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1. Introduction

Numerous advances in information and communication technologies 

(such as mobile apps) have revitalized the practice of carpooling 

(Shen et al., 2021). Many commuter assistance programs in the 

United States (U.S.) now offer dynamic carpooling services to 

facilitate the matching of interested drivers and riders. For instance,

King County Metro launched app-based dynamic carpooling 

services in Seattle, Washington, U.S. (Shen et al., 2021). The 

Commuter Connections Program in the Washington, District of 

Columbia (D.C.) area developed an app CarpoolNow to enable 

commuters in the capital region to be matched with other 

commuters with similar travel plans in a real-time manner 

(Commuter Connections, 2020). Carpooling is known to have 

great potential to reduce vehicle trips, improve vehicle occupancy, 

and mitigate the negative externalities of transportation (Chan 

and Shaheen, 2012), due to its defining feature: carpool drivers 

(who are not professional drivers) have their own predetermined 

travel plans to execute regardless of whether carpool riders are 

matched with them. They are matched with other carpool riders 

because of their similar travel plans. Generally, carpool drivers 

do not expect any net financial gains (positive profits) while their 

costs are shared by their matched riders. In contrast, Uber and 

Lyft drivers are profit-driven and generally do not share travel 

plans with their riders. Even though riders involved in ridesplitting 

(such as UberPool and Lyft Line) may travel toward a similar 

direction (Shaheen and Cohen, 2019), they do not have similar 

travel plans with their drivers. Because carpool drivers have their 

own travel schedules to follow, the performance of dynamic 

carpooling (measured by the saved vehicle miles, for instance) 
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largely depends on the travel schedule flexibility (the extent to 

which detour is tolerated) of carpool participants (Masoud and 

Jayakrishnan, 2017; Sun et al., 2020a).

To fully exploit the potential of dynamic carpooling in promoting 

transportation sustainability, one promising way is to introduce 

an incentive scheme for carpool participants (drivers and riders) 

to opt for to lift some tight constraints on travel plans. For 

instance, a driver who opts for this incentive program specifies 

how much she/he expects to be compensated (e.g., $5) if the 

earliest departure time at the origin is shifted to be earlier than the 

originally scheduled time by a certain amount (e.g., 10 minutes). In 

addition, incentives can be offered to riders to influence their 

travel choices, such as the drop-off location choice. Although a 

rider has the most preferred destination, a few alternative destinations 

may become acceptable upon receiving certain incentives. 

Stiglic et al. (2015) has demonstrated the benefits of introducing 

such “meeting points” to reduce the number of rider pickups. In a 

dynamic setting, all those driver offers and rider requests along 

with incentive options are received by the carpool matching 

coordinator continuously over time. Given all predetermined 

travel plans provided by drivers and riders, as well as the extra 

flexibility in drivers’ and riders’ travel plans enabled by incentives, 

the matching coordinator makes the following decisions: allocating 

incentives, matching riders with drivers, and routing vehicles, as 

illustrated in Fig. 1. In this study, the matching coordinator is a 

government entity that is interested in maximizing a system-wide 

performance measure, subject to an exogenous incentive budget. 

When incentives are absent, the dynamic carpool matching 

problem can be efficiently solved, thanks to various exact and 

approximation solution algorithms that have been recently 

developed (Mourad et al., 2019). Although fixed incentives have 

been widely adopted to encourage mode shifts to carpool, the 

effectiveness of personalized incentives in achieving transportation

sustainability objectives is unexplored. The consideration of 

personalized incentives in carpooling is nontrivial because of the 

behavioral implications: drivers might game the platform by 

misrepresenting their required compensations to modify their 

travel plans. A naïve approach is to allocate incentives to those 

who require lower compensations than others until the budget 

constraint is met. However, the impacts of adding the same extra 

flexibility to various drivers’ schedules are largely different. The 

marginal benefits brought by the extra flexibility depend on a 

few factors, such as the current driver-rider ratio in a travel 

direction. Moreover, incentive decisions are correlated because 

the benefit of influencing a driver’s travel behaviors depends on 

whether some other interrelated drivers receive incentives and 

change their travel plans. Thus, the optimization method should 

ensure that incentives are allocated only to “efficient” drivers 

whose travel behavioral changes can directly benefit the system-

level objective, for a given incentive budget limit. Similarly, the 

design of rider incentives to induce riders to accept alternative 

drop-off locations is equally complex. 

Motivated by the above important research gaps, this paper 

intends to tackle the incentive design problem in dynamic carpooling 

and present an integrated optimization model that jointly 

considers personalized incentive allocation, rider-driver assignment, 

and vehicle routing. This study also expects to evaluate the 

potential of proposed travel incentives in reducing vehicle miles 

traveled through large-scale numerical experiments based on 

empirical data. 

To achieve the study objectives, we first presented an integer 

program incorporating driver and rider incentives for a static 

carpool matching problem, which was an extension of the 

carpool matching model developed by Sun et al. (2020a). Then, 

a rolling horizon solution approach was adopted for the dynamic 

setting. As no real-world carpool demand data were available, 

the taxi trip data in Washington, D.C. were adapted to generate a 

range of test scenarios with varying incentive budget limits. 

Research results from the extensive numerical studies confirmed 

the high effectiveness of customized travel incentives for drivers. 

For instance, it was found that one dollar of incentive resulted in 

a reduction of 2.88 vehicle miles traveled in one case.

The rest of this paper is structured as follows. Section 2 

briefly reviews the carpool matching optimization literature and 

scans various existing travel incentive schemes in shared 

mobility systems. Section 3 formulates the integrated optimization 

problem and presents a rolling horizon solution framework. 

Section 4 describes the data preparations for the empirical study 

and Section 5 analyzes the research findings. Section 6 ends this 

paper by highlighting major findings and summarizing future 

research directions.

2. Literature Review 

2.1 Evolution of Carpool Matching
As reviewed by Chan and Shaheen (2012), carpooling has 

Fig. 1. Major Parties and Decisions in Carpool Matching Involving Incentives
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experienced several phases of development in North America since 

World War II. In the 1940s, riders and drivers were matched through 

a bulletin board due to the unavailability of other technologies. In the 

1970s, large employers started to identify potential carpool matches 

based on travel data collected from their employees. Telephone-

based matching emerged in some U.S. cities in the 1990s, which 

were later enhanced by emails and web pages. At present, due to the 

widespread use of smartphones, most of the modern carpool 

matching platforms are built on the mobile internet, thus providing 

the most efficient way for drivers, riders, and the matching 

platform to exchange carpool-related information.

As early carpool matching was conducted manually, only regular 

trips, such as those home-to-work travels, could be registered and 

matched. Consequently, family members, friends, or co-workers 

with similar itineraries formed a carpool, which required long-

term commitment. With the advent of the internet, significantly 

improved carpool matching became available, which further 

incorporated other non-commuting recurring trips as well as 

occasional trips. Dailey et al. (1999) described such an internet-

based carpool matching platform, called Seattle Smart Traveler 

(SST). They found that the web-based platform could accommodate 

more carpool travelers than earlier matching platforms. Due to 

improved data support, the matching underlying SST was more 

systematic, which examined four trip attributes: departure time 

period, arrival time period, departure region, and arrival region. 

Two trips were considered matchable only when an overlap was 

identified between two trips for each of the four trip attributes. 

While this pairwise comparison of trip characteristics was simple 

to implement, it missed a few important elements in carpool 

matching. For instance, scheduling feasibility after carpool matching 

was not guaranteed; one-to-many matching (i.e., a single driver to be 

assigned multiple riders) was unavailable; vehicle routing was 

absent. At present, the dynamic carpooling service presents several 

new improvements, because mobile apps allow drivers to announce 

their driver offers and riders to request a ride, both shortly before 

their intended departures. Those driver offers and rider requests 

received by the matching platform will be matched and announced 

in near real-time. Quite a few practical constraints are considered in 

matching, such as vehicle capacity limits and time window 

constraints. Therefore, much more sophisticated carpool matching 

algorithms have recently been developed to meet the need for real-

time decision-making, which are briefly reviewed next. 

In the dynamic carpool matching literature, carpool matching 

is usually formulated and solved as a variant of the pickup and 

delivery problem with time windows (PDPTW), which is one of 

the most studied combinatorial optimization problems in operations 

research (Baldacci et al., 2011). Due to the intricacy of solving 

the dynamic carpool matching problem efficiently, approximation 

solution algorithms are usually developed in the literature (Cheikh-

Graiet et al., 2020). For instance, Xia et al. (2015) formulated an 

integer program for carpool matching and employed widely used 

metaheuristics (namely simulated annealing and tabu search) to 

solve the optimization problem. Sun et al. (2020a) designed a 

graph-based method to generate rider-driver assignments and 

vehicle routing plans for drivers. To solve the matching optimization 

problem, they developed a column generation-based heuristic, in 

addition to an exact solution algorithm. Their numerical analyses 

indicated that the exact solution algorithm can solve large-scale 

problem instances involving around 600 drivers and 1,800 riders 

quickly; the column generation-based heuristic can find near-

optimal solutions for even larger instances. The highly efficient 

solution algorithms were thus used to solve carpool matching 

problems in real-time. For more comprehensive and in-depth 

reviews of the carpool matching models and algorithms, see 

Mourad et al. (2019) and Tafreshian et al. (2020).

2.2 Travel Incentives in Shared Mobility
Monetary incentives are widely used in transportation demand 

management to trigger desirable travel behavioral changes (Sun 

and Zhang, 2018; Zhu et al., 2020). For instance, a fixed incentive of 

$2 was offered to each carpool participant between late 2018 and 

early 2019 by King County Metro in the Seattle area of Washington

(Shen et al., 2021), although those fixed incentives were argued 

to be less effective as personalized incentives by Xiong et al. 

(2020). In a few shared mobility systems, such as bike sharing 

and car sharing, various travel incentivization schemes have been 

explored and a few example studies are reviewed as follows.

Pfrommer et al. (2014) studied the bike redistribution problem

which was central in a bike sharing system. Since a user picking 

up a bike at one location could virtually return it to any other 

location, some bike locations may become overfilled over time 

while other locations do not have enough bikes available. To 

address this imbalance issue, expensive vehicle redistribution 

operations were needed. To reduce the redistribution cost, Pfrommer 

et al. (2014) optimized the incentives offered to bike users who 

were willing to revise their trip destinations. They conducted a 

case study of the bike sharing system in London to evaluate the 

effectiveness of the optimized incentives. Singla et al. (2015) 

studied a similar incentive design problem in bike sharing, while 

they explicitly considered the possibility that bikers may 

misrepresent their private information about incentives. In this 

case, a sophisticated incentive-compatible mechanism (Sun et 

al., 2020b) must be designed to ensure truthful reporting of 

private information. 

Fanti et al. (2019) focused on the incentive design problem in 

one-way car sharing. In the proposed incentive scheme, users 

would get free travels or rewards if they participated in the 

vehicle relocation activities. They designed two integer programs to 

minimize the vehicle relocation cost with incentives being 

incorporated. Similarly, Wang et al. (2019) studied how to offer 

users rewards in order to relocate vehicles to those locations with 

a short supply of vehicles. 

Song et al. (2021) assumed that subsidies could be offered to 

carpool participants based on travel distance and explored the 

effect of such subsidies in reducing traffic congestion through 

simulation-based studies. Similarly, Masoud and Tafreshian 

(2021) considered a subsidization scheme based on participants’ 

value of time (VOT). Those fixed incentives have various 
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deficiencies. The travel distance-based subsidization does not 

capture the varying individual responses to the same incentive; 

applying the same incentive to two trips of equal distance likely 

yields different returns. Under the VOT-based subsidization 

scheme, a participant gets the same incentive regardless of the 

time period of travel. In fact, a driver with a certain travel plan in 

the morning period might be highly “desirable” and is thus being 

offered significant incentives; however, in a different period, this 

driver with the same plan may not get any incentives at all, due 

to the dynamics of driver-rider balance. For instance, in the 

morning two other riders have almost identical travel plans with 

the driver, justifying significant incentives for the driver, while in 

the other period, there are no such riders, meaning no incentives 

are needed. Therefore, customized incentives to individuals and 

periods should be considered to replace static and fixed incentives. 

2.3 Summary 
The carpool matching literature has been well developed, with 

recent studies devoted to dynamic carpooling. Various travel 

incentives have been adopted in bike sharing and one-way car 

sharing. In contrast, no personalized incentives have been considered 

in carpooling, static or dynamic. Therefore, none of the existing 

studies have jointly optimized the allocation of personalized 

incentives to carpool participants and carpool matching. 

Consequently, little is known of how personalized carpool 

incentives could translate into environmental benefits. This 

paper will thus fill those important research gaps.

3. Method

3.1 Static Carpool Matching Problem 
A static carpool matching problem involves a set of drivers K

and a disjoint set of riders R. As illustrated in Fig. 2, each driver 

 has a departure time window  associated with 

the origin k+, where Ek+ and Lk+ represent the earliest and latest 

departure times, respectively. The arrival time window  

associated with the destination k− can be inferred from the 

departure time window  since the direct travel time 

from k+ to k− is known. All drivers who opt for the incentive 

program must specify how much incentive, denoted as , is 

expected if the predetermined earliest departure is shifted earlier 

by αj. In other words, in option , the new departure time 

window of driver k becomes  upon receiving an 

incentive of . For drivers who are not enrolled in this 

incentive program, αj can be set to be zero while  can be set as 

a very large constant. Each driver has a capacity limit, which 

restricts the maximum number of riders to be matched with 

driver k to be ηk.

A rider  has a departure time window  at 

origin r+ and an arrival time window  at destination 

. Riders can only be picked up or delivered within the 

associated time windows; otherwise, time window constraints 

are violated. Instead of shifting the earliest departure time, riders 

are willing to accept alternative drop-off locations, such as a 

transit stop or coffee shop close to the requested drop-off 

location, when appropriate incentives are offered. As illustrated 

in Fig. 3, an interested rider can specify how much incentive is 

needed for an alternative destination  to become acceptable. 

Note that each alternative destination is associated with its own 

time window . 

Given the predetermined travel plans submitted by drivers 

and riders, as well as the extra flexibility in a driver’s time 

schedule and a rider’s drop-off location that can be activated by 

incentives, the carpool matching coordinator makes the following 

decisions: 1) allocating incentives to carpool participants to 

stimulate the desired behavioral changes, 2) assigning riders to 

drivers, and 3) routing drivers (or vehicles), subject to various 

constraints (such as driver capacity and incentive budget limit). k K∈ [ , ]Ek Lk
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Fig. 2. A Driver Offer Associated with Multiple Flexibility Options
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The above optimization decisions are clearly interrelated, which 

can be explained by taking the case of driver incentives as an 

example. The incentive allocated to a driver directly impacts the 

driver’s travel schedule flexibility, which further determines 

what riders can be assigned to this driver and how this driver 

should be routed; the effect of adding extra flexibility to a 

driver’s travel schedule can only be evaluated through rider 

assignments and vehicle routing, which largely determines whether 

the required incentive for the corresponding extra flexibility is 

justified. The optimization objective of the carpool matching 

coordinator is to maximize the total travel cost savings (measured by 

reductions of vehicle miles traveled) due to carpooling, because 

the matching coordinator is a government entity in this study. 

When a single rider is assigned to a driver, the resulting 

vehicle route is straightforward to find. When a driver is assigned 

multiple riders, there may exist multiple potential ways to pick 

up and drop off riders. Time window constraints should be 

checked for each involved participant to ensure the feasibility of 

a vehicle route. As carpool participants usually have highly 

diverse travel schedules, not all the drivers and riders can be 

matched. Unmatched drivers or riders travel alone from their 

origins to destinations. For instance, an unmatched rider r may 

take a taxi with a known cost of or  . For each route, the travel cost 

saving due to carpooling is defined as the difference between the 

cost without carpooling (corresponding to the case where all 

drivers drive alone, and riders are served by other services) and 

the cost with carpooling. Clearly, the travel cost saving can be 

positive only when a driver is matched with one or multiple 

riders; the cost saving is zero when drivers or riders are not 

matched. Note that cost here is not necessarily monetary. In this 

study, by travel cost, we mean the vehicle miles traveled of a trip.

As Sun et al. (2020a) have developed an efficient graph-theoretic 

approach for generating all possible vehicle routes for given 

drivers and riders, we adapt the vehicle generation approach by 

making multiple virtual copies of drivers and riders, each of 

which corresponds to one flexibility option associated with an 

incentive. For instance, if a rider accepts two additional destinations 

with various required incentives, in total three copies of the rider 

are made. Clearly, only one copy can be selected for a driver or 

rider. Once the flexibility option chosen by the matching 

coordinator is known, the incentive allocated to the involved 

carpool participant is clear. In this study, drivers have multiple 

earliest departure times; riders accept several alternative drop-off 

locations. Driver incentives are intended to increase temporal 

flexibility, while rider incentives are meant to enhance spatial 

flexibility. Given the above insights, we formulate the integrated 

carpool matching and incentive design problem, denoted as Π  , 

as follows:

, (1)

s.t. , (2)

, (3)

, (4)

. (5)

In the above binary integer program, S represents the set of all 

vehicle routes. zs is the binary decision variable indicating whether 

route s should be selected or not. ρs is the cost saving of route s. 

Furthermore, ϕsr is a parameter indicating whether rider r is 

covered by route s and Sk is the set of routes of driver/vehicle k. 

βs is the total incentive requires for the involved driver and riders 

in route s to make necessary behavioral changes such that route s

is feasible. The total incentive budget is θm. This optimization 

problem aims to maximize the matching coordinator’s total cost 

savings by selecting vehicle routes, subject to three constraints: a 

rider can be served only once (Eq. (2)); a single route can be 

selected for one driver (Eq. (3)); the incentive budget constraint 

is not violated (Eq. (4)). Eq. (5) is a feasibility constraint. 

3.2 Rolling Horizon Optimization Framework for 
Dynamic Carpool Matching 

In the static setting, all drivers and riders submit their carpool 

requests well in advance, which means the carpool matching 

problem is solved only once. In the dynamic case, carpool 

participants are not required to do so, as they likely submit their 

requests shortly before their intended travels. For driver k and 

rider r, we denote their request submission times as λk and λr, 

respectively. The matching coordinator must inform a carpool 

participant of the matching outcome by a prespecified due time. 

We use μ k and μ r to represent the due times of driver k and rider 

r, respectively. Similar dynamic problem setups have been used 

in the literature, such as Masoud and Jayakrishnan (2017).

We next define a planning horizon [0, T], which is divided 

into N epochs of equal length . Epoch n starts from tn and 

ends at  or tn+1. At tn, we construct a static carpool 

matching problem Πn by considering all drivers and riders with a 

max
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Fig. 3. Rider Request and Flexibility Options
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request submission time earlier than tn (i.e.,  and ) 

and with a due time later than  (i.e.,  and 

), where Δ is a small constant. The constructed static 

problem Πn is solved at tn, with optimization solutions available 

before . In other words, Δ represents the maximum available 

time to solve a static carpool matching problem in one epoch, 

which should be strictly smaller than . At tn, the optimization

problem (1-5) is built and solved with an integer program solver, 

whose solutions are examined at  for dispatching decisions. 

For selected vehicle routes, they may be dispatched immediately 

or delayed on purpose. If a route is still feasible at the next 

dispatching time (i.e., ) and each participant involved in 

this route has a due time later than the next dispatching time, it 

will be postponed for dispatching. Postponing some vehicle 

routes to the next dispatching point has been shown by Sun et al. 

(2020a) to be more advantageous than dispatching all vehicle 

routes immediately after solving problem Πn. Those postponed 

vehicle routes along with their involved drivers and riders are 

intended to be re-evaluated and considered in the next epoch. 

Under the postponement policy, a driver or rider may be 

involved in the carpool matching over a few consecutive epochs 

before finally getting dispatched, which leads to the correlations 

of optimization problems in successive epochs. A related 

postponement policy is also used in Cook and Lodree (2017). 

Therefore, the way how drivers and riders dynamically enter, get 

matched or unmatched, and leave the carpool matching system is 

defined.

4. Data

4.1 Travel Plan Data
Although carpool matching has been studied by quite a few 

researchers, none of them have used real-world demand data. For 

instance, both Xia et al. (2015) and Cheikh-Graiet et al. (2020) 

have used simulated data to test their developed optimization 

algorithms. While randomly generated carpool matching instances 

may be sufficient to test the efficiency of proposed matching 

algorithms, a clear shortcoming of using simulated demand data 

is that empirical insights are very unlikely to be obtained. For 

instance, in most simulations, rider origins and destinations are 

uniformly sampled over a region, without considering any traffic 

flow patterns in the real world, such as heavy flows from a 

northwestern suburban area to downtown from 7 am to 9 am. 

Results from such randomly generated instances may thus 

underestimate the potential benefits of carpooling, because the 

travel plans of commuters in a certain corridor are highly 

correlated rather than independent. Although real-world carpool 

demand data are desirable, they are unlikely to be publicly 

available due to privacy reasons. In this study, we generate 

realistic dynamic carpool matching instances based on the open 

taxi trip data in Washington, D.C. and seek to derive practically 

valuable findings. 

The latest taxi trip data made available by the District of 

Columbia through its open data platform (https://opendata.dc.gov/) 

were from June 2019. We selected one day (the first Monday of 

June 2019 or June 3, 2019) for analysis. Although each trip 

record consisted of many fields, only a few relevant ones to this 

study were kept, namely trip origin (in the form of latitude and 

longitude), destination, and start time. A trip record was dropped 

if one of the required fields had a missing value. Note that the 

exact times were unavailable, because all times were truncated to 

the whole hour (e.g., 9:31 am to 9:00 am). Fig. 4 shows how the 

19,679 trips were distributed over time. Note that taxi travels 

may not exhibit morning and afternoon peaks, because the 

primary travel purpose of taxi trips is typically business or leisure 

travel, not commuting. Fig. 5 shows the spatial distribution of 

trip origins along with locations of metro stations within the city 

limits of Washington, D.C.

As the exact trip start time was unavailable due to truncation, 

a uniformly distributed random integer between 0 and 59 was 

drawn to be the missing minute. Given the trip origin and 

destination, the distance between them was estimated as the 

λ
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great-circle distance multiplied by 1.2. We assume that an 

unmatched rider will be served by some third-party service (such 

as taxi) through the Guaranteed Ride Home (GRH) program, 

which results in 20% more vehicle miles than peer drivers. The 

extra 20% is added to account for the deadheading mileage of 

taxi. The direct travel time was estimated by assuming a constant 

travel speed of 35 miles per hour. The latest arrival time at the 

destination was estimated as the earliest departure time plus the 

direct travel time multiplied by the so-called TTB (Travel Time 

Budget) factor (Masoud and Jayakrishnan, 2017; Sun et al., 

2020a), which was widely used to measure the travel schedule 

flexibility. In this study, the range for the TTB factor was 1.2 to 

1.5. As shown in Fig. 6, the order submission time was 15 to 20 

minutes (uniformly distributed) before the earliest departure 

time; the matching notification due time was 5 minutes earlier 

than the earliest departure time. All the 19,679 trips were 

converted to carpool requests, among which 25% were randomly 

selected to be driver offers. Each driver was assumed to willingly 

take a maximum of three riders. The rest of trips were assumed 

rider requests.

4.2 Driver Incentive Data
All rivers were enrolled in the incentive program, and there were 

three options to extend the travel schedule flexibility. The earliest 

departure time can be shifted earlier by 5, 10, or 15 minutes. As it 

was increasingly difficult to shift the earliest departure time, the 

required incentives for those three flexibility options were 

specified as ak, 2.2ak, and 4ak, respectively. ak was the driver-

specific incentive needed to enable driver k to shift the earliest 

departure time by the initial five minutes, which was uniformly 

distributed on a range . The baseline values of amin

and amax were $1.5 and $2.5, respectively. In other words, on 

average a driver in the benchmark case expected $2 to shift the 

earliest departure time by 5 minutes, while she/he expected 

much more (i.e., $8) to shift the departure by 15 minutes. 

4.3 Rider Incentive Data
As D.C. is covered relatively well by rail transit, especially in its 

downtown area, riders were assumed to accept nearby metro 

stations as alternative drop-off locations, when appropriate 

incentives are provided. For each carpool rider, the nearest metro 

was identified. If the distance between this identified metro 

station and the requested drop-off location was over 0.8 miles, 

this rider would not accept this alternative drop-off location due 

to the excess walking involved. If the distance was below 0.8 

miles, the rider would accept the alternative drop-off location, 

and the required incentive would be computed as the involved 

walking distance multiplied by br, where br measures the cost of 

walking per mile as perceived by rider r. For each alternative 

drop-off location, the latest arrival time is adjusted by considering a 

constant walking speed of 3 miles per hour.

5. Results and Discussions

Python 3.9 was used for necessary data manipulation described 

in Section 4. The static optimization model defined in Section 

3.1 was solved by CPLEX v20.1 on a personal computer (Intel 

Core i7-8700 CPU 3.20 GHz, 32 GB RAM). An afternoon 

planning horizon from 2:30 pm to 6:00 pm was selected, because 

of the relatively steady and strong demand in this period, as 

illustrated in Fig. 4. A total of 4,649 carpool participants were 

involved in the following analyses. The carpool matching 

coordinator, a government entity as assumed earlier, seeks to 

maximize the vehicle mile savings, because vehicle miles 

traveled is a widely adopted metric of transportation-related 

emissions, energy consumption, and other negative externalities 

(Fang and Volker, 2017).

5.1 Effectiveness of Driver Incentives 
We first consider driver incentives only. One problem instance is 

generated as the benchmark, where the incentive budget limit is 

$25 per 2-minute epoch. Fig. 7 shows the numbers of submitted 

carpool requests (or called arrivals) and dispatched carpool 

participants (or called departures) in each epoch. The departure 

curve lags behind the arrival curve for about five epochs, which 

means a carpool participant spends approximately ten minutes in 

the matching process, from request submission to matching 

outcome announcement. Fig. 8 shows the optimization objective 

(i.e., total vehicle miles saved) in each epoch. On average, carpool 

matching in each epoch yields approximately 25 vehicle miles to 

be saved. Fig. 9 shows how allocated incentives are claimed in 

each epoch. Although the budget constraint, Eq. (4), is binding in 

almost all the epochs, the total incentives claimed by carpool 

incentives are less than the incentive budget limit. This is 

because a significant portion of the participants selected for 

incentives are postponed to later epochs.

Although on average around 60 carpool participants (drivers 

and riders combined) arrive and leave per epoch, as shown in 

Fig. 7, the number of carpool participants in each static matching 

problem is above 400. This is because carpool participants 

remain in the matching pool for approximately five epochs, as 

indicated earlier. For such problem sizes, it takes no more than 

two minutes to construct and solve a static matching problem in 

an epoch, as illustrated in Fig. 10. One-third of the total 

computation is spent on solving the integer program, while the 

rest is used to generate possible routes. Given the solution time 

needed per epoch, the value of the maximum allowable solution 

time Δ can be set to be 1.5 minutes. Since each epoch has two 

minutes, all static matching problems are solved, and matching 

results become available well within Δ, thus satisfying the 

requirement of real-time decision-making.

amin amax,[ ]

Fig. 6 Time Points in a Carpool Request 
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In the benchmark case analyzed above, the incentive budget 

limit is $25 per epoch. We now vary the incentive budget limit 

from $0 to $35 and show how the total vehicle mile savings 

change accordingly in Fig. 11. When no incentives are available, 

the vehicle mile savings are 1,129.8 (or 6.9%); when the incentive 

limit is $5 per epoch, the resulting savings increase to 1,386.3 (or 

8.5%). Therefore, allocating incentives to drivers to influence 

their schedules leads to significantly higher vehicle mile savings. 

When the budget limit is $5 per epoch, the total incentives 

utilized over the planning horizon are $89.1. Considering the 

increase in vehicle mile savings (256.5, which is the difference 

between 1,386.3 and 1,129.8), we conclude each dollar in 

incentives leads to 2.88 vehicle miles to be saved. Other numbers 

above the curve in Fig. 11 can be interpreted in the same way. 

When the incentive budget limit per epoch is $35, the total 

vehicle mile savings are more than 100% higher than those 

without incentives. It should also be noted that the vehicle mile 

savings resulted from one dollar of incentive diminish as the 

incentive budget limit increases, which implies an upper bound 

on the budget limit. For instance, if one dollar of incentive is 

Fig. 7. Arrivals and Departures of Carpool Participants in Each Epoch over Time 

Fig. 8. Total Vehicle Mile Savings in Each Epoch over Time
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evaluated to be equivalent as 1.5 vehicle miles being saved to the 

coordinator, the incentive budget per epoch should be clearly 

below $15.

In the benchmark case, the incentive needed by driver k is 

uniformly distributed on range [1.5, 2.5], with an average value 

of $2 per five minutes. We then explore the impact of the range 

for ak on the optimization objective in Fig. 12. As expected, as 

the expectation of ak increases from $1 to $4, the vehicle mile 

savings drop significantly, which is understandable. As more 

incentives are needed for an average driver to consider a more 

flexible travel schedule, the vehicle mile savings that can be 

achieved by incentives diminish, for the same incentive budget limit. 

Note that when the budget limit is zero, the vehicle mile savings are 

the same, regardless of the range for ak. Similarly, as the expectation 

of ak increases from $1 to $4, the matching success rate (defined as 

the total number of matched participants divided by the total number 

of participants) drops, as shown in Fig. 13.

As some values in a problem instance are randomly sampled, 

we explore the variability of results for the same set of parameters 

used in generating instances. We adopt the same parameters that 

are used in the benchmark case while employing different random 

seeds. Fig. 14 shows that although variations in the results exist, 

Fig. 9. Claimed Incentives in Each Epoch over Time

Fig. 10. Histogram of the Computation Time per Epoch
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such variations tend to be small.

5.2 Effectiveness of Rider Incentives 
Since driver incentives have been thoroughly studied in Section 

5.1, we investigate rider incentives here. The incentive needed 

for rider r to willingly walk for one mile from an alternative 

destination to the preferred drop-off location is defined in 

Section 4.3 as br. Two ranges for br are considered, namely [3, 5], 

and [7, 9]. As mentioned in Section 4.3, we assume that when a 

rider is dropped off at an alternative destination (e.g., a transit 

station), the rider walks to the requested destination (e.g., 

workplace) while not violating the pre-specified time window at 

the destination. For instance, if the latest arrival time at the 

workplace is 9:30 am and it takes 10 minutes to walk from a 

transit stop to the workplace, the latest arrival time at the transit 

stop should be 9:20 am. The default walking speed is 3 miles per 

hour.

We consider a similar case to the benchmark case in Section 

5.1 (e.g., assuming an incentive budget limit of $25 per epoch), 

while considering rider incentives only. It turns out no riders 

could feasibly accept alternative drop-off locations, which means 

nil of the incentives are allocated and zero improvements in the 

optimization objective due to rider incentives are observed. In 

other words, rider incentives are futile in this case.

The motivation for allocating incentives to riders is that 

requested drop-off locations could be “clustered”, so that a driver 

could drop off multiple riders at once at a common location that 

is not far from other individual destinations. That way, the number 

of drop-offs performed by drivers and vehicle miles dedicated to 

rider drop-offs decrease. However, the clear shortcoming of 

dropping riders prematurely is that riders must be dropped much 

earlier than the requested latest arrival time to save time for 

walking to the requested destination. This shrinkage in riders’ 

schedule flexibility has a major impact on the route feasibility, as 

shown in Fig. 15. Suppose that enough incentives have been 

provided so that each rider is willing to accept the alternative 

drop-off location. When the walking speed is extremely large 

(more than 100 miles/hour, which is clearly unrealistic), the 

adjusted arrival time window at the alternative destination is very 

close to the original one at the requested destination. As the 

walking speed decreases, the latest arrival at the alternative 

destination must be shifted earlier, which implies an increasing 

Fig. 11. Effect of Incentive Budget Limit

Fig. 12. Effect of the Incentives Requested by Drivers on Vehicle Miles 
Saved

Fig. 13. Effect of the Incentives Requested by Drivers on Matching 
Success Rate

Fig. 14. Comparison of Results from Five Randomly Generated Instances
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difficulty of finding a driver for matching. As the walking speed 

further drops to the normal range (such as 3 mph to 4 mph), 

significant walking is involved from the alternative destination 

and requested destination; the arrival time window at the 

alternative destination turns very narrow, which greatly reduces the 

rider’s chance of being matched with other drivers. This explains 

why as the walking speed drops, the number of feasible vehicle 

routes drops rapidly. Since humans tend to walk 3 to 4 miles per 

hour, Fig. 15 shows riders cannot be feasibly matched with other 

drivers if riders must walk to their requested destinations. 

Therefore, if the arrival time window at the requested destination 

cannot be violated even when a rider is dropped off at an alternative 

destination, the effectiveness of rider incentives in improving 

system-level vehicle mile savings is almost none under normal 

assumptions about walking speed, regardless of the magnitude of 

incentives requested by riders.

It is thus understandable that almost all the incentives would 

be allocated to drivers to incur their departure time changes in a 

scenario where both drivers and riders are eligible for incentives. 

The primary reason is that drivers’ departure time changes 

enabled by incentives can yield much more vehicle mile savings 

than trip destination changes by riders.

6. Conclusions

In this study, we have evaluated the effectiveness of personalized 

travel incentives in reducing vehicle miles traveled in a dynamic 

carpooling system. We considered two incentive schemes: driver 

incentives to influence the departure time choices of drivers, and 

rider incentives to encourage the adoption of alternative drop-off 

locations by riders. As incentive allocations are closely related to 

other carpool matching decisions, an integrated optimization 

model adapted from Sun et al. (2020a) was introduced. A rolling 

horizon solution framework was then employed to address the 

dynamism of this optimization problem. Real-world taxi trip data 

in Washington, D.C. were enhanced to create a range of dynamic 

carpool instances. We derived the following findings after 

conducting the numerical studies:

1. The developed optimization framework can satisfy the 

need for real-time decision-making, which can thus be 

implemented in a real-world dynamic carpool system.

2. Personalized driver incentives can significantly improve 

the system-level objective (maximization of vehicle mile 

savings) of a dynamic carpool ing system. In one benchmark 

case, it is found that one dollar in incentive can increase the 

optimization objective by 2.88 miles, although the effect 

diminishes as the incentive budget limit increases.

3. Under practical assumptions about key parameters, the 

driver incentive scheme is shown to be significantly more 

effective than rider incentives.

The primary takeaway from this study is that incentives should 

be customized and offered to certain drivers, whose changes in 

their travel schedules are critical to the improvement in the 

optimization objective. The developed optimization framework 

in this study is thus useful in identifying such “critical” drivers 

and optimizing the incentive allocations, as well as other carpool 

matching decisions.

This paper presents the first known study to explore the 

effectiveness of personalized incentives in dynamic carpooling 

based on empirical data, which is the contribution of this paper to 

the literature. Nonetheless, this study should be improved in 

several ways, as follows:

1. Some real-world taxi trip data were used to approximate 

carpool demand in this study; a few other key parameters, 

such as the average incentive needed for a driver to shift the 

departure time by five minutes, were assumed. Carpool 

matching coordinators should use their own demand data 

and conduct further user surveys to conduct more relevant 

numerical analyses. This is because the performance of an 

incentive scheme clearly depends on the travel patterns 

(e.g., distributions of origins and destinations, and widths 

of travel time windows) and user preferences (e.g., 

incentives demanded per unit of time) in a carpool system.

2. In this current study, each driver had only three flexibility 

options, which was limited. In case a driver has many 

options, directly solving the static optimization problem 

defined in Section 3.1 can be time-consuming. Therefore, a 

column generation-based heuristic can be designed. To 

begin with, initial columns representing vehicle routes are 

generated, assuming zero incentives. After solving the 

linear programming relaxation of the restricted formulation 

including initial columns only, new columns (routes) which 

are resulting from applying incentives are added and only 

those columns with the potential to generate net benefits at the 

system-level are added to the matching optimization problem, 

whose solution triggers the next iteration. This iterative 

process terminates when no such columns can be found. 

3. This study does not consider any uncertainty in the behavioral 

responses of carpool participants. In reality, even when 

appropriate incentives are offered as needed, participants 

may decline to revise their travel plans. In that case, matching 

results and incentive allocations must be reoptimized. 

Fig. 15. Effect of Walking Speed on Route Feasibility
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4. Although this study aims to maximize the total vehicle mile 

savings (proxy for the environmental benefits), the developed 

model can accommodate other optimization objectives 

with little modifications, such as minimizing the number of 

unmatched carpool participants and minimizing the total 

travel time. 
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