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Abstract We present a single-species metapopulation model structured by pop-
ulation size that is discrete in time. The novel formulation of our model allows
for explicit incorporation of both the local, in space, dynamics and new details
of the dispersal process. To study the impact of between-patch dynamics in the
model, we construct various functions to describe density-dependent dispersal, re-
colonization, and between-patch stochasticity. Due to the complexity of the model,
numerical simulations are used to obtain the distribution of the metapopulation.
Moreover, we can use our model to predict the proportion of patches occupied,
expected patch density, and variance in patch density. Our results provide in-
sight into the influence that each of these processes play in the distribution of
the metapopulation. In particular, our findings emphasize the benefit of explicitly
modelling these processes. We consider two density-dependent dispersal strategies
based upon individuals wanting to form average sized patches and illustrate the
differences in the metapopulation distributions. For recolonization of empty suit-
able patches, we look at two simplistic redistribution strategies modeled as either
a continuous uniform or Laplace distribution. The between-patch stochasticity
is modelled using redistribution kernels where we consider both thin-tailed and
fat-tailed kernels.
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2 Nathan G. Marculis et al.

1 Introduction

Models for metapopulation dynamics have a rich history dating back to the origi-
nal single-species model proposed by Levins (Levins, 1969b,a). Many subsequent
studies on single-species metapopulation dynamics realized the limitations of the
Levins model and have incorporated more biological complexity (Levin and Paine,
1974; Hastings and Wolin, 1989; Gyllenberg and Hanski, 1997; Hanski, 1998). All
of these models are continuous in time and assume a large, essentially infinite,
number of local populations. An alternate approach (Hastings, 1993; Gyllenberg
et al., 1993; Gonzalez-Andujar and Perry, 1993) of looking at the dynamics of
two local populations connected by dispersal in discrete-time leads to different
analyses and results. The primary outcome of these studies found that the inter-
action of dispersal between patches can drive chaotic local dynamics into periodic
dynamics suggesting that dispersal can have a stabilizing effect on the metapop-
ulation dynamics. This agrees with previous work on patch modelling where the
stabilizing role of dispersal arises from the inherent stochasticity in the dynamics
(Hanski, 1991; Hastings, 1991). What has been missing are analyses of metapop-
ulation models with asynchronous events with arbitrarily large numbers of local
populations in discrete-time. This approach would both add biological realism and
allow consideration of important biological processes.

One key issue is the effect of dispersal and colonization, encompassing both the
exit from a local population and the entry into a different location. When habitat
fragmentation causes local populations to become spatially isolated, a metapopu-
lation is established and dispersal has been shown to be critical in the persistence
and dynamics of the population (Dempster, 1991; Harrison et al., 1993; Ims and
Yoccoz, 1997; Conradt et al., 2000). In particular, the recolonization of locally
extinct patches by dispersal from other occupied patches is crucial for the persis-
tence of the metapopulation (Hanski et al., 1996). Thus, in our considerations, we
must not only have a detailed explanation for the dispersal strategy, but also for
the recolonization strategy as another distinct process.

Dispersal of organisms may depend critically on the number of individuals in
both the patch being left as well as the density in the patch to which the individ-
uals disperse. This has been clearly demonstrated in careful studies (Serrano and
Tella, 2003; Serrano et al., 2005) of dispersal dynamics in the Lesser Kestrel, Falco
naumanni. Similarly, studies of the Blue-footed Booby, Sula nebouzii, have shown
complex relationships between colony size and dispersal (Kim et al., 2009). A study
of Audouin’s Gull, Larus audouinii, (Ferndndez-Chacén et al., 2013) emphasized
the size of the colony where migrants settle as a key factor in the choice to settle.
Thus, a key feature of models for metapopulations is a detailed description of the
dispersal process depending on local densities.

One key advantage of using a discrete-time model over a continuous-time model
is biological realism. In particular, discrete-time models can match more closely
to how observations and data collection are carried out, as well as correspond-
ing to the discrete-time, often yearly, nature of reproduction in many organisms.
The discrete-time framework is suitable for populations with different timescales
between processes whereas continuous-time models are useful when the local and
dispersal dynamics occur simultaneously. In addition to the avian examples of
the previous paragraph, the Bay checkerspot butterfly, Euphydryas editha bayensis,
(Harrison et al., 1988) the California spotted owl, Striz occidentalis occidentalis,
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The Role of Between-Patch Dynamics in a Metapopulation 3

(LaHaye et al., 1994), and Spartina alterniflora (Decker and Hastings, 2020) are
examples of species where the discrete-time modelling framework is better suited.
The discrete-time approach will provide a link between simplifying assumptions in
theoretical approaches to metapopulations and empirical data (Logue et al., 2011;
Heino et al., 2015).

The discrete-time metapopulation modelling literature has been extended to
include models of finite discrete-patch structure (Caswell and Cohen, 1991; Parvi-
nen, 1999; Yakubu and Castillo-Chavez, 2002), evolution in the two-patch system
(Holt and McPeek, 1996; Doebeli and Ruxton, 1997), and extensions to an infi-
nite patch network (Parvinen, 2006, 2007). However, the discrete-time modelling
framework has not received the same level of interest as its continuous-time coun-
terpart. In this work, we aim to study a discrete-time metapopulation model with
an infinite number of patches that is structured by local patch density. The model
we consider has been studied previously where the focus was on the role of local,
within-patch dynamics in the metapopulation distribution (Marculis et al., 2020).
To emphasize the importance of the form of dispersal, we will fix the local dy-
namics in the model and vary the dispersal strategy, recolonization strategy, and
between-patch stochasticity.

The complexity of structured populations can be incorporated into metapop-
ulation models by considering the local populations as individuals and the local
population as the metapopulation (Gyllenberg and Hanski, 1997). In these kinds
of models, structure has been studied by considering the effects of local popu-
lation size, patch quality, or patch age (Gyllenberg and Hanski, 1992; Levin and
Paine, 1974, 1975; Hanski, 1985; Hastings and Wolin, 1989; Hastings, 1991; Hanski
and Gyllenberg, 1993; Gyllenberg and Hanski, 1997). In this work, we construct
a metapopulation model that structures the population according to a continu-
ous variable describing the local population size. The goal of this endeavor is to
better understand the role that between-patch dynamics play in a discrete-time
metapopulation model structured by local patch density.

In this work, we develop an asynchronous discrete-time metapopulation model
structured by local patch density. The upshot of our model is that the processes
are explicitly defined and can be easily altered to fit data from a variety of different
species. Rather than fitting our model to a specific species, we focus on the effects
of changing the between-patch dynamics of density-dependent dispersal strategies,
between-patch stochasticity, and recolonization of empty patches. Our model al-
lows for explicit incorporation of these processes, and our results provide intriguing
insights into how complex processes can influence metapopulation dynamics.

In the next section, we outline the mathematical model that is discrete in time
but continuous in the state variable, which is a density function for the local popu-
lation size. The model is broken down into two parts in order to easily comprehend
how the within-patch and between-patch components interact with one another.
The model is general and allows for a variety of functions describing the ecological
processes; we describe a few that we will use in our numerical simulations in Sec-
tion 2. The complication of the resulting integrodifference model (Lutscher, 2019)
from a mathematical standpoint is that the kernel describing dispersal depends on
the state variable, which is why our results are primarily numerical. Our results
are presented in Section 3, where we provide figures illustrating how different types
of dispersal strategies, recolonization strategies, and between-patch stochasticity
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4 Nathan G. Marculis et al.

influence the metapopulation distribution. We conclude with a discussion of the
results including limitations of the model and future directions.

2 Model

Integrodifference equations are discrete in time and are commonly used in the-
oretical ecology to model spatial spread of populations (Kot and Schaffer, 1986;
Lutscher, 2019). These models were first developed with the continuous variable
of interest being the population density at time ¢ and location z. In recent years,
integral projection models have been used to model demographic processes that
are discrete in time and continuous in a variable other than space (e.g. size, age,
or condition) (Ellner and Rees, 2006). In this study, we will use these discrete-time
continuous-state models to study the metapopulation dynamics of a single species
that is structured by local population density.

Our model will be split into two pieces; the within-patch dynamics and the
between-patch dynamics that occur asynchronously. We assume that there are es-
sentially an infinite number of patches equally spaced apart which allows us to
treat space as an implicit feature of this model. In addition, because of the infinite
patch assumption, stochasticity can be modelled as a deterministic process using
redistribution kernels. There are two main processes for the within-patch dynam-
ics: density-dependent reproduction f, and the within-patch stochasticity k4. For
the between-patch dynamics there are three main processes: density-dependent dis-
persal strategy d, the between-patch stochasticity k4, and recolonization of empty
patches kr. A schematic diagram is provided in Figure 1 to illustrate the main
components of our model.

Within-patch dynamics

Reproduction:  f

Within-patch
Stochasticity: kg

( Dispersal: d \

Between-patch
Stochasticity: ky

Recolonization: &,

Between-patch dynamics

Fig. 1 A cartoon of the main dynamics in our model is illustrated here. The dynamics are
broken down into two components, the within-patch dynamics and the between-patch dynam-
ics. The within-patch dynamics are modeled by (1) and given by the top box in the figure.
The between-patch dynamics are modeled by (2) and given by the bottom box in the figure.

The model that we consider has already been formulated in a previous study
(Marculis et al., 2020). In our previous work, we studied the role that local dynam-
ics play in the metapopulation distribution and persistence by fixing the between-
patch dynamics. Here, we aim to address the remaining piece of understanding how
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The Role of Between-Patch Dynamics in a Metapopulation 5

the between-patch dynamics influence the metapopulation dynamics. For com-
pleteness, we will describe the model components in full detail. Let p;(z) be the
density function for the fraction of patches in the metapopulation that have x indi-
viduals at time ¢t. Then the proportion of occupied patches is given by fooc pt(z) dz
and is always less than or equal to one. One can obtain the probability density
function for the fraction of occupied patches by normalizing p:(z). We consider
the two events of within-patch and between-patch dynamics separately. The local
reproduction dynamics are density-dependent denoted by f and the within-patch
stochasticity is a redistribution kernel k4. A patch with local density z can become
a patch with density y through an iteration of local reproduction and redistribu-
tion, that is kg(y, f(2)). The within-patch dynamics are then given by

) = | ko, £ (2) = (1)

We can interpret p:41(y) as the distribution of local densities y after the within-
patch dynamics but before the dispersal occurs, and 1— fooo pt+1(y) dy is proportion
of patches that have density zero after the within-patch dynamics.

Next, we describe the second step in our model that considers the between-
patch dynamics. There are three processes during this step as outlined in Figure 1:
The density-dependent dispersal strategy, d, the between-patch stochasticity, kg,
and recolonization of empty patches, k,. A patch with local density y can become
a patch with density = through an iteration of dispersal and redistribution, that
is kq(z,d(y)). In addition, empty patches can become occupied at local density =
from a patch with local density y according to the redistribution kernel, kr(z,y).
The between-patch dynamics are then given by

pie) = [ " k(s d(y) s (v) dy
o N (2)
+[1— / ﬁt+1(y)dy} [ ke

where the kernel now depends local density levels (Lutscher, 2008). The first term
describes how the individuals in the metapopulation disperse, while the second
term gives the dynamics for recolonization into patches that are currently unoccu-
pied. The redistribution kernels kg, kg, and k, each describe how the distribution
of local patch densities change. This formulation allows for explicit modelling for
the local reproduction dynamics and global dispersal dynamics. In what follows,
we consider a variety of examples for the metapopulation dynamics.

2.1 Within-patch dynamics

The first step in our model is given by (1) and considers the within-patch dynamics
of the local populations. In all of our simulations, to focus on the importance of
the between-patch dynamics in the model, we will fix the local dynamics to have
Gaussian noise and Beverton-Holt reproduction. That is,

()2
1 ICEFIO)

kol f() = —=ge 7 3)
7T0'g
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where o4 is the standard deviation of reproduction and

Rz
f(z) = 1-}-(71%};1),2 (4)

where R is the growth rate, and K is the carrying capacity of the local population.
Note that (3) is defined over R while the integration in (1) is over R*. This
allows for some patches to be lost due to the within-patch stochasticity. In our
simulations, we hold constant the parameter values to be o4 = 0.1, R = 5, and
K = 1. We choose o4 small as to focus on the role of between-patch stochasticity,
R to be large so we do not worry about metapopulation persistence, and K to be
small so the recolonization step can play a role in the metapopulation distribution.

2.2 Between-patch dynamics

Recall from our model formulation that there are three main processes in (2):
the density-dependent dispersal strategy, the between-patch stochasticity, and the
recolonization of empty patches. For each of these three processes, we will consider
two different examples of reasonable functions. In the next section, our results
focus on the difference between the choice of functions used in the between-patch
dynamics.

We start our description with the dispersal strategies. Let Y be a random
variable that is distributed by the normalized density of pit1(y), then the expected
density of dispersers across all patches is

ElaY] = a / fypt“y) dy, (5)
0

pr+1(y) dy

where 0 < a < 1 is the fraction of individuals expected to disperse. We consider
two different dispersal strategies based around the assumption that individuals are
social and prefer to be in groups (Kurvers et al., 2014). Our first strategy describes
how a grouping of small patches can propagate into average sized patches. We
assume that populations with above-average densities tend to remain in patches
with similar density levels, thus if y > E[aY] we would expect them to disperse
according to their density y. However, when y < E[aY], the population would
disperse to patches with higher density according to the expected dispersal density.
In this case, the dispersal strategy can be represented as

d(y) = max{y, E[aY]}. (6)

The second strategy we consider is one that also attempts to produce average
size patches. Consider that populations disperse in such a way that they produce
average sized patches, then we would expect d(y) = E[aY] for all y. However,
for small patches, there may not be enough members to disperse and produce an
average sized patch, while for big patches, not enough members would be able to
disperse in order to reduce the patch density to average. This behavior can be
described by a shift that follows a logistic distribution with mean E[aY] and scale
parameter v from the carrying capacity of the local populations. Then we get that,
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_y—E[aY]
e ~

_y—E[aY] 2
7(1—{—@ Rt )

d(y) = ElaY] | K+ (7)

A visual comparison between the two dispersal strategies is provided in Figure
2. The value E[aY] alters where the sharp bend occurs in the max strategy. The
quantity KFE[aY] determined the location for the peak of the logistic strategy.
Finally, v is the scale parameter for the logistic strategy. That is, the larger the
value of v, the more spread out the curve becomes.

Comparision of dispersal strategies

——max
—-—-logistic

N
o wn
. \

_
o
T

Dispersal strategy (d(y))

0 0.5 1 1.5 2 25 3
Local population density (y)
Fig. 2 Examples of the two dispersal strategies for parameter values E[aY] =1, K =1, and

~v = 0.5. The dispersal strategy given by (6) is given by the solid line labeled max, and the
dispersal strategy given by (7) is given by the dash-dot line labeled logistic.

Throughout this work we assume the redistribution kernel takes one of two
forms. The first form is a thin-tailed Gaussian kernel given by

1 _ <wjd<2y>>2
ka(z,d(y)) = ——=e  *7d (8)

1/ 27103

where 02 is the variance in the redistribution kernel. The second is a fat-tailed
Cauchy redistribution kernel

1
2
—d
b {1+ (—m b(”) }
where b is the scale parameter for the distribution. In (8) and (9) d(y) is the

density-dependent dispersal strategy for the local population with density y as
described above.

ka(z,d(y)) = (9)
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8 Nathan G. Marculis et al.

The recolonization kernel k;- describes how patches with local density y colonize
uninhabited patches at a local density of x. The simplest strategy is for the the
individuals to be uniformly distributed from 0 to K where K is the carrying
capacity of the growth function f. That is,

1 .
= f0<y<K
kr(z,y) =< K R 10

r(@y) {O otherwise (10)
Alternatively, we can let the redistribution kernel be a Laplace distribution. The
form of the kernel is given by

_lz—y—pl

1 _le—y-nl
kr(y) = gye (11)

where ) is the scale parameter and p is the mean. Throughout our analyses, we
assume that g = 0. This means that individuals are most likely to recolonize at
the same density from which they originated.

With all the assumptions made above, the model becomes

< 2
Ry

T R—1 )

1 _ I+ vy

o0
~ - 5.2
1 (x) = e 273 d 12
B (@) / N pi(y) dy (12)

pria(x) = / " k(e d(y))es (v) dy

+ [1 - /000 De+1(y) dy} /OO<> o (0, 9) 41 (1) dy (13)

where the local within-patch dynamics are given by (12) and the between-patch
dynamics are given by (13). Throughout this section, as indicated earlier, we will
not alter (12) and fix the parameter values R = 5, K = 1, and o4 = 0.1. This
way we can focus on the effects of altering the dispersal strategy. In particular,
we will center our attention to the three main dispersal processes; dispersal be-
tween occupied patches, recolonization of empty patches, and the between-patch
stochasticity.

In the next section, we will vary the three different aspects of the between-patch
dynamics to understand how each component plays a role in the metapopulation
distribution. We will alter the form of the density-dependent dispersal strategy
d(y) in two different ways as given by (6) and (7). We will alter the functional
form of kg that will account for the between-patch stochasticity considering two
different types: a thin-tailed Gaussian kernel (8), and a fat-tailed Cauchy distri-
bution (9). Finally, we will consider two recolonization strategies. The first being
that individuals recolonize uniformly in patch densities from zero to the carrying
capacity K (10). The second will be a Laplace distribution with mean zero sug-
gesting that individuals are most likely to colonize at the same density from which
they originated (11).
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3 Results

In this section, we will focus on how altering the between-patch dynamics in the
model influence the metapopulation dynamics. In particular, we will keep the lo-
cal dynamics the same across all simulations. Throughout this section, we will not
alter (12) and fix the parameter values R =5, K = 1, and o4 = 0.1. This way we
can focus on the effects of altering the dispersal strategy. In particular, we will cen-
ter our attention to the two main dispersal processes; dispersal between occupied
patches and recolonization of empty patches. Due to the nonlinear complexities
in the redistribution kernels, our results are purely numerical. To iterate our sim-
ulations, we rely on the classical quadrature methods. All numerical simulations
presented in this work were preformed in MATLAB using Simpson’s rule. To deal
with the semi-infinite integration, we truncated the upper bound to be twice the
size of the region of interest.

The distribution of the metapopulation can be summarized by using some
common statistics. First, we calculate the proportion of patches occupied at time
t, P(t). This is achieved by integrating the metapopulation distribution over all
possible local densities,

Pt) = /O " ile) da. (14)

The second calculation gives the expected patch density at time ¢, FE(t). This
is calculated by integrating the metapopulation distribution multiplied by the
population density over all possible local densities,

 azpe(x)

B(t) = / _om(@) (15)
0 fo pt(z) dx

We can also compute the variance in patch density at time ¢, V(¢). This calculation

is done in the following way

e B0,
R R e 1o

where E(t) is the expected patch density from (15).

We start with looking at the difference between the two density-dependent
strategies for dispersal between occupied patches as outlined by (6) and (7). From
Figure 3, we can begin to understand how the parameter o impacts the density-
dependent dispersal strategies for the metapopulation distribution. When the ex-
pected number of dispersers is small, the dispersal strategy given by (6) shows a
relatively normal distribution for the metapopulation centered about the carrying
capacity. However, for the logistic dispersal strategy, the metapopulation distri-
bution is heavily skewed toward very low local density levels suggesting that the
recolonization strategy plays an important role in the metapopulation distribution.
When half of the individuals are expected to disperse, as seen in the middle plot of
Figure 3, the logistic dispersal strategy appears to give a lower mean value and less
variation for the metapopulation distribution. For high levels of dispersers, as seen
in the right plot of Figure 3, the distributions look the most similar with the logis-
tic distribution appearing to have a slightly larger mean value and lower variance.
We also observe that varying the expected fraction of individuals disperse does
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Fig. 3 In this figure we plot the metapopulation density at ¢ = 1000 for three different values
of the expected proportion of dispersers, « = 0.1,0.5, and 0.9, and for two different density-
dependent dispersal strategies, max (6) (solid), and logistic (7) (dash-dot) with v = 0.5. The
between-patch stochasticity is Gaussian with o4 = 0.1, and the recolonization strategy is given
by (11) with A = 0.1.

not appear to affect the metapopulation distribution when the dispersal strategy
given by (6) is used.

Proportion of patches occupied . 5Expected patch density 0 Og/ariance in patch density

OO ’ o - max
1 o ooo o logistic
o o
o 1| esccccecsasesases. (.)O.....- 0.04 o
= 0.9 S OOO = o
o o
- ) $ g e Lrenmmeeeeens
08l o 05 g 0.02
& Coceoomoonaoeaoomo
° Qoo
07— o b
0 0.5 1 0 0.5 1 0 0.5 1

Fraction of dispersers ()

Fig. 4 In this figure we plot the proportion of patches occupied P(t), the expected patch
density E(t), and the variance in patch density V' (¢) at ¢t = 1000. Within each plot, we calculate
the three quantities for the two density-dependent dispersal strategies (6) (dots) and (7) (open
circle) with v = 0.5 for varying values of the fraction of individuals expected to disperse, a.
The between-patch stochasticity is Gaussian with 04 = 0.1 and the recolonization strategy is
given by (11) with A = 0.1.

In Figure 4 we vary the value of «, the fraction of individuals expected to
disperse, and determine the proportion of patches occupied, the average patch
occupancy, and the variance in patch occupancy. For the strategy given by (6) all
patches are occupied when the population is persistent. For dispersal strategy (7)
there is a linear increase in the proportion of patches occupied until all patches are
occupied around a = 0.4. This means that in order for all patches to be occupied,
we need at least 40% of the population to disperse. The expected patch density
is different for the two dispersal strategies. When the dispersal strategy is given
by (6) the expected patch density is constant for o < 0.85 and is equal to the
carrying capacity K = 1 with a slight increase for larger . When the dispersal
strategy is given by (7) there is a linear increase in the expected patch density
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once the population occupies all possible patches. Thus, for smaller values of «
the expected patch density is smaller than K but then quickly exceeds K for
larger «. In comparing the variance in the patch densities, we can see that both
are nonincreasing with «. For values of a > 0.4, the variance in patch density
for dispersal strategy (6) is twice as large as (7). For the dispersal strategy given
by (7) the variance in the patch density is equal to the variance in the dispersal
strategy 03 = 0.01 for @ > 0.4 and decreases linearly up to that value.

Next, we discuss how the recolonization dynamics affect the metapopulation
dynamics. We will use (6) for the dispersal strategy for d(y) and let k4 be Gaussian
with o4 = 0.1. In our simulations, we vary the recolonization kernel &, with the two
kernels (10) and (11). In particular, we look at a uniform recolonization strategy
and the other given by the Laplace distribution suggesting that individuals are
most likely to recolonize at the same same density from which they originated.

o D'd:().l O’d:045 (Tdil
3

— —— Lapalce

=)

z 2 06

<15 04
L 04

=1

= 0.2
jon

%0.5 02

B

= 0 0 0
- 0 2 4 0 2 4

Local population density (z)

Fig. 5 In this figure we plot the metapopulation density at t = 1000 for three different values
of the standard deviation of dispersal, o4 = 0.1,0.5, and 1, and for two different recolonization
strategies, Laplace (11) (solid) with A = 0.1, and uniform (10) (dash-dot). The between-patch
stochasticity is Gaussian, and the density-dependent dispersal strategy is given by (6) with
a=0.5.

In Figure 5, we plot the distribution of the metapopulations where we con-
sider two different recolonization strategies given by a Laplace distribution and a
uniform distribution. We also vary the standard deviation of dispersal o4 to see
how the metapopulation distribution is altered. In the left plot of Figure 5, the
metapopulation distributions are identical because recolonization does not occur
with such a small deviation in dispersal. As we increase o4, the variance in the
metapopulation distribution increases as expected. For the Laplace recolonization
kernel the metapopulation distribution remains smooth where as the uniform re-
colonization kernel creates a metapopulation distribution where there is a small
jump in the distribution at the carrying capacity K = 1. As the standard deviation
of dispersal becomes large as illustrated in the right plot of Figure 5, we observe
that the recolonization events become more prevalent. The jump in the metapop-
ulation distribution for the uniform recolonization strategy is accentuated. We
observe in all three plots of Figure 5 that for large values of the local population
density that the distributions of the metapopulation are the same because at these
high density levels the recolonization does not impact the metapopulation density.

The three summary statistics for the different recolonization strategies is il-
lustrated in Figure 6. In the left plot of Figure 6, we see that at low levels of
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the standard deviation of dispersal, o4, that all patches are occupied for both re-
colonization strategies. As the standard deviation of dispersal increases, the pro-
portion of patches occupied decreases for both recolonization strategies with the
uniform recolonization yielding slightly fewer patches occupied in comparison to
the Laplace recolonization strategy. The center plot of Figure 6 shows the ex-
pected patch density for the two recolonization strategies. First, it is clear that
the expected patch density is larger for the Laplace recolonization strategy as
compared to uniform recolonization for o4 > 0.4 and is the same for o4 < 0.4.
For o4 < 0.4 the expected patch density decreases and increases after the Laplace
recolonization strategy. The uniform recolonization strategy shows the expected
patch density to decrease for o4 < 0.5. The variance in patch density is given in
the right plot of Figure 6. Both strategies show an increasing tend in the vari-
ance as the standard deviation of dispersal increases. For larger values of o4, the
variance in patch density is slightly larger for the uniform recolonization strategy
as compared to the Laplace recolonization strategy. Overall, it appears that the
recolonization strategy does not alter the three calculations in an extensive way.

Proportion of patches occupied  Expected patch density Variance in patch density
1 [ ceeceee, . 0.6 o
®© . . . o .
® . o uniform o,*
0.95 % . O
. O,
S o 0.4 0.’
— 8 11 S0 2
= o o S
a 09 5 = S B &
oo o OQ
o 1 [eoog, o0 0.2 5
0.85 o, O00ns ° °
o &
[e] ©@
08 0.9 olet
0 0.5 1 0 0.5 1 0 0.5 1

Standard deviation of dispersal (oq)

Fig. 6 In this figure we plot the proportion of patches occupied P(t), the expected patch
density E(t), and the variance in patch density V' (¢) at t = 1000. Within each plot, we calculate
the three quantities for the two recolonization strategies (11) (dots) and (10) (open circle) with
~ = 1 while varying the standard deviation of dispersal, o4. The between-patch stochasticity
is Gaussian with o4 = 0.1 and the dispersal strategy is given by (6) with a = 0.5.

To conclude, we compare two different kinds of between-patch stochasticity
with Gaussian (8) and Cauchy (9) redistribution kernels. By plotting the metapop-
ulation distribution, we can compare the probabilities that a given patch will have
a certain local population density level. Given that the Cauchy distribution has no
standard deviation, setting o4, = b is not a good comparison between distributions.
To make a sound comparison, we use the median absolute deviation. In particular,
we selected a value for o4 and found the value of b that made the two redistribution
kernels have the same median absolute deviation. When the scale parameters are
small, 04 = 0.1 and b = 0.0674, we observe in the left plot of Figure 7 that Gaussian
stochasticity predicts a higher probability for patches to have density levels about
the carrying capacity; whereas, the Cauchy stochasticity has higher density levels
at lower and higher densities. For intermediate scale parameters, o4 = 0.5 and
b = 0.337, the metapopulation distribution is altered as seen in the middle plot of
Figure 7. The Cauchy stochasticity predicts more patches to have densities about
the carrying capacity and for high local density levels. In the right plot of Figure
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7, the metapopulation distributions for high values of the scale parameters, o4 = 1
and b = 0.674, shows that the Cauchy stochasticity predicts higher probabilities
when the local population density level is in a small interval about the carrying
capacity and for high values of the local population density. A common theme is all
three plots is that the Cauchy stochasticity predicts higher probabilities for large
values of the local population density. This makes sense because of the fat-tails in
the Cauchy distribution.

~ 04=0.1,b=0.0674 o4 =0.5,b=0.337 04=1,b=0.674
5

S2s ‘ |

g 5 0.8 0.6

2 15 06 0.4

2 4 0.4

=

2;0_5 02 0.2

Z 0 4 0 0 0 2 4

Local population density (z)

Fig. 7 In this figure we plot the metapopulation density at ¢ = 1000 for three different values
of the scale variables; that is, o4 = 0.1,0.5, and 1, and b = 0.0674,0.337, and 0.674 from
left to right. Within each plot, we draw the distribution for the Gaussian (solid) and Cauchy
(dash-dot) redistribution kernels k4. The density-dependent dispersal strategy is given by (6)
with o = 0.5 and the recolonization strategy is given by (11) with A = 0.1.

To extend our understanding of the role that the between-patch stochasticity
plays in the metapopulation distribution, we compute the proportion of patches
occupied, the expected patch density, and the variance in patch density for varying
values of the scale parameter in Figure 8. The left plot of Figure 8 shows how the
proportion of patches occupied changes based on the value of the scale parameter
for the between-patch stochasticity. We observe that for all values of the scale
parameters the proportion of patches occupied is always larger when the between-
patch stochasticity is Gaussian. For small values of o4 all patches are occupied and
decreases for o4 > 0.4 for Gaussian stochasticity, whereas the Cauchy stochastic-
ity has a decreasing trend for the proportion of patches occupied as the scale
parameter, b, increases. In the center plot of Figure 8, we calculate the expected
patch density. For small values of the scale parameter the expected patch den-
sity is approximately the carrying capacity. When the between-patch stochasticity
is Cauchy, as the scale parameter increases, the expected patch density also in-
creases. For Gaussian stochasticity, the expected patch density decreases slightly
for 04 < 0.4 and then increases past that point. The expected patch density is
larger for all values of the scale parameter when the between-patch stochasticity is
Cauchy. In the right plot in Figure 8, we determine the variance in patch density. It
is clear that when the between-patch stochasticity is Cauchy the variance in patch
density is always greater than when the between-patch stochasticity is Gaussian.
We can also see that both curves are increasing as the scale parameters increase.
Thus, in this example, fat-tails reduce the proportion of patches occupied, and
increase the expected patch density and variance in patch density.



402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

14 Nathan G. Marculis et al.

Proportion of patches occupied
®

0 0.5 1 0 0.5 1
Scale parameter (o4 or b)

Fig. 8 In this figure we plot the proportion of patches occupied P(t), the expected patch
density E(t), and the variance in patch density V' (¢) at t = 1000. Within each plot, we calculate
the three quantities for the Gaussian (dots) and Cauchy (open circle) redistribution kernels
kq for varying values of the scale parameters o4 and b, respectively. The density-dependent
dispersal strategy is given by (6) with & = 0.5 and the recolonization strategy is given by (11)
with A = 0.1.

4 Discussion

The results presented in this work provide insight into how between-patch dynam-
ics affect the distribution of a single-species metapopulation structured by local
population size. Our results are purely numerical because of the complexity of the
model. In particular, the non-linearities in the between-patch and within-patch
redistribution kernels makes the model difficult to analyze. To begin making any
analytical progress on the model one would need to simplify the model by re-
moving the stochasticity. However, doing so would remove a critical component of
our model. Our results focus on the roles of density-dependent dispersal, recolo-
nization, and between-patch stochasticity by selecting different functional forms
for each and varying parameters relating to these processes. The effects are sum-
marized by plotting the stable metapopulation distribution and computing the
proportion of patches occupied, expected patch density, and variance in patch
density. The novelty of our model is that it is discrete in time which aligns with
the processes seen in a number of real metapopulations (Harrison et al., 1988;
LaHaye et al., 1994; Decker and Hastings, 2020).

The role of density-dependent dispersal is shown to have a major influence on
the distribution of the metapopulation as seen in Figures 3 and 4. We constructed
two different dispersal strategies centered around the concept that clustering will
occur around average sized patches suggesting that individuals are social and prefer
to be in groups (Kurvers et al., 2014). The proportion of individuals dispersing
is observed to have a minimal effect on the density-dependent dispersal strategy
given by (6) while the strategy given by (7) produces very different distributions
based on the proportion of individuals dispersing. This exemplifies the previously
known fact that the dispersal process of many individuals is closely tied with local
density levels (Serrano and Tella, 2003; Serrano et al., 2005; Kim et al., 2009).

We find that the recolonization strategy does not influence the metapopulation
distribution at large local population densities as indicated in Figure 5. However,
the difference is exemplified for large values of the standard deviation in dispersal,
due to a higher proportion of patches become unoccupied giving more importance
to recolonization. It has been demonstrated in previous work that recolonization
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is a key component for metapopulation persistence (Hanski et al., 1996) and the
size of a colony is an important factor for where individuals settle (Kim et al.,
2009). Thus, while this role may not have an immense effect on the distribution
of the metapopulation, its importance may be observed in other aspects such as
persistence and potentially in spatially explicit models.

We have shown that the thickness of the tail for the between-patch stochasticity
kernel can impact the metapopulation density significantly. While the metapopu-
lation distributions may not appear to the eye to be drastically different in Figure
7, the calculations in Figure 8 suggest differently. It is apparent that the fat-tailed
kernel can decrease the proportion of patches occupied, and significantly increase
the expected patch density and variance in patch density. This highlights the effect
that fat-tailed kernels have on the metapopulation distribution suggesting that the
tails of a probability distribution are important. This is exemplified at higher val-
ues for the scale parameter in the between-patch stochasticity. Gaussian kernels
are thin-tailed are used to model random walks, but fat-tailed kernels are needed
for events such as Lévy flights with a Cauchy distribution (Petrovskii et al., 2008).
The intuition behind using a fat-tailed kernel for the between-patch stochasticity
is that there is a small chance for individuals to deviate extremely from the norm
(Clark et al., 2001). Previous studies have shown that fat-tailed long-distance dis-
persal in a statistically structured populations is a consequence that individuals
of the same species are not identical (Petrovskii and Morozov, 2009) suggesting
that fat-tailed kernels may be more prevalent in real populations than previously
thought.

Although our model is quite general and can easily incorporate explicit func-

tions for density-dependent dispersal strategies, recolonization strategies, and between-

patch stochasticity, there are still a number of limitations that detract from its
application to natural populations. To begin, the model only considers a single
species. To include the interactions with other populations this scalar model could
be extended into a system of equations for a metacommunity. The general frame-
work of this model will follow naturally from our single-species model by using
vector notation. In addition, our model makes the assumption that there are an
infinite number of patches in the metapopulation. While this may be a reasonable
assumption for metapopulations with a large number of local patches, and previous
studies have considered a simplistic two patch system (Hastings, 1993; Gyllenberg
et al., 1993; Gonzalez-Andujar and Perry, 1993), the dynamics for metapopula-
tions with an intermediate number of patches remain uncertain. We do not consider
spatially explicit populations and to increase the biological realism of our model,
this would be a natural next step. This can be accomplished by including compo-
nents such as habitat fragmentation (Peacock and Smith, 1997), distance between
patches (Vuilleumier et al., 2007), and patch heterogeneity (Ovaskainen, 2002). As
a final remark, the model does not include any explicit time-dependence. Incor-
porating time-dependence in the system could be a natural way of including the
effects of global change (Thomas and Hanski, 2004) such as habitat degradation
(Nee and May, 1992) and climate change (Anderson et al., 2009).

In the results presented in Section 3, we fix the local demographic components
and vary the between-patch dispersal events. In our previous work, we did the
opposite by fixing the between-patch dynamics and varying the within-patch dy-
namics (Marculis et al., 2020). However, variation of both components would lead
to a deeper understanding of the model dynamics. Thus, there are still numerous
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combinations of the functional forms in which we have still not considered. In
addition, we only consider two different forms for the density-dependent disper-
sal strategy, recolonization strategy, and the between-patch stochasticity. While
we chose these functional forms for the biological reasons indicated in the model
section, there are still an endless number of other options one could choose. The
upshot of this is that our model can be applied to approximate the dynamics
in many natural systems by choosing an appropriate form for the within and
between-patch dynamics.
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