
Securing CHEESEHub: A Cloud-based, Containerized
Cybersecurity Education Platform

Mike Lambert
lambert8@illinois.edu

National Center for Supercomputing Applications,
University of Illinois at Urbana-Champaign

Illinois, USA

Rajesh Kalyanam
rkalyana@purdue.edu

Research Computing, Purdue University
Indiana, USA

Rob Kooper
kooper@illinois.edu

National Center for Supercomputing Applications,
University of Illinois at Urbana-Champaign

Illinois, USA

Baijian Yang
byang@purdue.edu

Department of Computer and Information Technology,
Purdue University

Indiana, USA

ABSTRACT
The Cyber Human Ecosystem for Engaged Security Education

(CHEESEHub) is an open web platform that hosts community-
contributed containerized demonstrations of cybersecurity con-
cepts. In order to maximize flexibility, scalability, and utilization,
CHEESEHub is currently hosted in a Kubernetes cluster on the
Jetstream academic cloud. In this short paper, we describe the secu-
rity model of CHEESEHub and specifically the various Kubernetes
security features that have been leveraged to secure CHEESEHub.
This ensures that the various cybersecurity exploits hosted in the
containers cannot be misused, and that potential malicious users of
the platform are cordoned off from impacting not just other legiti-
mate users, but also the underlying hosting cloud. More generally,
we hope that this article will provide useful information to the
research computing community on a less discussed aspect of cloud
deployment: the various security features of Kubernetes and their
application in practice.

CCS CONCEPTS
• Information systems → Computing platforms; • Security
and privacy → Web application security; Vulnerability man-
agement.

KEYWORDS
cybersecurity, containers, cloud computing, Kubernetes

ACM Reference Format:
Mike Lambert, Rajesh Kalyanam, Rob Kooper, and Baijian Yang. 2021. Secur-
ing CHEESEHub: A Cloud-based, Containerized Cybersecurity Education
Platform. In Practice and Experience in Advanced Research Computing (PEARC
’21), July 18–22, 2021, Boston, MA, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3437359.3465584

This work is licensed under a Creative Commons Attribution International
4.0 License.

PEARC ’21, July 18–22, 2021, Boston, MA, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8292-2/21/07.
https://doi.org/10.1145/3437359.3465584

1 INTRODUCTION
With the pervasive role of computer applications in everyday life,
the need to ensure the security of these applications and any as-
sociated privileged user information is critical. However, these
applications are rarely built from the ground up and often rely on
a variety of software libraries that have been designed and built
by others. The HeartBleed bug [1] and SQL injection [2] attacks
are examples of how missing validation steps in key software li-
braries can have far reaching impacts on far removed modern web
applications. Consequently, practical cybersecurity training should
form an integral component of the education of the next generation
software engineering workforce.

CHEESEHub [9] is designed for this exact goal, and seeks to
impart knowledge of common cybersecurity flaws and solutions
through demonstrations of the real-world impacts of these flaws.
At its core, CHEESEHub is a public web platform that users can
access via their browser, launch these demonstrations on-demand,
and follow the accompanying self-paced lessons for reproducing
the flaws and evaluating the solutions. In order to simplify contri-
bution, scaling, and deployment to support a variety of educational
and training needs, CHEESEHub is designed to be deployable on
a Kubernetes cluster with a configurable catalog of applications.
While the system design and usage of CHEESEHub have been de-
scribed elsewhere [9], we focus here on a previously un-discussed
aspect: the security model of CHEESEHub, specifically the infras-
tructure, application, and user level security considerations and our
security policies for each. To avoid reinventing the wheel, these
security policies heavily leverage various features of the Docker
container engine, Kubernetes, and its related plugins. With the
growing popularity of cloud-based applications, we hope that this
practical account of security features at developers’ disposal will
foster best practices in the development and deployment of such
applications.

The rest of this paper is organized as follows: in Section 2 we
provide a brief overview of the CHEESEHub system design and the
corresponding infrastructure, application, and user security con-
cerns; in Section 3 we describe the various Docker and Kubernetes
security features that are leveraged in handling these concerns;
in Section 4 we introduce some additional unique challenges that

https://doi.org/10.1145/3437359.3465584
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3437359.3465584


PEARC ’21, July 18–22, 2021, Boston, MA, USA Lambert et al.

arise when using Kubernetes to deploy applications as distributed
containers in the cloud, and the corresponding Kubernetes orches-
tration capabilities utilized in addressing these considerations; and
finally in Section 5 we provide some key takeaways, best practices,
as well as additional reference resources for securing cloud-based
applications.

2 CHEESEHUB DESIGN AND SECURITY
CONCERNS

CHEESEHub is built on the National Data Service (NDS) Labs
Workbench [8], a framework for deployingweb-accessible, container-
based analysis environments for a variety of research domains. Labs
Workbench is designed for ease of deployment across various public
and commercial cloud services and utilizes JSON files for configur-
ing and customizing the set of deployed containerized applications.
Figure 1 illustrates the high level system architecture of CHEESE-
Hub with examples of the set of containers that are deployed for a
few demonstrations: SQL Injection, ARP poisoning, and HeartBleed.

We focus here on the three highlighted components in Figure 1:
the infrastructure, user space, and application containers. The spe-
cific security concerns associated with each of these components
are as follows:

Infrastructure: This includes the underlying compute cloud
infrastructure and the cloud virtual machines that comprise the
Kubernetes cluster, as well as the various Kubernetes resources
used to deploy CHEESEHub. The primary security concern here
is the ability of a malicious user to break out of the sandbox envi-
ronment of the hosted applications and target the host machine or
Kubernetes resources, with or without the use of the cybersecurity
tools or vulnerable software installed in the hosted applications.

User Space: A given user may launch one or more applications,
each of which may include several related containers. The key
security concern here is the ability of a malicious user to identify
(either via brute force or some other means) the IP addresses of
other users’ containers and then exploit the security vulnerabilities
installed in these containers to deny access or disrupt their use.

Application Containers: While the security implications of
potential malicious uses of the application containers have been
listed above, the applications themselves also present some inadver-
tent security risks. Specifically, runaway processes in the containers
may consume system resources, preventing the launching or usage
of other applications orchestrated on the same host machine. Fur-
thermore, certain applications that involve sets of containers (i.e.
client, hacker, and server) typically require unrestricted network
traffic between each other or further still, to be on the same “local
network”. An implementation that allows any Kubernetes pod (i.e.
a resource referring to a single or group of deployed container(s))
on CHEESEHub to communicate with any other pod would open
the system up to malicious user attacks.

Given these aforementioned security concerns, we next describe
the CHEESEHub security model that addresses each of these con-
cerns through various out-of-the-box security features at our dis-
posal.

3 CHEESEHUB SECURITY MODEL

We provide here an overview of the security model inherent
in Docker and Kubernetes that make up the full security model
presented by the CHEESEHub platform.

Docker Security: While the decision to use containers as the
underlying execution mechanism was originally based on porta-
bility and reproducibility, containers isolate the vulnerable code
and prevent it from directly affecting other processes running on
the host machine. By providing a more intuitive interface for creat-
ing long-used security mechanisms within Linux, Docker creates
multiple namespaces that are unique to each container (PID, MNT,
NET, UTS, IPC) to prevent cross-container communication across
these channels. Linux control groups (cgroups) are used to secure
hardware utilization and to prevent applications from consuming
too many resources on the host, such as CPU or memory. Finally,
Docker integrates with system-level kernel security tools such as
SELinux or AppArmor and uses Linux security context capabilities
to only grant higher permissions when absolutely necessary [3].

Kubernetes Security: Though its main focus is to handle the
orchestration of containers across multiple virtual machines, Kuber-
netes adds its own set of available security features and configura-
tions on top. It allows the cluster administrator(s) to control access
to its own API using role-based access control, and offers several
configuration options for network plugins. Choosing particular
network plugins, such as WeaveNet or Calico, can allow the admin-
istrator NetworkPolicy resources to restrict network egress/ingress
traffic to an application. Furthermore, Kubernetes offers mecha-
nisms for easily overriding particular Linux security capabilities
mentioned above on an as-needed basis to demonstrate security
vulnerabilities. For example: to demonstrate an ArpSpoof and sub-
sequent SSL stripping man-in-the-middle attack, the user must be
able to inspect and modify network settings. Adding NET_ADMIN
to the security context allows us to demonstrate the hack, without
providing the user with the broader capabilities that running a
container in privileged mode allows.

These security features are vital to CHEESEHub to ensure that
malicious code from one user’s application cannot affect the under-
lying host machine or the performance of an application run by
another user, whether directly or indirectly.

4 ORCHESTRATION CONSIDERATIONS

While the benefits certainly outweigh any deficits, there can
be a bit of a learning curve when applying Kubernetes for multi-
user container orchestration. The problems mentioned below are
inevitable difficulties when distributing an application across mul-
tiple virtual machines that Kubernetes helps to address.

Container Networking: Providing network access to an ap-
plication in a distributed container environment has some slight
differences compared to a single host. With Docker, one simply
needs to specify the container application ports that they would
like to open, and then it is open to the entire host machine. Docker
leaves it entirely up to the admin to configure the firewall that will
determine whether or not that port is accessible from outside of



Securing CHEESEHub: A Cloud-based, Containerized Cybersecurity Education Platform PEARC ’21, July 18–22, 2021, Boston, MA, USA

Figure 1: CHEESEHub system architecture illustrating the underlying compute and networking infrastructure, Labs Work-
bench components, and user facing containerized applications. The specific logical components of interest are: infrastructure
(cyan), user space (grey), and containers (yellow).

the host machine. Kubernetes, on the other hand, provides addi-
tional methods for network traffic control by expanding the con-
cept of “ports” into two distinct categories: “services” and “ingress”
rules. The containers running within a single Pod can communi-
cate openly to each other on a shared network namespace (NET),
but by default their ports are not accessible from outside of the
Pod. To allow Pod-to-Pod communication, we must create what
is called a Service that will assign and expose a single static IP
that routes traffic to a Pod or group of Pods. Each Pod has its own
unique IP, but this IP can change if the Pod is deleted and recreated.
Using the Service, other Pods can talk to the static Service IP to
route requests to the containers within the exposed Pod without
needing to know their actual IP if they ever change. In addition, to
expose an application to the public internet and provide users with
a way to conveniently access the application from their browser,
we also need to set Ingress rules for the application. This involves
choosing and running an Ingress Controller in the cluster (NGINX,
Traefik, HAProxy, etc.), and then creating a set of rules that will
route traffic designated for a particular hostname and path to a
specific Service. It bears noting here that while most commercial
cloud providers (Amazon Web Services, Google Cloud, etc.) pro-
vide Ingress controllers out-of-the-box, choosing, deploying, and
configuring a particular Ingress controller is necessary in the case
of bare-metal cloud environments such as XSEDE’s Jetstream [6]
which is used to deploy CHEESEHub.

Volume Provisioning: Data that lives only on a single host
cannot be shared with other containers. Kubernetes offers many
different ways of mounting data from different sources for a range
different scenarios. For CHEESEHub, in order to allow the user to
have a “home” volume that contains their personal and potentially
privileged data, such as SSH or encryption keys, choosing the right
Volume Provisioner (such as the NFS Client Provisioner) allows us
to mount the user’s single volume into many Pods with read/write
access (ReadWriteMany). In this case when a new user is created
in CHEESEHub, Kubernetes creates an empty directory on the NFS
- this is the user’s “volume”. When a user launches an application,

their volume directory is mounted into the application containers.
Only the user’s subfolder is mounted into their applications, so
users cannot access data that is outside their own volume.

Pod / Node Affinity: In some of the more complex application
cases, more control is required over which node would execute
particular Kubernetes Pods that comprise a user’s running applica-
tion. In ArpSpoof, for example, the Pods for this application (viz.
hacker, client, and server) must reside on the same “local network”
and therefore must run on the same host node. To assist with this
unique scheduling concern, Kubernetes offers optional features for
“pod affinity”. This powerful feature allows us to define case-by-
case rules that control where Kubernetes Pods will execute. For
example, in the case of ArpSpoof we can effectively tell Kubernetes
to schedule all of the Pods for this application in the same place for
our desired network locality.

Application / Host Updates: Patches to the hosted applica-
tions and the underlying hosts themselves are often required to
protect against newly discovered vulnerabilities. Both Kubernetes
and Helm (the Kubernetes package manager) simplify the task
of upgrading the deployed application containers via support for
rolling updates after modifying configurations such as the desired
container image versions. Kubernetes also supports graceful ter-
mination of pods running on a host machine (via kubectl drain)
to allow for host upgrades and patching. The use of Kubernetes
Deployments and ReplicaSets will ensure that the required number
of pods are running (via automatic re-deployment to other nodes
in the cluster) following such termination on a specific host.

5 DISCUSSION

Given that its goal is to enrich cybersecurity education with
hands-on experience with vulnerable code, CHEESEHub has many
unique security implications that require special attention. Docker
and Kubernetes provide a flexible framework for launching secure
applications in any environment, distributed or otherwise, even
one with such security needs as CHEESEHub. In this paper we have



PEARC ’21, July 18–22, 2021, Boston, MA, USA Lambert et al.

focused primarily on presenting these unique CHEESEHub security
concerns and providing a practical account of our mitigation strate-
gies. More comprehensive accounts of the security implications for
each Kubernetes component/layer and recommended countermea-
sures are presented in [4, 5]. A formalized Kubernetes threat matrix
has also recently been proposed in [7]. These resources can be used
for a formal and thorough security audit of Kubernetes-orchestrated
applications.

We conclude with a few general recommendations for secure,
cloud-based application deployment:

(1) If the application does not already run in a container, then it
might benefit from some of the isolation and sand-boxing
that Docker provides.

(2) If the goal is to convert a single monolithic application into
several smaller distributed microservices, then Kubernetes
can provide various methods for making sure that each piece
of your application is individually exposed or secured.

(3) If the application already runs within a container, is there a
mechanism in place to prevent users from running unautho-
rized system calls or injecting custom kernel code?

(4) If not, make sure the host operating system runs a Linux
kernel that supports some set of Linux security features, such
as SELinux or AppArmor.

(5) Make sure to set reasonable resource limits for CPU/MEM
on your containers to prevent abuse, and

(6) Consider using NetworkPolicies to restrict any unexpected
communications between application pods.

ACKNOWLEDGMENTS
This work is funded by the National Science Foundation through
awards 1820573 and 1820608. CHEESEHub platform development

and operations are made possible by XSEDE Jetstream. We would
also like to thank Craig Willis from the National Center for Su-
percomputing Applications (NCSA) for his help in developing the
CHEESEHub security model, and Alex Withers (also from NCSA)
for his help in reviewing the security model.

REFERENCES
[1] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman, Math-

ias Payer, Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey, et al. 2014.
The matter of heartbleed. In Proceedings of the 2014 conference on internet mea-
surement conference. 475–488.

[2] William G Halfond, Jeremy Viegas, Alessandro Orso, et al. 2006. A classification of
SQL-injection attacks and countermeasures. In Proceedings of the IEEE international
symposium on secure software engineering, Vol. 1. IEEE, 13–15.

[3] Docker Inc. 2016. Introduction to Container Security. Technical Re-
port. https://www.docker.com/sites/default/files/WP_IntrotoContainerSecurity_
08.19.2016.pdf Accessed: 2021-03-26.

[4] Panagiotis Mytilinakis. 2020. Attack methods and defenses on Kubernetes. Master’s
thesis. University of Piraeus.

[5] Md Shazibul Islam Shamim, Farzana Ahamed Bhuiyan, and Akond Rahman. 2020.
XI Commandments of Kubernetes Security: A Systematization of Knowledge
Related to Kubernetes Security Practices. In 2020 IEEE Secure Development (SecDev).
IEEE, 58–64.

[6] Craig A Stewart, Timothy M Cockerill, Ian Foster, David Hancock, Nirav Merchant,
Edwin Skidmore, Daniel Stanzione, James Taylor, Steven Tuecke, George Turner,
et al. 2015. Jetstream: a self-provisioned, scalable science and engineering cloud
environment. In Proceedings of the 2015 XSEDE Conference: Scientific Advancements
Enabled by Enhanced Cyberinfrastructure. 1–8.

[7] Yossi Weizman. 2020. Threat Matrix for Kubernetes. https://www.microsoft.com/
security/blog/2020/04/02/attack-matrix-kubernetes/. Accessed: 2021-03-26.

[8] Craig Willis, Mike Lambert, Kenton McHenry, and Christine Kirkpatrick. 2017.
Container-based analysis environments for low-barrier access to research data. In
Proceedings of the Practice and Experience in Advanced Research Computing 2017
on Sustainability, Success and Impact. 1–4.

[9] Baijian Yang, Rajesh Kalyanam, Craig Willis, Mike Lambert, and Christine Kirk-
patrick. 2019. Cheese: Cyber human ecosystem of engaged security education. In
Proceedings of the 20th Annual SIG Conference on Information Technology Education.
189–190.

https://www.docker.com/sites/default/files/WP_IntrotoContainerSecurity_08.19.2016.pdf
https://www.docker.com/sites/default/files/WP_IntrotoContainerSecurity_08.19.2016.pdf
https://www.microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/
https://www.microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/

	Abstract
	1 Introduction
	2 CHEESEHub Design and Security Concerns
	3 CHEESEHub Security Model
	4 Orchestration Considerations
	5 Discussion
	Acknowledgments
	References

