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In a dynamic carpooling system, drivers and riders with their own intended travel plans are
matched on short notice. The performance of such a system largely depends on the carpool
participants’ travel flexibility (the extent to which a detour is tolerated or the willingness to
accept a slightly different drop-off location). To increase travel flexibility, an incentive scheme
can be introduced for carpool participants to opt for. For instance, a driver specifies how much
she/he expects to be compensated (e.g., $5) if the earliest departure time is shifted to be
earlier than the originally scheduled time by a certain amount (e.g., 10 minutes). Similarly, an
interested passenger reports the expected incentive to willingly accept a different destination
(such as a nearby transit stop or coffee shop) deviating from the request. In this dynamic
carpool matching problem with incentives, the following decisions are jointly optimized from
the perspective of a carpool matching coordinator: 1) incentive allocations to drivers and
riders, 2) assignments of riders to drivers, and 3) vehicle routes of drivers. A case study based
on data from Washington, D.C. is conducted to evaluate the potential of the personalized
incentives offered to carpool participants in mitigating the environmental impact of
transportation (quantified by the reduction of vehicle miles traveled). Two notable findings are
reported. First, one dollar of incentive could reduce vehicle miles travelled by 2.88 in one
benchmark case. Second, driver incentives are shown to be much more effective than rider
incentives under reasonable cost assumptions.

1. Introduction

and mitigate the negative externalities of transportation (Chan
and Shaheen, 2012), due to its defining feature: carpool drivers

Numerous advances in information and communication technologies
(such as mobile apps) have revitalized the practice of carpooling
(Shen et al., 2021). Many commuter assistance programs in the
United States (U.S.) now offer dynamic carpooling services to
facilitate the matching of interested drivers and riders. For instance,
King County Metro launched app-based dynamic carpooling
services in Seattle, Washington, U.S. (Shen et al., 2021). The
Commuter Connections Program in the Washington, District of
Columbia (D.C.) area developed an app CarpoolNow to enable
commuters in the capital region to be matched with other
commuters with similar travel plans in a real-time manner
(Commuter Connections, 2020). Carpooling is known to have
great potential to reduce vehicle trips, improve vehicle occupancy,

(who are not professional drivers) have their own predetermined
travel plans to execute regardless of whether carpool riders are
matched with them. They are matched with other carpool riders
because of their similar travel plans. Generally, carpool drivers
do not expect any net financial gains (positive profits) while their
costs are shared by their matched riders. In contrast, Uber and
Lyft drivers are profit-driven and generally do not share travel
plans with their riders. Even though riders involved in ridesplitting
(such as UberPool and Lyft Line) may travel toward a similar
direction (Shaheen and Cohen, 2019), they do not have similar
travel plans with their drivers. Because carpool drivers have their
own travel schedules to follow, the performance of dynamic
carpooling (measured by the saved vehicle miles, for instance)
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largely depends on the travel schedule flexibility (the extent to
which detour is tolerated) of carpool participants (Masoud and
Jayakrishnan, 2017; Sun et al., 2020a).

To fully exploit the potential of dynamic carpooling in promoting
transportation sustainability, one promising way is to introduce
an incentive scheme for carpool participants (drivers and riders)
to opt for to lift some tight constraints on travel plans. For
instance, a driver who opts for this incentive program specifies
how much she/he expects to be compensated (e.g., $5) if the
earliest departure time at the origin is shifted to be earlier than the
originally scheduled time by a certain amount (e.g., 10 minutes). In
addition, incentives can be offered to riders to influence their
travel choices, such as the drop-off location choice. Although a
rider has the most preferred destination, a few alternative destinations
may become acceptable upon receiving certain incentives.
Stiglic et al. (2015) has demonstrated the benefits of introducing
such “meeting points” to reduce the number of rider pickups. In a
dynamic setting, all those driver offers and rider requests along
with incentive options are received by the carpool matching
coordinator continuously over time. Given all predetermined
travel plans provided by drivers and riders, as well as the extra
flexibility in drivers’ and riders’ travel plans enabled by incentives,
the matching coordinator makes the following decisions: allocating
incentives, matching riders with drivers, and routing vehicles, as
illustrated in Fig. 1. In this study, the matching coordinator is a
government entity that is interested in maximizing a system-wide
performance measure, subject to an exogenous incentive budget.

When incentives are absent, the dynamic carpool matching
problem can be efficiently solved, thanks to various exact and
approximation solution algorithms that have been recently
developed (Mourad et al., 2019). Although fixed incentives have
been widely adopted to encourage mode shifts to carpool, the
effectiveness of personalized incentives in achieving transportation
sustainability objectives is unexplored. The consideration of
personalized incentives in carpooling is nontrivial because of the
behavioral implications: drivers might game the platform by
misrepresenting their required compensations to modify their
travel plans. A naive approach is to allocate incentives to those
who require lower compensations than others until the budget
constraint is met. However, the impacts of adding the same extra
flexibility to various drivers’ schedules are largely different. The
marginal benefits brought by the extra flexibility depend on a
few factors, such as the current driver-rider ratio in a travel
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direction. Moreover, incentive decisions are correlated because
the benefit of influencing a driver’s travel behaviors depends on
whether some other interrelated drivers receive incentives and
change their travel plans. Thus, the optimization method should
ensure that incentives are allocated only to “efficient” drivers
whose travel behavioral changes can directly benefit the system-
level objective, for a given incentive budget limit. Similarly, the
design of rider incentives to induce riders to accept alternative
drop-off locations is equally complex.

Motivated by the above important research gaps, this paper
intends to tackle the incentive design problem in dynamic carpooling
and present an integrated optimization model that jointly
considers personalized incentive allocation, rider-driver assignment,
and vehicle routing. This study also expects to evaluate the
potential of proposed travel incentives in reducing vehicle miles
traveled through large-scale numerical experiments based on
empirical data.

To achieve the study objectives, we first presented an integer
program incorporating driver and rider incentives for a static
carpool matching problem, which was an extension of the
carpool matching model developed by Sun et al. (2020a). Then,
a rolling horizon solution approach was adopted for the dynamic
setting. As no real-world carpool demand data were available,
the taxi trip data in Washington, D.C. were adapted to generate a
range of test scenarios with varying incentive budget limits.
Research results from the extensive numerical studies confirmed
the high effectiveness of customized travel incentives for drivers.
For instance, it was found that one dollar of incentive resulted in
a reduction of 2.88 vehicle miles traveled in one case.

The rest of this paper is structured as follows. Section 2
briefly reviews the carpool matching optimization literature and
scans various existing travel incentive schemes in shared
mobility systems. Section 3 formulates the integrated optimization
problem and presents a rolling horizon solution framework.
Section 4 describes the data preparations for the empirical study
and Section 5 analyzes the research findings. Section 6 ends this
paper by highlighting major findings and summarizing future
research directions.

2. Literature Review

2.1 Evolution of Carpool Matching
As reviewed by Chan and Shaheen (2012), carpooling has

Driver offers

Earlier departures
enabled by incentives

Fig. 1. Major Parties and Decisions in Carpool Matching Involving Incentives
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experienced several phases of development in North America since
World War I1. In the 1940s, riders and drivers were matched through
a bulletin board due to the unavailability of other technologies. In the
1970s, large employers started to identify potential carpool matches
based on travel data collected from their employees. Telephone-
based matching emerged in some U.S. cities in the 1990s, which
were later enhanced by emails and web pages. At present, due to the
widespread use of smartphones, most of the modern carpool
matching platforms are built on the mobile internet, thus providing
the most efficient way for drivers, riders, and the matching
platform to exchange carpool-related information.

As early carpool matching was conducted manually, only regular
trips, such as those home-to-work travels, could be registered and
matched. Consequently, family members, friends, or co-workers
with similar itineraries formed a carpool, which required long-
term commitment. With the advent of the internet, significantly
improved carpool matching became available, which further
incorporated other non-commuting recurring trips as well as
occasional trips. Dailey et al. (1999) described such an internet-
based carpool matching platform, called Seattle Smart Traveler
(SST). They found that the web-based platform could accommodate
more carpool travelers than earlier matching platforms. Due to
improved data support, the matching underlying SST was more
systematic, which examined four trip attributes: departure time
period, arrival time period, departure region, and arrival region.
Two trips were considered matchable only when an overlap was
identified between two trips for each of the four trip attributes.
While this pairwise comparison of trip characteristics was simple
to implement, it missed a few important elements in carpool
matching. For instance, scheduling feasibility after carpool matching
was not guaranteed; one-to-many matching (i.e., a single driver to be
assigned multiple riders) was unavailable; vehicle routing was
absent. At present, the dynamic carpooling service presents several
new improvements, because mobile apps allow drivers to announce
their driver offers and riders to request a ride, both shortly before
their intended departures. Those driver offers and rider requests
received by the matching platform will be matched and announced
in near real-time. Quite a few practical constraints are considered in
matching, such as vehicle capacity limits and time window
constraints. Therefore, much more sophisticated carpool matching
algorithms have recently been developed to meet the need for real-
time decision-making, which are briefly reviewed next.

In the dynamic carpool matching literature, carpool matching
is usually formulated and solved as a variant of the pickup and
delivery problem with time windows (PDPTW), which is one of
the most studied combinatorial optimization problems in operations
research (Baldacci et al., 2011). Due to the intricacy of solving
the dynamic carpool matching problem efficiently, approximation
solution algorithms are usually developed in the literature (Cheikh-
Graiet et al., 2020). For instance, Xia et al. (2015) formulated an
integer program for carpool matching and employed widely used
metaheuristics (namely simulated annealing and tabu search) to
solve the optimization problem. Sun et al. (2020a) designed a
graph-based method to generate rider-driver assignments and

vehicle routing plans for drivers. To solve the matching optimization
problem, they developed a column generation-based heuristic, in
addition to an exact solution algorithm. Their numerical analyses
indicated that the exact solution algorithm can solve large-scale
problem instances involving around 600 drivers and 1,800 riders
quickly; the column generation-based heuristic can find near-
optimal solutions for even larger instances. The highly efficient
solution algorithms were thus used to solve carpool matching
problems in real-time. For more comprehensive and in-depth
reviews of the carpool matching models and algorithms, see
Mourad et al. (2019) and Tafreshian et al. (2020).

2.2 Travel Incentives in Shared Mobility

Monetary incentives are widely used in transportation demand
management to trigger desirable travel behavioral changes (Sun
and Zhang, 2018; Zhu et al., 2020). For instance, a fixed incentive of
$2 was offered to each carpool participant between late 2018 and
early 2019 by King County Metro in the Seattle area of Washington
(Shen et al., 2021), although those fixed incentives were argued
to be less effective as personalized incentives by Xiong et al.
(2020). In a few shared mobility systems, such as bike sharing
and car sharing, various travel incentivization schemes have been
explored and a few example studies are reviewed as follows.

Pfrommer et al. (2014) studied the bike redistribution problem
which was central in a bike sharing system. Since a user picking
up a bike at one location could virtually return it to any other
location, some bike locations may become overfilled over time
while other locations do not have enough bikes available. To
address this imbalance issue, expensive vehicle redistribution
operations were needed. To reduce the redistribution cost, Pfrommer
et al. (2014) optimized the incentives offered to bike users who
were willing to revise their trip destinations. They conducted a
case study of the bike sharing system in London to evaluate the
effectiveness of the optimized incentives. Singla et al. (2015)
studied a similar incentive design problem in bike sharing, while
they explicitly considered the possibility that bikers may
misrepresent their private information about incentives. In this
case, a sophisticated incentive-compatible mechanism (Sun et
al.,, 2020b) must be designed to ensure truthful reporting of
private information.

Fanti et al. (2019) focused on the incentive design problem in
one-way car sharing. In the proposed incentive scheme, users
would get free travels or rewards if they participated in the
vehicle relocation activities. They designed two integer programs to
minimize the vehicle relocation cost with incentives being
incorporated. Similarly, Wang et al. (2019) studied how to offer
users rewards in order to relocate vehicles to those locations with
a short supply of vehicles.

Song et al. (2021) assumed that subsidies could be offered to
carpool participants based on travel distance and explored the
effect of such subsidies in reducing traffic congestion through
simulation-based studies. Similarly, Masoud and Tafreshian
(2021) considered a subsidization scheme based on participants’
value of time (VOT). Those fixed incentives have various
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deficiencies. The travel distance-based subsidization does not
capture the varying individual responses to the same incentive;
applying the same incentive to two trips of equal distance likely
yields different returns. Under the VOT-based subsidization
scheme, a participant gets the same incentive regardless of the
time period of travel. In fact, a driver with a certain travel plan in
the morning period might be highly “desirable” and is thus being
offered significant incentives; however, in a different period, this
driver with the same plan may not get any incentives at all, due
to the dynamics of driver-rider balance. For instance, in the
morning two other riders have almost identical travel plans with
the driver, justifying significant incentives for the driver, while in
the other period, there are no such riders, meaning no incentives
are needed. Therefore, customized incentives to individuals and
periods should be considered to replace static and fixed incentives.

2.3 Summary

The carpool matching literature has been well developed, with
recent studies devoted to dynamic carpooling. Various travel
incentives have been adopted in bike sharing and one-way car
sharing. In contrast, no personalized incentives have been considered
in carpooling, static or dynamic. Therefore, none of the existing
studies have jointly optimized the allocation of personalized
incentives to carpool participants and carpool matching.
Consequently, little is known of how personalized carpool
incentives could translate into environmental benefits. This
paper will thus fill those important research gaps.

3. Method

3.1 Static Carpool Matching Problem

A static carpool matching problem involves a set of drivers K
and a disjoint set of riders R. As illustrated in Fig. 2, each driver
k € K has a departure time window [Ek*, Lk*] associated with

the origin k", where Ek" and Lk" represent the earliest and latest
departure times, respectively. The arrival time window [Ek~, Lk ]
associated with the destination &~ can be inferred from the
departure time window [Ek*,Lk"] since the direct travel time
from k" to £k~ is known. All drivers who opt for the incentive
program must specify how much incentive, denoted as f;, is
expected if the predetermined earliest departure is shifted earlier
by ¢. In other words, in option j € J, the new departure time
window of driver k becomes [Ek* —«;,Lk"] upon receiving an
incentive of ﬁlk For drivers who are not enrolled in this
incentive program, ¢; can be set to be zero while ﬁf can be set as
a very large constant. Each driver has a capacity limit, which
restricts the maximum number of riders to be matched with
driver k to be 7.

A rider »€ R has a departure time window [Er,Lr'] at
origin " and an arrival time window [Er ,Lr ] at destination
r . Riders can only be picked up or delivered within the
associated time windows; otherwise, time window constraints
are violated. Instead of shifting the earliest departure time, riders
are willing to accept alternative drop-off locations, such as a
transit stop or coffee shop close to the requested drop-off
location, when appropriate incentives are offered. As illustrated
in Fig. 3, an interested rider can specify how much incentive is
needed for an alternative destination #; to become acceptable.
Note that each alternative destination is associated with its own
time window [Er ,Lr ].

Given the predetermined travel plans submitted by drivers
and riders, as well as the extra flexibility in a driver’s time
schedule and a rider’s drop-off location that can be activated by
incentives, the carpool matching coordinator makes the following
decisions: 1) allocating incentives to carpool participants to
stimulate the desired behavioral changes, 2) assigning riders to
drivers, and 3) routing drivers (or vehicles), subject to various
constraints (such as driver capacity and incentive budget limit).
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The above optimization decisions are clearly interrelated, which
can be explained by taking the case of driver incentives as an
example. The incentive allocated to a driver directly impacts the
driver’s travel schedule flexibility, which further determines
what riders can be assigned to this driver and how this driver
should be routed; the effect of adding extra flexibility to a
driver’s travel schedule can only be evaluated through rider
assignments and vehicle routing, which largely determines whether
the required incentive for the corresponding extra flexibility is
justified. The optimization objective of the carpool matching
coordinator is to maximize the total travel cost savings (measured by
reductions of vehicle miles traveled) due to carpooling, because
the matching coordinator is a government entity in this study.
When a single rider is assigned to a driver, the resulting
vehicle route is straightforward to find. When a driver is assigned
multiple riders, there may exist multiple potential ways to pick
up and drop off riders. Time window constraints should be
checked for each involved participant to ensure the feasibility of
a vehicle route. As carpool participants usually have highly
diverse travel schedules, not all the drivers and riders can be
matched. Unmatched drivers or riders travel alone from their
origins to destinations. For instance, an unmatched rider » may
take a taxi with a known cost of o,. For each route, the travel cost
saving due to carpooling is defined as the difference between the
cost without carpooling (corresponding to the case where all
drivers drive alone, and riders are served by other services) and
the cost with carpooling. Clearly, the travel cost saving can be
positive only when a driver is matched with one or multiple
riders; the cost saving is zero when drivers or riders are not
matched. Note that cost here is not necessarily monetary. In this
study, by travel cost, we mean the vehicle miles traveled of a trip.
As Sun et al. (2020a) have developed an efficient graph-theoretic
approach for generating all possible vehicle routes for given
drivers and riders, we adapt the vehicle generation approach by
making multiple virtual copies of drivers and riders, each of
which corresponds to one flexibility option associated with an
incentive. For instance, if a rider accepts two additional destinations

with various required incentives, in total three copies of the rider
are made. Clearly, only one copy can be selected for a driver or
rider. Once the flexibility option chosen by the matching
coordinator is known, the incentive allocated to the involved
carpool participant is clear. In this study, drivers have multiple
earliest departure times; riders accept several alternative drop-off
locations. Driver incentives are intended to increase temporal
flexibility, while rider incentives are meant to enhance spatial
flexibility. Given the above insights, we formulate the integrated
carpool matching and incentive design problem, denoted as I1,
as follows:

max z Pz , (1)
ses

st. D¢,z <1, VreR, )
seS
z <1, VkekK

zq * ) 3)
ﬂSZA' S em

2 : @

z, e{0,1},VseS . )

In the above binary integer program, S represents the set of all
vehicle routes. z, is the binary decision variable indicating whether
route s should be selected or not. p is the cost saving of route s.
Furthermore, ¢, is a parameter indicating whether rider r is
covered by route s and S; is the set of routes of driver/vehicle .
[ 1s the total incentive requires for the involved driver and riders
in route s to make necessary behavioral changes such that route s
is feasible. The total incentive budget is 6,. This optimization
problem aims to maximize the matching coordinator’s total cost
savings by selecting vehicle routes, subject to three constraints: a
rider can be served only once (Eq. (2)); a single route can be
selected for one driver (Eq. (3)); the incentive budget constraint
is not violated (Eq. (4)). Eq. (5) is a feasibility constraint.

3.2 Rolling Horizon Optimization Framework for
Dynamic Carpool Matching

In the static setting, all drivers and riders submit their carpool
requests well in advance, which means the carpool matching
problem is solved only once. In the dynamic case, carpool
participants are not required to do so, as they likely submit their
requests shortly before their intended travels. For driver £ and
rider 7, we denote their request submission times as A* and A,
respectively. The matching coordinator must inform a carpool
participant of the matching outcome by a prespecified due time.
We use 1 and 4/ to represent the due times of driver k and rider
r, respectively. Similar dynamic problem setups have been used
in the literature, such as Masoud and Jayakrishnan (2017).

We next define a planning horizon [0, 7], which is divided
into N epochs of equal length 7/N . Epoch » starts from #, and
ends at ¢,=T/N or t,.,. At ¢, we construct a static carpool
matching problem I, by considering all drivers and riders with a
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request submission time earlier than z, (i.e., lkﬁt,, and A'<t,)
and with a due time later than #,+A (i.e, p>t,+A and
1 >t,+A), where A is a small constant. The constructed static
problem I, is solved at #,, with optimization solutions available
before #,+ A . In other words, A represents the maximum available
time to solve a static carpool matching problem in one epoch,
which should be strictly smaller than 7/N . At ,, the optimization
problem (1-5) is built and solved with an integer program solver,
whose solutions are examined at 7,+ A for dispatching decisions.
For selected vehicle routes, they may be dispatched immediately
or delayed on purpose. If a route is still feasible at the next
dispatching time (i.e., #,,,+A) and each participant involved in
this route has a due time later than the next dispatching time, it
will be postponed for dispatching. Postponing some vehicle
routes to the next dispatching point has been shown by Sun et al.
(2020a) to be more advantageous than dispatching all vehicle
routes immediately after solving problem IT,. Those postponed
vehicle routes along with their involved drivers and riders are
intended to be re-evaluated and considered in the next epoch.
Under the postponement policy, a driver or rider may be
involved in the carpool matching over a few consecutive epochs
before finally getting dispatched, which leads to the correlations
of optimization problems in successive epochs. A related
postponement policy is also used in Cook and Lodree (2017).
Therefore, the way how drivers and riders dynamically enter, get
matched or unmatched, and leave the carpool matching system is
defined.

4. Data

4.1 Travel Plan Data
Although carpool matching has been studied by quite a few
researchers, none of them have used real-world demand data. For
instance, both Xia et al. (2015) and Cheikh-Graiet et al. (2020)
have used simulated data to test their developed optimization
algorithms. While randomly generated carpool matching instances
may be sufficient to test the efficiency of proposed matching
algorithms, a clear shortcoming of using simulated demand data
is that empirical insights are very unlikely to be obtained. For
instance, in most simulations, rider origins and destinations are
uniformly sampled over a region, without considering any traffic
flow patterns in the real world, such as heavy flows from a
northwestern suburban area to downtown from 7 am to 9 am.
Results from such randomly generated instances may thus
underestimate the potential benefits of carpooling, because the
travel plans of commuters in a certain corridor are highly
correlated rather than independent. Although real-world carpool
demand data are desirable, they are unlikely to be publicly
available due to privacy reasons. In this study, we generate
realistic dynamic carpool matching instances based on the open
taxi trip data in Washington, D.C. and seek to derive practically
valuable findings.

The latest taxi trip data made available by the District of
Columbia through its open data platform (https://opendata.dc.gov/)

were from June 2019. We selected one day (the first Monday of
June 2019 or June 3, 2019) for analysis. Although each trip
record consisted of many fields, only a few relevant ones to this
study were kept, namely trip origin (in the form of latitude and
longitude), destination, and start time. A trip record was dropped
if one of the required fields had a missing value. Note that the
exact times were unavailable, because all times were truncated to
the whole hour (e.g., 9:31 am to 9:00 am). Fig. 4 shows how the
19,679 trips were distributed over time. Note that taxi travels
may not exhibit morning and afternoon peaks, because the
primary travel purpose of taxi trips is typically business or leisure
travel, not commuting. Fig. 5 shows the spatial distribution of
trip origins along with locations of metro stations within the city
limits of Washington, D.C.

As the exact trip start time was unavailable due to truncation,
a uniformly distributed random integer between 0 and 59 was
drawn to be the missing minute. Given the trip origin and
destination, the distance between them was estimated as the
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great-circle distance multiplied by 1.2. We assume that an
unmatched rider will be served by some third-party service (such
as taxi) through the Guaranteed Ride Home (GRH) program,
which results in 20% more vehicle miles than peer drivers. The
extra 20% is added to account for the deadheading mileage of
taxi. The direct travel time was estimated by assuming a constant
travel speed of 35 miles per hour. The latest arrival time at the
destination was estimated as the earliest departure time plus the
direct travel time multiplied by the so-called TTB (Travel Time
Budget) factor (Masoud and Jayakrishnan, 2017; Sun et al.,
2020a), which was widely used to measure the travel schedule
flexibility. In this study, the range for the TTB factor was 1.2 to
1.5. As shown in Fig. 6, the order submission time was 15 to 20
minutes (uniformly distributed) before the earliest departure
time; the matching notification due time was 5 minutes earlier
than the earliest departure time. All the 19,679 trips were
converted to carpool requests, among which 25% were randomly
selected to be driver offers. Each driver was assumed to willingly
take a maximum of three riders. The rest of trips were assumed
rider requests.

4.2 Driver Incentive Data

All rivers were enrolled in the incentive program, and there were
three options to extend the travel schedule flexibility. The earliest
departure time can be shifted earlier by 5, 10, or 15 minutes. As it
was increasingly difficult to shift the earliest departure time, the
required incentives for those three flexibility options were
specified as a;, 2.2a;, and 4q;, respectively. a;, was the driver-
specific incentive needed to enable driver £ to shift the earliest
departure time by the initial five minutes, which was uniformly
distributed on a range [an, dmax] - The baseline values of ay,
and a,, were $1.5 and $2.5, respectively. In other words, on
average a driver in the benchmark case expected $2 to shift the
earliest departure time by 5 minutes, while she/he expected
much more (i.e., $8) to shift the departure by 15 minutes.

4.3 Rider Incentive Data

As D.C. is covered relatively well by rail transit, especially in its
downtown area, riders were assumed to accept nearby metro
stations as alternative drop-off locations, when appropriate
incentives are provided. For each carpool rider, the nearest metro
was identified. If the distance between this identified metro
station and the requested drop-off location was over 0.8 miles,
this rider would not accept this alternative drop-off location due
to the excess walking involved. If the distance was below 0.8
miles, the rider would accept the alternative drop-off location,
and the required incentive would be computed as the involved

walking distance multiplied by b,, where b, measures the cost of
walking per mile as perceived by rider r. For each alternative
drop-off location, the latest arrival time is adjusted by considering a
constant walking speed of 3 miles per hour.

5. Results and Discussions

Python 3.9 was used for necessary data manipulation described
in Section 4. The static optimization model defined in Section
3.1 was solved by CPLEX v20.1 on a personal computer (Intel
Core 17-8700 CPU 3.20 GHz, 32 GB RAM). An afternoon
planning horizon from 2:30 pm to 6:00 pm was selected, because
of the relatively steady and strong demand in this period, as
illustrated in Fig. 4. A total of 4,649 carpool participants were
involved in the following analyses. The carpool matching
coordinator, a government entity as assumed earlier, seeks to
maximize the vehicle mile savings, because vehicle miles
traveled is a widely adopted metric of transportation-related
emissions, energy consumption, and other negative externalities
(Fang and Volker, 2017).

5.1 Effectiveness of Driver Incentives

We first consider driver incentives only. One problem instance is
generated as the benchmark, where the incentive budget limit is
$25 per 2-minute epoch. Fig. 7 shows the numbers of submitted
carpool requests (or called arrivals) and dispatched carpool
participants (or called departures) in each epoch. The departure
curve lags behind the arrival curve for about five epochs, which
means a carpool participant spends approximately ten minutes in
the matching process, from request submission to matching
outcome announcement. Fig. 8 shows the optimization objective
(ie., total vehicle miles saved) in each epoch. On average, carpool
matching in each epoch yields approximately 25 vehicle miles to
be saved. Fig. 9 shows how allocated incentives are claimed in
each epoch. Although the budget constraint, Eq. (4), is binding in
almost all the epochs, the total incentives claimed by carpool
incentives are less than the incentive budget limit. This is
because a significant portion of the participants selected for
incentives are postponed to later epochs.

Although on average around 60 carpool participants (drivers
and riders combined) arrive and leave per epoch, as shown in
Fig. 7, the number of carpool participants in each static matching
problem is above 400. This is because carpool participants
remain in the matching pool for approximately five epochs, as
indicated earlier. For such problem sizes, it takes no more than
two minutes to construct and solve a static matching problem in
an epoch, as illustrated in Fig. 10. One-third of the total
computation is spent on solving the integer program, while the
rest is used to generate possible routes. Given the solution time
needed per epoch, the value of the maximum allowable solution
time A can be set to be 1.5 minutes. Since each epoch has two
minutes, all static matching problems are solved, and matching
results become available well within A, thus satisfying the
requirement of real-time decision-making.
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In the benchmark case analyzed above, the incentive budget
limit is $25 per epoch. We now vary the incentive budget limit
from $0 to $35 and show how the total vehicle mile savings
change accordingly in Fig. 11. When no incentives are available,
the vehicle mile savings are 1,129.8 (or 6.9%); when the incentive
limit is $5 per epoch, the resulting savings increase to 1,386.3 (or
8.5%). Therefore, allocating incentives to drivers to influence
their schedules leads to significantly higher vehicle mile savings.
When the budget limit is $5 per epoch, the total incentives
utilized over the planning horizon are $89.1. Considering the

g 16:20 4
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16:44 4
16:52 4
17:00 4
17:08 4
17:16 4
17:24 4
17:32 4
17:40 4
17:48 4
17:56 4
18:04 4

increase in vehicle mile savings (256.5, which is the difference
between 1,386.3 and 1,129.8), we conclude each dollar in
incentives leads to 2.88 vehicle miles to be saved. Other numbers
above the curve in Fig. 11 can be interpreted in the same way.
When the incentive budget limit per epoch is $35, the total
vehicle mile savings are more than 100% higher than those
without incentives. It should also be noted that the vehicle mile
savings resulted from one dollar of incentive diminish as the
incentive budget limit increases, which implies an upper bound
on the budget limit. For instance, if one dollar of incentive is



KSCE Journal of Civil Engineering 9

30

Standard deviation = 19.35

25] e e e e e e e e e
—— Claimed
-==- Budget limit
20
B
s
5151
=
g
2
w
@
2
£ 10+
@
=
£
5_
0
N M T N 2 © o ™M M T T N Q oA N ONM T NS QA N M T T N O
= = < - w w W w woon v w w w w v w v o ~ ~ ~ ~ ~ r~ ~ ~ «@
- A4 A A4 4 A " = 4 4 4 < 4 4 4 4 4 4 4 4 4 4 4~ 4~ 4 4 4 ™~
Time
Fig. 9. Claimed Incentives in Each Epoch over Time
!
'
'
]
]
)
35 :
:
;
'
| Mean = 20.96
E
)
:
:
:

27 36
Fig. 10. Histogram of the Computation Time per Epoch

evaluated to be equivalent as 1.5 vehicle miles being saved to the
coordinator, the incentive budget per epoch should be clearly
below $15.

In the benchmark case, the incentive needed by driver k is
uniformly distributed on range [1.5, 2.5], with an average value
of $2 per five minutes. We then explore the impact of the range
for a; on the optimization objective in Fig. 12. As expected, as
the expectation of g, increases from $1 to $4, the vehicle mile
savings drop significantly, which is understandable. As more
incentives are needed for an average driver to consider a more
flexible travel schedule, the vehicle mile savings that can be

45 54 63
Total computation time per epoch (seconds)

achieved by incentives diminish, for the same incentive budget limit.
Note that when the budget limit is zero, the vehicle mile savings are
the same, regardless of the range for ;. Similarly, as the expectation
of a; increases from $1 to $4, the matching success rate (defined as
the total number of matched participants divided by the total number
of participants) drops, as shown in Fig. 13.

As some values in a problem instance are randomly sampled,
we explore the variability of results for the same set of parameters
used in generating instances. We adopt the same parameters that
are used in the benchmark case while employing different random
seeds. Fig. 14 shows that although variations in the results exist,
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such variations tend to be small.

5.2 Effectiveness of Rider Incentives
Since driver incentives have been thoroughly studied in Section
5.1, we investigate rider incentives here. The incentive needed
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Fig. 14. Comparison of Results from Five Randomly Generated Instances

for rider » to willingly walk for one mile from an alternative
destination to the preferred drop-off location is defined in
Section 4.3 as b,. Two ranges for b, are considered, namely [3, 5],
and [7, 9]. As mentioned in Section 4.3, we assume that when a
rider is dropped off at an alternative destination (e.g., a transit
station), the rider walks to the requested destination (e.g.,
workplace) while not violating the pre-specified time window at
the destination. For instance, if the latest arrival time at the
workplace is 9:30 am and it takes 10 minutes to walk from a
transit stop to the workplace, the latest arrival time at the transit
stop should be 9:20 am. The default walking speed is 3 miles per
hour.

We consider a similar case to the benchmark case in Section
5.1 (e.g., assuming an incentive budget limit of $25 per epoch),
while considering rider incentives only. It turns out no riders
could feasibly accept alternative drop-off locations, which means
nil of the incentives are allocated and zero improvements in the
optimization objective due to rider incentives are observed. In
other words, rider incentives are futile in this case.

The motivation for allocating incentives to riders is that
requested drop-off locations could be “clustered”, so that a driver
could drop off multiple riders at once at a common location that
is not far from other individual destinations. That way, the number
of drop-offs performed by drivers and vehicle miles dedicated to
rider drop-offs decrease. However, the clear shortcoming of
dropping riders prematurely is that riders must be dropped much
earlier than the requested latest arrival time to save time for
walking to the requested destination. This shrinkage in riders’
schedule flexibility has a major impact on the route feasibility, as
shown in Fig. 15. Suppose that enough incentives have been
provided so that each rider is willing to accept the alternative
drop-off location. When the walking speed is extremely large
(more than 100 miles/hour, which is clearly unrealistic), the
adjusted arrival time window at the alternative destination is very
close to the original one at the requested destination. As the
walking speed decreases, the latest arrival at the alternative
destination must be shifted earlier, which implies an increasing
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difficulty of finding a driver for matching. As the walking speed
further drops to the normal range (such as 3 mph to 4 mph),
significant walking is involved from the alternative destination
and requested destination; the arrival time window at the
alternative destination turns very narrow, which greatly reduces the
rider’s chance of being matched with other drivers. This explains
why as the walking speed drops, the number of feasible vehicle
routes drops rapidly. Since humans tend to walk 3 to 4 miles per
hour, Fig. 15 shows riders cannot be feasibly matched with other
drivers if riders must walk to their requested destinations.

Therefore, if the arrival time window at the requested destination
cannot be violated even when a rider is dropped off at an alternative
destination, the effectiveness of rider incentives in improving
system-level vehicle mile savings is almost none under normal
assumptions about walking speed, regardless of the magnitude of
incentives requested by riders.

It is thus understandable that almost all the incentives would
be allocated to drivers to incur their departure time changes in a
scenario where both drivers and riders are eligible for incentives.
The primary reason is that drivers’ departure time changes
enabled by incentives can yield much more vehicle mile savings
than trip destination changes by riders.

6. Conclusions

In this study, we have evaluated the effectiveness of personalized
travel incentives in reducing vehicle miles traveled in a dynamic
carpooling system. We considered two incentive schemes: driver
incentives to influence the departure time choices of drivers, and
rider incentives to encourage the adoption of alternative drop-off
locations by riders. As incentive allocations are closely related to
other carpool matching decisions, an integrated optimization
model adapted from Sun et al. (2020a) was introduced. A rolling
horizon solution framework was then employed to address the
dynamism of this optimization problem. Real-world taxi trip data
in Washington, D.C. were enhanced to create a range of dynamic
carpool instances. We derived the following findings after
conducting the numerical studies:

1. The developed optimization framework can satisfy the
need for real-time decision-making, which can thus be
implemented in a real-world dynamic carpool system.

2. Personalized driver incentives can significantly improve
the system-level objective (maximization of vehicle mile
savings) of a dynamic carpool ing system. In one benchmark
case, it is found that one dollar in incentive can increase the
optimization objective by 2.88 miles, although the effect
diminishes as the incentive budget limit increases.

3. Under practical assumptions about key parameters, the
driver incentive scheme is shown to be significantly more
effective than rider incentives.

The primary takeaway from this study is that incentives should
be customized and offered to certain drivers, whose changes in
their travel schedules are critical to the improvement in the
optimization objective. The developed optimization framework
in this study is thus useful in identifying such “critical” drivers
and optimizing the incentive allocations, as well as other carpool
matching decisions.

This paper presents the first known study to explore the
effectiveness of personalized incentives in dynamic carpooling
based on empirical data, which is the contribution of this paper to
the literature. Nonetheless, this study should be improved in
several ways, as follows:

1. Some real-world taxi trip data were used to approximate
carpool demand in this study; a few other key parameters,
such as the average incentive needed for a driver to shift the
departure time by five minutes, were assumed. Carpool
matching coordinators should use their own demand data
and conduct further user surveys to conduct more relevant
numerical analyses. This is because the performance of an
incentive scheme clearly depends on the travel patterns
(e.g., distributions of origins and destinations, and widths
of travel time windows) and user preferences (e.g.,
incentives demanded per unit of time) in a carpool system.

2. In this current study, each driver had only three flexibility
options, which was limited. In case a driver has many
options, directly solving the static optimization problem
defined in Section 3.1 can be time-consuming. Therefore, a
column generation-based heuristic can be designed. To
begin with, initial columns representing vehicle routes are
generated, assuming zero incentives. After solving the
linear programming relaxation of the restricted formulation
including initial columns only, new columns (routes) which
are resulting from applying incentives are added and only
those columns with the potential to generate net benefits at the
system-level are added to the matching optimization problem,
whose solution triggers the next iteration. This iterative
process terminates when no such columns can be found.

3. This study does not consider any uncertainty in the behavioral
responses of carpool participants. In reality, even when
appropriate incentives are offered as needed, participants
may decline to revise their travel plans. In that case, matching
results and incentive allocations must be reoptimized.
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4. Although this study aims to maximize the total vehicle mile
savings (proxy for the environmental benefits), the developed
model can accommodate other optimization objectives
with little modifications, such as minimizing the number of
unmatched carpool participants and minimizing the total
travel time.
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