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Abstract— We present a breadth-first sensor configuration
strategy to find near-optimal placement and sensor field of view
(FoV). The strategy couples the sensor configuration procedure
directly with the decision making task of planning a path
for an agent in an unknown static environment comprised of
threats. This coupled sensor configuration and path-planning
(CSCP) strategy iteratively uses Gaussian Process Regression to
construct a threat field estimate and find a candidate optimal
path with minimum threat exposure. The strategy utilizes a
unique task-driven information gain (TDIG) metric, which
yields the sensor configurations when maximized. Due to the
non-convex and non-submodular nature of the problem, we
present an approximation for the optimization of the TDIG
metric. Finally, we discuss the performance of the breadth-first
strategy in contrast to a standard and depth-first strategy as
well as traditional information-maximization.

I. INTRODUCTION

Autonomous agents such as aerial, land, and marine robots
operate under a sequential sense-then-act principle. The
planning operation, or motion planning problem, finds an
optimal sequence of control inputs or actions that drive
an agent to a terminal state while minimizing a cost. The
sensing operation, or information gathering problem, collects
pertinent data in an agent-centric environment with the
objective of either maximizing information or minimizing
the uncertainty. However, these two problems are typically
solved independently, even in domains which they coexist
and have a latent interdependence. The goal of this paper is
to exploit this relationship by coupling the operations and
solving them together in a task-driven manner.

The proposed coupled sensing and planning approach can
be applied to autonomous agents that have a configurable
sensor network for information gathering. For example, in
a military application scenario, unmanned aerial vehicles
(UAVs) can be configured to survey an operating environ-
ment for hazardous threats. This application may further
require the determination of a safe route through this envi-
ronment, and it would then be the task of the UAVs to survey
the environment in an efficient manner. Instead of surveying
the entire environment, which may be time-consuming or
cost-prohibitive due to the sheer size of the environment, we
are interested in configuring the UAV sensor network in way
that provides information of most relevance to path-planning.

Related Work: Path-planning — in and of itself — is well-
understood to the point of being considered a “solved prob-
lem.” Notable approaches include probabilistic roadmaps, ar-
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Fig. 1. Example threat field of a mountainous terrain and associated optimal
path that minimizes the threat (elevation gain).

tificial potential fields, geometric techniques and cell decom-
position [1], [2], wavelet decomposition, A* and its variants,
fuzzy logic, and the use of genetic algorithms [3]. Commonly
addressed problems in path-planning involve minimizing the
path length, collision avoidance, and maximizing utilities [4].

Sensor placement objectives include minimizing uncer-
tainty and/or maximizing spatial coverage [5]. Performance
metrics for sensor placement include entropy, Kullback-
Liebler divergence, and mutual information [6]. Optimal
sensor placement specifically for threat estimation has been
studied for applications such as the dispersal of gases,
specifically for volcanic ash, and with the use of distributed
networks [7]-[9], but none considered a planning objective.

Optimal sensor placement using Gaussian Process (GP)
models is studied in [10]. Field estimation is performed by
Bayesian updates [11] of a mean function and a kernel [12].
Methods for reducing its computational burden [13]-[15] and
for automatic kernel structure discovery and hyperparameter
optimization [16], [17] are studied.

The concept of a fask-driven sensor network configuration
metric in contrast to an information-driven approach is de-
fined in [18]. An interactive planning and sensing technique
was developed for task-driven sensor placement [19]. This
technique attempted to minimize the number of iterations to
plan a path with some optimality guarantee.

Statement of Contributions: In this paper, we present
a method to achieve coupling the sensor configuration and
path-planning objectives. Specifically, we present a new
breadth-first method for configuring sensor networks to near-
optimal positions and field of view (FoV) to minimize
the path-planning uncertainty. We assume that the sensor
network is comprised of sensors that have a predefined
mapping of observations to a notion of threats present within
the environment. Furthermore, we consider that the threats
present are unimodal, meaning that the sensory equipment



amongst the sensor network produces a uniform and directly
proportional mapping of sensor reading to threat value. Our
method assumes the tradeoff between increasing sensor FoV
at the expense of increased measurement noise while de-
creasing the FoV improves the measurement quality. Herein,
we present a breadth-first approach for configuring our sensor
network to greedily find a viable path plan that meets our
predefined optimality standards.

Throughout this paper, we use the example of determin-
ing a path through an unknown mountainous region. The
example field, the threat field, is shown in Fig. 1, along with
the optimal route from our location to the goal location. In
this example, we assume access to a network of UAVs with
sensors for observing the environment elevation. We wish
to configure these UAVs in a minimal number of iterations
such that the uncertainty in the planned path cost falls below
a prespecified threshold.

II. PROBLEM FORMULATION

We denote by R and N the sets of real and natural
numbers, respectively, and by [N] the set {1,2,..., N} for
any N € N. For any a € RY, a[i] is the i*" element of
a and diag(a) denotes the N x N diagonal matrix with
the elements of a on the principal diagonal. For any matrix
A € RMXN " A[i, 5] is the element in the i*® row and ;'
column. Iy denotes the identity matrix of size N.

The agent operates in a prespecified closed square region
called the workspace VW, which belongs to an environment £
such that W C € C R?. Consider a uniformly-spaced grid of
points labeled by integers i = 1,2, ..., Ng. Consider a graph
G = (V, E) whose vertices V = [IN,] are uniquely associated
with these grid points, and whose edges E consist of pairs
of geometrically adjacent grid points. In a minor abuse of
notation, we label the vertices the same as grid points. We
denote by p; = (Piz,piy) the coordinates of the i*" grid
point and by Ap the distance between adjacent grid points.

A threat field c : £ — R is a strictly positive temporally
static scalar field. We are interested in a path-planning
problem of minimizing the agent’s threat exposure in .
A path w = (w[0],7[1],...,w[A]) between prespecified
initial and goal vertices %gtart, igoal € V' is a finite sequence,
without repetition, of successively adjacent vertices such that
7[0] = istars and w[A] = igoa1 for some A € N. We
define the path incidence vector v, such that v.[i] = 1 if
i = m[j] for j € [A]\O and v, [i] = O otherwise. An example
workspace and the true optimal path for the mountainous
region example is depicted in Fig. 2(a).

The cost of this path 7 is the total threat exposure along
the path: J(7) := Ap Zle ¢(Py,). The main problem of
interest is to find a path 7v* of minimum cost.

We cannot solve this problem as stated because the shape
and intensity of the threat field is unknown. However, the
threat field is observable by a network of Ny € N sensors.
Each sensor measures the threat field within in a circular
and variable field of view (FoV), which is a subregion of £.
The center and radius of this circular FoV S, C &£, denoted
s, € Wand g, € Ry, for the k" sensor, are parameters that

Fig. 2. (a) 2D workspace representation and the true optimal path (red).
(b) Example of sensor FoVs (some overlapping) and observations (red dots).

we may choose for each k € [Ng]. Maximum and minimum
FoV radius constraints are specified as o™ and o™,
respectively. The set of all sensor parameters is called a con-
figuration, which we denote by C = {s1, 01, 82, .., 0N, }-

Consider the set Vs, := {Sx NV} of vertices with grid
points within the union of FoVs of all sensors. We define
the sensor cover incidence vector vy, such that vi[i] = 1
if i € Vs, and vi[i] = 0 otherwise. The cover incidence
vector denotes the workspace vertices in which a sensor FoV
intersects it. We further denote v := (v1 Vo V...V vy) as
the sensor cover incidence of all sensors in the network.

As illustrated in Fig. 2(b), within S; the k' sensing
agent takes M), € N pointwise and noisy measurements,
equal to the magnitude of v;. The measurements taken are
formulated as 2k = ¢(®km) + Mem, Where k& € [Ng] and
m € [My]. The i.i.d measurement error 77;8,7)@ ~ N(0,0%)
is normally distributed with the value of o7 dependent on
each sensor’s FoV radius g; and noise profile. We denote
by |M| the total number of measurements, and by z =
[z11 ... 21y 2N, MNS]T the measurements made
by the collection of all sensors. We use z to construct
a stochastic estimate of the threat field, and then find an
optimal path that minimizes the expected cost.

We desire the uncertainty in the estimated path cost to
be low. Specifically, the variance of the path cost must
be less than a certain prespecified threshold. To do so,
we must collect a sufficient number of measurements by
repeatedly changing the sensor configuration over multiple
iterations. Conceptually, at each iteration £ = 0,1, ..., L, the
sensor configuration C is chosen, the threat field estimate
is updated using the new measurements, and an optimal
path is recomputed. The main problem of interest is now
reformulated as follows:

Problem 1. Over finite iterations { = 0,1,..., L, find sensor
configurations Cy and a path ™ of minimum expected cost
T = E[J(w*)] that satisfies E[(T (7*) — T )?] < &, for

a prespecified termination threshold € € R .

III. COUPLED SENSOR CONFIGURATION AND PLANNING

The coupled sensor configuration and path-planning algo-
rithm executes three iterative steps: (1) find optimal sensor
configurations (location and FoV), (2) update the threat field
estimate and error covariance, and (3) find an optimal path.



Coupled Sensor Configuration and Path-Planning

I: Let{ =0, fob, =0,Ph=xI,Z=0

2: Solve for 7§

3. while Vary(7}) > cand (vx AZ) # 0 do

4:  Perform a Sensor Configuration Strategy

5 Record and combine measurements z

6:  Increment iteration counter ¢ := ¢ + 1

7. Find GPR-based threat field estimate f, and error
covariance Py

Mask the threat field estimate f, := f, © L ®

Use Dijkstra’s algorithm to find path 7 with mini-
mum expected cost J (7))

10: end while

o x

Fig. 3. Pseudocode for an iterative algorithm to solve Problem 1.

At each iteration £ = 0,1,..., L, the algorithm maintains
at each of the IV, grid points a pointwise mean threat estimate
fo € R™M= and an estimation error covariance matrix P, €
RNe*Ne  The expected cost of any path 7 is

To(m) =E[T(m)] = Ap fiva. (1)

An optimal path 7v; with minimum expected cost is com-
puted using Dijkstra’s algorithm, which has computational
complexity O(|V|log |E|) and is efficient for graphs with
large counts of vertices and edges [20]. The path cost
variance at iteration ¢ is calculated as:

Vary () := E[(J () — Te(m))’] = (Ap)*vLPrvn ()
A. Algorithm Initialization

The algorithm initializes “optimistically” with f, = O.
The large initial uncertainty in the threat estimate is quan-
tified by P = xI(n,), where x > 1 is an arbitrary large
number. Due to this “optimistic” initialization, the initial
optimal path 7rj is of minimum length.

We also define a set of vertices identified by Z € [IN] that
are covered by at least one sensor in at least one iteration.
The set Z helps to ensure that the field estimate is not underfit
in regions away from training data or when we have an
insufficient amount of training data, and enables the use of
a depth-first sensor configuration scheme. The importance
of both these items will be detailed in a later step of the
algorithm. At each iteration, Z is updated to reflect sensor
configurations as Z) := (v v ZU*Y). Furthermore we
define the identified path incidence vector as I, € RNs
such that . := (7, AZ"). The unidentified path incidence
vector is the complement Z;. = 1 — Z .. Figure 4(a) shows
an example of the estimated threat field at an intermediate
iteration, with the white dots representing identified vertices.

B. Sensor Network Configuration

At each iteration £ = 0, 1, ..., L, we calculate a sensor net-
work configuration, denoted Cy = {s1¢, 02¢,S2¢ - .., ON.¢}-
Figure 4(b) shows an example configuration of three sensors
covering regions of the diagonal entries of the covariance

Fig. 4. Left: Estimated threat field, true optimal path (red), candidate path
(yellow) of our terrain example. Right: Threat variance intensity values and
sensor field of view (white circles).

matrix Py. To find optimal sensor configurations, we present
a task-driven information gain (TDIG) metric. The optimal
sensor configuration C is found by maximizing the TDIG
metric, which is the reduction in variance along a region of
interest (ROI) 7 € RNs. The TDIG metric is defined as:

h(Cy,T) = (Ap)2TT(Pg — Pt 3)

Each element of 7 takes binary values in {0, 1}.

The posterior covariance Py;; cannot be directly com-
puted, so we require an approximation P[+1. To this end,
we assume that the correlation between vertices is kept fixed,
and we use the proportional relationship between correlation
and covariance to approximate the covariance matrix after
configuring the sensor network.

First, we obtain the inverse of diagonal entries of the co-
variance matrix P[i,)~!. Next, we compute the correlation

matrix as €y := Dy;P;D,;, where D, is a diagonal matrix
with Dy[i,i] = /Ppli,i]~1. Next, define q as:
g = (Plii] " + 0 v /o?) )

Let r := (vAT) be the sensor network reduction incidence
vector. We estimate the posterior diagonal variances as
gr = 1°® Pyli,i] + r © q, where © is the element-wise
product. Finally, we can obtain the approximate posterior
covariance matrix Ppy; := diag(/qx)Qediag(,/qx). This
approximation can then be used to find a sensor network
configuration C; that maximizes the TDIG subject to the
constraints sx € W, o™" < g5, < o™, for each k € [INg].

A sensor configuration strategy then amounts to choosing
the ROI 7. Next, we discuss three sensor network configu-
ration strategies including the new breadth-first approach.

1) Standard Strategy: We choose T = v, due to which
the maximization of the TDIG entails reducing uncertainty
along the candidate optimal path 7.

2) Depth-First Strategy: The depth-first (DF) strategy is a
two stage approach that utilizes the identified path vertices to
dictate whether to “explore” the environment or “exploit” the
candidate optimal path. The exploration state occurs when
|Z2| > Ns, and it sets 7 = Z.. Sensors are placed in
unexplored regions outside of the candidate optimal path.
The exploitation state occurs whenever |Z5.| < Ng, and it
sets T = v,. Unlike the exploration state, we iteratively



add batches of our sensor network, effectively configuring
them to make multiple observations in a single iteration ¢,
until the approximated TDIG is below e. Therefore, in a
single iteration, the sensor network might take multiple
observations prior to obtaining the threat field estimate.

3) Breadth-First Strategy: The breadth-first (BF) strategy
samples the approximate posterior threat estimate. Using
these samples, we construct an ensemble of N, threat fields,
and for each threat field we find an optimal path. Then, we
define a path weight vector based on the resulting ensemble
of incidence vectors of these optimal paths:

Wy =20 — ﬁ ('u,r + Zf\i’laz) . 5)

Here a, is the intersection of all path incidences and the
estimated optimal path incidence. The optimal sensor net-
work configuration is found by maximizing the TDIG with
T = w,. This strategy enforces exploration at the “fringe”
until the alternate paths converge after several iterations and
the method performs similar to the standard strategy.

C. GPR-based Field Estimation

Gaussian Process regression (GPR) is a supervised ma-
chine learning technique [21] that uses function values z at
training points X (sensor observations) to estimate function
values at test points X, (workspace vertices). As the sensors
measure points each iteration at covered workspace vertices
tracked by v, we use a weighted update procedure as in [22]
to combine multiple sensor observations at the same vertex.
This leads to at most N training data points and N, test
points. Therefore, the computational efficiency is a function
of our workspace resolution.

We perform the GPR calculations “optimistically” assum-
ing mean 0 because stationary kernels exhibit x(x, x.) — 0
as |[x — x«|| — oo. This property and the initialization
fo = 0 provide optimistic field estimates in regions away
from the training data, thereby avoiding suboptimal solutions.
We utilize the squared exponential with automatic relevance
determination (SE-ARD) kernel and from the posterior of
the GPR we obtain the mean field estimate f, and threat
covariance matrix P,. We find two length scale hyperparam-
eters and one data height variation height hyperparameter by
maximizing the marginal log-likelihood equation.

The field estimate is further made “optimistic”” by masking
the current field estimate with identified vertices to create
the optimistic threat field estimate f c =f 0 ¥, Upon
obtaining f ¢» we may find a candidate optimal path 7} using
Dijkstra’s algorithm. Figure 5(a) depicts the initial threat field
estimate produced by the GPR method, while Fig. 5(b) shows
the third iteration and Fig. 5(c) the final iteration.

D. Algorithm Termination

Upon finding a candidate path 7v; we compute the path
cost variance Varg(7}) as in (2). If Vary(7}) < ¢, then the
algorithm terminates. The termination threshold ¢ > 0 is a
small user-specified threshold that sets the minimum desired
confidence in the estimated path cost. Decreasing the value
of ¢ increases the desired confidence.

Proposition 1. The CSCP algorithm terminates in a finite
number of iterations L € N for Ng > 0.

Proof. First, we note that the diagonal entries along P, have
infimum O and supremum Y. At each iteration Ny > 0
sensors are placed along ROI 7, which is a subset of the
workspace, due to our optimization of the TDIG metric.
Due to this and the GPR-based field estimation the diagonal
entries along P, are monotonically decreasing. By our defi-
nition, a path 7 is a sequence of vertices in the workspace
and thus a subset. Since the workspace vertices variance
are bounded and monotonically decreasing each iteration by
consequence the subset along 7r is as well. Therefore, by the
monotone convergence theorem, inf{Var(w3)} =0<e. O

Proposition 2. The CSCP algorithm solves Problem 1.

Proof. We note that the path 7} satisfies the conditions
stated in Problem 1, namely, that is has minimum expected
cost 7 = Jp(w%) and B[(Jr — T )?] = Varp(n}) < e
per the termination criterion enforced by Line 3 in Fig. 3. [

Corollary 1. A path 77 is near-optimal as follows:
P {|7* ~ Tl < 3\@} > 0.9973

Corollary 2. The path 77} is near-optimal in the following
sense. Let J* denote the cost of the true optimal path. Then:

P [|7* — T < 3\@} > 0.9973

Proof. Due to the GPR threat field model and linearity in
(1), the path cost is normally distributed, and both results
follow immediately from the standard normal table. O

IV. RESULTS AND DISCUSSION

In this section we numerically study simulated results
of the CSCP algorithm, specifically the BF strategy and
alternative sensor configuration strategies. We then compare
them all to an information driven approach and discuss the
performance improvements in terms of iterations, observa-
tions, and computation times.

A. Results of Mountainous Terrain Example

In the motivating example presented in §I, we wanted
to find an optimal path through a mountainous terrain that
avoided high elevation. The depictions in Fig. 6 are the end
result of using the BF strategy with three sensors and a
termination threshold of € = 1.0. The candidate optimal path
(yellow) is spatially close to the true optimal path, and the
path cost variance satisfies €. Using the CSCP algorithm
with BF yielded a solution in 9 iterations. However, DF
took 13 iterations to find a similar path that satisfied e.
When we increased our desired confidence in the path to
be ¢ = 0.01, we observed that the BF strategy took 15
iterations while the DF strategy took only 14 iterations.
Thus, the qualitative property of the BF strategy is that
we can find paths in fewer iterations but with a higher
termination threshold. Conversely, as we emphasize in the
following numerical study, the DF strategy requires fewer
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Fig. 6. Left: Final estimated threat field, true optimal path (red), candidate
path (yellow). Right: Threat variance intensity values and final sensor
configuration (white circles).
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iterations when the termination threshold is small. The choice
of strategy is therefore application dependent, but as we
show next, any of the three task-driven strategies outperforms
existing traditional approaches by orders of magnitude.

B. Performance Analysis on Randomly Generated Fields

To assess the performance of the CSCP algorithm with
the various strategies we established a study that randomly
generated, for each experiment, 100 threat fields of the form
clx) = ZnNil 0n¢n (). The value N, represents the number
of radial basis functions ¢,, that cover £. The threat intensity
6,, is a coefficient that embodies the magnitude of each threat
parameter. For these experiments we fixed the number of
threat parameters to be N, = 50 with 6,, = 10.

We further assumed that our configurable sensor network
with either Ny = 3, 5, or 9 UAV-attached sensors, with
minimum and maximum altitudes simulated by assigning
constraints g, = 0.01 km and gy,x = 0.5 km. Additionally,
the sensor noise is modeled as o7 = 1log(1 + exp™er) —
0.1505, which is monotonically increasing for g5 > 0.

For the experiments we fixed the workspace resolution to
have either N, = 225 or 400 and the environment axis size
to be either 3km or 5km for a total area of |£] = 9km? or
|| = 25km?, respectively. For the BF strategy, we varied
the number alternate paths as N, = 25, 50, or 100. These
we abbreviate as BF-25, BF-50, and BF-100, respectively.
Finally, we set our termination threshold € = 0.01.

1) Task-Driven vs. Information-Maximization Results:
The experimental results across the varied number of sen-
sors, grid points, and environment area are depicted in
Fig. 7. Info-Max represents the baseline comparison between

(b)

(©)

(a) Threat field estimate at £ = 1 (b) Threat field estimate at £ = 3 (c) Final threat field estimate at £ = 9.

the task-driven approaches and the traditional information-
maximization (IM) approach. From this data, we observe
that the task-driven approaches increasingly outperform IM
approaches as the number of available sensors decrease.
IM approaches become competitive only when increasingly
many sensors are available.

2) Breadth-First vs. Other Task-Driven Strategies: The
breadth-first strategy, in comparison to the depth-first and
standard task-driven strategies, is shown to minimize the
number of iterations until convergence as more sensors are
available. Conversely, fewer available sensors led to the
breadth-first method to perform to a lesser degree than
depth-first and standard task-driven approaches. This same
pattern held true for all environment areas and workspace
resolutions, however it was more pronounced when the
environment area was lower.

From this data, we can qualitatively assess the nature in
which we should select either the breadth-first, depth-first, or
standard task-driven sensor configuration strategies. Firstly,
the performance between the standard and depth-first varied
little. Thus, we would suggest using the standard approach
only when there is little information about which strategy to
select. From the data, however, the main observation to be
made is that the depth-first approach is better suited when
fewer sensors are available while breadth-first is better suited
when more are available. Likewise, when the environment
area we wish to survey is relatively smaller in proportion to
our maximal sensing radius o™®*, the breadth-first approach
is more proficient. In larger areas, it may require more and
more sensors until the breadth-first approach performs better
than depth-first. The workspace resolution parameter did not
contain any apparent distinction in performance between the
depth-first and breadth-first strategies.

3) Effect of Varying Number of Alternate Paths: Given
the data, we can observe the number of alternate paths NV,
played almost no role on the performance of the breadth-first
strategy for CSCP. Given this, it becomes apparent that we
can utilize few alternate paths and still get good performance.

V. CONCLUSIONS

In this paper we presented the breadth-first sensor con-
figuration approach applied to the task-driven information
gain metric. We detailed the coupled sensor configuration and
path-planning algorithm and the various sensor configuration
strategies for selecting a region of interest. We outlined the
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7. Numerical study results on the sensor configuration strategies.

procedure for finding a set of alternate paths and devising
a weighted path incidence for the breadth-first approach
of defining the region of interest. Ultimately, we provide
a method that is capable of finding a minimum cost path
in minimal iterations that satisfies our optimality standards.
Numerically, we show the superiority of the task-driven sen-
sor configuration over traditional information-maximization.
Further, we provided numerical backing explaining the best

suited application for the breadth-first strategy over depth-
first and standard task-driven sensor configuration.
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