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ABSTRACT

Flexible mechanical metamaterials are compliant structures engineered to achieve unique properties via the large deformation of their
components. While their static character has been studied extensively, the study of their dynamic properties is still at an early stage,
especially in the nonlinear regime induced by their high deformability. Nevertheless, recent studies show that these systems provide new
opportunities for the control of large amplitude elastic waves. Here, we summarize the recent results on the propagation of nonlinear waves
in flexible elastic metamaterials and highlight possible new research directions.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0050271

I. INTRODUCTION

Over the last two decades, metamaterials—materials whose
properties are defined by their structure rather than their composi-
tion—have been a real magnet for scientists, generating significant
interest in the research community.1–4 While initial efforts focused
on metamaterials that manipulate electro-magnetic,1 acoustic,3,4 or
thermal5 properties, in recent years, the concept has also been
extended to mechanical systems.6–8 Ongoing advances in digital
manufacturing technologies9–12 have stimulated the design of
mechanical metamaterials with highly unusual properties, includ-
ing negative Poisson’s ratio,13,14 negative thermal expansion,15,16

and negative compressibility17 in the static regime, as well as low-
frequency spectral gaps,18,19 negative dynamic properties,20 and
advanced dispersion effects21 in the dynamic regime. Furthermore,
it has been shown that large deformations and mechanical instabili-
ties can be exploited to realize flexible mechanical metamaterials
(flexMMs) with new modes of functionality.6 The complex and
programmable deformation of flexMMs make them an ideal

platform to design reconfigurable structures22 as well as soft
robots23 and mechanical logic devices.24–26 Furthermore, they also
provide opportunities to manipulate the propagation of finite
amplitude elastic waves. Differently from granular media whose
nonlinear response is determined by the contacts between
grains,27–29 the nonlinear dynamic response of flexMMs is gov-
erned by their architecture. By carefully choosing the geometry, a
flexMM can be designed to be either monostable or multistable or
to support large internal rotations—all features that have been
shown to result in interesting nonlinear dynamic phenomena.

In this Perspective article, we first review the nonlinear
dynamic effects that have been recently reported for flexMMs: the
propagation and manipulation of vector elastic solitons, rarefaction
solitons, and topological solitons (also referred to as transition
waves). We then describe the numerical and analytical tools that
are typically used to investigate the propagation of these nonlinear
waves. Finally, we outline the key challenges and opportunities for
future work in this exciting area of research.
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II. NONLINEAR DYNAMIC EFFECTS IN FLEXMM

While nonlinear elastic waves in engineered materials have
mostly been experimentally studied in granular media,27–32

flexMM also provide an ideal environment for their propagation,
since they can support a wide range of effective nonlinear behav-
iors that are determined by their architecture. By carefully tuning
these nonlinear behaviors, novel dynamic effects have been dem-
onstrated. First, metamaterials based on the rotating-square mech-
anism have been shown to support the propagation of elastic
vector solitons—solitary pulses with both translational and rota-
tional components, which are coupled together and copropagate
without distortion or splitting due to the perfect balance between
dispersion and nonlinearity.33–35 Second, since flexMM can typi-
cally support tensile deformation, the propagation of rarefaction
solitons has also been demonstrated.36–39 Third, by designing
their energy landscape to be multiwelled, it has been shown that
they can support the propagation of topological solitons (also
referred to as transition waves)—nonlinear pulses that sequen-
tially switch the structural elements from one stable state to
another.24,40–43

A. Elastic vector solitons

Flexible metamaterials comprising a network of squares
connected by thin and highly deformable ligaments [see Figs. 1(a)
and 1(b)] have long attracted significant interest due to their
effective negative Poisson’s ratio46–48 and their support of
buckling-induced pattern transformations.14,49 Additionally, it has
recently been shown via a combination of experiments and analy-
ses that the nonlinear dynamic response of these structures is also
very rich.33–35,50 First, it has been demonstrated that even one-
dimensional (1D) chains of these metamaterials support the
propagation of elastic vector solitons with both translational and
rotational components which are coupled together and copropa-
gate without dispersion.33,34 The existence of these pulses is
enabled by the perfectly balanced dispersive and nonlinear
effects.51 While vector solitons have been previously reported in
optics,52 their observation in networks of hinged squares is the
first for the elastic case. Importantly, the vectorial nature of such
solitons gives rise to a vast array of exotic mechanical phenomena.
For example, due to the weak coupling between their two compo-
nents, at small enough amplitudes, the vector solitons become
dispersive and fail to propagate.34 Furthermore, the vectorial
nature of the supported solitons leads to anomalous collisions.50

While, as expected, the solitons emerge unaltered from the colli-
sion if they excite rotations of the same direction, they do not
penetrate each other and instead repel one another if they induce
rotations of the opposite direction. Finally, it has been shown that
nonlinear propagation in two-dimensional (2D) systems of rotat-
ing squares exhibit very rich direction-dependent behaviors such
as the formation of sound bullets and the separation of pulses into
different solitary modes.35 As such, these studies suggest that flex-
ible metamaterials based on the rotating-square mechanism may
represent a powerful platform to manipulate the propagation of
nonlinear pulses in unprecedented ways.

B. Rarefaction solitons

Granular systems that derive their nonlinearity from Hertzian
contact are well known to support the propagation of compressive
solitons in many instances.53–59 Yet, it is challenging for such
systems to support rarefaction solitons due to their lack of tensile
cohesion. While it has been shown via a combination of theoretical
and numerical analyses that a precompressed discrete chain with
strain-softening interactions could support rarefaction solitons,60

experimental demonstration of this behavior has remained elusive
due to the challenges in fabricating an effective strain-softening
mechanism. By contrast, flexMMs can be easily designed to
support softening nonlinearity under compression and, therefore,
rarefaction solitons, an effect that can, in principle, allow useful
applications by enabling efficient impact mitigation. This is the
case for a 1D array of buckled beams36 [Fig. 1(c)], as well as a
chain of triangulated cylindrical origami37 [Fig. 1(d)]. Both systems
exhibit effective strain-softening behavior and have been shown to
support the propagation of rarefaction solitons. Furthermore, rare-
faction solitons have been predicted but not yet experimentally
observed in tensegrity structures38 [Fig. 1(e)] and statically com-
pressed metamaterials based on the rotating-square mechanism.61

Note that, for the latter, vector rarefaction solitons are predicted to
propagate, sharing the interesting features discussed in Sec. II A.

Beyond impact mitigation, rarefaction solitons have also been
harnessed to enable locomotion in a slinky-based soft robot39 [see
Fig. 1(f)]. The nondispersive nature and compactness of the soli-
tary pulses make them extremely efficient in transferring the
energy provided by the actuator to motion, ultimately resulting in
an efficient pulse-driven locomotion.

C. Topological solitons/transition waves

In addition to vector and rarefaction solitons, another category
of nonlinear wave, comprising what are called transition waves or
topological solitons, has also received a significant amount of
recent attention. These waves represent moving interfaces that sepa-
rate regions of different phases and play a major role in a wide
range of physical phenomena, including damage propagation in
solids,62 dynamic phase transitions,63–65 and phase transformations
in crystalline materials.66–69 Recently, it has been shown that transi-
tion waves can also propagate in flexMM made with elements pos-
sessing multi-well energy landscapes, with each energy well
corresponding to a stable spatial configuration. When a transition
wave propagates in these systems, it can be visualized as a solitary
pulse that sequentially switches the individual units of the metama-
terial from one stable configuration to another.24,40,42,43,70–74

Transition waves were first experimentally observed in
flexMM in a system comprising a 1D array of bistable and pre-
stressed composite shells coupled magnetically40 [Fig. 1(g)]. More
specifically, the shells are designed to have two energy minima of
different heights. Therefore, the transition between the two stable
states involves a net change in stored potential energy, which,
depending on the direction of the transition, either absorbs energy
or releases stored potential energy. If the bistable shells are initially
set to their higher-energy stable configuration, a sufficiently large
displacement applied to any of them can cause the element to tran-
sition states, producing a nonlinear transition wave that propagates
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FIG. 1. FlexMMs provide a rich platform to manipulate the propagation of nonlinear waves. Vectors solitons have been observed in (a) a 2D flexMM based on the
rotating-square mechanism,33 (b) a chain of Lego units connected by flexible hinges.34 Rarefaction solitons have been observed in (c) a chain of hinged buckled beams,36

(d) a chain of origami units [graph and picture licensed under a Creative Commons Attribution (CC BY-NC) license, reproduced and cropped from Ref. 37], (e) a chain of
tensegrity units (reproduced from Ref. 38 with the permission of AIP Publishing), and (f ) a Slinky.39 Topological solitons (transition waves) have been observed in (g) a
chain of bistable plates coupled by the magnetic force40,44 [picture licensed under a Creative Commons Attribution (CC BY) license, reprinted and cropped from Ref. 44],
(h) a chain of bistable inclined beams coupled by elastic elements,24 (i) a chain of bistable shells coupled by pressurized air,41 ( j) a system of rotating squares with embed-
ded magnets,45 (k) a 1D linkage,42 and (l) a 2D multistable kirigami structure.43
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indefinitely outward from the point of initiation with constant
speed and shape. Furthermore, transition waves are not sensitive to
the specific signal that triggers them and can be initiated by any
input signal of sufficient amplitude. Such robustness has been
recently harnessed to concentrate, transmit, and harvest energy
independently from the excitation44 [see Fig. 1(g)]. Specifically, the
energy carried by the transition waves has been focused and subse-
quently harvested in lattices by introducing engineered defects and
integrating electromechanical transduction.44

Interestingly, because of the energy released upon transition
between states by each element, stable and long-distance propaga-
tion of transition waves in multistable systems is possible even in
the presence of significant dissipation24—a feature that has been
demonstrated for a soft structure composed of elastomeric bistable
beam elements connected by elastomeric linear springs. Such
ability to transmit a mechanical signal over long distances with
high fidelity and controllability has been shown to provide oppor-
tunities for signal processing, as demonstrated by the design of soft
mechanical diodes and logic gates24 [see Fig. 1(h)]. Notably, these
systems have been also recently realized at the micro-scale using
two-photon stereolithography,75 providing a first step toward
mechanical chips. However, it is important to note that, while
bistable unit cells with two stable states of different energy levels
enable long-distance propagation of transition waves, they inher-
ently prevent bidirectional signal transmission.40 Furthermore, they
require an external source of energy to be provided to reset them to
their higher-energy state if additional propagation events are
desired.

Bidirectional propagation of transition waves can be achieved
by utilizing bistable elements that possess equal energy minima41

[Fig. 1(i)]. However, since such bistable elements do not release
energy when transitioning between their two stable states, the dis-
tance traveled by the supported transition waves is limited by
unavoidable dissipative phenomena. To overcome this limitation,
two strategies have been proposed. On the one hand, it has been
shown that the propagation distance of transition waves can be
extended by introducing elements with tunable energy landscape,
since they can be easily set to release the energy required to com-
pensate for dissipation.41 On the other hand, long-distance propa-
gation of transition waves has been demonstrated in a 1D array of
bistable elements with monotonically decreasing energy barriers76

but such a gradient in the energy landscape prevents
bidirectionality.

FlexMM can also be designed to possess more than two
energy minima [Fig. 1( j)]. Just as in the bistable systems described
above, transition waves can propagate when a transition from one
stable well to another is initiated. However, since multiple types of
energetically-favorable transitions are possible (e.g., a system in a
higher energy well might support transition waves to two different
lower energy wells, each associated with distinct spatial configura-
tions), incompatible transition waves can propagate and collide,
leading to non-homogeneous spatial configurations. For example,
transition waves have been demonstrated in rotating-square systems
with permanent magnets added to the faces.45 In contrast to the
buckled elements described above, each unit in the metamaterial
supports up to three stable configurations, enabled by the ability of
the squares to be stable in “open,” “clockwise,” or “counterclockwise”

configurations. The ability of multistable systems to support the for-
mation of many configurations of stationary domain walls could
allow the design of transformable mechanical metamaterials that can
be reversibly tuned across a large range of mechanical properties.

Finally, while all initial studies on the propagation of transi-
tion waves in flexMM have considered 1D chains, recently transi-
tion waves have also been studied in flexMMs with higher
dimensions. As a first step in this direction, the response of a
network of 1D mechanical linkages that supports the propagation
of transition waves has been investigated42 [Fig. 1(k)]. It has been
shown that if the connections between the linkages are properly
designed to preserve the integrity of the structure as well as to
enable transmission of the signal through the different components,
transition waves propagate through the entire structure and trans-
form the initial architecture. Furthermore, the propagation of tran-
sition waves has also been demonstrated in 2D multistable elastic
kirigami sheets43 [Fig. 1(l)]. While homogeneous architectures
result in constant-speed transition fronts, topological defects can be
introduced to manipulate the pulses and redirect or pin transition
waves, as well as to split, delay, or merge propagating wave fronts.

The results discussed in this section point to the rich dynamic
responses of flexMMs. However, in order to enable such interesting
behaviors the geometry of flexMM has to be carefully chosen. As
such, it is crucial for the advancement of the field to develop
models that can accurately predict these nonlinear behaviors and
their dependency from geometric parameters and loading
conditions.

III. MODELING THE NONLINEAR DYNAMIC RESPONSE
OF FLEXMM

Discrete models have traditionally played an important role in
unraveling the dynamic response of structures. Networks of point
masses connected by linear springs have been routinely used to
understand the propagation of linear waves in solid media.77

Furthermore, by introducing nonlinear springs, these models have
also enabled investigation of nonlinear waves in engineered media,
including granular systems27–32 and mass-spring lattices.51 In
recent years, discrete models have also proven useful to describe
the nonlinear dynamic response of flexMM,33–36,38,39,42,50,51,61,78–82

as they typically comprise stiffer elements connected by flexible
hinges. The stiffer elements are modeled as rigid plates, whereas
the response of the hinges is captured using a combination of rota-
tional and longitudinal springs [see Fig. 2(a)]. Note that, since the
rotation of the stiff elements plays a crucial role in flexMM, the rota-
tional degrees of freedom of the rigid bodies play an important role
in these models. For a typical 2D flexMM, three degrees of freedom
(DOFs) are assigned to the ith rigid element: the displacement in x
direction, ui, the displacement in y direction, vi, and rotation around
the z axis, θi [see Fig. 2(b)]. Using these definitions, the equations of
motion for the i-th rigid element are given by

mi€ui ¼
XNvi

p¼1

Fu
i,p, mi€vi ¼

XNvi

p¼1

Fv
i,p, and Ji€θi ¼

XNvi

p¼1

Mθ
i,p, (1)

where mi and Ji are its mass and moment of inertia, respectively,
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and Nvi denotes its number of vertices. Moreover, Fu
i,p and Fv

i,p are
the forces along the x and y directions generated at the pth vertex of
the ith units unit by the springs and Mθ

i,p represent the correspond-
ing moment. Note that these forces can be expressed as a function of
the DOFs of neighboring elements and are typically calculated
assuming linear springs. Unlike typical mass-spring models previ-
ously used to investigate nonlinear waves, linear springs are sufficient
to capture the dynamic response of flexMM, since the nonlinear
behavior comes mainly from geometry. Equation (1) can subse-
quently be numerically integrated to obtain the dynamic response of
the system. Importantly, these models provide a direct relation to the
geometry of flexMMs, thus providing essential insights into their
dynamic response.

For the special case of planar waves with characteristic wave-
lengths much larger than the unit cells, analytical solutions can
also be obtained by taking the continuum limit of the discrete
equations of motion.33–37,51,61,78 There have been several examples
of this: the response of an array of magnetically coupled bistable

plates can be captured by a nonlinear Schrödinger equation;51,78

the response of a flexMM based on the rotating-square mechanism
can be captured by the nonlinear Klein–Gordon equation;33–35,61

the response of a chain of buckled beams follows the Boussinesq
equation;36 and the dynamics of origami chains have been found to
follow a Korteweg–de Vries equation.37 Depending on the specific
geometries of the flexMM and the driving input, these equations,
when fully integrable, yield analytical solutions describing
solitons,33–35,78 rarefaction solitons,36,37 and topological soli-
tons.61,78 Interestingly, these solutions provide a direct relation of
these phenomena to the geometrical parameters of flexMMs.
Therefore, they not only allow interpretation of the experimentally
and numerically observed phenomena but also provide opportuni-
ties for the rational design of flexMM with targeted nonlinear
dynamic responses.

For example, for a metamaterial based on the rotating-square
mechanism by taking the continuum limit of Eq. (1), retaining
nonlinear terms up to the third order and introducing the traveling
wave coordinate ζ ¼ x cosfþ y sinf� ct (where x and y are the
Cartesian coordinates, t indicates time, and f and c represent
direction and velocity of the propagating planar wave) in the gov-
erning equations of motion, it is found that the propagation of
large amplitude planar waves is described by a nonlinear Klein–
Gordon equation of the form33–35,61

@2θ

@ζ2
¼ C1θ þ C2θ

2 þ C3θ
3 þ O(θ4), (2)

where C1, C2, and C3 are parameters that depend on the geometry
of the flexMM and the flexibility of its hinges and can, therefore, be
tailored by tuning the metamaterial design. Equation (2) admits
well-known solitary wave solutions of the form34

θ(ζ) ¼ 1
D1 + D2 cosh (ζ=W)

, (3)

with

D1 ¼ � C2

3C1
, D2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
2

9C2
1
� C3

2C1

s
, and W ¼ 1ffiffiffiffiffi

C1
p : (4)

Equation (3), depending on the sign of D1 and D2, captures differ-
ent types of stable nonlinear pulses, including solitons, rarefaction
solitons,34 and topological solitons.61 Moreover, it is important to
note that under the assumption of traveling wave coordinates,
other types of governing nonlinear equations, including the
Boussinesq equation36 and Korteweg–de Vries equation,50 can be
transformed into a nonlinear Klein–Gordon equations, making
Eq. (2) quite general.

Finally, energy balance considerations have also proven useful
to predict the characteristics of topological solitons propagating in
dissipative media.76,83 Specifically, it has been shown that the wave
speed can be estimated by balancing the total transported kinetic
energy, the difference between the higher and lower energy wells
for the asymmetric elements, and the energy dissipated.

FIG. 2. Modeling the nonlinear dynamic response of FlexMM. (a) Schematics
of three classes of flexMM and their corresponding discrete model. (b) The
discrete models typically comprise networks of rigid bodies connected by a com-
bination of rotational and longitudinal linear springs.
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Furthermore, energy considerations can also provide insight into
topological solitons-based energy harvesting.44

IV. OUTLOOK

In summary, this Perspective paper has attempted to demon-
strate that flexible mechanical metamaterials provide a rich plat-
form to manipulate the propagation of nonlinear waves. We close
this paper by identifying several challenges for future work.

Toward nonlinear periodic waves. Beyond pulse-like, large-
amplitude waves with finite spatial and temporal extent (e.g., soli-
tons and transition waves discussed in this work), it has been
shown that rotating-square systems with either quadratic84 or cubic
nonlinearity85 also support the propagation of cnoidal waves (see
Fig. 3). Cnoidal waves are described by the Jacobi elliptic functions
dn(�jk), sn(�jk), and cn(�jk), where k is the elliptic modulus
controlling the shape of the elliptical functions. These cnoidal wave
solutions extend from linear waves (for k ! 0) to solitons (for
k ! 1), while covering also a wide family of nonlinear periodic
waves.85 Furthermore, as depicted in Fig. 3, flexMM could also
provide a laboratory test bed for the observation of other types of
nonlinear waves,86,87 including bright/dark solitons,78 breathers,
and rogue waves88 (large-amplitude waves that suddenly appear/
disappear unpredictably, typically observed in surface water
waves89). Harmonic generation, frequency conversion,90,91 and
even actuation (via effects such as frequency-down conversion) are

other exciting possibilities to be explored by the rational design of
the nonlinear properties of flexMM. Typically in experiments, the
periodic and modulated waves depicted in Fig. 3 are generated by a
low-frequency shaker driving a boundary of the FlexMM in the
range of 10 Hz–10 kHz. Other types of transducers, drivers, or actu-
ators are conceivable depending on the dimensions of the micro-
structure, the frequency range of interest, and the desired effects.

New flexMM designs. So far, the nonlinear dynamic response
of a limited number of flexMM designs has been investigated.
FlexMM based on origami, kirigami, tensegrity structures, and
rotating-units other than squares (e.g., triangles or hexagons) may
provide additional opportunities to manipulate the propagation of
nonlinear waves. Also, the nonlinear dynamic responses of three-
dimensional architectures remain largely unexplored and may open
new avenues for wave management.

Going beyond periodic systems. While most previous studies
have focused on the propagation of nonlinear pulses in periodic
and homogeneous structures, new opportunities may arise when
investigating the interactions of large-amplitude waves with free
surfaces, inhomogeneous structures, and sharp interfaces. How do
the nonlinear pulses propagate along free surfaces? What is the
effect of internal interfaces on soliton propagation? How do other
spatial variations such as gradients in initial angle, gradients in
mass, or gradients in the stiffness of the hinges affect the propaga-
tion of waves through the material? Can these be used to steer a
beam or otherwise affect an incident plane wave? All these ques-
tions remain unanswered.

Targeted nonlinear dynamical responses. While the focus so
far has been on the development of tools to predict and character-
ize the propagating nonlinear waves in flexMM, an important ques-
tion that is still unanswered is: How should one design the
structure, including unit cell geometry, inhomogeneities such as
gradients and interfaces, etc., to enable a target dynamic response?
Target dynamic responses may include highly efficient damping for
impact mitigation; optimal wave guiding (i.e., optimal energy con-
finement and propagation along a determined path); and lensing of
solitons for optimal energy concentration. To allow the automated
design of flexMM architectures that are optimal for achieving a
specified set of target dynamic properties, one could couple discrete
models with machine learning algorithms, such as neural networks
and deep learning.

Control of nonlinear waves on the fly. Since the characteris-
tics (i.e., shape, velocity, and amplitude) of nonlinear waves propa-
gating through FlexMM can be tuned by varying the nonlinear
response of the underlying medium, which can be effectively
altered by (locally) deforming the metamaterial, we envision that
the applied deformation could be a powerful tool to manipulate the
pulses. Local deformations applied to the FlexMM could provide a
mechanism to change the characteristics as well as the path of the
propagating pulses on the fly. This could provide opportunities for
time-space modulation of the propagating pulses,82 real-time
control of waves, and tunable non-reciprocal transmission.92

Furthermore, since collisions of solitons in flexMM may result in
anomalous interactions that provide opportunities to remotely
detect, change, or eliminate high-amplitude signals and impacts,50

we envision the use of collisions to pave new ways toward the
advanced control of large amplitude mechanical pulses.

FIG. 3. A diagram showing different types of linear and nonlinear waves.
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Reconfigurability via transition waves. As described in
Sec. II C, the propagation of topological solitons (transition waves)
in multi-stable flexMM can reconfigure all or part of the sample.
Since this reconfiguration can be initiated even by a localized, weak
impulse, a number of practical applications become possible. These
include locomotion or propulsion in soft robotics,39 precise and
repeatable actuation,24 and the reconfigurable devices mentioned
earlier.42,43,45 Next steps could include the use of inverse design
tools and the controlled use of localized defects to achieve control
of the propagation path or velocity of transition waves, enabling
more complex actuation and targeted shape changes.
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