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This paper presents a comparative analysis of rail transit and taxi by travel cost and time based on the large-scale
taxi trip data and public transit schedule information in two major U.S. cities. To quantify the relative advantage
of one mode over the other, we introduce the notion of travel gradient, which is travel cost difference divided by
travel time difference. Based on the signs of travel cost and time differences, we classify all trips into four
quadrants. Quadrant II trips are selected for further analysis because rail transit is identified to be competitive
with taxi for such trips. We also explore the relation between various trip characteristics and travel gradient with
and without considering the spatial variation of such a relation. Main research findings include: (1) around 70%
of the taxi trips in the considered datasets can be substituted with rail transit trips if the maximum walking
distance is 0.5 miles at each trip end; (2) for around 10% of taxi trips with both modes being viable, rail transit
dominates taxi in both travel cost and time; for the rest, rail transit is competitive with taxi; (3) the marginal
travel cost saving due to mode switching from taxi to rail transit is about $70; and (4) there exist clearly spatial
variations of the relation between trip characteristics and travel gradient. The main policy recommendation from
this study is that rail transit can be better marketed by highlighting its relative advantage over taxi in travel time

and cost, especially for travels in certain directions and time periods.

1. Introduction

The objective of this study is to empirically evaluate the advantages
of traveling by rail transit in travel cost and travel time over taxi travels,
based on the large-scale taxi trip data and public transit schedule in-
formation in Washington, D.C. and Chicago, IL. Taxi and rail transit are
two important, while distinct, transportation modes in the urban envi-
ronment. Due to the high flexibility, taxi is desirable for travelers who
require personal, door-to-door, and on-demand mobility services (Sun
and Zhang, 2018). Nonetheless, taxi trips tend to be costly and subject to
traffic congestion. Rail transit is characterized by its dedicated
right-of-way, fixed routes, and fixed schedules. Thus, rail transit travels
are usually more reliable than other transportation modes in the urban
area (Sun and Xu, 2012). Rail transit is also more affordable as rail
transit operations are usually subsidized, especially in the U.S. An
increasing number of U.S. cities, such as New York City (NYC), Chicago,
and Washington, D.C., make available their taxi trip data through open
data initiatives, which provides an unprecedented opportunity to
investigate the taxi performance. Rail transit schedules and fares are also
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easily accessible, as rail transit operators have developed web-based and
mobile trip planners. Therefore, based on the publicly available data in
D.C. and Chicago, this paper seeks to present an empirical study to
compare rail transit and taxi by travel time and cost, and also explore
how various trip characteristics relate to one mode’s competitiveness
over the other.

A review of the relevant literature shows that many studies have
characterized taxi trip characteristics and compared taxi with transit by
trip patterns (spatial and temporal distributions of trips), such as
Hochmair (2016) and Wang and Ross (2019). In particular, the NYC taxi
trip data are frequently used in the literature mainly because of its
widely known availability. While several studies have compared non-
driving transportation modes, such as taxi vs bike-sharing, there are no
systematic comparisons of rail transit and taxi by travel cost and travel
time based on large-scale empirical data. Thus, it is also unclear how the
comparative advantage is related to various trip characteristics, espe-
cially when spatial variations of this relation are considered. This paper
thus seeks to fill those gaps by presenting a comparative study of rail
transit and taxi by travel cost and time with the real-world data from
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Washington, D.C. and Chicago. The focus of this paper is on the com-
parison of taxi and rail transit; multimodal transit involving transfers
between rail transit and other modes, such as bus, is not considered in
this study.

We first collect and process taxi trip data and rail transit travel in-
formation. Then, the notion of travel gradient, based on the relation
between the travel cost difference and the travel time difference, is
proposed to quantify one mode’s comparative advantage over the other.
A multiple linear regression model is used to explore how various trip
characteristics relate to travel gradient. Then, we examine the spatial
variation of the relations between the trip characteristics and travel
gradient using geographically weighted regression. While there are a
few important findings from our empirical analyses, the main takeaway
is that due to the high competitiveness of rail transit in the urban
environment, targeted rail transit marketing can be launched in certain
urban areas to increase rail transit ridership by highlighting the relative
advantage of rail transit over taxi.

The remainder of this paper is structured as follows. After the review
of relevant studies in Section 2, we describe how data are collected and
cleaned in Section 3. Then, a metric is designed and interpreted in
Section 4, which is used as the response variable in the regression an-
alyses. Case studies are conducted and results are interpreted in Sections
5, followed by discussions in Sections 6. The last section presents a brief
summary and identifies prospective research directions.

2. Literature review
2.1. Taxi trip pattern analysis and its comparison with public transit

Many studies have analyzed taxi trip patterns (e.g., spatial distri-
bution of trip origins and destinations, temporal distribution of trips)
based on taxi trip or trajectory data. We review only a few example
studies, because a comparison is not involved in such taxi-only studies.
With taxi trajectory data collected in Shanghai, China, Liu et al. (2012)
analyzed the temporal and spatial distributions of pickup and drop-off
locations, distribution of trip directions, and distribution of trip
lengths. By noticing the close relations between intra-city travel patterns
and city structures, Liu et al. (2015) used the community detection
method (a method to partition a network into closely connected
sub-networks) to identify the sub-regional city structure based on the
taxi trip data in Shanghai. They then analyzed the hierarchical and
polycentric structure of Shanghai. Hochmair (2016) explored basic taxi
trip characteristics in NYC, such as temporal distribution of taxi trips,
trip distance distribution, and temporal variations of travel speed. A
negative binomial regression model was also presented to explore the
relation between taxi trips and other explanatory variables, such as
population and employment data, socioeconomic factors, built envi-
ronmental variables and presence of airports.

We continue to review some studies on the comparison of trip pat-
terns of taxi and public transit. Kim (2018) compared the trip patterns of
subway and taxi in Seoul, Korea. They found the number of subway trips
was ten times larger than taxi trips. The temporal distributions of trips
were quite different for two modes: subway had two distinct travel peaks
in the morning and afternoon, respectively, while no sharp travel peaks
were observed for taxis. The influence of various explanatory variables
on the trip pattern was also explored through classification. Using
Singapore as a case study, Zhang et al. (2018) conducted a comparative
study of taxi and public transit based on (1) the spatial distributions of
trips, (2) the distance decay of travels, and (3) the spatial interactions of
urban spaces. They found the spatial distributions of taxi and public
transit trips were highly correlated; the public transit travel distance
tended to decay faster than taxi trips; travels by two modes also revealed
the polycentric urban structure of Singapore.

Based on the spatial relations between taxi trip origins/destinations
and subway stations, Wang and Ross (2019) classified all taxi trips in
NYC into  three categories, namely  transit-competing,
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transit-complementing, and transit-extending. For instance, for
transit-extending taxi trips, taxis provide access to or egress from train
stations; for transit-complementing trips, taxis serve passengers in areas
and during times where transit is unavailable. Trips that could be
replaced by taking transit are defined as transit-competing trips. The
authors found that a substantial portion of taxi trips (58.53% of 1 million
trips) were transit-competing. The authors also tried to explore the de-
mographic characteristics of taxi riders and found that around 60% of
taxi trips served economically and physically disadvantaged individuals.
Jiang et al. (2018) adopted a similar analysis framework and conducted
a case study using data from Beijing, China. Ma et al. (2015) studied a
similar topic by exploring whether bike-sharing complemented rail
transit or substituted it with data in Washington, D.C. Their regression
analyses confirmed a positive correlation between transit ridership and
bike-sharing demand at the station level and concluded that a 10% in-
crease in bike-sharing demand would generate a 2.8% increase in rail
transit demand. Irawan et al. (2020) followed this line of research and
compared motorcycle-based ridesourcing, motorcycle taxi and public
transit with survey data from the Jakarta metropolitan area in
Indonesia.

2.2. Comparison of nondriving modes by cost and time

We then review empirical studies comparing nondriving trans-
portation modes (e.g., public transit, taxi, active modes) by travel time
and/or cost in the urban environment. Other modes such as bike-sharing
are included in the review because there are very few empirical studies
that directly compared taxi and rail transit.

Faghih-Imani et al. (2017) compared two urban travel modes, taxi
and bike-sharing, based on the empirical data on travel time in NYC in
2014. Taxi trips with origins and destinations located in the service area
of CitiBike (a bicycle sharing service provider in NYC) were selected for
comparison. Travel times were compared by time of day and day of
week. They concluded that on average taxi trips were slightly faster than
bike-sharing trips in dense urban areas. They also used a logit model to
better understand the effect of various factors on the competitiveness of
those two modes. In Faghih-Imani et al. (2017), travel time is the only
criterion with no consideration of travel cost.

Yang et al. (2014) focused on the comparison of subway and taxi,
which were two competing airport ground access modes. They built a
binary logit model to analyze travels between Pennsylvania Station in
NYC and three major airports serving NYC, namely John F. Kennedy
International Airport, Newark Liberty International Airport, and
LaGuardia Airport. Their results showed that transit dominated taxi in
the airport ground access market for most of the time except during the
midnight. They also examined the impact of group size and value of time
on the choice between two modes. Although both travel cost and time
were involved, Yang et al. (2014) focused on a special market, namely
airport ground access. Therefore, specific findings from Yang et al.
(2014) may not hold on a larger scale, such as on the city level.

Li et al. (2018) studied the mode choice between taxi and rail transit
using taxi trip data and travel survey data. They found convenience,
which was quantified as a mixture of travel distance (especially access
walking) and travel time, was the dominant factor in influencing which
mode to choose between taxi and rail transit. Travel cost was not
explicitly modelled, because during the study period in 2014, a flat fare
of 2 Chinese Yuan (approximately 0.3 U.S. dollars) was used for Beijing’s
rail transit travels regardless of the travel distance.

Ulak et al. (2020) used the NYC taxi trip data to explain why taxi was
a major transportation mode despite its high cost and concluded that
convenience (encompassing easy access, high comfort level, etc.) was
the major advantage of taxi. To estimate the value of convenience, they
compared taxi trips with so-called equivalent rail transit trips. A rail
transit trip was considered equivalent, if (1) a taxi trip origin and
destination were within 200 m of a rail transit station and (2) the rail
transit travel did not involve a transfer. Clearly, this comparison was
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limited to a small fraction of urban travels, due to the strict limits on the
access and egress distances (i.e., 200 m) and the number of transfers (i.
e., no transfers).

Comparing transportation modes by travel time and cost is impor-
tant, because both travel time and travel cost are main determinants of
mode choice (Pinjari and Bhat, 2006), although other factors, such as
comfort and convenience, may also play a role. With household travel
survey data in Seoul, Korea, Ha et al. (2020) found that travelers across
multiple age and income categories were significantly affected by the
travel time and cost differences in their mode choices. It was also indi-
cated that systematic comparisons of travel time and cost among mode
alternatives was essential to the formulation of effective policy in-
terventions for shifting travelers’ choices toward transit.

2.3. Summary

Due to the increasing data availability on taxi travels, many studies
have characterized taxi trips and explored how taxi demand is related to
other built environment and socioeconomic variables. NYC frequently
appears in such taxi studies, among other U.S. cities, partially because of
its widely known availability of taxi trip data. The travel pattern dif-
ference between transit and taxi has also been well explored; however,
there are no studies that have systematically compared rail transit and
taxi by travel cost and time. In addition, little is known about the spatial
variation of the comparative advantage of rail transit over taxi. There-
fore, this study aims to fill the above research gaps.

3. Data

Two major cities in the U.S., namely Washington, D.C. and Chicago,
IL, were selected for the following reasons: (1) both cities made data on
taxi trips publicly available; (2) online rail transit trip planners were
provided by the rail transit operators; and (3) the two rail transit systems
(Washington Metro and Chicago “L”) were comparable by the annual
ridership, system length, and number of rail lines. By ridership, Wash-
ington Metro ranked the second among all rail transit systems in the U.S.
as of 2019, and Chicago “L” ranked the third; by the number of stations,
Chicago “L” was in the second place, and Washington Metro was the
third. The NYC Subway was not included in this analysis, because the
NYC Subway was significantly larger than all other U.S. rail transit
systems in every aspect. For example, as of 2019 the average weekday
ridership of the NYC Subway was about ten times as large as the rider-
ship of Washington Metro (Wikipedia contributors, 2019). All the data
described in this study were collected in June 2019.

3.1. Taxi trip data

The taxi trip data in Washington, D.C., and Chicago were freely
available on opendata.dc.gov and data. cityofchicago.org, respectively.
Due to the data availability issue (the 2018 taxi trip data were not
available online for Washington, D.C. as of June 2019), we selected the
first seven days in June 2017 (i.e., June 1, 2017-June 7, 2017) as the
study period. Therefore, only taxi trips with timestamps in this period
were used in this study.

While the original datasets contained other fields, we selected the
following: trip origin (latitude and longitude), trip destination (latitude
and longitude), trip start time, trip end time, trip duration, mileage, and
total fare (including toll, surcharge, and gratuity). To avoid privacy is-
sues, several measures were implemented by the data providers (e.g.,
the City of Chicago). For example, in the Chicago dataset trip start and
end times were rounded to the nearest 15 min, and trip origins/desti-
nations were replaced by the centroids of Census Tracks and Community
Areas (City of Chicago, 2016). In Washington, D.C., trip locations and
timestamps seemed original, although similar data processing was
mentioned in the metadata file, such as rounding pickup and drop-off
times to the nearest hour.
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As the Chicago dataset contained taxi trips with both ends located
within the city limits, for consistency we removed those taxi trips with
origins or destinations outside the boundary of Washington, D.C. To
clean the taxi trip datasets, for both datasets we removed those trips that
had missing values in the selected columns, the same origin and desti-
nation, erroneous trip duration (e.g., less than 2 min or more than 60
min), erroneous trip mileage (e.g., less than 1 mile or more than 40
miles).

After data explorations, we noticed a few major discrepancies and
inconsistencies in the D.C. taxi dataset. We adopted the following data
quality control measures. First, regarding travel time we found the units
of trip duration (minutes vs seconds) were inconsistent. We recalculated
taxi trip duration using the original trip start and end times for D.C. taxi
trips. Regarding travel distance, the haversine function was used to es-
timate the trip distance based on the trip origin and destination to
benchmark the original mileage. As the haversine function returns the
great-circle distance, which is the shortest distance between two loca-
tions on earth, we further removed those trips with mileage smaller than
the great-circle distance or three times larger than it. After filtration, we
computed the average travel speed as the total mileage divided by the
trip duration. We then removed trips with an average travel speed larger
than 60 miles per hour, because an average travel speed of 60 miles
seems a good indicator of erroneous trip attributes, time or distance.

Fig. 1 shows the average taxi travel speed by time period of day and
day of week for taxi trips after data cleaning. For both cities, the travel
speed is relatively high in early morning and it drops significantly in
morning peak hours (8-10 a.m.) and afternoon peaks (4-7 p.m.) on
workdays. During the weekends, the average travel speed is steady over
time, especially in Washington, D.C. Overall, the taxi travel speed in
Chicago is higher than the speed in D.C.

3.2. Rail transit travel information

Empirical data on rail transit travel cost and time in both cities (such
as the automatic fare collection data Sun and Schonfeld (2016)) were
not publicly available. Therefore, we used the schedule and fare infor-
mation provided by the two rail transit operators through their
web-based trip planners. As generally rail transit travels are free of
traffic congestion and other incidents, the rail transit travel time should
be quite reliable: the scheduled travel time is very close to the actual
travel time (Sun and Xu, 2012).

We obtained rail transit travel information in D.C. from the trip
planner by the WMATA (Washington Metropolitan Area Transit Au-
thority), which was available at www.wmata.com. A Python script was
developed to automate the query. In each request, we specified the
origin, destination, departure time, travel mode (rail only), and walking
distance limit; in each response, we recorded the access walking time,
transit time, egress walking time, access distance, egress distance, total
trip time, regular fare, and number of transit transfers. In case of mul-
tiple travel plans, only the first plan was kept. We found that for some
unknown reason the WMATA trip planner could not return valid rail
transit travel plans for about 10% of the travel requests, raising the error
“no service at origin/destination at the date/time specified.” After
thorough checking, we confirmed valid travel plans did exist for such
requests. We therefore avoided such an issue by slightly shifting the
departure time (e.g., by 2 min) in case that particular error code was
returned by the trip planner. Note that in D.C. the rail transit fare varies
with time of day and travel distance.

For Chicago “L” operated by the Chicago Transit Authority (CTA), we
used the trip planner at www.transitchicago.com/planatrip/. There
were two available trip planning engines, Google Maps (GM) and RTA
(Regional Transportation Authority) Trip Planner. The RTA trip planner
accepted street addresses by default, while in our analysis we used
geographic coordinates of locations. To avoid complications in the
conversion of geographic coordinates to street addresses, we chose GM
because geographic coordinates could be accepted by GM, thus
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Fig. 1. Heatmaps for the taxi travel speeds in D.C. and Chicago.

eliminating the need for conversions. We collected similar rail transit
trip information from GM as we had done for rail transit travels in D.C.
In addition, a label was added to indicate whether the trip is from
Chicago O’Hare International Airport, as the rail fare depends on it. The
“L” train fare is flat, $2.5; it increases to $5 if the trip is from O’Hare to
downtown.

We also found the discrepancy in the assumed average walking
speeds in the WMATA Trip Planner and GM. As the assumed walking
speed by WMATA was significantly smaller than the walking speed
adopted in GM (estimated through trip query results from GM), we
adjusted the access and walking times in D.C. by using the average
walking speed of 3 miles per hour.

3.3. Data preparations

For each taxi trip in the dataset after cleaning, the distance between
its either trip end (origin or destination) and the nearest rail transit
station was calculated. If either distance was over the limit, which is 1
mile in this study, the taxi trip was removed because essentially rail
transit was not a viable travel mode given the significant walking
needed. The locations of rail transit stations in both cities were obtained
from the GTFS (General Transit Feed Specification) data. Fig. 2 shows
the names of selected metro lines and stations as well as the D.C. city
limits. Fig. 3 shows the distributions of trip ends (origins and destina-
tions) and metro stations before and after the trip filtration by access
distance to rail stations. Clearly, the D.C. downtown is served well by the
Washington Metrorail.

For the subsequent analyses, we selected taxi trips in two time pe-
riods (8 a.m.-10 a.m. and 4 p.m.-7 p.m.) on Monday, Friday and Sunday
only. The origin, destination, and trip start time of each taxi trip in
selected time periods were used as inputs to the rail transit planners in
obtaining rail transit travel information. The maximum walking distance
at either end of the travel was 1 mile. All taxi timestamps were in 2017
while the trip planners did not accept past time as departure time. The
same time of day, day of week, and month of year were used, while the
year 2017 was replaced by 2019. As discussed above, trip planners did
not return valid rail transit travel plans for all requests for various rea-
sons. Only those trips with a viable rail transit plan were kept. It is worth
mentioning that the trip planner could return a valid travel plan, while
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Fig. 2. WMATA Metrorail stations and lines inside of D.C.

rail transit was not involved, i.e., a walking-only trip. Such walking-only
trips were removed as well, because the objective of this study is to
compare taxi with rail transit, not with walking.

Table 1 shows how the number of trips changes in each stage of the
process. In the final dataset, there are 8669 trips in D.C. and 13,635 trips
in Chicago. In this study, we assume the maximum walking distance at
either trip end is 1 mile. Fig. 4 shows how the number of trips kept in the
dataset changes with the walking distance limit at either trip end. When
no limit applies, 100% of trips are kept; when the limit is 1 mile, 90% of
trips are kept, which means for 90% of the trips, rail transit is a viable
transportation mode. When the maximum walking distance is 0.5 miles,
around 70% of trips are kept. The main takeaway from Fig. 4 is that in
both cities, a considerable proportion (e.g., 70%) of taxi trips can be
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Fig. 3. Distributions of metro stations and trip ends in D.C.
Table 1
Trip number in each stage of analysis.
Stage D.C. Chicago
Original 232,510 246,975
After removing trips beyond city limits 178,107 246,975
After data cleaning 92,599 137,283
After filtration by access/egress distance to/from rail stations 82,841 125,584
After selection by time of day and day of week 8966 15,318
After filtration by responses from rail trip planners 8669 13,635
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Fig. 4. Effect of rail transit access/egress distance.

substituted by rail transit under reasonable assumptions about the
maximum walking distance at either trip end (e.g., 0.5 miles).

4. Methodology
4.1. Metric design

For ease of presentation, we use i to denote an observed trip or simply
an observation. For observation i, ! is the travel time by taxi; c/*® is the
travel cost by taxi; £ is the travel time by rail transit; c* is the travel
cost by rail transit. For each trip i, we then define travel gradient ; in Eq.
(1) to quantify the comparative advantage of one mode over the other:

C);uxi _ c;’uil
e @
The numerator ¢ — ¢4 is the cost difference A, between traveling
by taxi and by rail transit, which is also the relative cost of taxi to rail
transit (assuming the cost of travel by rail transit is 0). The denominator
it — grall g the travel time difference A, between traveling by taxi and
by rail transit, which is also the relative travel time of taxi to rail transit
(assuming the travel time by rail transit is 0). Depending on the signs of
A and A, we classify 6; into four categories: (I) A, > 0 and A, > 0; (II) A,
> 0and A; < 0; (IIT) Ac < 0 and A; < 0; and (IV) A, < 0 and A, > 0.
As shown in Fig. 5, for each trip we first plot one node (shown as a

3
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) ) Rare in
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Fig. 5. Quantification of rail transit advantage over taxi for one trip.
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square) for the rail transit travel as the origin with coordinates (£, /@)
on the travel time - cost coordinate plane. Another node for the taxi
travel (shown as a circle) with coordinates (t{“ﬂ, cf“il) can be plotted on
the same coordinate plane. The travel time and travel cost axes divide
the plane into four quadrants. The node for the taxi travel could fall in
one of the four quadrants. If the taxi node falls in Quadrant [, i.e., A, >
0 and A; > 0, the taxi travel has a larger cost and a longer travel time,
which means rail transit is the dominant mode. If the taxi node falls in
Quadrant III, i.e., A. < 0 and A; < 0, the taxi travel has a smaller cost and
a shorter travel time, which means taxi is the dominant mode. If the taxi
node falls into Quadrant II, taxi is more expensive, while it saves travel
time, which means rail transit is competitive with taxi. If the taxi node
falls in Quadrant IV, taxi is less expensive while more time-consuming,
which is very rare in practice.
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Fig. 6. Visualizations of relative travel costs and travel times of taxi.
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Since such a plot can be generated for each trip, such plots can be
overlaid to obtain scatter plots of taxi nodes in one figure, as shown in
Fig. 6. The distribution of taxi nodes in such a figure visualizes the
comparative advantage by considering all observed trips.

Fig. 6 shows that for both cities, there are no taxi nodes in Quadrants
III and 1V, because for any trip, taxi is more expensive than rail transit.
Since there are no nodes in Quadrant III, we conclude taxi dominates rail
transit for none of the trips. A significant number of taxi nodes fall into
Quadrant I, which means if the taxi trip is undertaken by rail transit,
both the travel cost and travel time drop. In particular, 13.7% of taxi
nodes belong to Quadrant I in D.C., and 10.5% of taxi nodes belong to
Quadrant I in Chicago. Two clusters can be observed for the Chicago taxi
trips, because airport-related trips were included only in the Chicago
dataset. Note that in D.C. airport-related trips are not included because
none of three major airports in the D.C. area are located within the D.C.
limits.

4.2. Economic interpretation

As expected, Quadrant II has the most taxi nodes, which means for
the majority of trips, taxi and rail transit are competitive: rail transit is
less expensive and taxi is less time-consuming. For every trip i in
Quadrant II, the value of its gradient ¢; is can be interpreted as the
marginal travel cost change due to mode switching from taxi to rail
transit. More intuitively, ; measures how much money can be saved if
this trip is undertaken by rail transit rather than taxi, if the traveler is
willing to accept a prolonged travel time by one additional unit of time
(e.g., hour).

The concept of gradient ; can be better illustrated through rear-
ranging the its original definition in Eq. (1) as follows:

E;’ml o C;(m

0,‘ = irail o tm,(,' (2)
i i

For a trip i that is undertaken by taxi, the travel time is /* and the

travel cost is c/*. Suppose that the trip is now undertaken by rail transit

—rail

whose travel cost is ¢;"" while its travel time is exactly 1 h longer than

tod je, £ = @i 4 1. Clearly, the denominator of Eq. (2) becomes 1;

we then obtain 6, = ¢/ —

¢, which is the cost saving due to mode
switching. For trip i in Quadrant II, its gradient 6; is negative, which
means a positive cost saving is expected.

Considering the tradeoff between cost and time, if the absolute value
of ; is larger than one traveler’s value of time, the mode switch is in
general worthwhile. The larger the absolute value of 6; is, the more
worthwhile the mode switch is.

4.3. Regression analyses

After quantifying the comparative advantage with travel gradient,
we explore the relation between various trip characteristics (e.g., transit
access distance, taxi mileage, and day of week) and travel gradient 6,
with and without considering the spatial variations of such a relation. In
a global regression model, it is assumed that the relation is independent
of location and all the observed data at different locations are used to
estimate the same set of parameters. The disadvantage of a global
regression model is that the effect of regional factors cannot be captured.
For instance, the effect of walking for 0.5 miles in urban cores should be
very different from the same amount of walking in suburban areas. A
global regression model may potentially obscure the underlying relation
between location and travel gradient. In contrast, a local regression
model assumes location-specific relations. Only the data observed at or
around a specific location are used to estimate such local relations.
Therefore, the estimated relations could vary over space. In this study,
we use Multiple Linear Regression (MLR) and Geographically Weighted
Regression (GWR) to conduct global and local regressions, respectively.
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4.3.1. MLR model
The MLR model takes the following form:

0; =By + > _Pxu+ e Vi ©)
k

where 0; is the ith observation of travel gradient, xj is the ith observation
of the kth independent variable, and ¢; is a normally distributed error
term with zero mean. It is typically assumed in a linear regression
analysis that there are no correlations among independent variables or
between two successive observations of the same variable, i.e., no
multicollinearity or autocorrelation. Each S as well as fy need to be
estimated. In MLR, we consider transit access distance (distance from
the trip origin to the nearest transit station), transit egress distance
(distance from the last transit station to the trip destination), taxi
mileage, number of transit transfers, time period of day, day of week,
and airport trip indicator (0 or 1) as independent variables, primarily
based on the data availability. Since both time of day and day of week
are categorical variables, to avoid a linear dependency, we leave out one
of these indicators. For example, we consider Monday, Friday, and
Sunday, while including only two indicator variables for Friday and
Sunday, respectively.

4.3.2. GWR model

The Geographically Weighted Regression (GWR) model can consider
the spatial information of observed data and explore the spatially
varying relationships between dependent and independent variables.
Eq. (4) represents a GWR model where coefficients of independent
variables are specific to geographical coordinate (u; v;). In contrast,
coefficients in MLR are location independent.

0; = o (ui,vi) + Zﬁk(uh Vo)X + €, Vi ()]
k

GWR builds a regression model for each location where sample i is
observed. To estimate the coefficients, a buffer is used to determine what
neighboring observations are considered in the coefficient estimation.
This buffer is also known as a spatial kernel. Generally, all observations
in the buffer are weighted differently according to their distance to the
location of observation i. The further away an observation is, a smaller
weight it carries. When an observation falls out of the kernel (its distance
to observation i exceeds the bandwidth), its weight is zero.

There are many choices of kernels. A fixed kernel includes all ob-
servations that are within a certain distance (a fixed bandwidth) from
the point of interest. When the spatial distribution of data is relatively
uniform, a fixed kernel can be chosen; otherwise, an adaptive kernel is
more commonly used where the number of neighboring observations is
optimizable (Cheng et al., 2021; Zhao and Cao, 2020; Baker, 2020). In
this study, an adaptive kernel is used. The shape of a kernel, which
determines how different observations are weighted, could be uniform,
Gaussian, exponential, bisquare, and tricube, among others. We use a
bisquare kernel, which is commonly used in the literature (Chiou et al.,
2015; Munira and Sener, 2020; Cordera et al., 2019).

It is also understandable that the choice of kernel bandwidth has a
major influence on GWR results, because when the bandwidth is too
small, not enough observations are used to estimate the coefficients,
implying large errors; when the bandwidth is too large, a local regres-
sion reduces to a global one, thus masking local variations. We follow
the bandwidth optimization framework proposed in Brunsdon et al.
(1996) and Brunsdon et al. (1998), which is described as follows. Let h
be a bandwidth and gi(h) be the predicted value of 6; by GWR for the
given bandwidth h. We further introduce @%i(h) as the GWR-predicted
value of #; with the observations for location i omitted. Then, the
optimal bandwidth is found by minimizing the cross-validated (CV) sum
of squared errors (Zhong and Li, 2016), defined as follows:

Ccv = Z[gi - a%i(h)]z )
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GWR has been implemented in many programming languages. In this
study, a R package named GWmodel (Gollini et al., 2015) is used.

5. Results
5.1. Descriptive statistics

In this section we focus on Quadrant II trips only, which account for
86.3% of trips in D.C. and 89.5% of trips in Chicago. For such trips in D.
C., both the average transit access distance and transit egress distance
are 0.37 mile; in Chicago, the average access distance is 0.3 mile, and the
egress distance is 0.35 mile. Since the absolute value of ¢ can be
extremely large when the travel time difference A; which is the de-
nominator, is close to zero, we further filtered trips by travel time dif-
ference and kept only such trips with a rail transit travel time at least
20% larger than the taxi travel time, i.e., (/% — £@9) /@ > 20%. Fig. 7
shows the distributions of ¢ for all trips contained in the final dataset.
The average value of @ is -$76.17 /hour in D.C., which means if a traveler
can accept a trip prolonged by 1 h, a trip cost reduction of $76.17 is
expected. This hourly travel cost saving outnumbers the value of time for
most travelers. The average value of 0 is -$68.79 in Chicago, which can
be interpreted in the same manner. As 6 is used as the response variable
in regression analyses, we take the square root of — 0, so that the
regression models fit the data better.

After checking the correlation matrix, we find explanatory variables
are generally weakly correlated with a correlation coefficient smaller
than 0.15. The highest correlation efficient is around 0.4, which is be-
tween the number of transfers and taxi mileage. When higher correla-
tions exist, one of the correlated variables should be removed.

5.2. MLR results

Tables 2 and 3 show the linear regression results for D.C. and Chi-
cago, respectively. For continuous predictor variables (namely access
distance, egress distance, total mileage and the number of transfers), a
coefficient represents the change in the predicted value of the response
variable for each one-unit change in a predictor variable, if other pre-
dictor variables remain constant. The negative coefficients of access
distance, egress distance, and the number of transfers indicate that when
values of such predictors increase, the marginal travel cost saving due to
mode switch from taxi to rail transit decreases, which is understandable.
When the access/egress distance and the number of transfers grow, rail
transit becomes more time-consuming and less competitive. For both
cities, the total mileage by taxi has a positive coefficient, implying an
increasing marginal cost saving due to an increased total mileage. This
positive effect is significant in Chicago, while it is not as significant in D.
C.

A categorical variable has multiple levels, with only one level
selected as the reference. For other indicator variables, the coefficient
measures how the response value changes when the level of the cate-
gorical variable changes from the reference level to the level associated
with the indicator variable. Regarding the day-of-week variable, with
Monday as the reference point, the marginal travel cost saving is higher
on Friday and lower on Sunday. A comparison of p-values indicates that
the indicator variable for Friday is not as significant as the indicator
variable for Sunday in both cities, meaning that on Sunday the
comparative advantage (marginal cost saving) diminishes substantially.
For the afternoon trips, the marginal travel cost saving is higher than
trips in the morning, with 8 a.m. as the reference. The relatively large p-
values for the indicator variable for 9 a.m. in both cities indicate that the
change in the marginal travel cost saving is insignificant when the time
of travel changes from 8 a.m. (reference time of day) to 9 a.m. Results
also show that in Chicago travelers can save significantly if they switch
from taxi to rail transit when their travels are airport-related.

The intercept shown in Table 2 is the value of transformed dependent



S. Kirtonia and Y. Sun

Transport Policy 115 (2022) 75-87

Washington, D.C.
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Fig. 7. Distributions of trip gradients and their transformations.
Table 2 Table 3
MLR results for Washington, D.C. MLR results for Chicago.
Independent Washington, D.C. Independent Chicago
iabl iabl
variable Estimate  Std. t value p-value 95% variable Estimate  Std. t value p-value 95%
Error confidence Error confidence
interval interval
(Intercept) 12.148 0.128 94.826 0.0007%** (11.897, (Intercept) 9.346 0.094 99.533 (9.162, 9.530)
12.400) Access distance -3.789 0.131 —28.831 (-4.047,
Access distance —5.125 0.150 —34.204 0.000%** (-5.419, —3.531)
—4.832) Egress distance —3.539 0.130 —27.231 (-3.794,
Egress distance —4.697 0.143 —32.905 0.000%** (-4.978, —3.284)
—4.418) Total distance 0.315 0.007 42.294 0.000%** (0.301, 0.330)
Total distance 0.079 0.024 3.257 (0.032, 0.127) No. of transfer -1.65 0.056 —29.522 0.000%** (-1.760,
No. of transfer —-2.163 0.076 —28.477 (-2.312, —1.541)
—2.014) Hour
Hour 8 am.
8 a.m. (reference)
(reference) 9 a.m. 0.067 0.074 0.905 0.366 (-0.078, 0.211)
9am. 0.150 0.116 1.293 0.209 (-0.078, 0.379) 4 p.m. 0.462 0.073 6.371 0.000%** (0.320, 0.604)
4 p.m. 0.499 0.110 4.525 (0.283, 0.716) 5 p.m. 0.630 0.074 8.515 0.000*** (0.485, 0.775)
5 p.m. 0.715 0.110 6.486 (0.499, 0.932) 6 p.m. 0.397 0.071 5.563 g (0.257, 0.537)
6 p.m. 0.479 0.109 4.385 (0.265, 0.694) Day of week
Day of week Monday
Monday (reference)
(reference) Friday 0.145 0.053 2.741 0.006** (0.041, 0.249)
Friday 0.130 0.073 1.790 0.073* (-0.012, 0.273) Sunday —0.418 0.056 —7.500 0.000%** (-0.527,
Sunday —0.700 0.083 —8.391 0.0007%** (-0.864, —0.309)
—0.537) Airport trip
No
Note: * =p < 0.10; ** =p < 0.05; *** = p < 0.001. (reference)
Yes 1.294 0.145 8.897 0.000%** (1.009, 1.578)

variable when all continuous variables are set to be zero and all cate-
gorical variables take the reference value. As setting all independent
variables to be zero may not represent any realistic scenario, interpret-
ing intercept is not as useful as interpreting other coefficients in
analyzing the relations between independent variables and the trans-
formed dependent variable. In addition, the last column of Table 2
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Note: * =p < 0.10; ** = p < 0.05; *** = p < 0.001.

shows the 95% confidence interval for each coefficient to be estimated.
For both linear regression models, the multiple R? and adjusted R?
values are close to 0.3, which is relatively low. However, as p-values
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indicate that most selected explanatory variables are significant. That
means if the purpose of the MLR model is to make predictions, the ac-
curacy of the model is low, as the assumed linear relation cannot explain
much of the variation. Nonetheless, low p-values indicate the observed
relation between selected explanatory variables and the response vari-
able is statistically significant, which satisfies the need in this study.

5.3. GWR results

We further run GWR on the D.C. data only, because trip origins and
destinations were approximated by centroids of census tracks and
community areas in Chicago, leaving the number of unique geographic
locations (origins and destinations) to be only 148. The relatively small
number of locations and highly uneven distribution of locations in the
Chicago dataset mean that when a regression model is fitted for some
location, it is likely that too few nearby locations could be covered by the
spatial kernel. Therefore, the few observations used for fitting a
regression model could not yield robust coefficient estimates. The
resulting goodness of fit is thus quite low in the case of Chicago.

As each observation i is associated with two geographic locations
(origin and destination), we develop two GWR models, one based on
origin and the other on destination. The optimal numbers of nearest
neighbors for those two GWR models are 672 and 701, respectively. For
each GWR model, a regression is built for each location, which has its
location-specific coefficient estimations. Therefore, we can obtain the
distributions of coefficients of each independent variable, which will
reveal how the impact of an independent variable varies across different
locations. Table 4 provides the basic statistics (minimum, maximum and
median) of the coefficients of each independent variable for both the
origin-based and destination-based GWR models.

For each location-specific regression model, the p-value for an in-
dependent variable can be compared with the significance level (0.05)
to check whether the independent variable is statistically significant.
Table 5 shows the percentage of significant coefficients of each inde-
pendent variable for both GWR models. Among all statistically signifi-
cant coefficients, we further show the sign of a coefficient (positive or
negative) in Table 5. We can find that for most location-specific
regression models, access distance, egress distance, number of trans-
fers, and the indicator variable for Sunday are in general statistically
significant. For such variables, we can also observe that the sign of the
coefficient is definite (100% positive or negative, rather than a mix).
This further implies the effect (positive or negative) of such variables on
travel gradient is constant over space, although the magnitude varies. In
contrast, total distance by taxi has a low percentage of statistically sig-
nificant coefficients. The sign of its coefficient is indefinite, as indicated

Table 4
GWR results for Washington, D.C.

Independent Origin-based GWR Destination-based GWR
variable R K K K
Min. Median Max. Min Median  Max.
(Intercept) 8.465 12.427 15.147 9.009 12.534 14.809
Access -13.194 -5.887 -0.805 —-8.680 —5.311 —2.908
distance
Egress —8.102 —-5.163 —1.461 —8.738 -5.370 —-1.621
distance
Total distance —0.559 0.081 1.187 —0.636  0.0722 0.637
No. of transfer —3.813 —2.267 —0.589 —3.503 —2.257 —0.592
Hour
8 a.m. (reference)
9 a.m. —2.228 0.132 1.702 —1.282  0.153 1.255
4 p.m. —0.806 0.346 0.838 —-0.672 0.521 1.977
5 p.m. —0.486 0.794 3.339 -0.314  0.794 2.038
6 p.m. —1.352 0.589 2.760 —0.718  0.442 1.742
Day of week
Monday (reference)
Friday —0.930 0.130 1.055 —0.572  0.135 0.875
Sunday —1.890 —0.805 0.211 —-1.627 —0.764  0.456
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further in Fig. 8. Clearly, we can see from Fig. 8 that the coefficient of
taxi mileage ranges from —0.5 to 1.2 in the origin-based model and from
—0.6 to 0.6 in the destination-based model. This means the effect of taxi
mileage on travel gradient could be positive or negative, depending on
locations.

We then analyze the spatial variations of the coefficients of selected
independent variables. Fig. 9 shows how the coefficient of transit access
distance varies over space. Although all coefficients are negative, the
coefficient is less negative in the Union Station area in the origin-based
GWR model; the coefficient is less negative in two notable areas (near
Fort Totten in the north and Congress Heights in the south) in the
destination-based GWR model. A less negative coefficient means the
response variable decreases less quickly as the subject independent
variable increases. In other words, the drop in the marginal cost saving is
not very sensitive to the increase in transit access time for people trav-
eling from the Union Station area as well as people traveling to the Fort
Totten and Congress Heights areas.

Fig. 10 shows how the coefficients of the indicator variable for 5 p.m.
vary over space. As shown in Table 4, the coefficients for 5 p.m. are
positive at most locations, which means as compared to 8 a.m., traveling
at 5 p.m. by rail transit yields more cost savings. Specifically, the savings
are comparatively more evident for travels from the National Mall
(especially near Capital South Station shown in Fig. 10(a)) and to the
northwestern region of D.C. (especially near Van Ness-UDC Station in
Figure Fig. 10(b)).

Similarly, from Fig. 11 and Table 4, we conclude that rail transit
travels on Sunday yield comparatively smaller cost savings with Monday
as the reference point. Nonetheless, the decrease in cost savings is not
evident for travels from the Congress Heights area (as shown in Fig. 11
(a)) and other travels to the Capital South area (as shown in Fig. 11(b)).

The average R? values of the origin and destination-based GWR
models are 0.40 and 0.38, respectively. The R? values are higher than
the R? value of the MLR model, meaning that after further considering
locations, the regression model can explain the variation of the depen-
dent variable (travel gradient) better. Fig. 12 shows how the R? value
varies over space.

In summary, as GWR can capture the variations of the relation be-
tween various trip characteristics and travel gradient over space, a
higher goodness of fit is achieved than MLR. More importantly, GWR
reveals highly promising travel directions and time periods for targeted
rail transit marketing.

6. Discussions
6.1. Policy implications

This comparative study of two urban transportation modes based on
the empirical data collected in Washington, D.C. and Chicago yields a
few important findings. First, we find approximately 70% of taxi trips
can be substituted by rail transit if the maximum walking distance is 0.5
miles. This is largely consistent with Wang and Ross (2019), who clas-
sified approximately 60% of taxi trips in New York City as
transit-competing using a different criterion. Second, if a taxi rider can
accept an increased travel time by 1 h, she/he can reduce the travel cost
by around $70 on average, exceeding the value of travel time for most
travelers. Clearly, if the trip is prolonged by half an hour due to the mode
switch, at least half of $70 (namely $35) can be saved. The travel cost
reduction is slightly higher in Washington, D.C. than in Chicago. Third,
in both cities rail transit dominates taxi for around 10% of the taxi trips,
while taxi never dominates rail. For the rest of trips, rail transit is
competitive with rail and significant travel cost reductions are achiev-
able if prolonged travel times are acceptable. The last two findings have
not yet been reported in the literature.

While taxi and rail transit are supposed to serve different segments of
urban travelers given their mode-specific characteristics, it is under-
standable that both modes are considered as attractive options to a
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Table 5
Statistical significance of the relationships derived from GWR.
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Independent variable Origin-based GWR

Destination-based GWR

% of significance (p<0.05)

Among significant

% of significance (p<0.05) Among Significant

Positive Negative Positive Negative
Intercept 100.0% 100.0% 0.0% 100.0% 100.0% 0.0%
Access distance 99.7% 0.00% 100.0% 100.0% 0.0% 100.0%
Egress distance 99.9% 0.0% 100.0% 100.0% 0.0% 100.0%
Total distance 38.9% 62.2% 37.8% 29.9% 72.2% 27.7%
No. of transfer 98.5% 0.0% 100.0% 100.0% 0.00% 100.00%
Hour
8 a.m. (reference)
9 a.m. 2.7% 67.6% 32.3% 4.9% 93.6% 6.3%
4 p.m. 20.2% 100.0% 0.0% 23.0% 100.0% 0.0%
5 p.m. 41.4% 100.0% 0.0% 45.7% 100.0% 0.0%
6 p.m. 22.4% 91.5% 8.4% 25.4% 100.0% 0.0%
Day of week
Monday (reference)
Friday 18.0% 90.77% 9.2% 12.1% 99.3% 0.6%
Sunday 59.0% 0.0% 100.0% 70.4% 0.0% 100.0%
(a) Origin-based GWR (b) Destination-based GWR
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Fig. 8. Histograms of coefficients of taxi mileage in two GWR models.
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Fig. 9. Variations of the coefficient of transit access distance.

certain group of travelers, representing the overlap between those two
segments of travelers. Due to the high competitiveness of rail transit
identified through this study, especially in certain regions and time
periods, the main takeaway for rail transit operators is that proper rail
transit marketing campaigns can be launched to increase rail transit
ridership by highlighting the relative advantage of rail transit over taxi.
Since the two GWR models have generated important information about
the spatial variations of the relation between a trip characteristic and
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travel gradient, rail transit marketing could be targeted at specific lo-
cations and time periods. For instance, for travels to the Capitol Heights
area, the marginal travel cost saving is substantial despite increases in
transit access time, if taxi substituted by rail transit. Therefore, such
corresponding travelers could be targeted by the marketing campaign.
To ensure the efficacy of the rail transit marketing campaign, the way to
delivery such marketing messages to customers should be carefully
evaluated and selected (Hess and Bitterman, 2016; Andersson et al.,
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2020). For instance, the following dynamic message can be used: “Do train?” Such a message can be customized to trip origins, destinations, as
you know that if you take metro instead of taxi to Capitol Heights, you well as time periods, based on the GWR results. As such messages can
can save $35 while you only spend extra 27 min relaxing on a metro also be personalized, they can be pushed through mobile APPs and other
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web portals, instead of being printed on posters. The improved mar-
keting plan by highlighting the unique advantage of rail transit could
thus potentially increase rail transit ridership and promote trans-
portation sustainability.

For the overall efficiency and sustainability of urban transportation
systems, taxi should avoid directly competing with rail transit for cus-
tomers, as the latter is widely believed to consume less energy and
reduce air pollution (Ghimire and Lancelin, 2019). Therefore, trans-
portation regulatory authorities should enact those policies that give
priority to the development of more sustainable and efficient trans-
portation modes and mitigate their direct competition with other modes.

6.2. Limitations of this study

In this study, rail transit and taxi are compared by travel cost and
time only, while other trip attributes, such as comfort level, reliability
and environmental impact, are not considered yet. For certain riders,
depending on their demographic characteristics, taxi may be the only
choice (Wong et al., 2020). For example, individuals with disabilities
cannot take rail transit and the tradeoff between travel cost and travel
cost does not play a major factor in their mode choices. Another example
is that some passengers who carry heavy luggage or have a very tight
schedule may also consider taxi only. Therefore, to enable a more
comprehensive mode comparison, other service attributes of trans-
portation modes and the demographic characteristics of urban travelers
should be further incorporated. It is worth noting that Ulak et al. (2020)
estimated the value of convenience (which was close to $30) based on
taxi trip data in NYC. It was argued by Ulak et al. (2020) that the main
competitiveness of taxi in NYC is attributed to convenience.

The taxi-only origin of the trip data presents potential statistical bias.
To compare two modes fairly, namely rail transit and taxi, trip data
(including trip origin, destination, departure time, etc.) in the urban
environment should be randomly generated and used for comparison. As
rail transit cannot cover all the urban areas, it is thus possible that taxi
becomes the dominant mode for certain trips, due to the unavailability
of rail transit. Those trips thus fall in Quadrant III. In contrast, all trips in
this study are actual taxi trips, which means taxi has some implicit
advantage, because for such trips, travelers actually chose taxi over
other modes. Similarly, if all such trips are actual rail transit trips, rail
transit would have been given some implicit advantage. It should be
noted that detailed rail transit trip data are less widely accessible than
taxi trips data.

It is also known that passengers perceive in-vehicle travel time and
out-of-vehicle travel time (such as waiting, walking and transferring)
differently. Nonetheless, in this study, the total travel time obtained
from rail transit trip planners was directly compared with the taxi travel
time, without distinguishing in-vehicle travel time from out-of-vehicle
travel time. This simplification may potentially underestimate the
burden of rail transit travel, as out-of-vehicle travel time is generally
more burdensome. In addition, the effect of potential in-vehicle
crowding on passengers’ perceptions of rail transit travel time was not
included in the present study.

7. Conclusions

This study has assessed the comparative advantage of rail transit
over taxi using publicly available data in two U.S. cities. We first collect
and clean taxi trip data and rail transit travel information. A metric
named travel gradient is proposed for quantifying the comparative
advantage and its economic interpretation is provided. We also explore
how various trip characteristics are related to travel gradient initially
using multiple linear regression. To understand the variations of the
relations between the trip characteristics and travel gradient at different
locations, we then analyze the data with geographically weighted
regression. We have derived a few important research findings and
analyzed the policy implications in Section 6. Although empirical data
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are from two different cities, we find very similar results, especially in
the percentage of taxi trips that can be substituted by rail transit and the
marginal travel cost savings due to mode switching to rail transit.
Therefore, the derived research findings should be applicable to other
cities with comparable urban rail transit systems. Similar analyses can
be conducted for those cities before relevant rail transit marketing
policies are designed and enacted.
The current study can be improved in the following ways:

1. Asthe group size of passengers in a taxi trip is unknown, it is assumed
to be 1 for convenience. When multiple passengers share the taxi
(Sun and Zhang, 2018), the relative advantage of rail transit over taxi
may change considerably. For rail transit, the access/egress time is
considered, while for taxi, the waiting time, which can be considered
as “taxi access time”, is not included, because no taxi waiting data are
available. Thus, it is fair to add the waiting time as part of the taxi
trip time.

2. All regression models used in this study are for exploring the re-
lations between trip characteristics and travel gradient, rather than
for making predictions accurately. If the study purpose is to predict
travel gradient, other possible explanatory variables, especially
socio-demographic variables that are commonly available in house-
hold travel surveys (Ha et al., 2020) as well as built environment
variables Hochmair (2016), should be added to the model to improve
the model’s goodness of fit.

3. Due to the highly uneven distribution of locations in the Chicago
dataset, we did not run the GWR for Chicago. More advanced local
regression models that can address this issue could be further
adopted.
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