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Abstract—Accurate estimation of Channel State Information
(CS)) is essential to design MU-MIMO beamforming. However,
errors in CSI estimation are inevitable in practice. State-of-the-
art works model CSI as random variables and assume certain
specific distributions or worst-case boundaries, both of which
suffer performance issues when providing performance guaran-
tees to the users. In contrast, this paper proposes a Data-Driven
Beamforming (D’BF) that directly handles the available CSI
data samples (without assuming any particular distributions).
Specifically, we employ chance-constrained programming (CCP)
to provide probabilistic data rate guarantees to the users and
introduce co-Wasserstein ambiguity set to bridge the unknown
CSI distribution with the available (limited) data samples.
Through problem decomposition and a novel bilevel formulation
for each subproblem, we show that each subproblem can be
solved by binary search and convex approximation. We also
validate that D?BF offers better performance than the state-of-
the-art approach while meeting probabilistic data rate guarantees
to the users.

I. INTRODUCTION

Multi-user MIMO (MU-MIMO) beamforming is a key tech-
nology component for 5G/next-G [1], [2] and requires Channel
State Information (CSI) between the Base Station (BS) and
the User Equipments (UEs) [3], [4], [5], [6], [7]. Since CSI is
obtained through channel training based on pre-defined signals
(e.g., pilots), estimation errors are inevitable due to noise
and finite length of training symbols [8], [9]. Further, CSI
estimation procedures designed in either Frequency Division
Duplex (FDD) systems [10], [11] or Time Division Duplex
(TDD) systems [12], [13], [14] introduce errors due to limited
feedback or hardware imbalance. So CSI estimation is bound
to embed errors [15], and must be carefully addressed when
optimizing MU-MIMO beamforming to provide performance
guarantees to the UEs.

State-of-the-art approaches to address CSI estimation errors
in MU-MIMO beamforming mainly fall into two categories.
In the first category, CSI errors are assumed to follow certain
simplified distributions, such as Gaussian [16], [17], [18],
[19], or uniform distributions [17]. However, such assumed
distribution models may be far from accurate due to the
complex operating environment. In the second category, CSI
errors are assumed to be within some worst-case boundaries,
such as norm boundaries [20] or ellipsoid uncertain set [21].
However, it is well known that solutions based on worst-case
boundaries are overly conservative.

In this paper, we propose a data-driven approach to design
MU-MIMO beamforming in presence of channel estimation

uncertainty. Our approach offers probabilistic data rate guar-
antees through chance-constrained programming (CCP) based
on a limited number of CSI data samples. Since we do not
assume any specific channel models and are solely based on
CSI data samples, our approach is applicable to a wide range
of practical settings [22]. Note that although probabilistic data
rate guarantees have been studied in the past (see, e.g., [16],
[17], [18]), none of these studies relied only on limited CSI
data samples to achieve their performance guarantees. Our
main contributions are summarized as follows:

e We study an MU-MIMO beamforming problem through
effective use of limited CSI data samples. Our objective
is to minimize power consumption at the BS while
providing probabilistic data rate guarantees to the UEs.
To the best of our knowledge, this is the first work that
can offer probabilistic guarantees (through CCP) in MU-
MIMO beamforming based on limited CSI data samples
without assuming any knowledge of distributions.

o We show that the original problem (involving all resource
block groups (RBGs)) can be decomposed into indepen-
dent and smaller subproblems where each subproblem
corresponds to beamforming on one RBG. We show that
the optimal solution to the original problem (involving all
RGBs) can be recovered exactly by simply combining
the optimal solutions to all the subproblems involving
individual RGBs. Based on this decomposition, we show
that it is sufficient to design a beamforming solution by
solving one subproblem (for one RBG).

e To replace the unknown CSI distribution in the original
formulation with the available (but limited) CSI data
samples, we introduce oo-Wasserstein distance that can
quantify the differences between empirical and unknown
distributions. By designing an upper bound of the oo-
Wasserstein distance, we construct oo-Wasserstein am-
biguity set that contains the unknown CSI distribution.
We show how to replace the unknown distribution in
CCP with empirical distribution (from CSI data samples)
and additional constraints based on properties of oo-
Wasserstein ambiguity set.

o For the new formulation that only involves empirical
distribution based on CSI data samples, we propose a
solution called Data-Driven Beamforming (D?BF). D?BF
breaks up the complex formulation into a bilevel opti-
mization problem with its upper-level problem being a
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Fig. 1. An example of downlink MU-MIMO beamforming in a 5G cell

simple feasibility check and leaving all its complexity
to the lower-level problem (non-convex). We propose a
convex approximation for the lower-level problem and
show that the overall time complexity of D?BF remains
polynomial.

o Through simulations, we show that D2BF minimizes the
power consumption while successfully providing prob-
abilistic data rate guarantees for the UEs using the
available CSI data samples. In particular, it achieves 27%
power saving on average compared to the state-of-the-art
approach.

II. SYSTEM MODEL AND PROBLEM STATEMENT
A. System Model

Consider a downlink MU-MIMO beamforming problem
where a 5G BS needs to transmit different data streams to
different UEs simultaneously, as shown in Fig. 1. Without
loss of generality, we assume that each UE has one receive
antenna and receives one unique data stream from the BS. For
MU-MIMO beamforming, we assume that the BS employs the
widely used linear precoding scheme and designs a unique
precoding vector for each UE.

Following 5G terminology, the time domain is divided into
Transmission Time Intervals (TTIs) and the frequency domain
is divided into sub-carriers. As defined in 3GPP standards [23],
12 sub-carriers in one TTI is called a Resource Block (RB)
and multiple contiguous RBs can be grouped into an RBG for
scheduling and beamforming. The number of RBs in an RBG
may vary from 2 to 16 and is chosen by the BS. For instance,
Fig. 5 shows an example of 64 RBs grouped into 8 RBGs
(i.e., 8 RBs per RBG).

The BS collects CSI on all RBs through a channel training
procedure based on known signals such as pilots. Then the
BS will perform user selection and beamforming for the UEs.
User selection schedules RBGs to the UEs while beamforming
calculates the downlink precoding vectors. After that, the
precoding vectors are used for the next downlink transmission
to the UEs. To keep complexity under control, one often
decouples these two steps (see, e.g., [24], [25]). Following
this decoupled approach, we assume that the user selection
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Fig. 2. An example of a sliding window with N CSI data samples

step is completed and the subset of UEs on each RBG are
given a priori before we design the precoding vectors.
Channel Estimation Uncertainty As discussed in Sec-
tion I, there are many unknown factors that contribute to
the obtained CSI such as channel estimation errors, limited
feedback, and hardware imbalance. So existing approaches
assuming accurate distribution knowledge of CSI or worst-
case boundaries have performance limitations. In contrast,
we assume no knowledge of CSI distribution and instead
follow a data-driven approach by directly working with the
available CSI data samples. Since CSI is highly correlated
among contiguous RBs and TTTs, we assume that the CSI for
all the RBs within the “super” RBG-TTI window block follows
the same distribution (see, e.g., the green and red superblock
in Fig. 2) [26], [27].

Based on this assumption, we employ a sliding window
to aggregate CSI data samples in the first half of the sliding
window and use them to design precoding vectors for the RBs
in the second half of the sliding window. Fig. 2 illustrate this
idea, where the total number of RBs in the window is 2NN.
So the number of CSI data samples is N (green blocks) and
we design one set of precoding vectors for the next N RBs
(red blocks) as allowed by 3GPP standards [23]. Note that this
sliding window is a general form of the widely used “block-
fading” model [28], where CSI is assumed to be constant on
each block (a group of RBs) but are completely independent
on different blocks. The main difference here is that the CSI
is a random variable in our setting and we only have limited
CSI data samples (no distribution knowledge).

B. Problem Statement

We assume that each UE in the cell has a minimum data
rate requirement. Our goal is to design precoding vectors for
downlink MU-MIMO so that the power consumption at the BS
is minimized. Due to channel estimation uncertainty, it is not
always possible to satisfy each UE’s data rate requirement in
each time window. So we will offer a probabilistic guarantee
that each UE’s data rate requirement is satisfied with at least
a target probability (e.g., over 90%).

III. MATHEMATICAL FORMULATION AND ANALYSIS

A. Problem Formulation

Referring to Fig. 1, denote M as the number of antennas at
the BS and K = {1,2,3,--- , K} as a set of K UEs served by
the BS. Denote G = {1,2,--- , G} as the set of G RBGs. For



RBG g € G, denote XY as the subset of UEs that are selected
to receive data on RBG g. For the precoding vectors, denote
w! (an M x 1 complex column vector) as the precoding vector
for UE 7 on RBG g.

There are two requirements for feasible precoding vectors:
(1) not to exceed the maximum power budget at the BS on all
RBGs; and (ii) provide probabilistic data rate guarantees to
the UEs. To formulate (i), denote P™ as the maximum power
budget at the BS for all RBGs. We have

SO w3 < P (1)

geG ieky

where || - || is the Lo-norm.

As for (ii), we assume each UE has a probabilistic data
rate requirement. Per 3GPP standards [23], a UE must use the
same Modulation and Coding Scheme (MCS) across all its
assigned RBGs in a TTI. Thus, a UE must maintain the same
SINR threshold for all its assigned RBGs. This means that
each RBG that transmits to UE ¢ contributes the same data rate.
Therefore, given the fixed UE selection results, supporting a
given data rate is equivalent to maintaining an SINR threshold
for UE <. Denote +;* as the target SINR threshold, which can
be easily calculated based on the selected MCS and Shannon
Theorem.

Denote ~7 as the actual SINR at UE i on RBG g with the
given precoding vectors w’s. Denote hY (an M x 1 complex
column vector) as the uncertain CSI from the BS to UE ¢ on
RBG g. Due to channel estimation uncertainty, we assume hf ’S
are random variables following some unknown distributions.
Then we have

g I(

WQ)Hh9|2
,yi — 7 7
W) hl]? + o7

(ieK%9€G), (2

5
jeKs
where (-)f denotes conjugate transpose. o7 is the power of
thermal noise at UE ¢ and is the same for all RBGs at UE 1.

In constraints (2), w?’s are deterministic decision variables,

o; 2’3 are deterministic parameters, and hf’s are random vari-
ables. Therefore, ;s are also random variables. As discussed
in Section II, we aim to provide probabilistic SINR guarantees
for the UEs, which can be written as

(ickK9geg), 3)

where P{-} denotes the probability function, ¢; is called risk

level and is the upper bound of the SINR threshold violation

probability for UE ¢. Constraints (3) mean that the actual SINR

v¢ on RBG g should be greater or equal than the required

SINR threshold ~;* with a probability at least 1 — ;.
Substituting (2) into (3), we have

P{vf 2"t z1-«

[(wO)TRY2
P ~ § |(w HMP+U >1—¢
]GKQ (4)

(ieK?geg).

For the uncertain CSI hY’s, we only have their data samples
at the BS, but no knowledge of their distributions. Specifically,

referring to Fig. 2, the BS has N CSI data samples per
h?. Denote Pg as the probability density function (PDF) of
the unknown distribution of h{, ie, h! ~ Pps. So the N
data samples of hY are drawn from the unknown distribution
Pj,s. Based on the above discussion, our power minimization
pr(;blem can be stated as follows:

(P) min > > [[wl[f3

wi geEG €KY
s.t. BS power budget (1) ,
Probabilistic SINR guarantees (4) ,
Unknown distribution: hf ~ Pp,s , N h{ samples ,

There are two difficulties in P1. First, from the formulation
of P1, it seems that the beamforming vectors on all RBGs are
coupled together due to the objective function and constraint
(1). Second, it is not clear how to calculate the probabilistic
SINR guarantees in constraints (4), especially due to uncertain
hg (from unknown distribution ]P’hg) In the rest of this section,
we will address the first issue and leave the second issue to
Section IV and Section V.

B. Problem Decomposition

In this subsection, we show that P1 can be decomposed into

G independent subproblems and each subproblem corresponds
to MU-MIMO beamforming on an RBG.
Preliminaries Note that the RBGs in the objective function
of P1 are already independent. So the only issue in Pl is
constraint (1), which ties all the transmission powers among
the RBGs with a peak sum value. Mathematically, it merely
provides an upper bound on the objective function. Consider
a new problem, called P2, by ignoring constraint (1) in PI.
We have

(P2) min > > [[wl[f3

wi geGieky
s.t.  Probabilistic SINR guarantees (4) ,
Unknown distribution: hY ~ Pps , N h{ samples ,

Comparing P1 and P2, we have the following lemma:

Lemma 1: Suppose P2 has an optimal solution, then either
this solution is an optimal solution to P1 or Pl is infeasible.

The proof is based on the facts that the feasible region of
P1 (if exists) falls into that of P2 and that both P1 and P2
share the same minimization objective function. We omit the
proof to conserve space. Lemma 1 suggests that we can focus
on P2 to derive a solution for P1. After we obtain an optimal
solution to P2, we can simply recover an optimal solution to
P1 by checking constraint (1) or declare P1 is infeasible.
Decomposition We will show that instead of solving the
precoding vectors on all RBGs in P2 jointly, we can first solve
the precoding vectors on each RBG independently (and thus
in parallel) and then simply combine these precoding vectors.
The idea behind this decomposition is that both the objective
function and constraints (4) in P2 can be decomposed among
the RBGs, as discussed below.



For the objective function of P2, >, ., ||[w?||3 represents
the transmission power on RBG g w.r.t. UEs in K9. Clearly,
> icxcs |[WY|[3 only depends on RBG g and not other RBGs.
Thus, we can rewrite the objective function of P2 as

> (mm > ||w9||2> : (5)

geg Wi ek

This means we can decompose this objective function into
G items with the g-th item corresponding to the transmission
power on RBG g. For ease of exposition, let us define an
M x M symmetric matrix W¢ = w{(w?), where WY i
positive semidefinite and has rank 1. These properties can be
written into the following constraints:

WY = 0, Rank(WY) =1 (i € K9), (6)

where > represents positive semidefinite. Then the objective
function of P2 can be rewritten as

: g
Z <HV1V1? Z Tr(W? )> ) (7
g€eG toieky

Now we consider constraints (4). We can divide them into G

groups, where the g-th group corresponds to the probabilistic
SINR guarantees on RBG g, i.e.,

[y 2
P > IwWHThiP o7 p 21— ¢
Y jexe (8)

(1eK9).

Hn?12 = (hY)2W?h?, constraints (8) can be

Since |(w?)
rewritten as

P{f(W{ h{) <0} >1-¢ (i€Kk?), ©)
where f(W? h?) is defined as
Jj#i
FOW? ) = (h0HH | Y~ W — ,eg' ‘hY + 0?7 . (10)
jeKs

Clearly, constraints (9) represent the probabilistic SINR
guarantees for RBG g, which is independent of other RBGs.
By decoupling the objective function and constraints (4) for
the G RBGs, the subproblem for RBG g is given as

P i g
(P3) min > Tr(WY)
ey
s.t.  Probabilistic SINR guarantees for K9 (9) ,

Unknown distribution h{ ~ Pys , N h{ samples,
W = 0, Rank(W?) =1 (i € K9) .

So we have successfully decomposed P2 into G independent
and smaller subproblems (P3) that can be solved in parallel.
The optimal solution to P2 is merely a combination of the G
optimal solutions to P3. This means that we can focus our
study on a P3 instance (one RBG) to design our beamforming
solution. For ease of exposition, in the rest of this paper, we
will drop the superscript g when there is no confusion.
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Fig. 3. Moving from distribution z to distribution y.

TABLE 1
JOINT DISTRIBUTION FOR
APPROACH 1: Qg

TABLE II
JOINT DISTRIBUTION FOR
APPROACH 2: Q2

Probability | z1 To Probability | x1 €9
Y1 0110 Y1 0 0.1
Y2 0410 Y2 0 04
Y3 0 0.5 Y3 0510

IV. BRIDGING DATA SAMPLES AND DISTRIBUTIONS

In this section, we show the relationship between data
samples and distributions, which will be our basis to address
channel estimation uncertainty. Denote N' = {1,2,3,--- | N}
as the set of N data samples per h;. Recall that these N data
samples are from the first half of the sliding window (see
Fig. 2). Denote the N available data samples of h; as fl?,
n € N, where each ﬁf is an M x 1 complex column vector
drawn from P}, (the unknown distribution of h;).

Based on these N data samples, we can construct an
empirical distribution for h;. Denote Pj, as the probability
mass function (PMF) based on the N data samples of h; (i.e.,
h},h?,---  h)), given as

(neN). (11)

To measure the “distance” between the empirical distribution
PPy, and the true (but unknown) distribution Py,,, we employ
the oo-Wasserstein distance [29], [30].

O

A. oo-Wasserstein Distance

The origin of Wasserstein distance traces back to the optimal
transport problem that finds the least efforts to transfer a given
set of mines to a given set of factories [31]. Wasserstein dis-
tance is also called p-Wasserstein distance where p € [1, +00].
In this paper, we choose co-Wasserstein distance since it can
offer tractable formulations for our problem.

Suppose we have two random variables &, and &, with their
marginal PDFs (for continuous random variables) or PMFs
(for discrete random variables) P¢, and Pg,, respectively.
To change P¢, to P¢,, we need to move each probability
mass block over a certain “distance”. Wasserstein distance
measures the least effort to complete this move. We use a
simple example in Fig. 3 to illustrate this idea.

Example 1. Consider moving a discrete distribution x with
PMF: P{x = 21} = P{x = 22} = 0.5 to another discrete
distribution y with PMF: P{y = y1} = 0.1, P{y = yo} = 0.4,
and P{y = y3} = 0.5. There are many ways to move
distribution x to distribution y and we show two of them in



Fig. 3(b) and Fig. 3(c). In this example, we use Euclidean
distance to calculate the moving effort from two points such
as dy; for moving from x; to y;. In the definition of p-
Wasserstein distance, the effort of moving a probability mass
0.1 from z; to y; is 0.1 wieghted by distance dﬁ'l, ie.,
(0.1 - d7,), where p € [1,4+00). Then the total effort of
moving all probability mass blocks from x to y is the sum
of all the individual efforts. For p > 1, approach 1 always
requires fewer efforts than approach 2. p-Wasserstein distance
is defined as the p-th root of the minimum required efforts
among all possible approaches.

Mathematically, a moving approach can be mapped to a
joint distribution of z and y as illustrated in Table I and
Table II for two approaches respectively. So Wasserstein
distance corresponds to a specific (optimal) joint distribution.
Denote @Q; as the joint distribution of = and y in approach 1.
Under the definition of p-Wasserstein distance, the effort of
moving from distribution x to distribution y in approach 1 is

(@2, 0.1+ dby - 0.4+ dBy - 0.5)7 (12)
As p — 00, (12) becomes:

Jim (df, 0.1+ dfy 0.4+ dy - 0.5)

S

= max{di1, diz, doz} = da3 ,

where the last equality holds due to dzs > di2 > dy; in
Fig. 3(b). In fact, we can show that approach 1 is the most
efficient approach in terms of co-Wasserstein distance between
x and y, i.e., da3. The physical meaning of co-Wasserstein is
the maximum moving distance among all steps in the optimal
approach (joint distribution). This interpretation makes oo-
Wasserstein highly tractable. ]

The formal definition of co-Wasserstein distance is given as
follows.

Definition 1: The oco-Wasserstein distance of Pg, and Py,
is defined as

W (Pe. ,Pe.) = inf _ ,
( & Ez) égg {Sup(@ ||€1 £2H}

where || - || is any norm, “sup” stands for the supremum,' Q
stands for a joint distribution of £, and &5, Q stands for the
set of all possible Q’s respectively.

Though the definition (13) holds true for any norm |||}, it is
common to choose Lo-norm due to its attractive computational
properties, as in Example 1. It should also be clear that
Weo(Pg,,IP¢,) = 0 holds if and only if P, = P¢, almost
surely. Otherwise, we have W (P¢ ,Pe,) > 0.

13)

B. oo-Wasserstein Ambiguity Set

Denote 6; as a nonnegative number. Denote P (6;) as a
set of distributions whose oo-Wasserstein distances from Py,
are upper bounded by 6;, i.e.,

PV (6;) = {]P’: WP, Py ) < 6;, P € 73} (iek),

IThe co-Wasserstein distance is also defined in terms of “essential supre-
mum” to avoid some extreme distributions [29], [31]. But such extreme
distributions are not encountered in our problem, so we use “sup” instead.

where P stands for all possible distributions for an M X 1
random vector. PV (6;) is called co-Wasserstein ambiguity set
[32] and can be viewed as a ball of distributions centered at
Py . with a radius 6;.

Suppose that we choose 6;’s properly such that

Pn, € PY(0) (i€k). (14)

Then the co-Wasserstein distance between the true distribution
Pn, and the empirical distribution Py, is upper bounded by
0;. For our problem, 6; represents the seriousness of CSI
estimation errors, which can be set properly when UE 7 joins
the 5G cell and be dynamically changed by tracking UE
i’s SINR violation probability. Note that choosing an overly
smaller #; may invalidate the probabilistic guarantees for the
UEs while choosing an overly larger §; may waste BS’s trans-
mission power. Clearly, the first outcome is more detrimental.
Nevertheless, for the purpose of designing our beamforming
solution, we can consider 6;’s are given constants.

We now show how to reformulate P3 based on PY (6;).
Combining constraints (14) and constraints (9), we have

inf  P{f(W,h)<0}>1—¢ (ick).
o a2 {£( ) <0} & (i€K)

i oo

5)

Note that we have dropped superscript g for simplicity when
there is no confusion. The “inf” in constraints (15) means that
for any distribution P},, from P (6;), the probability SINR
guarantees for the UEs should be valid. However, constraints
(15) are still challenging due to h;’s unknown distribution
Py,,. Thus, we will reformulate constraints (15) by replacing
h; with fll as follows.

Based on the definition of oco-Wasserstein ambiguity set,
constraints (15) are equivalent to [30]

P{f(W; h;)<0}>1—¢ (i€ek), (16)

where

f(Wi,hy) = max{f(Wi,ci): lle; —hll2 < 0.} . (17)

Here we introduce an auxiliary variable ¢; (a M x 1 complex
column vector). Note that f (W, flz) < 0 in constraints (16)
means that given h;, we should have f (W;,c;) < 0 holds
for any c; that satisfies |[c; — hi|]z < 6;. We see that the
data samples h are used in constraints (16). Recall that h S
distribution Pj, is given in (11) based on N data samples.
Plugging in thls distribution (11) into (16), we obtain

YHfWiLh) <0} >N-(1-«) (i€k),
neN

where I(+) is the binary indicator function.
Based on (18), we can rewrite P3 as

(P4) min Z Tr(W
1€
s.t. Probabilistic SINR guarantees (18) ,
For the rank constraints “Rank(W;) = 1” in P4, a standard
approach is to employ Semi-definite programming (SDP)

(18)



relaxation (see, e.g., [33], [34], [35]). In SDP relaxation,
we first relax the rank constraints “Rank(W;) = 1” by
dropping them. Then we solve the relaxed problem based on
the approach proposed in Section V. After we obtain a solution
W, we check its rank to recover the original w; either through
Eigendecomposition or Gaussian randomization based on W,
[36]. So the next step is to find a solution for P4 without the
rank constraints, which is still challenging. Even though we
have replaced the probability function in (15) with N data
samples in (16), it is unclear how to handle the indicator
functions and f (W3, fl?) in constraints (18).

V. D?BF—A DATA-DRIVEN BEAMFORMING SOLUTION

In this section, we present D?BF—a Data-Driven
BeamForming solution to P4. D?BF is based on a convex
approximation of P4, which hinges on a bilevel formulation
and a novel reformulation technique called ALSO-X+ [30].

A. Bilevel Formulation

In this section, we present a bilevel formulation of P4 that
consists of an upper-level problem and a lower-level problem.
This bilelvel formulation is an exact reformulation of P4 after
dropping its rank constraints. Under this bilevel formulation,
we only need to focus on the lower-level problem since the
upper-level problem is a simple feasibility check. This bilevel
formulation allows us to derive a convex approximation of P4
in Section V-B.

For UE i, denote z;(h?) as a binary indicator w.r.t. h? as:

zi(h}) = I(f(W;,h}) <0). (19)
With z;(h?), we can rewrite constraints (18) as
d b)) >N-(1-¢) (i€K). (0

neN

To put constraints (19) into closed-form constraints, we
introduce an auxiliary function s;(h}) w.r.t. h such that:

ssh") >0 (iek,neN), (21a)
fWi,h}) <s;(h})  (ieKneN), (21b)
z(h?)-s;(h?) =0 (ieK,neN). 2lc)

The nonnegative s(ﬁ?) can be considered as a slack func-
tion w.r.t. z(fl?) It is easy to see that constraints (19) can be
replaced by constraints (21).

Further, based on (20) and (21c¢), we have

S Ksi(h)=0}>N-(1-e) (i€K).

neN

(22)

By introducing an auxiliary variable ¢, we can rewrite the
objective function of P4 as “min ¢” and add the following
constraints:

> TH(Wy) <t

i€

(23)

Using this new objective function, adding constraints (23),
and replacing constraints (18) by constraints (20) and (21), and

also dropping the rank constraints, we obtain a reformulation
of P4 as follows:

(P4-R) min ¢
Wi zi(h}),s;(h})
s.t. "W, = 0, Constraints (20),(21),(23) .

P4-R suggests that we can use binary search to obtain the
smallest ¢ such that all constraints of P4-R are feasible. Then
we can take this smallest ¢ as the optimal objective value and
its corresponding feasible solution as the optimal solution to
P4-R. This is the basic idea of a bilevel formulation of P4-R.

Since z*(h;) > 0 and s?(h;) > 0, constraints (21c) is

equivalent to
S5 () - si(h)} = 0.

i€l neN

(24)

Since it is hard to handle the bilinear constraints (21c),
we will drop them and use the left-hand side of constraints
(24) as the objective function of the lower-level problem,
which facilitates our derivation of a convex approximation in
Section V-B. By removing constraints (21c), we need to bring
constraints (22) back to the problem. We now have a bilevel
formulation of P4-R as follows:

(P5)

min ¢t
t

(W7, 27 (h}), s} (b)) € arg

7 min {
Wi,z;(hl}),s;(h})

i

> > Az si(h)}: Wi= 0,

i€k neN

Constraints (20),(21a),(21b),(23) } ,

Constraints (22) .

We see the lower-level problem preserves most of the
constraints of P4-R. The biggest change is that constraints
(21c) disappear in P5 while}", . 3, Az (h?) - s;(hP)} is
used as the objective function of the lower-level problem. As
for the Upper-level problem, it uses t as the objective function
and add constraints (22) to ensure feasibility of the final
solution. Constraints (22) have been relocated to the upper-
level problem from the lower-level problem, which leads to
a more tractable feasible region for the lower-level problem
without introducing relaxation errors. It can be shown that
P5 is an equivalent reformulation of P4-R [30]. The proof is
based on the fact that an optimal solution of P4-R can be
constructed based on an optimal solution to P5 with the same
W and objective value. So is the converse.

The main idea of PS5 is that for a given ¢, we can solve
the lower-level problem to obtain an optimal solution (W,
zr(h?) and s7(h?)). If s*(h?)’s satisfy constraints (22), then
this W7 is a feasible solution with objective function ¢. Based
on this understanding, the minimum ¢ that can derive a feasible
W7 is the optimal solution to P5.

Now the question is: Given ¢, how to find a solution to P5
(W, z(h?) and s;(h?))? Since the upper-level problem of
PS5 is a simple feasibility check with constraints (22), we only



need to focus on the lower-level problem, which is challenging
due to f(W;,h?) in (21b) and its bilinear objective function.

B. Solution to P5: Convex Approximation

In this section, we present an algorithm to derive a solution
to P5 for a given ¢. Our approach is based on convex approx-
imation of the lower-level problem in P5 using S-lemma [37]
and a novel technique called “ALSO-X+" [30] [38]

1) Reformulation of f(W;,h?): Since f(W;,h?) in con-
straints (21b) involves a maximization problem (see (17))
which cannot be solved directly, we need to reformulate
f(W,h?"). Denote an M x 1 complex column vector e?* as the
difference between c; and data sample fl?, ie, el =c;— fl?.
Based on e}’ and (17), constraints (21b) can be rewritten as

max{f(W;,e +h'): |[e}'|]2 < 6;} < s;(h})
€ (25)
(ieK,neN),
which means that
f(Wi,e} +h}) < si(h})

(ieK,neN). (26)

holds for any e’ s.t. ||€}'||2 < ;. This can also be viewed as
[lel||2 < 6; implies constraints (26) hold, i.e.,

llel’||z2 < §; = Constraints (26) (27

For ease of exposition, let us define an M x M symmetric

matrix Q; and a real scalar @] as

J#i

Qi=> W,-

jEK

= (h)AQA" +02. (28

req ’

Then constraints (26) can be rewritten as

(e Qief + (ef) " Qih} + (b)) Qie] + a! < s,(h})
(teK,neN),
(29)
Further, ||e}||2 < 6; can be rewritten as

(ef)"Iye} — 67 <0, (30)

where I, is the M dimensional identity matrix. Thus, replac-
ing ||e?||2 < 6; with (30) and replacing constraints (26) with
constraints (29), (27) can be rewritten as

(eM)1ye? — 02 < 0 = Constraints (29) 31

To reformulate statement (31), we resort to S-lemma [37].

Lemma 2: (S-Lemma) Let U and V be L X L symmetric
matrices. Suppose (i) xT Ux < 0 holds for some x € X; and
(ii) There exists an X such that X7 Ux < 0. Then xTVx <0
holds for x € X if and only if there exists a nonnegative
number \ such that V < \U.

To see statement (31) matches with the standard form of
S—Lemma, we define x = [(e})¥ 1]H, x=[0 I]H, and

I, O Q; Q:hy
U= V = : i
[ 0 _91'2} ’ [(Qih?)H ai —s;i(h})

Step 1: Fix z=1, solve s, W  Step 2: Sort s non-decreasing  Step 3: Fix z, s
-T - I
i
Case (i) B ]
Less s>0 1 1

foralli ¢ 50} ]

|

,,,,,,,,,,,,,,, ' wr

| /

B

1 7

1 i

) | 1 \ Infeasible
] i

Case (ji):
Otherwise

Fig. 4. A solution procedure to P5’s lower-level problem for a given ¢

Then statement (31) holds if and only if
VANU, A" >0 (tek,neN).

Replacing statement (31) with constraints (32), the lower-
level problem in P5 becomes

I{ZZ{ZZ B} W, =0,

i€ neN

(32)

min
W,z (hY),s

Constraints (20),(21a),(32),(23) } .

2) Bilinear Objective Function: As for the bilinear objec-
tive function min ) ;- ZneN{Zl( ). s;(h?)}, we employ
convex approximation. Our proposed solution is inspired by
ALSO-X+ [30], which has been proven to offer better perfor-
mance comparing to existing reformulation techniques under
oo-Wasserstein ambiguity set [30], [38]. The main idea behind
our convex approximation is to set z;(h?) and s;(h?) based
on the value of ¢;, constraints (20) and (22), and the objective
function min ) ZneN{zi(fl?) - s (1)}

As shown in Fig. 4, we start the procedure by setting
z(h?) = 1 and solve for s;(h?) and W; (Step 1). This
step is motivated by (20) and the value of ¢; (whose value
tends to be small). So we would anticipate the majority of
zi(h?)’s to be 1. Further, we choose to fix z;(h?)’s first as
they only appear in constraints (20) and the bilinear objective
function. So their impacts on other constraints are limited.
With Zi(fl?) = 1, constraints (20) hold trivially. Further, the
lower-level problem in P5 can be simplified to

rnin {Zzsz

Wi’si(h7L ieK neN

W, =0,
(33)
Constraints (21a),(32),(23)} .

This problem is convex and we can solve its optimal solution
W and s?(h?). Note that this problem is always feasible as
in the special case when si(fl?)’s are sufficiently large, all
constraints are trivially satisfied.

After we obtain s7 (h?)’s, we sort them in non-increasing or-
der for each UE i (Step 2). Specifically, we sort {s*(h?), n €
N} and denote S as the sorted set. Then we count the
number of positive numbers in S;* and divide this number
by N. We have two cases:

Case (i):  The ratio of positive elements in S over N
is no greater than ¢; for all ¢ € K. This is the simple case



as constraints (22) already hold. That is, there are at least
N-(1—¢;) number of s*(h?)’s with s*(h?) = 0. To minimize
the objective function ZneN{zi(fl?) -s;(h™)}, we can adjust
z(h?) from 1 to 0 corresponding to those s*(h?) > 0, i.e.,

2 (BY) = 1 - 1(s7(hy) > 0). (34)

This adjustment of z;(h?) is solely to achieve a minimum
objective value ZWEN{ZZ(B?)&(}AI?)} = 0. It has no impacts
on W; and s;(h?) since z;(h?)’s only appear in constraints
(20) and the objective function. Thus, this solution is an
optimal solution to P5’s lower-level problem for current .

Case (ii): For some i € I, the ratio of positive elements
in S over NN is greater than ¢;. In this case, after step 1,
constraints (22) do not hold, as there are fewer number of
st(h})’s with s¥(h?) = 0. So we propose to adjust some
zi(fl?)’s and si(ﬁ?)’s so that both constraints (20) and (22)
hold and the objective function } N{Zl(l:l?) - s;(h™)} is
minimized. To do this, we propose to fix z;(h?) and s;(h?)
based on the sorted set S;. Specifically, we set s;(h?) as

. {oo for the first | N - ¢;] elements in S,

si(h}) = (35)

0  otherwise .

Then we adjust z;(h?) using (34) and the new values for
Sl(fl?) in (35), as shown in Fig 4 (Case (ii) step 3). Note that
such setting of z;(h?) and s;(h!) will ensure the objective
function ), ) ZneN{zZ(fl?) -s;(h?)} to be 0.

In (35), when s;(h?) = oo, the corresponding constraints
in (32) trivially hold. Since these constraints have no impacts
when solving W, they can be safely removed from the lower-
level problem in P5 when solving for W,. Now we have a
convex optimization problem (with 0 optimal objective value)
and we can solve its optimal solution W7 If W7 can be found
then it is the optimal solution to P5’s lower-level problem for
current t. Otherwise, we decide that the current ¢ is infeasible.

C. Summary and Complexity Analysis

A summary of D?BF is given in Algorithm 1 that com-
bines all the above steps including the binary search for ¢,
solution procedure for a given ¢, recovering w/ from WY,
and recovering solution to P1. Note that in Line 8, we choose
t"* = min{t, Y, ., W7} for faster convergence.
Complexity Analysis The binary search for ¢ in Algo-
rithm 1 consists of ﬂogz(tUBgtLB )] iterations. In each iteration,
the complexity is dominated by Line 6—apply the solution
procedure in Fig. 4—which consists of at most two convex
optimization problems. Both convex problems can be solved
efficiently with polynomial complexity using off-the-shelf
solvers. So D?BF has polynomial time complexity.

VI. SIMULATION RESULTS
A. Simulation Settings

We consider a 5G cell with a radius of 500 meters and 20
UEs (K = 20) served by the BS equipped with 8 transmit
antennas (M = 8). Fig. 5 shows the topology, where the UEs
are randomly distributed inside the 5G cell following a uniform

Algorithm 1 D?BF
1: Input: v, P fl?, 0;, A
2: Output: w? or infeasible
3: parfor g € G (Subproblems on RBGs) do
4: Set lower bound ¢** and upper bound ¢

5 while ¢"*/t"* > 1+ A do

6: Set t = (t"® + t**)/2, apply procedure in Fig. 4
7: if feasible W found then

8 Set t"* = min{t, Y ;.o W7}, save WY

9: else

10: Set t"* =t

11: end if

12: end while

13: if rank(W7?) ~ 1 then

14: Set w! as the eigenvector of WY

15: else

16: Gaussian Randomization to generate w? using WY
17: end if

18: end parfor
19: Check (1) using w?: return w? or report infeasible

500 T
P =
2501 *o o
'
Of *

2501

-500 BRSPS
500 250 0 250 500

Fig. 5. Network topology: A 5G cell with 20 UEs

distribution. At the BS, we consider there are 8 RBGs (G = 8),
with each RBG consisting of 8 RBs (see Fig. 1). We use
random user selection for each RBG and suppose each RBG
supports two UEs (K9 = 2). Without loss of generality, all
UEs employ QPSK to calculate their required SINR threshold.

The BS has a power budget of P™ = 46 dBm across 8
RBGs and the thermal noise is set to -150 dBm/Hz for all UEs
[39]. We assume 15 kHz sub-carrier spacing (i.e., numerology
0) as defined in 3GPP standards [26]. Same with Fig. 2, we
use the CSI data samples from the first 5 TTIs to perform
beamforming for the next 5 TTI. Since each RBG consists of
8 RBs, we have N =5 x 8 = 40 samples for each hY.

The wireless channel is modeled by path-loss and a trun-
cated Gaussian distribution. The path-loss between UE ¢ and
the BS is modeled by PL; = 38 + 30 x log;y(d;) (in
dB) where d; is the distance between UE i and the BS (in
meters) [40]. For the truncated Gaussian distribution, we use
0 as mean and 0.1 as variance for the original Gaussian
distribution and then truncate it at three times its standard
deviation. This setting is similar to that in [14], [16]. Note
that the distribution knowledge described here is only used
for generating parameters in our simulations. Our proposed
solution D?BF only relies on the CSI data samples and is



TABLE III
INSIGHTS OF D2BF
Risk level e 0.1 0.2 0.3 0.4 0.5
Iterations 4.60 428 4.08 3.86 3.60
Dominant Eigenvalue (%) | 99.92 | 99.93 | 99.91 | 99.90 | 99.89

blindfolded w.r.t. any knowledge of distribution information.

We use MOSEK 9.2.38 on MATLAB R2017b to run all
algorithms and each solution includes beamforming vectors
w! and the objective value for P1. For benchmarking, we
also run results from the following two approaches:

o State-of-the-art Gaussian Approximation [16], assumes
Gaussian distribution for uncertain CSI to derive convex
approximations and provides probabilistic SINR thresh-
old guarantees to the UEs.

e Mean Approximation where the means of ﬁ?’s are used
as the perfect CSI, which leads to a deterministic formu-
lation. Then a classical solution [3] can be employed.

B. A Case Study

Although D?BF can handle different values of ¢;’s for the
UEs, we use the same value for all UEs (i.e. ¢; = ¢, i € K),
ranging from 0.1 to 0.5. We choose 6; = 0.035 to upper bound
the oo-Wasserstein distance between the true (but unknown)
distribution and the empirical distribution based on 40 data
samples of h?. The stop criterion in D?BF is set to A =
0.03. In D2BF, we initialize t®* = 0 and t*® to the smaller
value between 46 dBm and the objective value from Gaussian
Approximation. We perform 50 runs (i.e., 250 TTIs) under
each e and report the averages.

Table III shows the number of iterations in binary search
(Line 4-12 of D?BF) and the ranks of the obtained W, (Line
13-17). We see the number of iterations in the binary search
for ¢ is 4.08 on average and is non-increasing w.r.t. €. This
is due to a smaller search range for ¢ under a larger € and a
faster convergence due to our updating mechanism of ¢"® in
D2BF (Line 8), where the search range for ¢ can shrink more
than half if feasible W;’s are found.

To check the ranks of W, we calculate the ratio between
the dominant eigenvalue over the sum of all eigenvalues for
different W,’s. As shown in Table III, the average of this ratio
is over 99.9% and the lowest ratio in our case study is 97.08%
for a UE under € = 0.4. So we conclude that there is only one
dominant eigenvalue for W, in our case study, and Line 14
is always used in D?BF, similar to the observations in [16].
This is because SDP solvers such as MOSEK typically exploit
low-rank structures when solving for W;.

We now present the performance of D?BF. Fig. 6(a) shows
the actual violation probabilities averaging over all UEs. We
see the violation probabilities from D?BF are smaller than the
risk level e. We also check the violation probabilities regarding
each UE and found that UEs at the cell edge are more likely to
experience higher violation probabilities (still below €). This
validates that D?BF provides probabilistic SINR threshold
guarantees for the UEs. Further, the violation probabilities
from Gaussian Approximation are much smaller than that from

N
=

0.6
g L *GaussianA proximation
Sos X - TTmker
Q Mean Approximation =18 2 =¥
S04 5] ¢ D°BF
50 =
c .
Risk level 2 2 bl
‘% 0.3 : D"BF D % 12 Mean Approximation
202 2
> Qo
6
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Risk level ¢ Risk level ¢

(a) Actual violation probability (b) Objective value

Fig. 6. Performance of D?BF as a function of risk level e.

D?BF, which demonstrates its conservativeness. Finally, we
see that the violation probabilities from Mean Approximation
are over 50% at all points, which exceeds the target risk
level e. Its constant violation probability is because Mean
Approximation does not consider any threshold violations.

Fig. 6(b) shows the objective values (BS’s power consump-
tion on all RBGs) w.rt. €. In this figure, we find that the
objective values of both D?BF and Gaussian Approximation
decrease w.r.t. €. This is because a larger ¢ leads to a
higher tolerance of SINR threshold violations and hence the
BS can save more power while meeting these loose SINR
requirements. Further, D?BF performs better than Gaussian
Approximation with 27% power saving on average, which
demonstrates that D?BF offers a tighter approximation than
Gaussian Approximation. Finally, compared to the lower
bound from Mean Approximation (which cannot meet target
violation probabilities), the largest gap from D?BF is no more
than 23% (for ¢ = 0.1), which demonstrate the closeness of
D?BF to the (unknown) optimal objective values.

VII. CONCLUSIONS

We presented a data-driven approach to design downlink
MU-MIMO beamforming using a limited number of CSI data
samples. Our goal is to minimize the BS’s power consumption
on all RBGs while meeting probabilistic data rate guarantees
for all UEs. We formulated a CCP and showed its decom-
position into independent subproblems, each corresponding
to MU-MIMO beamforming on an RBG. We introduced oco-
Wasserstein ambiguity set to incorporate the available CSI
data samples and substitute the unknown CSI distribution. For
each subproblem, we showed that it can be converted into a
bilevel formulation consisting of a simple upper-level prob-
lem and a non-convex lower-level problem. Through convex
approximation for the lower-level problem and binary search
for the objective function, we showed that D?BF can derive
a beamforming solution with polynomial time complexity.
Simulations confirmed that D?BF can achieve better perfor-
mance compared to state-of-the-art approach while meeting
probabilistic data rate requirements of the UEs.
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