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Abstract We present a single-species metapopulation model structured by pop-7

ulation size that is discrete in time. The novel formulation of our model allows8

for explicit incorporation of both the local, in space, dynamics and new details9

of the dispersal process. To study the impact of between-patch dynamics in the10

model, we construct various functions to describe density-dependent dispersal, re-11

colonization, and between-patch stochasticity. Due to the complexity of the model,12

numerical simulations are used to obtain the distribution of the metapopulation.13

Moreover, we can use our model to predict the proportion of patches occupied,14

expected patch density, and variance in patch density. Our results provide in-15

sight into the influence that each of these processes play in the distribution of16

the metapopulation. In particular, our findings emphasize the benefit of explicitly17

modelling these processes. We consider two density-dependent dispersal strategies18

based upon individuals wanting to form average sized patches and illustrate the19

differences in the metapopulation distributions. For recolonization of empty suit-20

able patches, we look at two simplistic redistribution strategies modeled as either21

a continuous uniform or Laplace distribution. The between-patch stochasticity22

is modelled using redistribution kernels where we consider both thin-tailed and23

fat-tailed kernels.24
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1 Introduction27

Models for metapopulation dynamics have a rich history dating back to the origi-28

nal single-species model proposed by Levins (Levins, 1969b,a). Many subsequent29

studies on single-species metapopulation dynamics realized the limitations of the30

Levins model and have incorporated more biological complexity (Levin and Paine,31

1974; Hastings and Wolin, 1989; Gyllenberg and Hanski, 1997; Hanski, 1998). All32

of these models are continuous in time and assume a large, essentially infinite,33

number of local populations. An alternate approach (Hastings, 1993; Gyllenberg34

et al., 1993; Gonzalez-Andujar and Perry, 1993) of looking at the dynamics of35

two local populations connected by dispersal in discrete-time leads to different36

analyses and results. The primary outcome of these studies found that the inter-37

action of dispersal between patches can drive chaotic local dynamics into periodic38

dynamics suggesting that dispersal can have a stabilizing effect on the metapop-39

ulation dynamics. This agrees with previous work on patch modelling where the40

stabilizing role of dispersal arises from the inherent stochasticity in the dynamics41

(Hanski, 1991; Hastings, 1991). What has been missing are analyses of metapop-42

ulation models with asynchronous events with arbitrarily large numbers of local43

populations in discrete-time. This approach would both add biological realism and44

allow consideration of important biological processes.45

One key issue is the effect of dispersal and colonization, encompassing both the46

exit from a local population and the entry into a different location. When habitat47

fragmentation causes local populations to become spatially isolated, a metapopu-48

lation is established and dispersal has been shown to be critical in the persistence49

and dynamics of the population (Dempster, 1991; Harrison et al., 1993; Ims and50

Yoccoz, 1997; Conradt et al., 2000). In particular, the recolonization of locally51

extinct patches by dispersal from other occupied patches is crucial for the persis-52

tence of the metapopulation (Hanski et al., 1996). Thus, in our considerations, we53

must not only have a detailed explanation for the dispersal strategy, but also for54

the recolonization strategy as another distinct process.55

Dispersal of organisms may depend critically on the number of individuals in56

both the patch being left as well as the density in the patch to which the individ-57

uals disperse. This has been clearly demonstrated in careful studies (Serrano and58

Tella, 2003; Serrano et al., 2005) of dispersal dynamics in the Lesser Kestrel, Falco59

naumanni. Similarly, studies of the Blue-footed Booby, Sula nebouxii, have shown60

complex relationships between colony size and dispersal (Kim et al., 2009). A study61

of Audouin’s Gull, Larus audouinii, (Fernández-Chacón et al., 2013) emphasized62

the size of the colony where migrants settle as a key factor in the choice to settle.63

Thus, a key feature of models for metapopulations is a detailed description of the64

dispersal process depending on local densities.65

One key advantage of using a discrete-time model over a continuous-time model66

is biological realism. In particular, discrete-time models can match more closely67

to how observations and data collection are carried out, as well as correspond-68

ing to the discrete-time, often yearly, nature of reproduction in many organisms.69

The discrete-time framework is suitable for populations with different timescales70

between processes whereas continuous-time models are useful when the local and71

dispersal dynamics occur simultaneously. In addition to the avian examples of72

the previous paragraph, the Bay checkerspot butterfly, Euphydryas editha bayensis,73

(Harrison et al., 1988) the California spotted owl, Strix occidentalis occidentalis,74
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(LaHaye et al., 1994), and Spartina alterniflora (Decker and Hastings, 2020) are75

examples of species where the discrete-time modelling framework is better suited.76

The discrete-time approach will provide a link between simplifying assumptions in77

theoretical approaches to metapopulations and empirical data (Logue et al., 2011;78

Heino et al., 2015).79

The discrete-time metapopulation modelling literature has been extended to80

include models of finite discrete-patch structure (Caswell and Cohen, 1991; Parvi-81

nen, 1999; Yakubu and Castillo-Chavez, 2002), evolution in the two-patch system82

(Holt and McPeek, 1996; Doebeli and Ruxton, 1997), and extensions to an infi-83

nite patch network (Parvinen, 2006, 2007). However, the discrete-time modelling84

framework has not received the same level of interest as its continuous-time coun-85

terpart. In this work, we aim to study a discrete-time metapopulation model with86

an infinite number of patches that is structured by local patch density. The model87

we consider has been studied previously where the focus was on the role of local,88

within-patch dynamics in the metapopulation distribution (Marculis et al., 2020).89

To emphasize the importance of the form of dispersal, we will fix the local dy-90

namics in the model and vary the dispersal strategy, recolonization strategy, and91

between-patch stochasticity.92

The complexity of structured populations can be incorporated into metapop-93

ulation models by considering the local populations as individuals and the local94

population as the metapopulation (Gyllenberg and Hanski, 1997). In these kinds95

of models, structure has been studied by considering the effects of local popu-96

lation size, patch quality, or patch age (Gyllenberg and Hanski, 1992; Levin and97

Paine, 1974, 1975; Hanski, 1985; Hastings and Wolin, 1989; Hastings, 1991; Hanski98

and Gyllenberg, 1993; Gyllenberg and Hanski, 1997). In this work, we construct99

a metapopulation model that structures the population according to a continu-100

ous variable describing the local population size. The goal of this endeavor is to101

better understand the role that between-patch dynamics play in a discrete-time102

metapopulation model structured by local patch density.103

In this work, we develop an asynchronous discrete-time metapopulation model104

structured by local patch density. The upshot of our model is that the processes105

are explicitly defined and can be easily altered to fit data from a variety of different106

species. Rather than fitting our model to a specific species, we focus on the effects107

of changing the between-patch dynamics of density-dependent dispersal strategies,108

between-patch stochasticity, and recolonization of empty patches. Our model al-109

lows for explicit incorporation of these processes, and our results provide intriguing110

insights into how complex processes can influence metapopulation dynamics.111

In the next section, we outline the mathematical model that is discrete in time112

but continuous in the state variable, which is a density function for the local popu-113

lation size. The model is broken down into two parts in order to easily comprehend114

how the within-patch and between-patch components interact with one another.115

The model is general and allows for a variety of functions describing the ecological116

processes; we describe a few that we will use in our numerical simulations in Sec-117

tion 2. The complication of the resulting integrodifference model (Lutscher, 2019)118

from a mathematical standpoint is that the kernel describing dispersal depends on119

the state variable, which is why our results are primarily numerical. Our results120

are presented in Section 3, where we provide figures illustrating how different types121

of dispersal strategies, recolonization strategies, and between-patch stochasticity122
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influence the metapopulation distribution. We conclude with a discussion of the123

results including limitations of the model and future directions.124

2 Model125

Integrodifference equations are discrete in time and are commonly used in the-126

oretical ecology to model spatial spread of populations (Kot and Schaffer, 1986;127

Lutscher, 2019). These models were first developed with the continuous variable128

of interest being the population density at time t and location x. In recent years,129

integral projection models have been used to model demographic processes that130

are discrete in time and continuous in a variable other than space (e.g. size, age,131

or condition) (Ellner and Rees, 2006). In this study, we will use these discrete-time132

continuous-state models to study the metapopulation dynamics of a single species133

that is structured by local population density.134

Our model will be split into two pieces; the within-patch dynamics and the135

between-patch dynamics that occur asynchronously. We assume that there are es-136

sentially an infinite number of patches equally spaced apart which allows us to137

treat space as an implicit feature of this model. In addition, because of the infinite138

patch assumption, stochasticity can be modelled as a deterministic process using139

redistribution kernels. There are two main processes for the within-patch dynam-140

ics: density-dependent reproduction f , and the within-patch stochasticity kg. For141

the between-patch dynamics there are three main processes: density-dependent dis-142

persal strategy d, the between-patch stochasticity kd, and recolonization of empty143

patches kr. A schematic diagram is provided in Figure 1 to illustrate the main144

components of our model.145

Fig. 1 A cartoon of the main dynamics in our model is illustrated here. The dynamics are
broken down into two components, the within-patch dynamics and the between-patch dynam-
ics. The within-patch dynamics are modeled by (1) and given by the top box in the figure.
The between-patch dynamics are modeled by (2) and given by the bottom box in the figure.

The model that we consider has already been formulated in a previous study146

(Marculis et al., 2020). In our previous work, we studied the role that local dynam-147

ics play in the metapopulation distribution and persistence by fixing the between-148

patch dynamics. Here, we aim to address the remaining piece of understanding how149
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the between-patch dynamics influence the metapopulation dynamics. For com-150

pleteness, we will describe the model components in full detail. Let pt(x) be the151

density function for the fraction of patches in the metapopulation that have x indi-152

viduals at time t. Then the proportion of occupied patches is given by
∫∞
0
pt(x) dx153

and is always less than or equal to one. One can obtain the probability density154

function for the fraction of occupied patches by normalizing pt(x). We consider155

the two events of within-patch and between-patch dynamics separately. The local156

reproduction dynamics are density-dependent denoted by f and the within-patch157

stochasticity is a redistribution kernel kg. A patch with local density z can become158

a patch with density y through an iteration of local reproduction and redistribu-159

tion, that is kg(y, f(z)). The within-patch dynamics are then given by160

p̃t+1(y) =

∫ ∞
0

kg(y, f(z))pt(z) dz. (1)

We can interpret p̃t+1(y) as the distribution of local densities y after the within-161

patch dynamics but before the dispersal occurs, and 1−
∫∞
0
p̃t+1(y) dy is proportion162

of patches that have density zero after the within-patch dynamics.163

Next, we describe the second step in our model that considers the between-164

patch dynamics. There are three processes during this step as outlined in Figure 1:165

The density-dependent dispersal strategy, d, the between-patch stochasticity, kd,166

and recolonization of empty patches, kr. A patch with local density y can become167

a patch with density x through an iteration of dispersal and redistribution, that168

is kd(x, d(y)). In addition, empty patches can become occupied at local density x169

from a patch with local density y according to the redistribution kernel, kr(x, y).170

The between-patch dynamics are then given by171

pt+1(x) =

∫ ∞
0

kd(x, d(y))p̃t+1(y) dy

+

[
1−

∫ ∞
0

p̃t+1(y) dy

] ∫ ∞
0

kr(x, y)p̃t+1(y) dy

(2)

where the kernel now depends local density levels (Lutscher, 2008). The first term172

describes how the individuals in the metapopulation disperse, while the second173

term gives the dynamics for recolonization into patches that are currently unoccu-174

pied. The redistribution kernels kg, kd, and kr each describe how the distribution175

of local patch densities change. This formulation allows for explicit modelling for176

the local reproduction dynamics and global dispersal dynamics. In what follows,177

we consider a variety of examples for the metapopulation dynamics.178

2.1 Within-patch dynamics179

The first step in our model is given by (1) and considers the within-patch dynamics180

of the local populations. In all of our simulations, to focus on the importance of181

the between-patch dynamics in the model, we will fix the local dynamics to have182

Gaussian noise and Beverton-Holt reproduction. That is,183

kg(y, f(z)) =
1√

2πσ2g
e
− (y−f(z))2

2σ2
g (3)
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where σg is the standard deviation of reproduction and184

f(z) =
Rz

1 + (R−1)
K z

(4)

where R is the growth rate, and K is the carrying capacity of the local population.185

Note that (3) is defined over R while the integration in (1) is over R+. This186

allows for some patches to be lost due to the within-patch stochasticity. In our187

simulations, we hold constant the parameter values to be σg = 0.1, R = 5, and188

K = 1. We choose σg small as to focus on the role of between-patch stochasticity,189

R to be large so we do not worry about metapopulation persistence, and K to be190

small so the recolonization step can play a role in the metapopulation distribution.191

2.2 Between-patch dynamics192

Recall from our model formulation that there are three main processes in (2):193

the density-dependent dispersal strategy, the between-patch stochasticity, and the194

recolonization of empty patches. For each of these three processes, we will consider195

two different examples of reasonable functions. In the next section, our results196

focus on the difference between the choice of functions used in the between-patch197

dynamics.198

We start our description with the dispersal strategies. Let Y be a random199

variable that is distributed by the normalized density of p̃t+1(y), then the expected200

density of dispersers across all patches is201

E[αY ] = α

∫ ∞
0

yp̃t+1(y)∫∞
0
p̃t+1(y) dy

dy, (5)

where 0 < α < 1 is the fraction of individuals expected to disperse. We consider202

two different dispersal strategies based around the assumption that individuals are203

social and prefer to be in groups (Kurvers et al., 2014). Our first strategy describes204

how a grouping of small patches can propagate into average sized patches. We205

assume that populations with above-average densities tend to remain in patches206

with similar density levels, thus if y ≥ E[αY ] we would expect them to disperse207

according to their density y. However, when y ≤ E[αY ], the population would208

disperse to patches with higher density according to the expected dispersal density.209

In this case, the dispersal strategy can be represented as210

d(y) = max{y,E[αY ]}. (6)

The second strategy we consider is one that also attempts to produce average211

size patches. Consider that populations disperse in such a way that they produce212

average sized patches, then we would expect d(y) = E[αY ] for all y. However,213

for small patches, there may not be enough members to disperse and produce an214

average sized patch, while for big patches, not enough members would be able to215

disperse in order to reduce the patch density to average. This behavior can be216

described by a shift that follows a logistic distribution with mean E[αY ] and scale217

parameter γ from the carrying capacity of the local populations. Then we get that,218
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d(y) = E[αY ]

K +
e−

y−E[αY ]
γ

γ
(

1 + e−
y−E[αY ]

γ

)2
 . (7)

A visual comparison between the two dispersal strategies is provided in Figure219

2. The value E[αY ] alters where the sharp bend occurs in the max strategy. The220

quantity KE[αY ] determined the location for the peak of the logistic strategy.221

Finally, γ is the scale parameter for the logistic strategy. That is, the larger the222

value of γ, the more spread out the curve becomes.223

0 0.5 1 1.5 2 2.5 3

1

1.5

2

2.5

3

max

logistic

Fig. 2 Examples of the two dispersal strategies for parameter values E[αY ] = 1, K = 1, and
γ = 0.5. The dispersal strategy given by (6) is given by the solid line labeled max, and the
dispersal strategy given by (7) is given by the dash-dot line labeled logistic.

Throughout this work we assume the redistribution kernel takes one of two224

forms. The first form is a thin-tailed Gaussian kernel given by225

kd(x, d(y)) =
1√

2πσ2d

e
− (x−d(y))2

2σ2
d (8)

where σ2d is the variance in the redistribution kernel. The second is a fat-tailed226

Cauchy redistribution kernel227

kd(x, d(y)) =
1

πb

[
1 +

(
x−d(y)

b

)2] (9)

where b is the scale parameter for the distribution. In (8) and (9) d(y) is the228

density-dependent dispersal strategy for the local population with density y as229

described above.230
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The recolonization kernel kr describes how patches with local density y colonize231

uninhabited patches at a local density of x. The simplest strategy is for the the232

individuals to be uniformly distributed from 0 to K where K is the carrying233

capacity of the growth function f . That is,234

kr(x, y) =

{
1
K if 0 ≤ y ≤ K
0 otherwise

. (10)

Alternatively, we can let the redistribution kernel be a Laplace distribution. The235

form of the kernel is given by236

kr(x, y) =
1

2λ
e−
|x−y−µ|

λ (11)

where λ is the scale parameter and µ is the mean. Throughout our analyses, we237

assume that µ = 0. This means that individuals are most likely to recolonize at238

the same density from which they originated.239

With all the assumptions made above, the model becomes240

p̃t+1(x) =

∫ ∞
0

1√
2πσ2g

e
−

x− Ry

1+
R−1
K

y

2

2σ2
g pt(y) dy (12)

pt+1(x) =

∫ ∞
0

kd(x, d(y))p̃t+1(y) dy

+

[
1−

∫ ∞
0

p̃t+1(y) dy

] ∫ ∞
0

kr(x, y)p̃t+1(y) dy

(13)

where the local within-patch dynamics are given by (12) and the between-patch241

dynamics are given by (13). Throughout this section, as indicated earlier, we will242

not alter (12) and fix the parameter values R = 5, K = 1, and σg = 0.1. This243

way we can focus on the effects of altering the dispersal strategy. In particular,244

we will center our attention to the three main dispersal processes; dispersal be-245

tween occupied patches, recolonization of empty patches, and the between-patch246

stochasticity.247

In the next section, we will vary the three different aspects of the between-patch248

dynamics to understand how each component plays a role in the metapopulation249

distribution. We will alter the form of the density-dependent dispersal strategy250

d(y) in two different ways as given by (6) and (7). We will alter the functional251

form of kd that will account for the between-patch stochasticity considering two252

different types: a thin-tailed Gaussian kernel (8), and a fat-tailed Cauchy distri-253

bution (9). Finally, we will consider two recolonization strategies. The first being254

that individuals recolonize uniformly in patch densities from zero to the carrying255

capacity K (10). The second will be a Laplace distribution with mean zero sug-256

gesting that individuals are most likely to colonize at the same density from which257

they originated (11).258
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3 Results259

In this section, we will focus on how altering the between-patch dynamics in the260

model influence the metapopulation dynamics. In particular, we will keep the lo-261

cal dynamics the same across all simulations. Throughout this section, we will not262

alter (12) and fix the parameter values R = 5, K = 1, and σg = 0.1. This way we263

can focus on the effects of altering the dispersal strategy. In particular, we will cen-264

ter our attention to the two main dispersal processes; dispersal between occupied265

patches and recolonization of empty patches. Due to the nonlinear complexities266

in the redistribution kernels, our results are purely numerical. To iterate our sim-267

ulations, we rely on the classical quadrature methods. All numerical simulations268

presented in this work were preformed in Matlab using Simpson’s rule. To deal269

with the semi-infinite integration, we truncated the upper bound to be twice the270

size of the region of interest.271

The distribution of the metapopulation can be summarized by using some272

common statistics. First, we calculate the proportion of patches occupied at time273

t, P (t). This is achieved by integrating the metapopulation distribution over all274

possible local densities,275

P (t) =

∫ ∞
0

pt(x) dx. (14)

The second calculation gives the expected patch density at time t, E(t). This276

is calculated by integrating the metapopulation distribution multiplied by the277

population density over all possible local densities,278

E(t) =

∫ ∞
0

xpt(x)∫∞
0
pt(x) dx

dx. (15)

We can also compute the variance in patch density at time t, V (t). This calculation279

is done in the following way280

V (t) =

∫ ∞
0

(x− E(t))2pt(x)∫∞
0
pt(x) dx

dx (16)

where E(t) is the expected patch density from (15).281

We start with looking at the difference between the two density-dependent282

strategies for dispersal between occupied patches as outlined by (6) and (7). From283

Figure 3, we can begin to understand how the parameter α impacts the density-284

dependent dispersal strategies for the metapopulation distribution. When the ex-285

pected number of dispersers is small, the dispersal strategy given by (6) shows a286

relatively normal distribution for the metapopulation centered about the carrying287

capacity. However, for the logistic dispersal strategy, the metapopulation distri-288

bution is heavily skewed toward very low local density levels suggesting that the289

recolonization strategy plays an important role in the metapopulation distribution.290

When half of the individuals are expected to disperse, as seen in the middle plot of291

Figure 3, the logistic dispersal strategy appears to give a lower mean value and less292

variation for the metapopulation distribution. For high levels of dispersers, as seen293

in the right plot of Figure 3, the distributions look the most similar with the logis-294

tic distribution appearing to have a slightly larger mean value and lower variance.295

We also observe that varying the expected fraction of individuals disperse does296
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Fig. 3 In this figure we plot the metapopulation density at t = 1000 for three different values
of the expected proportion of dispersers, α = 0.1, 0.5, and 0.9, and for two different density-
dependent dispersal strategies, max (6) (solid), and logistic (7) (dash-dot) with γ = 0.5. The
between-patch stochasticity is Gaussian with σd = 0.1, and the recolonization strategy is given
by (11) with λ = 0.1.

not appear to affect the metapopulation distribution when the dispersal strategy297

given by (6) is used.298
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1
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0.02
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Fig. 4 In this figure we plot the proportion of patches occupied P (t), the expected patch
density E(t), and the variance in patch density V (t) at t = 1000. Within each plot, we calculate
the three quantities for the two density-dependent dispersal strategies (6) (dots) and (7) (open
circle) with γ = 0.5 for varying values of the fraction of individuals expected to disperse, α.
The between-patch stochasticity is Gaussian with σd = 0.1 and the recolonization strategy is
given by (11) with λ = 0.1.

In Figure 4 we vary the value of α, the fraction of individuals expected to299

disperse, and determine the proportion of patches occupied, the average patch300

occupancy, and the variance in patch occupancy. For the strategy given by (6) all301

patches are occupied when the population is persistent. For dispersal strategy (7)302

there is a linear increase in the proportion of patches occupied until all patches are303

occupied around α = 0.4. This means that in order for all patches to be occupied,304

we need at least 40% of the population to disperse. The expected patch density305

is different for the two dispersal strategies. When the dispersal strategy is given306

by (6) the expected patch density is constant for α < 0.85 and is equal to the307

carrying capacity K = 1 with a slight increase for larger α. When the dispersal308

strategy is given by (7) there is a linear increase in the expected patch density309
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once the population occupies all possible patches. Thus, for smaller values of α310

the expected patch density is smaller than K but then quickly exceeds K for311

larger α. In comparing the variance in the patch densities, we can see that both312

are nonincreasing with α. For values of α > 0.4, the variance in patch density313

for dispersal strategy (6) is twice as large as (7). For the dispersal strategy given314

by (7) the variance in the patch density is equal to the variance in the dispersal315

strategy σ2d = 0.01 for α > 0.4 and decreases linearly up to that value.316

Next, we discuss how the recolonization dynamics affect the metapopulation317

dynamics. We will use (6) for the dispersal strategy for d(y) and let kd be Gaussian318

with σd = 0.1. In our simulations, we vary the recolonization kernel kr with the two319

kernels (10) and (11). In particular, we look at a uniform recolonization strategy320

and the other given by the Laplace distribution suggesting that individuals are321

most likely to recolonize at the same same density from which they originated.322
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Fig. 5 In this figure we plot the metapopulation density at t = 1000 for three different values
of the standard deviation of dispersal, σd = 0.1, 0.5, and 1, and for two different recolonization
strategies, Laplace (11) (solid) with λ = 0.1, and uniform (10) (dash-dot). The between-patch
stochasticity is Gaussian, and the density-dependent dispersal strategy is given by (6) with
α = 0.5.

In Figure 5, we plot the distribution of the metapopulations where we con-323

sider two different recolonization strategies given by a Laplace distribution and a324

uniform distribution. We also vary the standard deviation of dispersal σd to see325

how the metapopulation distribution is altered. In the left plot of Figure 5, the326

metapopulation distributions are identical because recolonization does not occur327

with such a small deviation in dispersal. As we increase σd, the variance in the328

metapopulation distribution increases as expected. For the Laplace recolonization329

kernel the metapopulation distribution remains smooth where as the uniform re-330

colonization kernel creates a metapopulation distribution where there is a small331

jump in the distribution at the carrying capacity K = 1. As the standard deviation332

of dispersal becomes large as illustrated in the right plot of Figure 5, we observe333

that the recolonization events become more prevalent. The jump in the metapop-334

ulation distribution for the uniform recolonization strategy is accentuated. We335

observe in all three plots of Figure 5 that for large values of the local population336

density that the distributions of the metapopulation are the same because at these337

high density levels the recolonization does not impact the metapopulation density.338

The three summary statistics for the different recolonization strategies is il-339

lustrated in Figure 6. In the left plot of Figure 6, we see that at low levels of340



12 Nathan G. Marculis et al.

the standard deviation of dispersal, σd, that all patches are occupied for both re-341

colonization strategies. As the standard deviation of dispersal increases, the pro-342

portion of patches occupied decreases for both recolonization strategies with the343

uniform recolonization yielding slightly fewer patches occupied in comparison to344

the Laplace recolonization strategy. The center plot of Figure 6 shows the ex-345

pected patch density for the two recolonization strategies. First, it is clear that346

the expected patch density is larger for the Laplace recolonization strategy as347

compared to uniform recolonization for σd > 0.4 and is the same for σd < 0.4.348

For σd < 0.4 the expected patch density decreases and increases after the Laplace349

recolonization strategy. The uniform recolonization strategy shows the expected350

patch density to decrease for σd < 0.5. The variance in patch density is given in351

the right plot of Figure 6. Both strategies show an increasing tend in the vari-352

ance as the standard deviation of dispersal increases. For larger values of σd, the353

variance in patch density is slightly larger for the uniform recolonization strategy354

as compared to the Laplace recolonization strategy. Overall, it appears that the355

recolonization strategy does not alter the three calculations in an extensive way.356
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Fig. 6 In this figure we plot the proportion of patches occupied P (t), the expected patch
density E(t), and the variance in patch density V (t) at t = 1000. Within each plot, we calculate
the three quantities for the two recolonization strategies (11) (dots) and (10) (open circle) with
γ = 1 while varying the standard deviation of dispersal, σd. The between-patch stochasticity
is Gaussian with σd = 0.1 and the dispersal strategy is given by (6) with α = 0.5.

To conclude, we compare two different kinds of between-patch stochasticity357

with Gaussian (8) and Cauchy (9) redistribution kernels. By plotting the metapop-358

ulation distribution, we can compare the probabilities that a given patch will have359

a certain local population density level. Given that the Cauchy distribution has no360

standard deviation, setting σd = b is not a good comparison between distributions.361

To make a sound comparison, we use the median absolute deviation. In particular,362

we selected a value for σd and found the value of b that made the two redistribution363

kernels have the same median absolute deviation. When the scale parameters are364

small, σd = 0.1 and b = 0.0674, we observe in the left plot of Figure 7 that Gaussian365

stochasticity predicts a higher probability for patches to have density levels about366

the carrying capacity; whereas, the Cauchy stochasticity has higher density levels367

at lower and higher densities. For intermediate scale parameters, σd = 0.5 and368

b = 0.337, the metapopulation distribution is altered as seen in the middle plot of369

Figure 7. The Cauchy stochasticity predicts more patches to have densities about370

the carrying capacity and for high local density levels. In the right plot of Figure371
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7, the metapopulation distributions for high values of the scale parameters, σd = 1372

and b = 0.674, shows that the Cauchy stochasticity predicts higher probabilities373

when the local population density level is in a small interval about the carrying374

capacity and for high values of the local population density. A common theme is all375

three plots is that the Cauchy stochasticity predicts higher probabilities for large376

values of the local population density. This makes sense because of the fat-tails in377

the Cauchy distribution.378
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Fig. 7 In this figure we plot the metapopulation density at t = 1000 for three different values
of the scale variables; that is, σd = 0.1, 0.5, and 1, and b = 0.0674, 0.337, and 0.674 from
left to right. Within each plot, we draw the distribution for the Gaussian (solid) and Cauchy
(dash-dot) redistribution kernels kd. The density-dependent dispersal strategy is given by (6)
with α = 0.5 and the recolonization strategy is given by (11) with λ = 0.1.

To extend our understanding of the role that the between-patch stochasticity379

plays in the metapopulation distribution, we compute the proportion of patches380

occupied, the expected patch density, and the variance in patch density for varying381

values of the scale parameter in Figure 8. The left plot of Figure 8 shows how the382

proportion of patches occupied changes based on the value of the scale parameter383

for the between-patch stochasticity. We observe that for all values of the scale384

parameters the proportion of patches occupied is always larger when the between-385

patch stochasticity is Gaussian. For small values of σd all patches are occupied and386

decreases for σd > 0.4 for Gaussian stochasticity, whereas the Cauchy stochastic-387

ity has a decreasing trend for the proportion of patches occupied as the scale388

parameter, b, increases. In the center plot of Figure 8, we calculate the expected389

patch density. For small values of the scale parameter the expected patch den-390

sity is approximately the carrying capacity. When the between-patch stochasticity391

is Cauchy, as the scale parameter increases, the expected patch density also in-392

creases. For Gaussian stochasticity, the expected patch density decreases slightly393

for σd < 0.4 and then increases past that point. The expected patch density is394

larger for all values of the scale parameter when the between-patch stochasticity is395

Cauchy. In the right plot in Figure 8, we determine the variance in patch density. It396

is clear that when the between-patch stochasticity is Cauchy the variance in patch397

density is always greater than when the between-patch stochasticity is Gaussian.398

We can also see that both curves are increasing as the scale parameters increase.399

Thus, in this example, fat-tails reduce the proportion of patches occupied, and400

increase the expected patch density and variance in patch density.401
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Fig. 8 In this figure we plot the proportion of patches occupied P (t), the expected patch
density E(t), and the variance in patch density V (t) at t = 1000. Within each plot, we calculate
the three quantities for the Gaussian (dots) and Cauchy (open circle) redistribution kernels
kd for varying values of the scale parameters σg and b, respectively. The density-dependent
dispersal strategy is given by (6) with α = 0.5 and the recolonization strategy is given by (11)
with λ = 0.1.

4 Discussion402

The results presented in this work provide insight into how between-patch dynam-403

ics affect the distribution of a single-species metapopulation structured by local404

population size. Our results are purely numerical because of the complexity of the405

model. In particular, the non-linearities in the between-patch and within-patch406

redistribution kernels makes the model difficult to analyze. To begin making any407

analytical progress on the model one would need to simplify the model by re-408

moving the stochasticity. However, doing so would remove a critical component of409

our model. Our results focus on the roles of density-dependent dispersal, recolo-410

nization, and between-patch stochasticity by selecting different functional forms411

for each and varying parameters relating to these processes. The effects are sum-412

marized by plotting the stable metapopulation distribution and computing the413

proportion of patches occupied, expected patch density, and variance in patch414

density. The novelty of our model is that it is discrete in time which aligns with415

the processes seen in a number of real metapopulations (Harrison et al., 1988;416

LaHaye et al., 1994; Decker and Hastings, 2020).417

The role of density-dependent dispersal is shown to have a major influence on418

the distribution of the metapopulation as seen in Figures 3 and 4. We constructed419

two different dispersal strategies centered around the concept that clustering will420

occur around average sized patches suggesting that individuals are social and prefer421

to be in groups (Kurvers et al., 2014). The proportion of individuals dispersing422

is observed to have a minimal effect on the density-dependent dispersal strategy423

given by (6) while the strategy given by (7) produces very different distributions424

based on the proportion of individuals dispersing. This exemplifies the previously425

known fact that the dispersal process of many individuals is closely tied with local426

density levels (Serrano and Tella, 2003; Serrano et al., 2005; Kim et al., 2009).427

We find that the recolonization strategy does not influence the metapopulation428

distribution at large local population densities as indicated in Figure 5. However,429

the difference is exemplified for large values of the standard deviation in dispersal,430

due to a higher proportion of patches become unoccupied giving more importance431

to recolonization. It has been demonstrated in previous work that recolonization432
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is a key component for metapopulation persistence (Hanski et al., 1996) and the433

size of a colony is an important factor for where individuals settle (Kim et al.,434

2009). Thus, while this role may not have an immense effect on the distribution435

of the metapopulation, its importance may be observed in other aspects such as436

persistence and potentially in spatially explicit models.437

We have shown that the thickness of the tail for the between-patch stochasticity438

kernel can impact the metapopulation density significantly. While the metapopu-439

lation distributions may not appear to the eye to be drastically different in Figure440

7, the calculations in Figure 8 suggest differently. It is apparent that the fat-tailed441

kernel can decrease the proportion of patches occupied, and significantly increase442

the expected patch density and variance in patch density. This highlights the effect443

that fat-tailed kernels have on the metapopulation distribution suggesting that the444

tails of a probability distribution are important. This is exemplified at higher val-445

ues for the scale parameter in the between-patch stochasticity. Gaussian kernels446

are thin-tailed are used to model random walks, but fat-tailed kernels are needed447

for events such as Lévy flights with a Cauchy distribution (Petrovskii et al., 2008).448

The intuition behind using a fat-tailed kernel for the between-patch stochasticity449

is that there is a small chance for individuals to deviate extremely from the norm450

(Clark et al., 2001). Previous studies have shown that fat-tailed long-distance dis-451

persal in a statistically structured populations is a consequence that individuals452

of the same species are not identical (Petrovskii and Morozov, 2009) suggesting453

that fat-tailed kernels may be more prevalent in real populations than previously454

thought.455

Although our model is quite general and can easily incorporate explicit func-456

tions for density-dependent dispersal strategies, recolonization strategies, and between-457

patch stochasticity, there are still a number of limitations that detract from its458

application to natural populations. To begin, the model only considers a single459

species. To include the interactions with other populations this scalar model could460

be extended into a system of equations for a metacommunity. The general frame-461

work of this model will follow naturally from our single-species model by using462

vector notation. In addition, our model makes the assumption that there are an463

infinite number of patches in the metapopulation. While this may be a reasonable464

assumption for metapopulations with a large number of local patches, and previous465

studies have considered a simplistic two patch system (Hastings, 1993; Gyllenberg466

et al., 1993; Gonzalez-Andujar and Perry, 1993), the dynamics for metapopula-467

tions with an intermediate number of patches remain uncertain. We do not consider468

spatially explicit populations and to increase the biological realism of our model,469

this would be a natural next step. This can be accomplished by including compo-470

nents such as habitat fragmentation (Peacock and Smith, 1997), distance between471

patches (Vuilleumier et al., 2007), and patch heterogeneity (Ovaskainen, 2002). As472

a final remark, the model does not include any explicit time-dependence. Incor-473

porating time-dependence in the system could be a natural way of including the474

effects of global change (Thomas and Hanski, 2004) such as habitat degradation475

(Nee and May, 1992) and climate change (Anderson et al., 2009).476

In the results presented in Section 3, we fix the local demographic components477

and vary the between-patch dispersal events. In our previous work, we did the478

opposite by fixing the between-patch dynamics and varying the within-patch dy-479

namics (Marculis et al., 2020). However, variation of both components would lead480

to a deeper understanding of the model dynamics. Thus, there are still numerous481
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combinations of the functional forms in which we have still not considered. In482

addition, we only consider two different forms for the density-dependent disper-483

sal strategy, recolonization strategy, and the between-patch stochasticity. While484

we chose these functional forms for the biological reasons indicated in the model485

section, there are still an endless number of other options one could choose. The486

upshot of this is that our model can be applied to approximate the dynamics487

in many natural systems by choosing an appropriate form for the within and488

between-patch dynamics.489
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