. Therefore, specific findings from Yang et al. 
(2014) may not hold on a larger scale, such as on the city level. 

Li et al. (2018) studied the mode choice between taxi and rail transit 
using taxi trip data and travel survey data. They found convenience, 
which was quantified as a mixture of travel distance (especially access 
walking) and travel time, was the dominant factor in influencing which 
mode to choose between taxi and rail transit. Travel cost was not 
explicitly modelled, because during the study period in 2014, a flat fare 
of 2 Chinese Yuan (approximately 0.3 U.S. dollars) was used for Beijing’s 
rail transit travels regardless of the travel distance. 

Ulak et al. (2020) used the NYC taxi trip data to explain why taxi was 
a major transportation mode despite its high cost and concluded that 
convenience (encompassing easy access, high comfort level, etc.) was 
the major advantage of taxi. To estimate the value of convenience, they 
compared taxi trips with so-called equivalent rail transit trips. A rail 
transit trip was considered equivalent, if (1) a taxi trip origin and 
destination were within 200 m of a rail transit station and (2) the rail 
transit travel did not involve a transfer. Clearly, this comparison was 
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limited to a small fraction of urban travels, due to the strict limits on the 
access and egress distances (i.e., 200 m) and the number of transfers (i. 
e., no transfers). 

Comparing transportation modes by travel time and cost is impor
tant, because both travel time and travel cost are main determinants of 
mode choice (Pinjari and Bhat, 2006), although other factors, such as 
comfort and convenience, may also play a role. With household travel 
survey data in Seoul, Korea, Ha et al. (2020) found that travelers across 
multiple age and income categories were significantly affected by the 
travel time and cost differences in their mode choices. It was also indi
cated that systematic comparisons of travel time and cost among mode 
alternatives was essential to the formulation of effective policy in
terventions for shifting travelers’ choices toward transit. 

2.3. Summary 

Due to the increasing data availability on taxi travels, many studies 
have characterized taxi trips and explored how taxi demand is related to 
other built environment and socioeconomic variables. NYC frequently 
appears in such taxi studies, among other U.S. cities, partially because of 
its widely known availability of taxi trip data. The travel pattern dif
ference between transit and taxi has also been well explored; however, 
there are no studies that have systematically compared rail transit and 
taxi by travel cost and time. In addition, little is known about the spatial 
variation of the comparative advantage of rail transit over taxi. There
fore, this study aims to fill the above research gaps. 

3. Data 

Two major cities in the U.S., namely Washington, D.C. and Chicago, 
IL, were selected for the following reasons: (1) both cities made data on 
taxi trips publicly available; (2) online rail transit trip planners were 
provided by the rail transit operators; and (3) the two rail transit systems 
(Washington Metro and Chicago “L”) were comparable by the annual 
ridership, system length, and number of rail lines. By ridership, Wash
ington Metro ranked the second among all rail transit systems in the U.S. 
as of 2019, and Chicago “L” ranked the third; by the number of stations, 
Chicago “L” was in the second place, and Washington Metro was the 
third. The NYC Subway was not included in this analysis, because the 
NYC Subway was significantly larger than all other U.S. rail transit 
systems in every aspect. For example, as of 2019 the average weekday 
ridership of the NYC Subway was about ten times as large as the rider
ship of Washington Metro (Wikipedia contributors, 2019). All the data 
described in this study were collected in June 2019. 

3.1. Taxi trip data 

The taxi trip data in Washington, D.C., and Chicago were freely 
available on opendata.dc.gov and data. cityofchicago.org, respectively. 
Due to the data availability issue (the 2018 taxi trip data were not 
available online for Washington, D.C. as of June 2019), we selected the 
first seven days in June 2017 (i.e., June 1, 2017–June 7, 2017) as the 
study period. Therefore, only taxi trips with timestamps in this period 
were used in this study. 

While the original datasets contained other fields, we selected the 
following: trip origin (latitude and longitude), trip destination (latitude 
and longitude), trip start time, trip end time, trip duration, mileage, and 
total fare (including toll, surcharge, and gratuity). To avoid privacy is
sues, several measures were implemented by the data providers (e.g., 
the City of Chicago). For example, in the Chicago dataset trip start and 
end times were rounded to the nearest 15 min, and trip origins/desti
nations were replaced by the centroids of Census Tracks and Community 
Areas (City of Chicago, 2016). In Washington, D.C., trip locations and 
timestamps seemed original, although similar data processing was 
mentioned in the metadata file, such as rounding pickup and drop-off 
times to the nearest hour. 

As the Chicago dataset contained taxi trips with both ends located 
within the city limits, for consistency we removed those taxi trips with 
origins or destinations outside the boundary of Washington, D.C. To 
clean the taxi trip datasets, for both datasets we removed those trips that 
had missing values in the selected columns, the same origin and desti
nation, erroneous trip duration (e.g., less than 2 min or more than 60 
min), erroneous trip mileage (e.g., less than 1 mile or more than 40 
miles). 

After data explorations, we noticed a few major discrepancies and 
inconsistencies in the D.C. taxi dataset. We adopted the following data 
quality control measures. First, regarding travel time we found the units 
of trip duration (minutes vs seconds) were inconsistent. We recalculated 
taxi trip duration using the original trip start and end times for D.C. taxi 
trips. Regarding travel distance, the haversine function was used to es
timate the trip distance based on the trip origin and destination to 
benchmark the original mileage. As the haversine function returns the 
great-circle distance, which is the shortest distance between two loca
tions on earth, we further removed those trips with mileage smaller than 
the great-circle distance or three times larger than it. After filtration, we 
computed the average travel speed as the total mileage divided by the 
trip duration. We then removed trips with an average travel speed larger 
than 60 miles per hour, because an average travel speed of 60 miles 
seems a good indicator of erroneous trip attributes, time or distance. 

Fig. 1 shows the average taxi travel speed by time period of day and 
day of week for taxi trips after data cleaning. For both cities, the travel 
speed is relatively high in early morning and it drops significantly in 
morning peak hours (8–10 a.m.) and afternoon peaks (4–7 p.m.) on 
workdays. During the weekends, the average travel speed is steady over 
time, especially in Washington, D.C. Overall, the taxi travel speed in 
Chicago is higher than the speed in D.C. 

3.2. Rail transit travel information 

Empirical data on rail transit travel cost and time in both cities (such 
as the automatic fare collection data Sun and Schonfeld (2016)) were 
not publicly available. Therefore, we used the schedule and fare infor
mation provided by the two rail transit operators through their 
web-based trip planners. As generally rail transit travels are free of 
traffic congestion and other incidents, the rail transit travel time should 
be quite reliable: the scheduled travel time is very close to the actual 
travel time (Sun and Xu, 2012). 

We obtained rail transit travel information in D.C. from the trip 
planner by the WMATA (Washington Metropolitan Area Transit Au
thority), which was available at www.wmata.com. A Python script was 
developed to automate the query. In each request, we specified the 
origin, destination, departure time, travel mode (rail only), and walking 
distance limit; in each response, we recorded the access walking time, 
transit time, egress walking time, access distance, egress distance, total 
trip time, regular fare, and number of transit transfers. In case of mul
tiple travel plans, only the first plan was kept. We found that for some 
unknown reason the WMATA trip planner could not return valid rail 
transit travel plans for about 10% of the travel requests, raising the error 
“no service at origin/destination at the date/time specified.” After 
thorough checking, we confirmed valid travel plans did exist for such 
requests. We therefore avoided such an issue by slightly shifting the 
departure time (e.g., by 2 min) in case that particular error code was 
returned by the trip planner. Note that in D.C. the rail transit fare varies 
with time of day and travel distance. 

For Chicago “L” operated by the Chicago Transit Authority (CTA), we 
used the trip planner at www.transitchicago.com/planatrip/. There 
were two available trip planning engines, Google Maps (GM) and RTA 
(Regional Transportation Authority) Trip Planner. The RTA trip planner 
accepted street addresses by default, while in our analysis we used 
geographic coordinates of locations. To avoid complications in the 
conversion of geographic coordinates to street addresses, we chose GM 
because geographic coordinates could be accepted by GM, thus 
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web portals, instead of being printed on posters. The improved mar
keting plan by highlighting the unique advantage of rail transit could 
thus potentially increase rail transit ridership and promote trans
portation sustainability. 

For the overall efficiency and sustainability of urban transportation 
systems, taxi should avoid directly competing with rail transit for cus
tomers, as the latter is widely believed to consume less energy and 
reduce air pollution (Ghimire and Lancelin, 2019). Therefore, trans
portation regulatory authorities should enact those policies that give 
priority to the development of more sustainable and efficient trans
portation modes and mitigate their direct competition with other modes. 

6.2. Limitations of this study 

In this study, rail transit and taxi are compared by travel cost and 
time only, while other trip attributes, such as comfort level, reliability 
and environmental impact, are not considered yet. For certain riders, 
depending on their demographic characteristics, taxi may be the only 
choice (Wong et al., 2020). For example, individuals with disabilities 
cannot take rail transit and the tradeoff between travel cost and travel 
cost does not play a major factor in their mode choices. Another example 
is that some passengers who carry heavy luggage or have a very tight 
schedule may also consider taxi only. Therefore, to enable a more 
comprehensive mode comparison, other service attributes of trans
portation modes and the demographic characteristics of urban travelers 
should be further incorporated. It is worth noting that Ulak et al. (2020) 
estimated the value of convenience (which was close to $30) based on 
taxi trip data in NYC. It was argued by Ulak et al. (2020) that the main 
competitiveness of taxi in NYC is attributed to convenience. 

The taxi-only origin of the trip data presents potential statistical bias. 
To compare two modes fairly, namely rail transit and taxi, trip data 
(including trip origin, destination, departure time, etc.) in the urban 
environment should be randomly generated and used for comparison. As 
rail transit cannot cover all the urban areas, it is thus possible that taxi 
becomes the dominant mode for certain trips, due to the unavailability 
of rail transit. Those trips thus fall in Quadrant III. In contrast, all trips in 
this study are actual taxi trips, which means taxi has some implicit 
advantage, because for such trips, travelers actually chose taxi over 
other modes. Similarly, if all such trips are actual rail transit trips, rail 
transit would have been given some implicit advantage. It should be 
noted that detailed rail transit trip data are less widely accessible than 
taxi trips data. 

It is also known that passengers perceive in-vehicle travel time and 
out-of-vehicle travel time (such as waiting, walking and transferring) 
differently. Nonetheless, in this study, the total travel time obtained 
from rail transit trip planners was directly compared with the taxi travel 
time, without distinguishing in-vehicle travel time from out-of-vehicle 
travel time. This simplification may potentially underestimate the 
burden of rail transit travel, as out-of-vehicle travel time is generally 
more burdensome. In addition, the effect of potential in-vehicle 
crowding on passengers’ perceptions of rail transit travel time was not 
included in the present study. 

7. Conclusions 

This study has assessed the comparative advantage of rail transit 
over taxi using publicly available data in two U.S. cities. We first collect 
and clean taxi trip data and rail transit travel information. A metric 
named travel gradient is proposed for quantifying the comparative 
advantage and its economic interpretation is provided. We also explore 
how various trip characteristics are related to travel gradient initially 
using multiple linear regression. To understand the variations of the 
relations between the trip characteristics and travel gradient at different 
locations, we then analyze the data with geographically weighted 
regression. We have derived a few important research findings and 
analyzed the policy implications in Section 6. Although empirical data 

are from two different cities, we find very similar results, especially in 
the percentage of taxi trips that can be substituted by rail transit and the 
marginal travel cost savings due to mode switching to rail transit. 
Therefore, the derived research findings should be applicable to other 
cities with comparable urban rail transit systems. Similar analyses can 
be conducted for those cities before relevant rail transit marketing 
policies are designed and enacted. 

The current study can be improved in the following ways:  

1. As the group size of passengers in a taxi trip is unknown, it is assumed 
to be 1 for convenience. When multiple passengers share the taxi 
(Sun and Zhang, 2018), the relative advantage of rail transit over taxi 
may change considerably. For rail transit, the access/egress time is 
considered, while for taxi, the waiting time, which can be considered 
as “taxi access time”, is not included, because no taxi waiting data are 
available. Thus, it is fair to add the waiting time as part of the taxi 
trip time. 

2. All regression models used in this study are for exploring the re
lations between trip characteristics and travel gradient, rather than 
for making predictions accurately. If the study purpose is to predict 
travel gradient, other possible explanatory variables, especially 
socio-demographic variables that are commonly available in house
hold travel surveys (Ha et al., 2020) as well as built environment 
variables Hochmair (2016), should be added to the model to improve 
the model’s goodness of fit.  

3. Due to the highly uneven distribution of locations in the Chicago 
dataset, we did not run the GWR for Chicago. More advanced local 
regression models that can address this issue could be further 
adopted. 
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