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ABSTRACT ARTICLE HISTORY
For multisource data, blocks of variable information from certain sources are likely missing. Existing methods Received December 2018
for handling missing data do not take structures of block-wise missing data into consideration. In this Accepted March 2020
article, we propose a multiple block-wise imputation (MBI) approach, which incorporates imputations
based on both complete and incomplete observations. Specifically, for a given missing pattern group, the :Sm’g'“’,s -
imputations in MBI incorporate more samples from groups with fewer observed variables in addition to the DNJ; Data integration;

. . R . . R Dimension reduction;
group with complete observations. We propose to construct estimating equations based on all available

b - . . . - . . . . . Generalized method of
information, and integrate informative estimating functions to achieve efficient estimators. We show that moments: Informative

the proposed method has estimation and model selection consistency under both fixed-dimensional and missing; Missing at random
high-dimensional settings. Moreover, the proposed estimator is asymptotically more efficient than the

estimator based on a single imputation from complete observations only. In addition, the proposed method

is not restricted to missing completely at random. Numerical studies and ADNI data application confirm that

the proposed method outperforms existing variable selection methods under various missing mechanisms.

Supplementary materials for this article are available online.

1. Introduction from all complementary sources to improve model prediction
and variable selection.

The most common approach for handling missing data is
to perform complete-case analysis which removes observations
with missing values and only uses the complete cases. However,
the complete-case method produces biased estimates when the
missing is not completely at random. The inverse probability
weighting method (Horvitz and Thompson 1952) is able
to reduce this bias under missing at random mechanism
via reweighting the complete observations (Seaman and
White 2013; Sun and Tchetgen Tchetgen 2018); nevertheless,
incomplete observations are still not fully utilized. In real
applications, such as the ADNI data, removing incomplete cases
could incur a great loss of information since complete cases only
account for a small fraction of the data. Alternatively, likelihood-
based methods (Ibrahim, Lipsitz, and Chen 1999; Garcia,
Ibrahim, and Zhu 2010; Chen, Prentice, and Wang 2014) can
incorporate all observations. However, this relies on specifying
aknown distribution which might not be available, and could be
computationally intractable if the number of missing variables is
large.

Imputation (Wan et al. 2015; Liu et al. 2016) is another widely
used approach to handle missing data. For example, Cai, Cai,
and Zhang (2016) proposed a structured matrix completion
(SMC) method through singular value decomposition to
recover a missing block under a low rank approximation
assumption. However, the SMC imputes only one missing
block at a time. Gao and Lee (2017) are capable of imputing

We encounter multisource or multimodality data frequently
in many real data applications. For example, the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) data involve multisite
longitudinal observational data from elderly individuals with
normal cognition (NC), mild cognitive impairment (MCI),
or Alzheimer’s disease (AD) (Mueller et al. 2005a, 2005b).
The ADNI data contain multisource measurements: magnetic
resonance imaging (MRI), florbetapir-fluorine-18 (AV-45)
positron emission tomography (PET) imaging, fludeoxyglucose
F 18 (FDG) PET imaging, biosamples, gene expression, and
demographic information. Such multisource data are also
common for electronic medical record (EMR) systems adopted
by most health care and medical facilities nowadays, which
contain diverse-source patient information, for example,
demographics, medication status, laboratory tests, medical
imaging, and text notes.

However, blocks of variable information could be completely
missing as there might be no need or it might be infeasible
to collect certain sources of information given other known
variables. For example, patients might be either too healthy or
too ill. For EMR systems, it could be due to lack of information
exchange or common practice between different medical
facilities (Madden et al. 2016). Block missing variables cause a
large fraction of subjects with certain sources missing, which
could lead to biased parameter estimation and inconsistent
feature selection. Therefore, it is important to fully integrate data
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all missing values through matrix completion and then apply
the adaptive Lasso (Huang, Ma, and Zhang 2008; Zou 2006)
to select variables. However, this approach does not guarantee
estimation consistency. Alternatively, multiple imputation (MI,
Rubin 2004) is applicable for conducting variable selection,
for example, Chen and Wang (2013) proposed a multiple
imputation-least absolute shrinkage and selection operator
(MI-LASSO), and adopt the group Lasso (Yuan and Lin 2006)
to detect nonzero covariates. Furthermore, Wood, White,
and Royston (2008) and Wan et al. (2015) selected variables
on combined multiple imputed data. In addition, MI can
be combined with bootstrapping techniques (Heymans et al.
2007; Long and Johnson 2015; Liu et al. 2016). However, these
imputation methods are not effective for block-wise missing
data.

Recently, several methods have been developed to target
block-wise missing data. For example, Yuan et al. (2012)
proposed an incomplete multisource feature learning (iMSF)
method, which models different missing patterns separately
and minimizes a combined loss function. In addition, Xiang
et al. (2014) introduced an incomplete source-feature selection
(iSFS) model, utilizing shared parameters across all missing
patterns and imposing different weights on different data
sources. However, the iSFS is unable to provide coefficient
estimation for all samples due to the different weighting
strategy. Alternatively, the direct sparse regression procedure
using covariance from multimodality data (DISCOM, Yu et al.
2019) estimates the covariance matrices among predictors and
between the response and predictors. However, the DISCOM
only considers missing completely at random, which could be
restrictive for missing not completely at random data.

The single regression imputation (SI) method (Saunders
et al. 2006; Baraldi and Enders 2010; Campos et al. 2015; Fleet,
Deller, and Goodman 2016; Zhang 2016) is another popular
approach which predicts missing values through regression
using observed variables as predictors. Suppose that the subjects
from multisource data are divided into groups according to their
missing patterns. For a group with a given missing block, the SI
estimates association between missing variables and observed
variables within the group based on complete observations.
However, in practice, the complete observations might only
account for a small fraction of the entire data.

To integrate information from the multisource observed data
we propose a multiple block-wise imputation (MBI) approach,
incorporating not only the SI based on complete observations
but also imputations from incomplete observations. The addi-
tional imputations in MBI involve fewer observed variables
within a given missing group, but are able to integrate more
observations from multiple groups than the SI. Thus, the MBI
can improve estimation and model selection especially when the
missing rate is high. In addition, the proposed method aggre-
gates more groups with different missing patterns to impute
missing variables, which does not rely on the missing completely
at random assumption, and is capable of handling missing at
random data.

Furthermore, we propose a new MBI model selection
method. Specifically, we propose to construct estimating
equations based on all possible missing patterns and impu-
tations, and integrate them through the generalized methods

of moments (GMM, Hansen 1982). In theory, we show that
the proposed method has estimation and model selection con-
sistency under both fixed-dimensional and high-dimensional
settings. Moreover, our estimator is asymptotically more
efficient than the SI estimator. Numerical studies and the
ADNI data application also confirm that the proposed method
outperforms existing variable selection methods for block-
wise missing data in missing completely at random, missing
at random, and informative missing scenarios.

In general, our work has the following major advantages.
First, we are able to integrate the MBIs of all missing pattern
groups to improve estimation efficiency and model selection
consistency. Second, the proposed method is capable of han-
dling block-wise missing data which might not contain any
complete observations, while most traditional methods, includ-
ing the matrix completion (Cai, Cai, and Zhang 2016), require
partial subjects to have fully completed observations.

The remainder of the article is organized as follows. Section 2
introduces the background and framework for the block-wise
missing problem. In Section 3, we propose the MBI approach
incorporating all missing patterns. In Section 4, the implemen-
tation and algorithm are illustrated. In Section 5, we establish the
theoretical properties of the proposed method. Sections 6 and 7
provide numerical studies through simulations and the ADNI
data application.

2. Background and Motivation

In this section, we introduce the framework for the block-wise
missing problem. Lety = (y1,...,y,)! be the response variable,
and X = (Xjj) be the N x p design matrix. Suppose that all the
samples are drawn independently from a random vector X =
(X1, X2, ..., Xp), whose covariance matrix C = (cij) is positive
definite. Then, forany 1 < i < Nand 1 < j < p, Xj; represents
the ith sample of the jth covariate. Suppose that all the covariates
in X are from S sources. Figure 1 illustrates a setting with three
sources.

We divide samples X into R disjoint groups based on the
missing patterns across all sources, where x;, the ith row of X,
is in the rth group if i € #(r), and H(r) is an index set of
samples. Forany 1 < r < R,leta(r) and m(r) be the index sets of
the observed covariates and missing covariates corresponding to

R
the rth group, respectively, and obviously, | a(r) = {1,...,p}.
r=1
Then, X ;) and & ,;,(r) represent observed variables and miss-
ing variables in the rth group, respectively. In addition, let G(r)
be the index set of the groups where missing variables X,
and variables in at least one of the other sources are observed.
If there are no missing values in the rth group, let G(r) = {r}, a
completely observed dataset. We assume that G(r) is nonempty
containing M, = |G(r)| elements for 1 < r < R. Note that this
assumption does not imply that the data must contain complete
observations, since G(r) could contain a group which is not a
complete case group but contains observed values of variables
X (r) and of partial variables in X 5(.

For illustration, the design matrix on the left of Figure 1
consists of three sources which are partitioned into five missing
pattern groups, where each white area represents a missing block
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Figure 1. Left: Missing patterns for block-wise missing data. Each white area represents a missing block, while the colored ones represent observed blocks from different
missing patterns. Right: Multiple block-wise imputations for the missing block in Group 2.

and the colored ones represent observed blocks in different
groups. For example, H(2) refers to samples in Group 2 and
X (2 refers to missing covariates in Group 2. Since Groups 1, 3,
and 4 contain observed values of X ,;,(2) and covariates in Source
20r3,G(2) ={1,3,4} and M, = 3. If we remove Group 1 (the
complete case group) and Group 5, the G(2) is still nonempty,
which is also true for G(3) and G(4).
We consider the following linear model

y=XB"+e )

where ° =
responding to all covariates and & ~ N(0,02Iy) represents
an error term independent of X. We assume that the model is
sparse; that is, most of the true coefficients are zero. Let A] =
{j: ,8].0 #0}and A, = {j: ﬂ;) = 0} be index sets corresponding
to relevant and irrelevant covariates, respectively. We also let
q = |A1] be the total number of relevant covariates. In the
supplementary materials, we provide a table of all notations for
convenience.

The likelihood-based approaches (Garcia, Ibrahim, and
Zhu 2010) typically formulate likelihood based on completely
observed variables. However, it is likely that no covariate is
completely observed under the block-wise missing structure.
Alternatively, Yuan et al. (2012) constructed a model for each
missing pattern separately and use observed variables within
each missing pattern as predictors. For instance, for Group 2
in Figure 1, the above method treats the covariates in Sources
1 and 2 as predictors and ignores information from Source 3.
However, Source 3 covariates could be incorporated as well,
since they are relevant to the response variable.

(,3?, cees ,Bg)T is the true coefficient vector cor-

Traditional imputation methods (Campos et al. 2015; Fleet,
Deller, and Goodman 2016; Zhang 2016) impute missing val-
ues in Group 2 based on the associations between missing
and observed variables obtained from complete observations in
Group 1, while samples in Groups 3 and 4 are not used. However,
Groups 3 and 4, also containing values from Source 3, can
provide additional information in imputing missing variables
X () through correlations with other covariates. This is espe-
cially useful when completely observed subjects are scarce. In
the following section, we propose a new imputation approach to
fully utilize information not only from the group with complete
cases but also from other groups.

3. Method
3.1. Multiple Block-Wise Imputation

In this subsection, we propose an MBI approach which can
use more observed information from incomplete case groups
than traditional imputation methods. Specifically, for a given
Group r with missing values of X' ,(r), each of the G(r) groups
contains observed values corresponding to missing X, (r), and
also observed values corresponding to a subset of observed
X 4. Therefore, we can predict missing values in the rth group
with M, = |G(r)| ways to borrow information from all the
groups in G(r), instead of using a complete case group only.
More specifically, for each k € G(r), let J(r, k) = a(r) N a(k)
be an index set of covariates which are observed in Groups r
and k. For each j € m(r), we estimate E(Xj| Xj(,x)) using all the
groups containing observed values of both X; and X, x), and
then impute missing values for X; in the rth group using asso-
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ciation information in the conditional expectation. Let Xm(,)
represent the imputation for all missing values in Group r. The
proposed multiple imputations approach is referred to as MBL
We illustrate the MBI with an example in Figure 1. For Group
2, covariates observed in both Group 2 and a group in G(2) =
{1,3,4} are indexed by J(2,1) = B; U By, J(2,3) = Bj, and
J(2,4) = By, respectively, where By is an index set of covariates
from Source k for k = 1,2, 3.

The traditional imputation methods, such as the SI, only
utilize observed values in Group 2 and Group 1 to impute the

missing values in Group 2, namely )Aiinlzz), as shown on the
top right of Figure 1. In contrast, the proposed method can
incorporate more information from Groups 3 and 4 in addition
to Groups 1 and 2, and impute the missing values in Group
2 using three different blocks of observed variables. Namely,
we estimate E(Xp,|X'p,uB,), E(X,|XB,), and E(Xp,|XB,)
based on Group 1, Groups 1 and 3, and Groups 1 and 4, respec-
tively. We then impute the missing values via the above three
estimated conditional expectations and the observed informa-
tion in Group 2. Compared with the SI, the proposed MBI

incorporates additional imputed values Xﬁzz) and XSEZ) via
E(Xp,|Xp,) and E(X'p,| X p,), where the estimation involves
more observed samples than the SI approach. In particular,
when estimating conditional expectation for the imputations,
we aggregate subjects from different missing pattern groups,
which can diminish the influence of specific missing patterns
of covariates.

3.2. Integration of MBI

In this subsection, we propose to integrate information from all
available sources and MBIs. Specifically, we construct estimating
functions for each group according to its missing pattern. For a
given Group r containing missing values and k € G(r), since
missing X, are estimated through E(X )| X )¢ k) which
is a projection onto Xj k), the covariates X'y, k) are uncorre-
lated with residuals of the projection X ;) — E(X 1n(r) | X (1))
Therefore, for each j € J(r, k),

E [Xj {y = XaBaw) = X | X)) By }]
0
= E(Xj &) + E[X; {Xm() = EXmn | X)) }] Bory = O
where B° a(ry and B m(ry denote the true coefficients of X4y
and X, respectively. In addition, for any j € m(r), since
E(Xj| X (k) is a function of X k),

E[EGG1200) [ = Xa L) = B | X400 8% } |

= E{EXj| X p) e} + E|:E(Xj|X](r,k)) {Xm(r)

- E(Xm(r)IX](r,k))”ﬂ?n(r) =0.

Note that J(r, k) U m(r) = {a(r) Na(k)} U m(r) = a(k) since
m(r) C a(k) for k € G(r).
Thus, we construct estimating functions corresponding to

observed covariates in the kth group using imputed values Xin(,)

In general, for each i € H(r), let x(k) (Xl(f), - ,Xi(;)) be the

ith imputed sample based on Group k, where Xij k) Xi; if the
jth covariate is observed in the sample x;, otherw1se Xi(].k) is an

imputed value of Xj; in X
*)

m(r) The estimating functions for the

imputed samples x;

g =2 I;k;(: M- us)
= {z?k)}T {)’i - ,vak)(ﬂ)}

fori € H(r),

in Group r are

(k)

where z;" is a subvector of xl(k) consisting of Xi(jk) forj € a(k),

0 ,ul(k) /9B (k) is the derivative of ,ufk) B = xgk) B with respect to
B aky> and B,k is the coefficient vector corresponding to X'y k).

To integrate information from all available missing patterns
and imputations, we propose an aggregated vector of estimating
functions:

2B =gV, 1g®enh7T, )

where

(r)__

‘f

Y g ®),

ieH(r)

n, is the number of samples from the rth group, and gl@ (B)isa

vector consisting of g?r’k) (B) for k € G(r). If the rth group only
has complete observations, then G(r) = {r}, M, = 1 and

7B =g""(B) = xF {yi — xiB)

Note that the total number of equations exceeds the number
of coeflicient parameters, and estimating functions from groups
with fewer missing variables or more accurate imputations tend
to have smaller variance. To combine all the estimating func-
tions in g(B), we estimate coeflicients § through the penalized
generalized method of moments (Caner 2009) which minimizes

fori € H(r).

p
=gBWPB 'gB®+ ) p(Bh )

j=1

B

where

W(B) = dlag{ PR

ieH(1)

3 g™ (ﬂ){gER)(ﬂ)}T}

R ieH(R)

is the sample covariance matrix of g(8), and p, (-) is a penalty
function with tuning parameter A. In this article, we choose the
SCAD penalty due to its oracle properties (Fan and Li 2001). The
sample covariance matrix W () is a block diagonal matrix since
estimating functions are formulated based on different missing
patterns. However, W(f) could be singular or close to singular
due to overlapping information in imputations, or due to a
large number of estimating functions compared to a relatively
small sample size. For example, as illustrated in Figure 1, the

observed values of Source 1 covariates in Group 2 are used in

3
the estimation of both Xm(2) and XSHEZ)



3.3. Solving the Singularity Issue of Estimating Equations

To solve the singularity issue of estimating equations, we reduce
the dimension of g for r = .» R, through combining
informative estimating equations, for example, utilizing the first
several largest principle components (PCs) (Wold, Esbensen,
and Geladi 1987; Cho and Qu 2015). Speciﬁcally, we divide the

est1mat1ng functions in g into two parts g(l) and gg)), where
g(l) consists of the functions with the imputation based on com-
plete observations, and g(z) contains the remaining estimating
functions in g, We proceed to extract informative principle
components from g(l) and g(z) separately. Let Group 1 be the
complete case group, and W1 and W(r) be the sample covari-
ance matrices of g(l) and gg)), respectively. If the dimension of

3(1) is too large such that ng is singular or close to singular, we

extract the first ¢; principle components h"” = UY) g(l)) from

gg), where U( " contains t; eigenvectors of Wil corresponding

to the largest t; nonzero eigenvalues, and t; can be selected to

retain sufficient information. If Wgrl) is neither singular nor close

to singular, we retain all the estimating functions in g(l), and let
(r) n _ o0

U,’ be an identity matrlx, thatis, b = g ;).

We orthogonalize g(z) against the h™ to store additional
information beyond h", where gg)) = gg)) V;?{V(r)} Th®
consists of orthogonalized estimating functions, Vgl) =
U(r) W("){U(T') }T’ and V;’i)

") (.
between g ;) and h'"

is the sample covariance matrix
Similarly, if the sample covariance of

gg)) is singular or close to singular, we select the first ¢, principle
‘f

components U, ) gg)) from the orthogonalized gg)), where U(r)

contains t, eigenvectors of the sample covariance matrix of gg))

corresponding to the largest t; nonzero eigenvalues. Otherwise,
we retain all the g g(z), and let U2 " be an identity matrix.

Let
(r) _
U _< (r)

If there is no complete case group or M, = 1, then either g(l)

g(z) is null,and U is either Ug " or UY). Thus, UM g" contains
all the essential information from the estimating functions of
the rth group, while solving the singularity issue of the sample
covariance matrix. The numbers of principle components #;
and t; can be tuned through the Bayesian information type of
criterion proposed by Cho and Qu (2015) to capture sufficient
information from the estimating functions in (2). Consequently,
the proposed estimator B is obtained via minimizing

v 0
(r){V<r)} IUY) Ugr) :

p
1B = U)"WUWUNH'Ug + Y prlIB, (4

j=1

where U = diag{UW, ..., U®}. In the following section, we
also provide an algorithm and implementation strategy of the
proposed method.
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4. Implementation

In this section, we provide the detailed algorithm for the pro-
posed method. The conditional expectations of missing covari-
ates in MBI can be estimated via linear regression models,
generalized linear models (GLM), or nonparametric models. In
this article, we use the GLM (Nelder and Wedderburn 1972) to
accommodate not only continuous covariates but also discrete
covariates. Specifically, for each group 1 < r < R,j € m(r),
and k € G(r), we adopt the GLM to predict E(X;j|X ) if
groups containing observed values of both X; and X'y, k) have
a larger sample size than the number of observed variables
|J(r, k)|, or adopt the L;-regularized GLM (Friedman, Hastie,
and Tibshirani 2010) otherwise. To obtain the L;-regularized
GLM estimator, we apply the “glmnet” package (https://cran.r-
project.org/web/packages/glmnet/index.html) in R. The imputed
values in MBI are then computed based on the estimated con-
ditional expectation.

To consistently handle singular or nonsingular W, we use
f*(B) in (4) instead of f (B) in (3) as our objective function for all
W. For the sample covariance matrix W of g” from Group r,
we select the numbers of principle components t; and t, corre-
sponding to 2, which is WE or W(r) (r){V(r)} I{V(r)}T,
through minimizing the BIC-type of criterion (Cho and Qu
2015)

tr(R — Q(1))
tr(R)

log(n,d)
ned

W(f) = (5)

where d is the dimension of . Here, the SZ(t) = Z _ )»]VJVJT is
an approximation of  based on the  largest eigenvectors, where

Aj is the jth largest eigenvalue of &, and v; is the eigenvector of

 corresponding to A;. Since tr{€ — S~2(t)} = Z}i:t_H Aj, the
minimizer of W(#) is indeed the number of eigenvalues which
are larger than tr{} log(n,d)/(n,d).

We plot an example of the objective function f*(8) in Fig-
ure 2 to illustrate the objective function f*(f) near true coefhi-
cients. In this example, there are three sources and four groups
Withpl = py = p3 = 20 and n; = n, = n3 = ng = 1000,
where each source contains one relevant predictor with a signal
strength of 1 and the missing patterns are the same as in Groups

1-4 in Figure 1. The true coefficients of 8; and f; are 1 and 0,

a7 >
-2

e —
T~ e -3
-1 >~_ - g B -2
X i

B 3\%4\»/"/{ BEE By

Figure 2. The objective function f*(B8).
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respectively. Figure 2 shows that f*(f8) has a unique minimizer
around the true coefficients.

To obtain the minimizer, we propose to iteratively decrease
f*(B) via the nonlinear conjugate gradient algorithm (Dai and
Yuan 1999) which converges quadratically (Cohen 1972) with-
out requiring the second derivative of the objective function. At
the kth iteration, the conjugate direction is

sk =—VFB*) + yecisi, (6)
where Vf*(B%*D) is the gradient of f*(8) at g = g*~1,
[vr )] vr )
S V) - vt |

Yk—1 = —

and s; = —Vf* (ﬂ(o)). Here, the initial values ﬂ(o) are obtained
by performing the Lasso method (Tibshirani 1996) on complete
observations, and the gradient is numerically calculated via
central differences. We determine the step size in the conjugate
direction sy through a line search:

o) = argminf™ BED 4 asp). (7)
o

We summarize the whole procedure for the implementation
of the proposed method in Algorithm 1. Note that estimation
of MBI is carried out in Step 2, and the nonlinear conjugate
gradient method is performed in Step 3.

To select the tuning parameter A in the penalty function
P (+), we propose a BIC-type criterion (MBI-BIC) as follows:

MBI-BIC; = N - log {RSS(B ) /N} +dfi - logN),  (8)

where B, is the proposed estimator for a given A, df, is the
number of nonzero estimated coefficients in 3 5> and RSS( B 3) =
Zle RSSr(ﬁA) is the residual sum of squares from all the
missing pattern groups with the rth group

RSS,(B,) = ]% oy {yi—u?)(m)}z.

" ieG(r) ieH ()

Algorithm 1

1. Obtain initial values 89 based on complete observations. Set
tolerance €, and the tuning parameters A and a.

2. Estimate )A(%)(r) via the GLM or L;-regularized GLM depend-
ing on the sample size foreachr = 1,...,Randj € G(r).
3. At the kth iteration, given ﬂ(k_l) and s;_; from the (k — 1)th

iteration:

(a) Select the number of principle components using (5) if
W is singular forr = 1,...,R.

(b) Calculate the conjugate direction sx using (6).

(c) Calculate the step size ok using (7).

(d) Update 8% = g*=D 4 g5

4. Tterate Step 3 until the convergence criterion is satisfied, for
example, max{|/3-(k) — ﬂ(k_l)|} <e€.
1<j<p /

Here, we tune X via the BIC-type criterion instead of RSS(B )
to reduce the complexity of model and avoid over-fitting. Com-
pared with the traditional Bayesian information criterion (BIC,
Schwarz 1978), the proposed MBI-BIC incorporates additional
information from incomplete observations via the MBI. We
select the optimal tuning parameter A corresponding to the
lowest MBI-BIC.

5. Theory

In this section, we provide the theoretical foundation of the
proposed method under regularity conditions. In particular,
we establish estimation consistency, selection consistency, and
asymptotic normality of the proposed estimator. We also show
that the proposed MBI leads to more efficient estimation than a
single imputation method. Throughout this section, we assume
that sources of covariates for each subject are missing completely
at random (MCAR) or missing at random (MAR). Let &; be the
random group label for the ith subject, that is, & = r if and only
if the subject i is in Group r. The MCAR or MAR assumption
implies that &; is independent of all covariates or only depends
on observed covariates. In addition, we assume that &; for 1 <
i < N are independently and identically distributed.

5.1. Asymptotic Properties for Fixed p and q

In this subsection, we assume that p and q are both fixed as
N — oo. Let G(B) = (g,(B),... ,gN(ﬁ))T be the estimating
functions from N samples, where g;(f) = (g?l)(ﬂ)T,...,
gl(R) BT is a column vector consisting of the ith sample of

all available estimating functions with gl@ (B) =0ifi ¢ H(r)
for 1 < r < R. We require the following regularity conditions:

Condition 1. Forany 1 < r < R, k € G(r), ] € m(r), and
j € a(k), there exists a sequence ¢y such that 1/¢ny = O(1),
tn = o(W/N),

1 A )

5 2 16 = N2y | ECGIXya0) = BXIX ) |

i=1
_ {N
_o, (—_N) , ©)

N
1 _ A
— E I(§; = r)é; {E(Xil|Xi](r,k)) - E(Xl|Xi](r,k))}

VN i=1
(%)

. 4
E(X]f*) <00, E(X}') <00, E(e*) <00, E {E(X1|X](,,k))} <00,

(10)

and

where I(-) is an indicator function, Xjj(.x) is a vector consisting
of samples Xj, for all v € J(r,k), and E(XllX,-](,,k)) is an
estimator of E(X1|X](r,k) = Xi](r,k))- Z,‘j = E(Xj|X,‘](r,k)) if
j € m(r) and Z; = Xj; otherwise, and & = & + {Xim() —

EXn(r) 1 Xij(r0)} By -



Condition 2. For any 1 < r < R, with a sufficiently large n,

P(Columns of G (B°) are linearly dependent when
(r]n(r) 70) =0,

where G () (g(lr) $»,... ,gN) ()T is a submatrix of
G(B) with columns representing estimating functions of the rth

group.

Condition 3. For each 1 < j < g, there exists 1 < r < R such
thatj € a(r) N {Ukegra(k)}.

Condition 4. There exists a covariance matrix V; such that
G3(B%)"1/VN > N(0, V1), where G§(8) = G(B)(U(B"))T is
the sample matrix for transformed estimating functions which
are linearly independent at 8 = 8 0,

Note that, Equations (9) and (10) in Condition 1 are sat-
isfied if the consistency of a coefficient estimator for X
holds under a linear model in predicting X;, which can be
obtained through the least squares or GLM (Fahrmeir and
Kaufmann 1985) estimator under MCAR or MAR mechanisms.
Moreover, Condition 1 requires the existence of the fourth
moments of covariates and the error term. Condition 2 holds
when the block-wise imputations based on different missing
pattern groups are distinct with probability 1. Condition 3 is
satisfied when the block-wise missing data contain complete
cases, while for data with no complete cases, it requires that
each relevant covariate is observed from at least one group
and utilized in the MBI to predict missing values. Since G(8)
incorporates predicted conditional expectations, Condition 4
requires asymptotic normality of coefficient estimators for pre-
dicting missing covariates, and thus can be satisfied when the
least squares estimator is used under the linear regression model
and the missing mechanism is either MCAR or MAR. When
there are no missing values, Condition 4 automatically holds.

To simplify expression of the following theorem, we define
some notations. Let 8 4, and B 4, be vectors of B forj € Ajorj €

Ay, respectively. In addition, we let V, = Va, ( lTG0 /N) (B°) be
the first derivative of 17G};/N with respect to 8 Apand Vo=

(V5 Vl_1 V2T )~!, where V, is expectation of V).

Theorem 1. Under Conditions 1-3, if Ay — 0 and AAZV\/ZTT/QN
— o0o0as N — 00, then there exists a local minimizer 8 of f*(8)
such that the following properties hold:

(i) Estimation consistency: |8 — 8[|, = Op(N~V2¢y).
(ii) Sparsity recovery: P(BA2 =0) > lasN — oo.
(iii) Asymptotic normality: If Conditions 4 hold, then

INBa, - B%) 5 N,V

Theorem 1 states that the proposed estimator is almost root-n
consistent and selects the true model with probability approach-
ing 1. The convergence of the proposed estimator B depends
on the accuracy of predictions for the conditional expectations
of missing covariates, since the proposed approach is based on
imputation of the missing covariates. Thus, the {y in (i) comes
from the level of prediction accuracy assumed in Condition 1.
Note that if ¢y is a constant, then the proposed estimator is root-
n consistent by Theorem 1. In addition, the estimator of nonzero
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coefficients B A, is asymptotically normal under Condition 4.
The empirical covariance matrix of B A, 1s V=(V, f’l_l VZT )7L
where V1 = {G}(8°)}7 G} (8%)/N.

If only a single regression imputation based on complete
observations is utilized, the sample estimating functions are
Guy(B) = G(B){Uq)}T, where U(y) selects estimating func-
tions corresponding to the single imputation. Then, the empir-

ical covariance matrix of the estimator induced by G(;)(B) is

1 A (1 ~ A
( ) , where V Vi ), nd V; ), are similarly defined as V, Vy,

and V,, respectively, except that G;(B°) is replaced by G(1)(8°).
In the following proposition, we show that using the MBI

improves the empirical efficiency of the parameter estimation

with a smaller asymptotic variance compared with a single

imputation approach.

Proposition 1. Under the conditions in Theorem 1, v Vs

positive semidefinite.

Proposition 1 indicates that the proposed estimator with MBI
gains efficiency through incorporating additional information
from incomplete case groups. In the following, we will establish
consistency of the proposed estimator for diverging p and q.

5.2. Consistency for Diverging p and q

In this subsection, we consider cases when p and g increase as N
increases, that is, p = py and g = gn. We assume that the num-
ber of sources does not diverge as N goes to infinity. Let H(f) =
((1781G(B)/NY.,..., (17 3,G(B)/N)YT) ", Ha, (B) and Ha, (B)
be sub-matrices of H(B) consisting of rows corresponding to
covariates indexed by A; and A, respectively, where 9,G(B)
denotes the first derivative of G(B) with respect to g for 1 <
j < p. Wealso let W(B) = {UB")}T{W%(8)}'U(B°) be an
estimator of the we /ghtlng matrix for all estimating functions,
W(B) = Ha (BYW(B){Ha, (B)}7, and By = (B : |IB —
B%loe < N~¥0zy) bea neighborhood of B for some constant
ko, where W5 (B) = Gj (,B)TG(*)‘ (B)/N and ¢y is a sequence such

that 1/¢ny = O(1) and ¢y = o(log N). Denote the minimum
signal by Bmin = m£n| ,Bjol, and the smallest eigenvalue of a
JjeA1

matrix by Amin(-). For simplicity, we write w.p.a.1 as shorthand
for “with probability approaching one” Since the dimensions of
G and B diverge as N grows, we require the following regularity
conditions.

Condition 5. For B € By, and some positive constants «4 and
k3 < min{k]/2 — ko/2,k1/4 — K2/4}, gglx”{aiG(ﬂ)}TajG(ﬂ)/
) 1

Nlloo = Op(N*), lLr}ilijiNll{3]'G(ﬁ)}TG(I3)/N||oo = Op(N*),

IW(B)lloo = Op(N*), [H(B) oo = Op(N*), Amin(W(B))
> k4 wp.a.l, where k] = k1 —1/6,x1 € (1/6,1/2] and k¢, k2 €
(0, k1] are constants.

Condition 5 controls the norms of matrices related to the
estimating function matrix G for B in a neighborhood of
true coeflicients, which is similar to the conditions in Fan
and Liao (2014, Theorems B.1 and B.2). In pargcular, the
condition assumes a lower bound for eigenvalues of W to ensure
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a strict local minimizer of the objective function f*(8). Let
TN(B) = V3 Ln(B){VELN(B)} L, where Ly(B) is the first
term in (4) with U = U(B°). Here, VZZILN(ﬁ) is a sub-matrix
of the Hessian matrix of Ly (8) with rows and columns indexed
by Az and Ay, respectively, while VZ Ly (B) is defined similarly
with rows and columns both indexed by A;.

Condition 6. For some constant 71 > kg + k2, p;N (Bmin/2) =
ON™™), Ay' = OW™), and A ITN(B)llc < min{ni/
Phy (Bmin/2), Op(N)}, whereny € (0,1) and n; € (0, &7 —2k3)
are constants.

Condition 6 is standard for the SCAD penalty (Fan and
Lv 2011), where p’AN (Bmin/2) = O(N™™) can be satisfied as
long as Bmin is large enough, since p} (-) is decreasing. The
requirement for Tn(f) is similar to the irrepresentable con-
dition of the SCAD penalty under high-dimensionality (Fan
and Lv 2011), but is derived for the loss function based on
estimating equations instead of the least squares loss. Specifi-
cally, when there are no missing values and Ly (f) is the least-
square loss function, then V7 Ly(B) is the sample covariance
matrix between the irrelevant and relevant covariates, Vlzl LN (B)
is the sample covariance matrix among relevant covariates, and
thus the condition on Tn(f) is exactly the same as the irrepre-
sentable condition.

Condition 7. There exists a constant 7, > k] — 1/6 such that for
BeByl<r<RkeG),

N
1 a ~
Z N ZI(& =nZj {E(Xim(r) [Xir(rk) — E(Xm(r)|XiI(r,k))} B
jeato |1 =1
N
-0, (sz)’ (11)
N
1 _ A
Y | 2 16 = N {ECtulXyou) — EGilXgou)
lem(r) i=1

{N

=0, (ﬁ) , (12)
where Z,J = ]AE(Xj|X,~](T,k)) ifj € m(r) and Zj = Xjj otherwise,
and &; = &; + {Xim(r) — EXmr) | Xij(rk))} Bm(r)- We also assume
that X; and E(Xj|Xj( k) are sub-Gaussian distributed for 1 <
j < plem@r),l <r < R and k € G(r). In addition,
max |m(r)| = o(N'/) and max [|Blloc = O(4N)-

1<r<R 1<r<R

Condition 7 is analogous to Condition 1. Similar to Equa-
tions (9) and (10), Equations (11) and (12) can be obtained
through the Lasso (Zhang and Huang 2008) or SCAD (Fan and
Lv2011) under linear regression models and the MCAR or MAR
mechanisms in predicting missing covariates, assuming that
the magnitude of true coefficients and the numbers of missing
covariates across groups do not diverge too fast as N — oo.
We also assume that the covariates in Condition 7 are sub-
Gaussian, since we allow the dimension of covariates py to
increase exponentially in the following theorem.

Theorem 2 (Consistency under high-dimensionality). Under
Conditions 2 and 5-7, iflog py = O(N'=21), gy = O(N*?) and

Bmin > N0 log N, then there exists a strict local minimizer ;3
of f*(B) in (4) such that the following properties hold:

(i) Estimation consistency: |8 — B°[|o0 = Op(NT*0zy).

(ii) Sparsity recovery: P([iAZ =0) > lasN — oo.

Theorem 2 states that when the number of covariates grows
exponentially, the proposed method still processes estimation
consistency and recovers sparsity accurately under regularity
conditions. That is, the proposed estimator selects the true
model with probability tending to 1. We provide the proofs
of Theorems 1-2 and Proposition 1 in the supplementary
materials.

6. Simulation Study

In this section, we provide simulation studies to compare the
proposed method with existing model selection approaches for
handling block-wise missing data, including complete case anal-
ysis with the SCAD penalty (CC-SCAD), the single imputation
with SCAD penalty (SI-SCAD), the iSFS, the DISCOM, and
the DISCOM with Huber’s M-estimate (DISCOM-Huber). The
simulation results show that the proposed method achieves
higher model selection accuracy than other competing methods
through fully using information from incomplete samples. We
simulate data from a linear model (1) using 50 replications,
where & ~ N(0,Iy) and each row of X is independent and
identically distributed from a normal distribution with mean 0
and an exchangeable covariance matrix determined by a vari-
ance parameter 0> = 1 and a covariance parameter p. We also
carry out simulations with binary covariates or an unstructured
correlation matrix. The simulation results for the unstructured
correlation matrix are provided in the supplementary materials.

The proposed method is implemented based on Algorithm 1.
The imputation in SI-SCAD is estimated in a similar fashion but
only based on the complete case group. The minimization prob-
lem in CC-SCAD and SI-SCAD is solved through the coordinate
descent algorithm. We utilize the Matlab codes in https://github.
com/coderxiang/MachLearnScripts to calculate the iSFS estima-
tor. The implementation of DISCOM and DISCOM-Huber is
provide by Yu et al. (2019). In addition, we tune the parameter
A for the CC-SCAD, SI-SCAD, and iSFS via BIC. Following Yu
etal. (2019), the A in DISCOM and DISCOM-Huber is tuned by
a validation set which consists of #, random samples from the
complete observations. For the methods with the SCAD penalty,
we choose a = 3.7 (Fan and Li 2001).

We calculate the false negative rate (FNR) representing the
proportion of unselected relevant covariates and the false posi-
tive rate (FPR) representing the proportion of selected irrelevant
covariates as follows:

T IG=08£00 XL IG#0.6 =0
P IBY #0) S IE =0

We say that a method has better model selection performance
if the overall false negative plus false positive rate (FNR+FPR)
is smaller. We compare all the methods under the following
five settings where the relevant predictors in Source k share
the same signal strength Sy for k = 1,...,S. In the first two
settings, we assume missing at random and missing completely



https://github.com/coderxiang/MachLearnScripts
https://github.com/coderxiang/MachLearnScripts

at random, respectively, while we assume informative missing
in the third and fourth settings. In addition, we consider data
with no complete observations in the last setting. Under each
setting, we also provide the computational time (in seconds) of
each method with a given tuning parameter.

Setting 1: Let N = 700, p = 40,9 = 14,R = 4, S = 4,
ny = 30, np, = n3 = 220, ng = 230, n, = 10,p1 =pr =p3 =
12, p4 =4, (/331, ,352, ,353, ,354) = (5, 6,7, 8), and p = 0.4 0r0.7.
Each of the first three sources contains four relevant covariates,
and the last source contains two relevant covariates. Samples are
sequentially randomly assigned into the complete case group
with probabilities proportional to exp(—a;) for 1 < i < N,
where a; = 10(X;37 + - - - + Xig0) and Xj37, . . ., Xj40 are the four
covariates from Source 4 for the ith sample. Otherwise, they are
uniformly assigned to the other three groups, where Sources 1-
3 have the same missing structure as the three sources in Groups
2-4 in Figure 1, and Source 4 covariates are all observed. This
assignment ensures that samples with higher a; are less likely to
be assigned to Group 1 of the complete cases.

Since a; depends on Source 4 covariates which are observed
across all the missing patterns, samples in Setting 1 are missing
atrandom. The proposed method outperforms other competing
methods for different correlations even with a high missing
rate (95.7%) as we are able to extract more information from
incomplete samples. Table 1 shows that the overall FNR+FPR
of the proposed method is the lowest among all methods. For
example, when p = 0.7, the FNR+FPR of the proposed method
is 0.481, which is only 66.5%, 56.7%, 62.5%, 63.5%, and 51.5%
of the FNR+FPR of CC-SCAD, SI-SCAD, DISCOM, DISCOM-
Huber, and iSFS, respectively. Note that the FNR+FPR of iSFS
is the same for different p since the iSFS always selects Source 4
covariates. This is possibly due to the larger weight of Source 4
when applying the iSFS approach, as covariates of Source 4 are
observed in all samples.

Moreover, we provide the values of the two terms in MBI-
BIC, in Equation (8) for 20 increasing values of A in Table
10 in the supplementary materials. Although the values of the

Table 1. FNR, FPR, and FNR+FPR under Setting 1.
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RSS term are much higher than the values of the second term
dfs. - log(IN), the changes of the RSS term across different A’s are
comparable to the changes of the second term, which indicates
that the second term is able to determine the tuning of A and
thus can prevent overfitting. We also illustrate this with Figure
3 in the supplementary materials, where the red vertical line
marks the smallest MBI-BIC, . Since the smallest MBI-BIC, and
the smallest first term do not correspond to the same value of
A, the second term is effective in preventing overfitting. Note

that the first term N - log {RSS(/}A)/N} in MBI-BIC, is not

strictly increasing as A increases. This is possibly due to that the
first term in the proposed objective function (4) is not strictly
increasing of the RSS.

We investigate the performance of the proposed method
under high-dimensional situations in the following Setting 2.

Setting2: Let N = 500,p = 1000,g = 20,R =4,5S=3,n; =
180, ny = 120, N3 = Ny = 100, ny = 50, p1 = 75, P2 = 100,
p3 = 825, (Bs1, Bs2> Bs3) = (6,5,4), and p = 0.5 or 0.8. Sources
1, 2, and 3 contain 6, 6, and 8 relevant covariates, respectively.
All the samples are uniformly assigned to the four groups, which
have the same missing structure as Groups 1-4 in Figure 1.

The proposed method is more powerful in variable selection
than other methods under the high-dimensional situations, as
its FNR+FPR is the smallest among all the methods, as indi-
cated in Table 2. In particular, the proposed method performs
especially effectively when correlations among covariates are as
strong as 0.8, with FNR+FPR = 0.048, much smaller than any
FNR+FPR of other methods. This is possibly because the strong
correlations improve imputations in MBI, which compensate
the negative effect of highly correlated covariates on variable
selection under high-dimensional settings (Zhao and Yu 2006;
Fan and Lv 2011).

Setting 3: We consider the missing not at random. Let N =
250,p =60,q =15R=4,S=3,n =ny =45 n3 = ny =
80, n, = 10, P1=p2=p3 = 20, (,Bsb/gsZ) /353) = (2.5,3,3.5),
and p = 0.4,0.6,0r 0.8. Each source contains five relevant
covariates. Here, missing group assignment of the samples is

p =04 p =07

Method FNR FPR FNR+FPR Time FNR FPR FNR+FPR Time
Proposed method 0.128 0.408 0.536 12.086 0.116 0.365 0.481 8.781
CC-SCAD 0.493 0.131 0.624 0.016 0.621 0.103 0.723 0.026
SI-SCAD 0.357 0.427 0.784 0.004 0.385 0.464 0.849 0.073
DISCOM 0.000 0.859 0.859 0.031 0.000 0.770 0.770 0.034
DISCOM-Huber 0.000 0.854 0.854 0.051 0.000 0.758 0.758 0.055
iSFS 0.857 0.077 0.934 0.426 0.857 0.077 0.934 0.614
NOTE: “Time" represents the computational time (in seconds) of each method for one simulation with a given tuning parameter.
Table 2. FNR, FPR, and FNR+-FPR under Setting 2.

p =05 p =038
Method FNR FPR FNR+FPR Time FNR FPR FNR+FPR Time
Proposed method 0.033 0.001 0.034 9.033 x 103 0.042 0.006 0.048 9.724 x 103
CC-SCAD 0.187 0.017 0.204 0.859 0.655 0.013 0.668 2.012
SI-SCAD 0.390 0.008 0.398 0.488 0.480 0.038 0.518 1.152
DISCOM 0.006 0.367 0.373 74.800 0.023 0.487 0.510 110.900
DISCOM-Huber 0.033 0.317 0.350 103.600 0.117 0.373 0.491 143.500
iSFS 0.537 0.074 0.611 16.350 0.496 0.096 0.592 19.674

NOTE: “Time" represents the computational time (in seconds) of each method for one simulation with a given tuning parameter.
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Table 3. FNR, FPR, and FNR+FPR under Setting 3.

o =04 o =06 p =08
Method FNR FPR FNR+FPR Time FNR FPR FNR+FPR Time FNR FPR FNR+FPR Time
Proposed 0.096 0.298 0.394 9.831 0.105 0.297 0.402 8.324 0.123 0.294 0.417 4.445
CC-SCAD 0.351 0.090 0.440 0.023 0.461 0.082 0.543 0.053 0.613 0.070 0.683 0.182
SI-SCAD 0.492 0.308 0.800 0.206 0.455 0.288 0.743 0.123 0.492 0.280 0.772 0.118
DISCOM 0.000 0.541 0.541 0.043 0.001 0.541 0.542 0.041 0.015 0.465 0.480 0.052
DISCOM-H 0.009 0.509 0.518 0.092 0.069 0.472 0.541 0.094 0.196 0.380 0.576 0.094
iSFS 0.425 0.289 0.714 0.320 0.440 0.304 0.744 0.506 0.479 0.285 0.764 0.871
NOTE: “Proposed” stands for the proposed method. “DISCOM-H" stands for the DISCOM-Huber method.
Table 4. FNR, FPR, FNR+FPR, and MSE under Setting 4.
p =04 p =07

Method FNR FPR FNR+-FPR MSE Time FNR FPR FNR+FPR MSE Time
Proposed method 0.024 0.160 0.184 1.570 14.662 0.052 0.151 0.203 2.449 17.772
CC-SCAD 0.368 0.096 0.464 16.409 0.033 0.588 0.056 0.644 33.813 0.037
SI-SCAD 0.264 0.454 0.718 15.291 0.196 0.319 0.451 0.770 18.715 0.181
DISCOM 0.000 0.726 0.726 2.560 0.052 0.000 0.703 0.703 3.909 0.052
DISCOM-Huber 0.000 0.916 0.916 39.614 0.115 0.005 0.872 0.877 47.117 0.087
iSFS 0.215 0.331 0.545 9.758 0.499 0.184 0.420 0.604 11.932 0.650
Table 5. FNR, FPR, FNR+FPR, and MSE under Setting 5.

FNR FPR FNR+FPR MSE Time
P Proposed iSFS Proposed iSFS Proposed iSFS Proposed iSFS Proposed iSFS
0.5 0.267 0.395 0.233 0.380 0.500 0.774 0.258 0.255 8.849 0.154
0.6 0.228 0.405 0.154 0.380 0.382 0.785 0.174 0.262 11.657 0.180
0.7 0.221 0.428 0.135 0.377 0.356 0.805 0.148 0.296 8.556 0.200
0.8 0.201 0.435 0.114 0370 0.316 0.804 0.120 0.326 9.462 0.302

NOTE: “Proposed” stands for the proposed method.

the same as in Setting 1, except that there is no Source 4 and
a; = 3(Xia + -+ + Xis + yi), where Xji, ..., X5 are the ith
sample of the five relevant covariates from Source 1 (Table 3).

In Setting 3, the probability of a missing sample depends
on missing covariates and the response variable, which leads to
informative missingness and biased imputation based on the
complete group in SI-SCAD. In contrast, the proposed method,
incorporating additional imputed values through aggregating
different missing patterns, is able to reduce the selection bias
caused by missingness. For example, when p 0.6, the
FNR+FPR of the proposed method is 0.402, less than those of
other methods. Note that the FNRs of DISCOM and DISCOM-
Huber are small since these two methods tend to over-select
variables, consequently producing large FPRs. On the other
hand, the CC-SCAD tends to select fewer variables due to
insufficient numbers of complete observations, which leads to
small FPR and large FNR.

In Setting 4, we consider binary covariates. We first simulate
data from a multivariate normal distribution with correlation
p similarly as in previous settings, and then transform each
covariate X; in Source 1 to sign(X;).

Setting 4: Let N = 700, p = 60,g = 15, R =4,5§ =3,n; =
45, n; = n3 = 265, n4 = 125, n, = 20, p1 = po = p3 = 20,
(Bst15 Bs2> Bs3) = (7,8,10), and p = 0.4 or 0.7. Sources 1, 2, and
3 contain 2, 6, and 7 relevant covariates, respectively. Missing
group assignment of the samples is the same as that in Setting 3,
except that a; = 10y; for 1 <i < N.

In addition to FNR and FPR, we also calculate the mean-
squared-error (MSE) of the estimators. Table 4 shows that the

proposed method has the smallest FNR+FPR and MSE among
all the methods under Setting 4, indicating that the proposed
method performs better than other competing methods in both
variable selection and coefficient estimation under the situations
with binary covariates. Note that although the CC-SCAD does
not perform well in estimation due to informative missing, it
is still able to select variables more accurately than all other
methods except the proposed method, especially for relatively
small p. Moreover, the DISCOM and DISCOM-Huber perform
the worst in this setting, possibly because the DISCOM methods
are based on covariances.

Setting 5: We follow similarly as in Setting 3, except that there
is no complete case group and R = 3. Let N = 300, n; = ny =
n3 = 100, (Bs1, Be2» Bs3) = (0.8,1,1.5), p = 0.5,0.6,0.7, or 0.8.
All the samples are uniformly assigned to the three missing
groups.

The proposed method is capable of handling data with no
complete observations. However, complete observations are
required for CC-SCAD, SI-SCAD, DISCOM, and DISCOM-
Huber. Thus, we only compare the proposed method with iSFS
in this setting. The proposed method performs better than iSFS
on both estimation and variable selection especially when the
correlations among covariates are strong. Table 5 shows that
the FNR, FPR, and MSE of the proposed method are less than
those of iSFS, respectively, in most situations. Moreover, the
FNR+FPR of the proposed method decreases as p increases,
indicating that incorporating correlation information among
covariates plays an important role in imputation especially when
there are no complete cases.



Table 6. FNR, FPR, FNR+FPR, and MSE under Setting 6.
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FNR FPR FNR+FPR Time
P Proposed Proposed_2 Proposed Proposed_2 Proposed Proposed_2 Proposed Proposed_2
0.4 0.030 0.031 0.272 0.270 0.301 0.301 17.115 13.836
0.5 0.025 0.029 0.380 0.438 0.406 0.467 12.471 16.913
0.6 0.021 0.058 0.420 0.423 0.441 0.481 15.230 13.548
0.7 0.054 0.081 0.485 0.587 0.539 0.668 10.448 15.167
0.8 0.050 0.099 0.465 0.539 0.515 0.638 9413 14.270

NOTE: “Proposed” stands for the proposed method. “Proposed_2" stands for the proposed method without using principle components for a nonsingular W.

In the following, we conduct additional simulations without
using the principle components when W is nonsingular. That is,
we compare the estimators from solving Equations (3) and (4),
respectively.

Setting 6: We proceed similarly as in Setting 1, except that
ny = ny = n3 = ng = 200 and (Bs1, B2 Bs3> Bsa) = (5,6,7,8).

We summarize the results of Setting 6 in Table 6, where
“Proposed” stands for the proposed method and “Proposed_2”
stands for the proposed method without using principle com-
ponents for nonsingular W. Note that these two approaches
perform similarly in terms of FNR, FPR, and FNR+FPR. In
addition, the proposed method with principle components per-
forms slightly better than that without the principle components
for settings with a large correlation p. This is possibly due to the
fact that W might be close to singular for a large p even though
it is nonsingular.

7. Real Data Application

In this section, we apply the proposed method to the ADNI
study (Mueller et al. 2005a) and compare it with existing
approaches. A primary goal of this study is to identify biomark-
ers which can track the progression of AD. Since the cognitive
score from the mini-mental state examination (MMSE)
(Folstein, Folstein, and McHugh 1975) can measure cognitive
impairment and is a diagnostic indicator of Alzheimer’s disease
(Tombaugh and McIntyre 1992), we treat the MMSE as the
response variable, and intend to select biomarkers from three
complementary data sources: MRI, PET, and gene expression.
Note that the sparsity assumption of the proposed method
might not be suitable for raw imaging data or imaging data
at small scales since images have to show some visible atrophy
for AD. However, the sparsity assumption is still reasonable
for region of interest (ROI) level data. Thus, we apply the
proposed method to the ROI level data in ADNI instead of
the raw imaging data. For raw imaging data, the principal
components analysis (PCA) related methods (Guo, Ahn, and
Zhu 2015; Shen and Zhu 2015; Zhu et al. 2017) could be more
applicable.

The MRI is segmented and analyzed in FreeSurfer by
the Center for Imaging of Neurodegenerative Diseases at
the University of California, San Francisco. Quantitative
variables extracted from the MRI are volumes, average cor-
tical thickness, standard deviation in cortical thickness,
and surface areas of different ROIs. Quantitative variables
from the PET images are computed by the Jagust Lab at
the University of California, Berkeley. The PET features
represent standard uptake value ratios (SUVR) of differ-

ent ROIs, where the SUVR is an indicator of metabolic
activity of a specific region. Gene expression variables are
extracted form blood samples by Bristol-Myers Squibb lab-
oratories, and represent expression levels at different gene
probes.

The response variable MMSE may not be measured at the
same day as the imaging data, as the examinations could be
time-consuming. We use the “visit code” provided by the ADNI
study to link the MMSE and image data, which ensures that
the MMSE and imaging data are measured within the same
month. We mainly focus on the MMSE and quantitative vari-
ables from the MRI, PET, and gene expression in the second
phase of the ADNI study (ADNI-2) at month 48, where block-
wise missingness emerges due to low-quality images, high cost
of measurements, or patients’ dropouts.

The aim of our real data analysis is to select biomarkers asso-
ciated with the MMSE, which may be useful for the prediction
of the MMSE or Alzheimer’s disease in the future. There are
267 MRI features, 113 PET features, and 49, 386 gene expression
variables. To reduce the bias in MRI caused by differences of
brain sizes, we normalize the ROI volumes, surface areas and
cortical thicknesses through dividing them by the whole brain
volume, the total surface area, and the mean cortical thickness
of each subject, respectively (Zhou et al. 2014; Kang et al. 2019).
We screen out 300 features from the gene expression predictors
through sure independence screening (SIS, Fan and Lv 2008),
and select subjects containing observations from at least two
sources. For the SIS procedure, since there are missing values
in the data, we calculate the marginal correlation between the
MMSE response and each predictor using all available pairs
of observations from them, and then select predictors with
relatively higher marginal correlations according to the con-
ventional SIS. In total, there are 680 features and 212 subjects
in four groups with 69 complete observations, that is, p
680, N = 212, and R = 4, where the four groups have the
same missing pattern structure as Groups 1-4 in Figure 1. As
the missing rate of this dataset is about 68%, it is important
to fully use incomplete observations, such as in the proposed
method.

To compare the performance of the proposed method with
existing methods, we randomly split the data into a test set and
a training set 100 times. Specifically, each test set consists of
43 samples (20% of all samples) randomly selected from the
complete observations. The remaining 169 samples (80% of all
samples) constitute the training set with 26 complete observa-
tions, corresponding to a 85% missing rate of the training set.
For the DISCOM and DISCOM-Huber method, we generate a
validation set consisting of n, = 10 random samples from the
complete observations in the training set.
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Table 7. The “NS”represents the mean number of selected variables.

85% missing rate

90% missing rate

Method NS Mean SD RI-RMSE Time NS Mean SD RI-RMSE Time
Proposed 41 4.320 0.577 - 1517 x 103 39 4384 0.403 - 1.981 x 103
CC-SCAD 13 5.472 0.918 21.1% 0.081 9 5.692 1.038 23.0% 0.040
SI-SCAD 51 5.548 1.046 22.1% 0.129 50 5.990 0.896 26.8% 0.117
DISCOM 392 29.964 4123 85.6% 7.587 366 29.824 4.026 85.3% 7.098
DISCOM-H 290 29.978 3.528 85.6% 9.536 258 29.597 3.393 85.2% 9.012
iSFS 43 18.058 1.987 76.1% 7.880 44 19.056 2.113 77.0% 6.220

NOTE: The “mean” and “SD” represent mean and standard deviation of RMSE based on 100 replications, respectively. The “RI-RMSE” for any method is the relative
improvement of the proposed method over the competing method for the ADNI data.

We calculate the prediction root-mean-squared error

(RMSE) \/ T-1 ZiTzl(j/i — y)? for each test set corresponding
to each method, where T is the number of observations in the
test set, y; is the ith true response value in the test set, and y;
is the corresponding fitted value using the model based on the
training data. We also calculate the relative improvement (RI-
RMSE) of the proposed method over other methods in terms of
mean RMSE based on the 100 replications. Specifically, the RI-
RMSE of any given method is the ratio of the difference between
the mean RMSE of the given method and the proposed method,
to the mean RMSE of the given method. To investigate data
with a higher missing rate, we also randomly partition all the
samples into 25% test and 75% training sets with n, = 5 for 100
times, and calculate the corresponding RMSE and RI-RMSE in
a similar fashion. With this partition, each training set contains
16 complete observations corresponding to a 90% missing rate.

In general, the proposed method achieves higher variable
selection and prediction accuracy than all other methods for
the ADNI data due to incorporating correlation information
from incomplete observations. Specifically, Table 7 shows that
the mean RMSE of the proposed method is smaller than that
of any other method under two missing rates, even though
the proposed method selects fewer variables than most of the
other methods, which implies that the proposed method selects
varjables more accurately. More precisely, the proposed method
reduces the RMSE of any other method by more than 20%,
according to the RI-RMSE. Moreover, the relative improvement
is still substantial for the missing rate 90%, indicating that the
proposed method is more effective than other methods even
when the missing rate is quite high. In addition, the proposed
method produces smaller standard deviation of the RMSE and
thus is more stable than most other methods. The CC-SCAD
only selects 13 or 9 variables since there are only 26 or 16
complete observations for 80% or 85% training sets, respectively.
The DISCOM and DISCOM-Huber select more variables than
other methods, which is consistent with the simulation findings
in Section 6.

Table 9 in the supplementary materials provides the first
NS variables most frequently selected by each method based
on the 100 training sets with 85% missing rate, where NS
is the mean number of variables selected by the corre-
sponding method. The 41 variables selected by the pro-
posed method contain 29, 2, and 10 biomarkers from the
MRI, PET, and gene expression, respectively, most of which
are also selected by other methods. In particular, the two
PET biomarkers (“RIGHT LATERAL VENTRICLE” and
“RIGHT CHOROID_PLEXUS”) are also selected by the

DISCOM, and DISCOM-Huber, which represent SUVRs of the
right lateral ventricle and the right choroid plexus, respectively.
Note that the lateral ventricle and choroid plexus are indeed
related to the AD (Apostolova et al. 2012; Krzyzanowska and
Carro 2012).

In addition, the “ST29SV,” “ST40TA, “ST60TS,” and
“11723246_s_at” are not only selected by the proposed
method, but also selected by the CC-SCAD, DISCOM, and
DISCOM-Huber. The “ST29SV,” “ST40TA,” and “ST60TS”
are MRI features and represent the volume of the left hippocam-
pus, the average cortical thickness of the left middle temporal
gyrus, and the standard deviation of cortical thickness of the
left temporal pole, respectively, which are all associated with
the presence of AD (Arnold, Hyman, and Van Hoesen 1994;
Convit et al. 2000; Galton et al. 2001; Apostolova et al. 2012).
The “11723246_s_at” from the gene expression source
represents the secreted frizzled related protein 1 (SFRP1) gene,
which is elevated in brains of individuals with AD (Esteve
et al. 2019; Tang 2020). Furthermore, the “ST43TA” and
“ST119TS” from the MRI source are only selected by the
proposed method, representing the average cortical thickness of
the left paracentral lobule and the standard deviation of cortical
thickness of the right temporal pole, respectively. Note that
the left paracentral lobule and the right temporal pole are also
associated with AD (Kumfor et al. 2016; Yang et al. 2019).

In summary, the proposed method produces smaller RMSE
for prediction in test sets than other competing methods
with fewer selected variables, indicating that our method
achieves better performance in variable selection. Moreover,
the biomarkers selected by the proposed method are indeed
important and relevant to the response variable, which are also
confirmed by medical studies.

8. Discussion

In this article, we propose the MBI approach to solve the block-
wise missing problem arising from multisource data. The pro-
posed method improves variable selection accuracy through
incorporating more information about missing covariates from
incomplete case groups.

The existing methods for missing data do not fully utilize
the structure of block-wise missing data to impute missing
values and select relevant covariates. In contrast, the proposed
MBI estimates missing variables within a group based on other
group information, including complete and incomplete subject
groups as well, where the complete subject group contains more
observed variables, while incomplete groups incorporate more



samples. Moreover, when integrating all the block-wise imputa-
tions and missing patterns, the proposed method imposes more
weight on estimating functions from groups with either fewer
missing values or more accurate imputation.

We show that the proposed method outperforms existing
competitive methods in numerical studies, even for informative
missing. Specifically, the proposed method is more powerful
in handling informative missing data since the MBI reduces
selection bias through aggregating more samples across differ-
ent missing pattern groups than a single regression imputation
based on complete cases. In addition, we establish the asymp-
totic normality, estimation and variable selection consistency
for the proposed estimator. We also show that the proposed
estimator is asymptotically more efficient than the estimator
with a single imputation based on the complete case group.

Although the MBI creates multiple predictions for each
missing value to account for uncertainty of imputation, the
proposed method is quite different from multiple imputation
(Rubin 2004) which draws multiple imputed values from
a distribution, and uses each completed dataset separately.
It is possible that the proposed method can be combined
with MI through drawing more imputed values from the
conditional distribution of missing variables, instead of relying
on conditional expectation. In general, the idea of the MBI is
flexible and can also be utilized with other predictive models
besides the GLM, for example, machine learning techniques
such as the classification and regression tree-based approach
(Loh et al. 2016). Moreover, we can allow the inverse probability
weighting in the MBI to adjust for unequal sampling in the
future.

Supplementary Materials

The supplementary materials contain a table of notations, a table of
biomarkers selected by all the methods, additional simulation results, and
proofs of Theorems 1-2 and Proposition 1.
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