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ABSTRACT

Microglia play a key role in maintaining brain health, and
the detection of microglia tips is essential for analyzing their
motility. However, current tip detection methods either rely
on deep neural networks, which require time-consuming
annotations, or are unsupervised methods analyzing local
patterns, which are significantly influenced by the microglia
morphology change. In this paper, we propose an unsu-
pervised, multi-scale microglia tip detection approach. Our
approach measures the distance between the candidate tip and
the convex hull of adjacent pixels to eliminate the influence of
morphology variation. We demonstrated the new approach on
volumetric fluorescence imaging data and achieved superior
performance compared to peer algorithms.

Index Terms— Microglia, tip detection, unsupervised
learning, fluorescence imaging, volumetric data, convex hull

1. INTRODUCTION

Microglia, a sub-type of the glial family, are macrophage cells
located in the brain and spinal cord and play a crucial role
as defenders and sculptors of the central nervous system [1].
As the main form of active immune defense in the brain, mi-
croglia are responsible for the phagocytosis of pathogens and
apoptotic cells as well as modulating adaptive immune re-
sponse. They have also been identified to be essential for
modulating synaptic structure, synaptic physiology, and have
recently been implicated in learning and memory processes
[2][3][4][5][6].

Mature microglia have multiple highly dynamic processes
displaying considerable structural changes and exhibiting dis-
tinct morphological transition states when executing certain
functions [5]. Therefore, the detection and quantification
of processes and tips is a key component of demonstrating
microglia activity. However, manual annotation is quite time-
consuming, especially when dealing with volumetric data,
which causes pure manual labeling to be unrealistic. Besides,
the lack of a dataset with ground truth for supervised learn-

ing requires vast annotated data, especially for deep neural
networks [7] [8].

General unsupervised tip detection methods are devel-
oped to distinguish tip regions by local patterns. One type of
local pattern is the angle of tip. For example, the ray shooting
model was proposed to detect the neuron tip in volumetric
images by calculating the angle of rays shooting from tip
to foreground [9]. Another method calculates the maximum
product of neighbor foreground to detect pixels with the min-
imum angle for decomposing branches [10]. Curvature is
another category of local pattern. Gaussian curvature is used
to detect nose tips [11] and the authors in [12] proposed a
method based on principal curvature to detect corners, which
has been used for plant root tip detection [13].

However, the size and morphology of microglia tips vary
significantly during the transition states. This makes general
unsupervised tip detection approaches more challenging to
extend, although these have been broadly applied in similar
tasks utilizing different strategies. In this paper, we propose a
novel approach specific to microglia tip detection. Instead of
identifying the local pattern, the proposed method focuses on
the distance to the adjacent convex hull to eliminate the influ-
ence of the changes in microglia morphology. In addition, the
method works on multi-scales for improved robustness. Ex-
tensive analysis of microglia imaging datasets confirmed the
superiority of our proposed approach.

2. METHODS

The proposed method includes three steps: geodesic distance
calculation, pixel to convex hull distance calculation, and
finding tips from score map. We assume that foreground
is already segmented and the model works on the surface
pixels, which are foreground pixels that connect with the
background.

The first step is to calculate the geodesic distance from ev-
ery surface pixel to its neighbor foreground pixels and then se-
lect pixels with the appropriate distance controlled by a scale
s. The selected pixels are called adjacent pixels of the sur-



face pixel. In the second step, we find the distance between
the surface pixel and the convex hull of the adjacent pixels
shown in Fig. 1. The distance measure has two advantages.
On one hand, the distance d is related to the convexity of the
local region. The more salient the region is, the more likely
it is a tip, and the larger d will be. On the other hand, the
distance measure is less affected by the morphology of tips
when compared to peer methods. The final score map con-
sists of measurements of all surface pixels under all different
scales. Finally, we extract the tips from the 4-dimensional
score map.

Fig. 1. A branch of microglia with examples of three kinds of
surface pixels and convex hulls of their adjacent pixels. The
surface pixels are yellow while the convex hulls including ad-
jacent pixels are black. (a) A tip, whose distance to the convex
hull d is larger than 0. (b) A ramification in the convex hull
and the distance is 0. (c) A pixel on flat region, the distance
is close to 0.

2.1. Geodesic distance calculation

For a surface pixel p ∈ F, the corresponding adjacent pixels
under the scale s is a set

Qp,s = {q : |dG(p,q)− s| ≤ ϵ,∀q ∈ F}, (1)

where F ⊂ R3 is all foreground pixels, dG(·) is the geodesic
distance measure and ϵ is a small number. Usually, we set
ϵ = 0.5.

The distance calculation problem is similar to all pairs of
shortest path (APSP) problem, which finds all shortest paths
between any two nodes in a graph. In our problem, we only
need to calculate the distance from the surface pixel to neigh-
bor foreground pixels. Traditional shortest path algorithms,
such as Dijkstra and Floyd-Warshall, can solve the problem
in an inefficient way. In fact, any comparison-based shortest-
path algorithms are inefficient to our problem because the
length of edges has very limited choices, which means many
comparisons are unnecessary. A better strategy is grassfire
transform [14] in linear time complexity. With slight modifi-
cation, the total time complexity can be O(mn), where n is
the number of surface pixels and m is the number of neighbor
foreground pixels under the maximum scale. It worth noting

that the geodesic distances only need to be calculated once
even though there are multiple scales.

2.2. Pixel to convex hull distance calculation

The convex hull of the adjacent pixels conv(Qp,s) is the
smallest convex set containing Qp,s. We have

conv(Qp,s) = {
∑
i

λiwi : λi ≥ 0,
∑
i

λi = 1,wi ∈ Qp,s}

(2)
The second step is to calculate the smallest Euclidean dis-

tance between the surface pixel and the convex hull

dp,s = min
q

||p− q||,∀q ∈ conv(Qp,s) (3)

The pixel to convex hull distance calculation is based on
the open Gilbert-Johnson-Keerthi (GJK) package [15]. The
GJK algorithm [16] is a method of determining the mini-
mum distance between two convex sets by iteratively gen-
erating closer simplices to the correct answer, and the open
GJK package updated the sub-algorithm in a faster way. We
reimplemented the package for two reasons. The most impor-
tant reason is that the original package is not reliable enough
and gives inaccurate results occasionally. What’s more, our
problem is to find the minimum distance between a point and
a convex set, which could be processed more simply.

The time complexity of the GJK algorithm is almost con-
stant and no more than linear [17] so that the total time com-
plexity of the second step is still O(mn).

2.3. Finding tips from score map

The method is proposed to calculate score maps under mul-
tiple scales, which are defined as a set S, to detect tips with
different sizes. A surface pixel is possible to be a tip even
though it gets a high score under one certain scale only. We
combine all normalized scores of a surface pixel and get the
maximum one:

dmax
p = max

s

dp,s
s

,∀s ∈ S (4)

After normalization, dmax
p ∈ [0, 1]. dmax

p may be influ-
enced by the imperfect foreground segmentation result. To
eliminate the influence, the final score takes the average of a
local region:

davgp =
1

N

∑
q

dmax
q , dG(p,q) ≤ γ, (5)

where N is the number of all q. As a rule of thumb, we set
γ = 2.

If davgp is a local maximum of its neighbors:

davgp = max
q

davgq , dG(p,q) ≤ γ, (6)



p is a candidate tip. A higher score represents a larger possi-
bility of being a real tip. dmax

p and davgp can be found in O(n)
time complexity.

Algorithm 1 shows the pseudocode of the whole pipeline.
A more detailed analysis is in the supplementary.

Algorithm 1 Tip detection algorithm
Input: Foreground F, distance scale set S, smoothness γ
Output: Tip list with scores (p, d)

1: for every surface pixel p do
2: Qp = GrassfireTransform(p,F,S)
3: for s ∈ S do
4: dp,s = GJK(p, Qp,s)
5: end for
6: end for
7: dmax

p = maxs
dp,s

s ,∀s ∈ S,∀p
8: davgp = 1

N

∑
q d

max
q , dG(p,q) ≤ γ,∀p

9: for every p do
10: if davgp = maxq d

avg
q , dG(p,q) ≤ γ then

11: Output (p, davgp )
12: end if
13: end for

3. EXPERIMENTS

3.1. Peer methods and data

Few methods are aimed at microglia tip detection, but some
methods perform very similar tasks, such as the ray shooting
model (RS) [9], branch decomposition (BS) [10], and Gaus-
sian curvature (GC) mentioned in Section 1. In [18], the au-
thors proposed a score, shape index (SI), based on principle
curvature to detect tips.

We did the experiment on our imaging data describing the
microglia activity in mouse brain after vascular ablation. Our
imaging data was obtained through 2-photon microscopy of
ex-vivo brain slices of transgenic CX3CR1+/GFP mice, which
express GFP in microglia and were tail-vein injected with
sterile filtered undiluted DyLight 594 labeled Lycopersicon
Esculentum (Tomato) Lectin from Vector Labs prior to sacri-
fice to facilitate targeting of vasculature for microvessel laser
ablation to induce microglial response. Before processing, the
original data is variance-stabilized to uniform noises and seg-
mented to get the foreground by existing methods [19] [20].
We spent more than 10 hours labeling around 500 tips manu-
ally without any help from the proposed method. However,
all these tips can be processed within two minutes by our
method.

3.2. Experiment and result

We compared our method with four peer methods mentioned
before. BS, GC, and SI can also acquire score maps from the

Fig. 2. The precision-recall curves of our method and three
peer methods.

data. As with our method, the local maximum of these score
maps are regarded as the tips. BS and SI take the average of
neighbors to get davgp and GC does not to achieve their best
performance. RS is more like a decision tree and does not
output scores. A detected tip is regarded as a true positive if
the nearest distance to ground truth is less than 5 pixels. A
real tip in the ground truth can accept one true positive result
only.

We measured the precision and recall of our method and
compared to the other three methods with scores. For each
method, we set different thresholds to get their precision-
recall (PR) curves shown in Fig. 2. We chose PR curves
rather than receiver operating characteristic (ROC) curves be-
cause PR focuses more on the true positives. The maximum
recall may not be up to 100% since results may not include
all positive samples. Our method has the best performance
of the four methods. The maximum recalls of GC and SI
are comparable and even better than our method since the
two algorithms detect almost all tiny bumps by utilizing ex-
tremely local information, which is also the reason for the
low precision. BS is better at detecting sharp tips with small
angles but can not handle all tips.

Table 1. Area under curve (AUC) and maximum F-score
Our BS GC SI RS

AUC 0.6879 0.5081 0.2776 0.2019 N/A
F-score 0.6843 0.6123 0.3779 0.3225 0.3837

Table 1 shows the quantitative comparison. Two metrics,
the area under curve (AUC) of PR curves and the maximum
F-score under different thresholds, are proposed to compare
these methods. For RS, AUC is not applicable, and the max-



Fig. 3. The detection results of all methods on three cells from our imaging data. Green dots are ground truth or true positives
(TP) while red dots are false positives (FP). Cells are segmented from the background and dimmed for better visualization.
Every row (a-c) represents one cell. Every column represents one method, where from left to right is: ground truth, our method,
branch decomposition, Gaussian curvature, shape index, and ray shooting. For the first four methods, we selected the results
with the highest scores whose number is the same as the ground truth. For RS, we can not control the number of results and
output all results when achieving the maximum F-score.

imum F-score is from parameter tuning. The performance of
BS is much better than other peer methods, but our method
has the best performance.

Fig. 3 shows the visualization of detection results. We
chose three cells with different morphology. For better vi-
sualization, the number of detection results of the first four
methods are controlled as the same. As shown in the figure,
BS could detect more than half of the tips, but was also influ-
enced by noise and failed to detect tips with certain shapes.
GC and SI paid more attention to the irregular surface and ig-
nored the real tip very often. RS was developed for neuron
tip detection, which detected tips in 2D stacks firstly and then
combined the results in 3D. It may not be applicable to our
scene with more complicated patterns. Our method has the
most number of true positives and the least number of false
positives. However, it may also fail to detect some tips, espe-
cially when two tips are merged.

4. CONCLUSION

This paper proposed a novel tip detection approach, which
aims at detecting microglia tips in volumetric fluorescence
imaging data. The key idea is to measure the distance be-
tween the candidate tip and the convex hull of adjacent pix-
els. Compared to analyzing local patterns, the multi-scale
distance metric is more robust to microglia size change and
morphology variation.

We compared our approach to four existing methods and

did experiments on our in-house data. The precision and re-
call of results under different score thresholds are exhibited as
PR curves. Two metrics, AUC and maximum F-score, were
proposed to quantify the results. A part of the detection re-
sults of all methods are also visualized with the label of true
positives and false positives. Our method has the best perfor-
mance under all metrics and also has the best visual appear-
ance.
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