
The Annals of Statistics
2021, Vol. 49, No. 4, 2378–2428
https://doi.org/10.1214/20-AOS2042
© Institute of Mathematical Statistics, 2021

COMMUNITY DETECTION WITH DEPENDENT CONNECTIVITY
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In network analysis, within-community members are more likely to
be connected than between-community members, which is reflected in that
the edges within a community are intercorrelated. However, existing proba-
bilistic models for community detection such as the stochastic block model
(SBM) are not designed to capture the dependence among edges. In this pa-
per, we propose a new community detection approach to incorporate intra-
community dependence of connectivities through the Bahadur representation.
The proposed method does not require specifying the likelihood function,
which could be intractable for correlated binary connectivities. In addition,
the proposed method allows for heterogeneity among edges between different
communities. In theory, we show that incorporating correlation information
can achieve a faster convergence rate compared to the independent SBM, and
the proposed algorithm has a lower estimation bias and accelerated conver-
gence compared to the variational EM. Our simulation studies show that the
proposed algorithm outperforms the existing multinetwork community de-
tection methods assuming conditional independence among edges. We also
demonstrate the application of the proposed method to agricultural product
trading networks from different countries and to brain fMRI imaging net-
works.
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1. Introduction. Network data has arisen as one of the most common forms of infor-
mation collection. This is due to the fact that the scope of study not only focuses on subjects
alone, but also on the relationships among subjects. Networks consist of two components:
(1) nodes or vertices corresponding to basic units of a system, and (2) edges representing con-
nections between nodes. These two main components can have various interpretations under
different contexts of application. For example, nodes might be humans in social networks;
molecules, genes or neurons in biology networks, or web pages in information networks.
Edges could be friendships, alliances, URLs or citations. The combination of the nodes and
the edges defines a network, which can be represented by an adjacency matrix to reflect direct
connectivities among nodes.

Many applications involve multiple networks interconnected by underlying similarities
[40, 75], while each individual network exhibits heterogeneous features through edge weight
or edge density. In this paper, our goal is to detect the shared community structure of nodes
among multiple networks where the connection patterns within communities are different
from connection patterns between communities. One particular application suitable for this
type of network structure is from neuroimaging, where each subjects’ nodes correspond to re-
gions of interest in the brain, and connectivities between nodes reflect the concordance among
the neuron activities in different regions [69, 70]. In general, the connectivities are dense
as the activities among neurons are highly correlated [44, 47]. More importantly, although
the connectivity intensity varies for different subjects, the network community structures of
anatomical regions are rather stable and consistent across all subjects, and are associated with
functionally-specialized regions or general cognitive functions [2, 9, 44, 47, 52].

The multiple networks data structure is also standard in the literature regarding interna-
tional trading data, which typically consists of a large number of single trading networks
among countries, with each of them corresponding to a specific product [21, 71]. In gen-
eral, the trading relations across different products are governed by the geographical and
socio-economical similarities among countries, hence leading to a shared community struc-
ture among different product trading networks [8, 71]. In addition, there are other multiple
networks sharing common community network structure such as biological networks and
transportation networks [21, 40].

Major multinetwork community detection methods can be summarized in two categories.
One approach is the spectral method whereby multiple networks are jointly projected into
a single space with a distinct representation for each network, and the shared community
structure is encoded in the latent factors which span the space [10, 23, 46, 47, 68, 74]. The
second approach is the maximum likelihood method based on a random graph model [28, 44].
This includes the popular stochastic block model (SBM) [33] and its extensions to incorporate
the heterogeneity of nodes’ degrees [37, 83], and latent distance modeling [30, 31] to address
overlapping communities [1, 7].

A common key assumption for most existing methods is that connectivities are conditional
independent given the membership of nodes. This assumption simplifies the complexity of
the model, and the likelihood function can be explicitly formulated. However, the network
data are likely dependent among connectivities, which are also considered in several random
network modelings [17, 32, 39, 43]. For community detection, the conditional independency
assumption typically does not hold in practice and, therefore, could lead to a misspecified
model [4, 61, 73]. For example, friendships within a social community or functional connec-
tivities in brain networks tend to be highly correlated.
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In addition, under conditional independence, the community structure can only be identi-
fied based on the marginal mean discrepancy of connectivities between within-communities
and across-communities. Specifically, as a fundamental assumption of the independent SBM,
the marginal mean discrepancy is required to be greater than a sharp threshold to guaran-
tee community detectability [51, 53]. However, the marginal mean discrepancy assumption
might not hold, while the correlations among edges could be nonnegligible and highly in-
formative in identifying community structures. We show that the proposed method is able to
incorporate the correlation information to achieve consistent community detection when the
marginal mean discrepancy is insignificant.

More recently, the SBM has been extended to address the within-community dependency
for multiple network samples. For example, [59, 67] apply a fixed-effect model through an in-
dependent intercept without incorporating information from other networks. Alternatively, a
random-effects model is proposed to incorporate heterogeneity [60, 82], which borrows infor-
mation from multiple networks. However, both of these approaches require the specification
of a distribution for the random effects, and might be applicable in settings with exchange-
able correlation structure among edges. In addition, an EM-type algorithm is implemented to
integrate out the random-effects, [60, 82], which could be computationally expensive when
the size of the community or the network size is large.

In this paper, we propose a novel community detection method to jointly model community
structures among multiple networks. The proposed method can simultaneously incorporate
the marginal and correlation information to differentiate within-community and between-
community connectivities. The key idea is to approximate the joint distribution of correlated
within-community connectivities by using a truncated Bahadur representation [5]. Although
the approximate likelihood function is not the true likelihood, it is able to maximize the true
community memberships and serves as a tighter lower bound to the true likelihood compared
with the independent SBM likelihood. Consequently, we identify communities via maximiz-
ing the approximate likelihood function, which also serves as a discriminative function for
membership assignments of nodes. In particular, within-community correlations provide an
additional community-concordance measurement to capture high-order discrepancy between
within-community and across-community networks and, therefore, increase discriminative
power to identify communities.

The main advantages and contributions of the proposed method can be summarized as
follows. The proposed method incorporates correlation information among connectivities to
achieve more accurate community detection than the independent likelihood method using
marginal information only. The improvement of the proposed community detection method
is especially powerful when the marginal information is relatively weak in practice. In addi-
tion, compared to the existing random-effects model, the proposed method is more flexible
in modeling the heterogeneity of communities for multiple networks and heterogeneity of
correlations among edges. Furthermore, it does not require a distribution specification among
within-community connectivities.

In addition, we establish the consistency of the community estimation for the proposed ap-
proximate likelihood under a general within-community edge correlation structure and show
that the proposed method achieves a faster convergence rate of membership estimation com-
pared to the independent likelihood under both dense and sparse network regimes. In terms
of computational convergence, the proposed algorithm achieves a lower estimation bias and
a faster convergence rate compared to the variational EM algorithm at each iteration via in-
corporating additional correlation information. The theoretical development in this paper is
nontrivial, since establishing membership estimation consistency is more challenging under
the framework of conditional dependency among edges compared to the existing ones assum-
ing the conditional independent model.
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Computationally, we develop a two-step iterative algorithm which is not sensitive to initial
values as in the standard variational EM algorithm. In addition, compared to the existing
fixed-effects SBM with independent intercepts or the random-effects SBM, the proposed
method has lower computational complexity, as it does not involve integration of random
effects as in [60], or estimating the fixed effects for each network as in [59]. Simulation
studies and a real data application also confirm that the proposed method outperforms the
existing variational EM and multinetwork community detection algorithms, especially when
the marginal information of observed networks is weak.

This paper is organized as follows: Section 2 introduces the background of the proposed
method. Section 3 introduces the proposed method to incorporate correlation information
for community detection. Section 4 provides an algorithm and implementation strategies.
Section 5 illustrates the theoretical properties of the proposed method. Section 6 demonstrates
simulation studies, and Section 7 illustrates an application to world agricultural products
trading data and brain fMRI imaging data. The last section provides conclusions and some
further discussion.

2. Background and notation. In this section, we provide background and notation of
the proposed community detection. The stochastic block model (SBM) [33] is a form of
hierarchical modeling, which captures the community structure for networks. Consider M

symmetric and unweighted sample networks Y = {Ym}Mm=1 = {(Ym
ij )N×N }Mm=1 with N nodes

for K communities. Let {zi}Ni=1 be the membership for each node and zi ∈ {1,2, . . . ,K},
and denote the membership assignment matrix Z = {(Ziq)n×K} ∈ {0,1}N×K , where Ziq =
1{zi = q}. Here, Z has exactly one 1 in each row and at least one 1 in each column for
nonnull communities. The unknown membership zi ∈ {1,2, . . . ,K} can be modeled as a
latent variable from a multinomial distribution:

zi ∼ Multinominal(1, αi),

where i = 1, . . . ,N , αi = {αi1, . . . , αiK} and
∑K

k=1 αik = 1. Given the membership of nodes,
the homogeneous stochastic blocks model formulates the observed edges between two nodes
{(Ym

ij )n×n}Mm=1 as M samples of binary random variables (Yij )n×n following a Bernoulli dis-
tribution:

P(Yij |zi = q, zj = l) ∼ Bern(μql) for i, j ∈ {1, . . . ,N}, q, l = 1, . . . ,K,(2.1)

where μql is the probability of nodes i and j being connected, and we denote fql(Y
m
ij ) :=

P(Ym
ij |zi = q, zj = l).

For the heterogeneous stochastic blocks model, the marginal mean μql for each block can
be modeled as a logistic model to incorporate heterogeneity among edges:

μql(xij ) = exp(βqlxij )/
{
1 + exp(βqlxij )

}
,(2.2)

where (xij )N×N are edgewise covariates, where node i and node j belong to qth community
and lth community, respectively. In practice, the edgewise covariates {xij }1≤i<j≤N could be
similarity measurements between two nodes. The edges within the same community preserve
homogeneity by sharing a blockwise parameter βql . The joint likelihood function can be
decomposed into a summation of edgewise terms following the conditional independence
assumption:

logP(Y ;Z) =
M∑

m=1

K∑
q=1

N∑
i=1

Ziq logαq +
M∑

m=1

K∑
q,l=1

N∑
i<j

ZiqZjlfql

(
Ym

ij ;�)
.(2.3)
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The latent membership Z is estimated by E(Z|Y ) using the maximum likelihood estima-
tor of model parameters � = {μql;q, l = 1, . . . ,K;αq;q = 1, . . . ,K} for (2.1) and � =
{βql;q, l = 1, . . . ,K;αq;q = 1, . . . ,K} for (2.2). However, the classical EM algorithm is
not applicable here, because the conditional distribution P(Z|Y ) = P(Y ;Z)∑

Z P (Y ;Z)
becomes in-

tractable in the expectation step.
The variational EM algorithm [35, 50] is one of the most popular inference methods,

and can be applied to approximate the likelihood P(Z|Y ) by a complete factorized dis-
tribution R(Z, τ) = ∏N

i=1 h(Zi; τi), where h(·) denotes a multinomial distribution, τ =
(τ1, . . . , τN) and τi = (τi1, . . . , τiK) is a probability vector such that

∑K
q=1 τiq = 1. In the

expectation step, the likelihood logP(Y ;Z) is averaged over R(Z) such that for any τ ,
ER(Z,τ){logP(Y ;Z)} ≤ EP(Z|Y ){logP(Y ;Z)} where

ER(Z,τ)

{
logP(Y ;Z)

} = −
M∑

m=1

K∑
q=1

N∑
i=1

τiq log τiq +
M∑

m=1

K∑
q=1

N∑
i=1

τiq logαq

+
M∑

m=1

K∑
q,l=1

N∑
i<j

τiqτjlfql

(
Ym

ij

)
.

Instead of directly maximizing EP(Z|Y ){logP(Y ;Z)}, the variational EM approach alterna-
tively maximizes its lower bound ER(Z,τ){logP(Y ;Z)} over model parameters � and varia-
tional parameters τ , and clusters nodes by τ through ẑi = argmaxk{τ̂ik, k = 1, . . . ,K}.

Throughout this paper, we consider the conditional version of SBM (CSBM) [11, 18, 64],
where the true membership Z∗ is fixed. The conditional stochastic block model framework
assumes conditional independence among edges, that is, Ym

i1j1
and Ym

i2j2
are independent given

nodes’ membership zi1 , zi2 , zj1 , zj2 , and the corresponding log-likelihood of observed sample
networks is

logLind(Y |Z) =
M∑

m=1

K∑
q,l=1

N∑
i<j

ZiqZjl

{
ym
ij logμql + (

1 − ym
ij

)
log(1 − μql)

}
.(2.4)

The above log-likelihood can serve as a discriminant function in clustering membership Z

in that if logLind(Y |Z1) > logLind(Y |Z2) given two membership assignments Z1 and Z2,
then Z1 is preferred over Z2, since the likelihood for the observed sample networks is higher.
Naturally, Z∗ can be estimated by

Ẑ = argmax
Z

logLind(Y |Z).

The SBM in (2.4) allows one to differentiate within-community and between-community
nodes via utilizing only the marginal information, in that the average connectivity rates
within-communities are higher than those between-communities. However, the underlying
conditional independence assumption among edges is too restrictive and practically infea-
sible. In most community detection problems, it is common that edges within communities
are more correlated. For example, social connections among friends are highly correlated in
social networks. However, the dependency among edges is not captured by the traditional
SBM, which could lead to significant information loss of the community structure.

3. Methodology.

3.1. Community detection with dependent connectivity. In this paper, we incorporate
within-community correlation to improve accuracy and efficiency in identifying communi-
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ties, in addition to utilizing the edges’ marginal mean information, since within-community
dependency contains additional information regarding the membership of nodes. This is es-
pecially effective when the marginal mean is not informative in differentiating between and
within communities’ connectivity.

In this section, we propose an approximate likelihood function to capture the depen-
dency among within-community edges. We assume that each observed sample network
Ym

n×n follows a joint binary distribution P(Ym) such that the within-community edges are
pairwisely correlated. Specifically, for the underlying distribution, the correlation among
edges Yi1j1 , Yi2j2 within a community satisfies: corr(Yi1j1, Yi2j2) = ρi1i2,j1j2 ∈ [−1,1] given
nodes zi1 , zi2 , zj1 and zj2 are in the same community q , where 1 ≤ i1 < j1 ≤ N , 1 ≤ i2 <

j2 ≤ N , (i1, j1) �= (i2, j2) and q = 1, . . . ,K . Note that correlations among each pair of
edges could be different. Equivalently, the edges in community k show concordance only
when

N∑
i1<j1;i2<j2

Zi1kZj1kZi2kZj2kρi1j1,i2j2 ŷ
m
i1j1

ŷm
i2j2

≥ 0,

where ŷm
i1j1

and ŷm
i2j2

are normalized binary variables using the marginal mean. Note that
both positive and negative correlations among edges have been considered for community
detection. For example, [59, 60] utilize random effects to model the heterogeneity of the
connectivity rate for an individual network, and infer a positive correlation among the edges
within the same community. In addition, positive pairwise correlation among edges is more
likely to produce star or triadic relations, which are widely observed in social networks [62,
63]. On the other hand, a negative correlation among edges could arise from competition
between stores within local retail networks.

In addition to the SBM, exponential random graph models (ERGMs) are another well-
known class of random graph models to incorporate edge dependency. In contrast to the
SBM which is a hierarchical network modeling for community structure, the ERGMs focuses
on specific types of subgraphs in the network. More importantly, nodes are equivalent or
exchangeble under the ERGMs, and realizations of subgraphs are assumed to be independent
and serve as individual samples for the model, hence the model parameters could be estimated
with a single network. However, nodes in the SBM are not equivalent as they belongs to
different communities. In addition, the ERGMs and its variants such as the Markov graph
[24] are designed to model a specific configuration of dependent structure such as a triad
or a star, and control the probability of realizations of these subgroups in sample networks.
However, the main purpose of the proposed method is to take the overall correlation intensity
within communities into account, without requiring to specify the dependent structure as long
as the number of correlated edges is sufficient large.

3.2. Approximate likelihood. In this section, we propose an informative approximation
of the true log-likelihood to cluster Z via incorporating interactions among edges within a
community in addition to marginal mean information. This is because the exact joint likeli-
hood function of correlated binary distribution P(Ym) is computationally intractable. Specif-
ically, we construct an approximate likeihood as a substitute of the true likelihood by facilitat-
ing the Bahadur representation [5]. That is, we retain the low-order dependency information
among edges within-communities and discard the high-order dependency for computational
efficiency. Although the approximate likelihood is not a true likelihood, it still serves the
purpose of estimating the membership of nodes.
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Consider T dependent binary random variables, then the joint likelihood can be repre-
sented through the Bahadur representation:

(3.1)

P(Y1 = y1, . . . , YT = yT )

=
T∏

j=1

μ
yj

j (1 − μj)
1−yj

[
1 + ∑

1≤j1<j2≤T

ρj1j2 ŷj1 ŷj2

+ ∑
1≤j1<j2<j3≤T

ρj1j2j3 ŷj1 ŷj2 ŷj3 + · · · + ρ12···T ŷ1ŷ2 · ·ŷT

]
,

where

μj = E(Yj ), ŷj = yj − E(yj )√
E(yj )(1 − E(yj ))

,(3.2)

and

ρj1j2 = E(ŷj1 ŷj2), ρj1j2j3 = E(ŷj1 ŷj2 ŷj3), . . . , ρ12···T = E(ŷ1ŷ2 · ·ŷT ).

The Bahadur representation (3.1) is an exact decomposition of the joint distribution of de-
pendent binary random variables using a function of moments with a sequential order. For
the community detection problem, the binary random variables represent within-community
edges, and the corresponding joint distribution can be explicitly decomposed into a marginal
part and a correlation part. The marginal part consists of all the marginal mean μij for each
edge, which can be directly modeled through the dependency of the mean on covariates as in
(2.2). The correlation part consists of interactions among all possible pairwise-associations
of normalized edges, which add correlation information beyond a conditional independence
likelihood model. Note that the conditional independence model is a special case of the pro-
posed model when the correlation is zero, and the corresponding Bahadur representation
collapses to a marginal part only, which is equivalent to the logLind(Y |Z) in (2.4).

There are two major challenges in applying the Bahadur representation to model the inter-
actions among within-community edges. First, the dimension of correlation parameters could
be high if all the high-order interactions in (3.1) are incorporated, and this could lead to an
increasing computational demand as the size of community grows. To solve this problem, we
retain all the second-order interactions, but ignore interactions for higher orders beyond the
second order, since the pairwise interactions among edges could be most important.

The second challenge is the range of the correlation coefficient could be constrained by
the marginal means [22]. Consequently, the correlation parameter space is more restrictive if
the variability of marginal means among edges is large. Nevertheless, our primary goal is to
construct an objective function which can incorporate information from the marginal mean
and correlations of edges within-community, and the objective function is not necessarily
the true likelihood function. In the proposed method, we instead construct an approximate
likelihood which is more flexible for incorporating highly dependent communities while still
achieving computational efficiency.

Specifically, we construct an approximate likelihood L̃(Y |Z) incorporating correlated
within-community edges as follows:

(3.3)

log L̃(Y |Z) =
M∑

m=1

K∑
q,l=1

N∑
i<j

ZiqZjl

{
ym
ij logμql + (

1 − ym
ij

)
log(1 − μql)

}

+
M∑

m=1

log

{
1 +

K∑
k=1

max

{
N∑

i<j ;u<v
(i,j) �=(u,v)

ZikZjkZukZvkρij,uvŷ
m
ij ŷm

uv,0

}}
,
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where μql can be formulated in (2.1) or (2.2), ŷm
ij is formulated in (3.2), and ρij,uv is the

pairwise correlation between Yij and Yuv . Notice that the first term in (3.3) is the same as the
marginal mean model, and the second term in (3.3) measures the concordance among edges
within communities clustering Z.

We denote the second term of (3.3) as

(3.4) logLcor(Y |Z) =
M∑

m=1

log

{
1 +

K∑
k=1

max

{
N∑

i<j ;u<v
(i,j) �=(u,v)

ZikZjkZukZvkρij,uvŷ
m
ij ŷm

uv,0

}}
.

Compared with logLind(Y |Z) in (2.4), the proposed log L̃(Y |Z) has more discriminative
power over Z, since it utilizes more information of the observed dependency within commu-
nities corresponding to clustering Z. In addition, the nonnegativity of logLcor(Y |Z) ensure
the fact that log L̃(Y |Z) ≥ logLind(Y |Z) is guaranteed, which implies that adding additional
correlation information among edges can be more informative given within-community cor-
relation exists. This leads to higher classification accuracy and estimation efficiency through
maximizing (3.4).

The key part of the proposed method is to predict memberships of nodes through the Bayes
factor constructed by the proposed log L̃(Y |Z). Suppose the memberships of other nodes Z−i

are known, then we classify node i based on the following Bayes factor:

L̃(Y |Z−i ,Ziq = 1)

L̃(Y |Z−i ,Zik = 1)
= exp

{
log L̃(Y |Z−i ,Ziq = 1) − log L̃(Y |Z−i ,Zik = 1)

}
.

If the above Bayes factor > 1, then the probability of node i in community q is larger than
that of community k. The Bayes factor can be further decomposed as

L̃(Y |Z−i ,Ziq = 1)

L̃(Y |Z−i ,Zik = 1)
= Lind(Y |Z−i ,Ziq = 1)

Lind(Y |Z−i ,Zik = 1)

Lcor(Y |Z−i ,Ziq = 1)

Lcor(Y |Z−i ,Zik = 1)
,(3.5)

which contains both the marginal ratio and the correlation ratio. It is clear that when the
marginal information is weak in differentiating two communities, the marginal ratio is close
to 1, and if the correlation ratio is informative, it can enhance the Bayes factor to improve
community detection. In addition, the correlation ratio also serves as a correction to lower the
estimation bias.

We illustrate the advantage of the proposed method in (3.4) over the conditional indepen-
dent likelihood (2.4) using a simple numerical illustration. Specifically, we generate multi-
ple networks based on the SBM with 30 nodes evenly split between two communities. The
marginal means of within-community and between-community edges are the same at 0.5,
implying that the marginal mean is not informative. We assume a true exchangeable corre-
lation ρ = 0.6 for within-community edges. Figure 1 illustrates that the likelihood function
changes as memberships of nodes change with some misclassified nodes. The left graph is
based on the conditional independent SBM utilizing only marginal information, which does
not differentiate the two communities at all due to weak marginal information. However, the
proposed approximate likelihood in the right graph has high differentiation power for the
nodes’ memberships, and reaches maximum when the true memberships are selected.

REMARK 1. The proposed method is applicable for continuously weighted edges
through modification on the objective function in (3.3). For example, if the edge weights yij

are real values, we can model it as a normal distribution. Based on the weighted stochastic
block model, the edgewise marginal likelihood in the first term of (3.3) is modified as

M∑
m=1

K∑
q,l=1

N∑
i<j

{
−ZiqZjl

(ym
ij − μql)

2

σ 2
ql

}
,
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FIG. 1. Likelihoods of multiple networks when the memberships of nodes differ from their true memberships.
The networks share 30 nodes from two underlying communities. Left: Traditional SBM likelihood is insensitive to
misclassified nodes. Right: The proposed approximate likelihood incorporating correlation information reaches
maximum when no node is misclassified.

where μql and σql are the blockwise mean and variance. In addition, we incorporate the
within-community dependency information in the second term as

M∑
m=1

K∑
k=1

max

{
N∑

i<j ;u<v
(i,j) �=(u,v)

ZikZjkZukZvkρij,uvŷ
m
ij ŷm

uv,0

}
,

where ŷm
ij = ym

ij −μkk

σkk
. Following the principle in (3.3), the proposed objective function can be

adapted for other types of edge weights through adjusting the marginal likelihood and edge
dependency accordingly.

REMARK 2. We can further reduce the number of parameters in (3.3) via a homogeneous
correlation structure in that for any Yi1j1 and Yi2j2 in the qth community,

ρq := 1

#|{ρi1j1,i2j2 �= 0}|
∑

{ρi1j1,i2j2 ) �=0}
|ρi1j1,i2j2 |,

where #|A| denotes the cardinality of a set A. We can replace the correlation ρi1j1,i2j2 by
sign(ρi1j1,i2j2)ρq . The rationales of this simplification is based on the following. First, the
pairwise correlation parameter ρi1j1,i2j2 is a nuisance correlation parameter to enhance clus-
tering. Second, both the numerical experiments and theoretical findings show that the density
of pairwise correlation among within-community edges plays a more important role than the
intensity of the correlation in affecting clustering performance.

4. Algorithm and implementation. In this section, we propose a two-step algorithm to
maximize the proposed approximate likelihood function. In addition, we provide implemen-
tation strategies to improve the stability and efficiency of the algorithm.

4.1. Algorithm. To estimate the true membership Z∗ of nodes, we can ideally search
through all the possible Z and choose the one with the largest log L̃(Y |Z). However, this be-
comes infeasible when the number of nodes N and the number of communities K increases.
In the following, we propose an iterative two-step algorithm to maximize log L̃(Y |Z) in (3.3)
based on the homogeneous stochastic block model (2.1).

Here, we directly maximize the approximate likelihood instead of a true likelihood as
in the EM algorithm. In the expectation step, we alternatively update membership of each
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Algorithm 1 Homogeneous stochastic block model

Step 1: (i) Input an initial membership probability for each node: α
(0)
iq , 1 ≤ i ≤ N ,

1 ≤ q ≤ K through spectral clustering on individual sample networks.
(ii) Estimate pairwise correlations {ρ̂ij,uv} through the empirical estimator by

({Ym
ij , Ym

uv}Mm=1.

Step 2: At the sth iteration, given {μ(s−1)
ql }Kq,l=1 and {α(s−1)

i }Ni=1 from the (s − 1)th
iteration:

(i) Maximization: blockwise update μ
(s)
ql , q, l ∈ {1, . . . ,K};

(a) Obtain μ
(s)
ql through

∑M
m=1

∑
i �=j α

(s−1)
iq α

(s−1)
j l Ym

ij∑M
m=1

∑
i �=j α

(s−1)
iq α

(s−1)
j l

.

(ii) Expectation: given {μ(s)
ql }Kq,l=1 and ρij,uv , update {α(s)

i }Ni=1:

α
(s)
iq = α

(s−1)
iq L̃(Y |α(s−1)

−i ,Ziq = 1)∑K
k=1 α

(s−1)
ik L̃(Y |α(s−1)

−i ,Zik = 1)
, i = 1, . . . ,N, q = 1, . . . ,K.

Step 3: Iterate until max1≤i≤N |α(s)
i − α

(s−1)
i | < ε.

Step 4: Obtain the membership zi of clusters by {α(s)
i }Ni=1:

zi = max
k

{
α

(s)
i1 , . . . , α

(s)
iK

}
, i = 1, . . . ,N.

node while fixing other nodes, where L̃(Y |α−i;Zik) has the same formulation as L̃(Y |Z)

in (3.3) with {Ziq}N×K replaced by its expectation {αiq}N×K , except Zik . Note that αiq

is not the expectation under the true underlying joint distribution P(Y,Z) = P(Y |Z)P (Z).
Instead, it corresponds to the distribution defined by the approximate likelihood in (3.4). In
the expectation step, the memberships are updated through the Bayes factor in (3.5) with the
proposed L̃(Y |Z). Note that the variational EM is a special case of the proposed algorithm
if the correlation information is ignored and the conditional independent model in (2.4) is
assumed. The heterogeneous stochastic block model algorithm differs Algorithm 1 only at
the maximization step where we estimate the communitywise parameters βql through the
generalized estimating equation.

4.2. Computation and implementation. To ensure computational stability, the commu-
nitywise parameters βql could be estimated through a simplified generalized estimation
equation assuming an independent working correlation in Algorithm 1. This is because the
primary interest of community detection is classification accuracy, and the empirical stud-
ies show that correlation information plays a relatively minor role in parameter estima-
tion.

We can achieve a better approximation to the true likelihood if higher-order moments
are incorporated in the Bahadur representation in (3.2), which also increases its discrim-
ination power. However, higher-order correlation could also increase the computational
cost. Alternatively, we can recover partial higher-order interactions (e.g., the fourth or-
der) derived from low order interactions (e.g., the second order). For example, consider
the nonnegative exchangeable correlation structure for within-community edges such that
ρk := ρi1j1,i2j2 > 0 for i1, j1, i2, j2 ∈ kth community, and four normalized edges Ŷ m

i1j1
, Ŷ m

i2j2
,

Ŷ m
i3j3

, Ŷ m
i4j4

within the community k with a positive fourth-order correlation among them, we
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have

E
(
Ŷ m

i1j1
Ŷ m

i2j2
Ŷ m

i3j3
Ŷ m

i4j4

) ≥ E
(
Ŷ m

i1j1
Ŷ m

i2j2

)
E

(
Ŷ m

i3j3
Ŷ m

i4j4

) = ρ2
k .(4.1)

Denote (Z1kZ2kŶ
m
12,Z1kZ3kŶ

m
13, . . . ,Z(N−1)kZNkŶ

m
(N−1)N ) as (γ m

1 , γ m
2 , . . . , γ m

N0
), where

N0 = N2−N
2 . Then the second-order interaction term for the community k in Lcor(Y |Z)

is

ρk

N∑
i<j,u<v

(i,j) �=(u,v)

ZikZjkZukZvkŷ
m
ij ŷm

uv = 2ρk

N0∑
s<t

γ m
s γ m

t .

Based on (4.1) and given Z, we can approximate the fourth-order interaction for community
k under the exchangeable correlation structure by its lower bound:

(4.2)
N0∑

s1<t1,s2<t2
(s1,t1) �=(s2,t2)

E(γ m
s1

γ m
t1

γ m
s2

γ m
t2

)

2
γ m
s1

γ m
t1

γ m
s2

γ m
t2

≥
(
ρk

N0∑
s<t

γ m
s γ m

t

)2

− ρ2
k

N0∑
s<t

(
γ m
s γ m

t

)2
.

Note that the above lower bound of the fourth-order interaction can be calculated by the
second-order interaction term in Lcor(Y |Z). Therefore, we can still incorporate higher-order
terms in log L̃(Y |Z) without additional computational cost. For other types of nonexchange-
able correlation structures, we can incorporate partial higher-order correlation similarly as
above. The main difference is that each pair of edges is associated with a specific correlation
given a dependency structure. Therefore, the simplified lower bound for higher-order correla-
tions such as (4.2) does not hold in general, and could have a more complex form depending
on the specific correlation structure.

In the following, we also provide some guidelines for determining the number of commu-
nities K and initial membership of nodes. For a single network, the criterion-based methods
choose K to maximize a certain probabilistic criterion such as the integrated likelihood [19,
26, 42], composite likelihood BIC [66] or modularity criterion [12]. In addition, spectral
methods estimate K through the spectral property of the transformed adjacent matrix, such
as a Laplacian matrix [56], nonbacktracking matrix [13] or Bethe Hessian matrix [65]. In the
hierarchical Bayesian framework, the number of communities is treated as a model parameter
given a certain prior distribution and is jointly estimated with nodes’ memberships using the
MCMC [26, 54, 57]. For multiple networks, we can extend the above techniques to estimate
a consensus number of communities combining observed realizations of the SBM from each
individual network.

In the context of the proposed within-community dependent modeling, we can first per-
form the modularity-maximizing method or spectral clustering on each individual network
to obtain K , then take the average of these individual estimated K , which can be treated as
a consensus number of communities. The above procedure is sensible under two considera-
tions. First, each sample network is a realization of the SBM so that the individual estimation
of K is randomly distributed around the true underlying K . Thus the average of individual
estimations provides an estimation of K with low-bias and low-variance. Second, the spectral
clustering or modularity methods are more favorable than other methods, due to their rela-
tively low computational cost in estimating K . This is especially effective when the sample
size of networks is large.

As an EM-type algorithm, the proposed optimization procedure can only guarantee the
local maximum and requires multiple initializations to find the global maximum. In this pa-
per, we adopt spectral clustering on sample networks to obtain multiple initials, which is a
common strategy for multiple network community detection [44, 59, 60]. Spectral clustering
is a model-free clustering algorithm and is able to provide a warm start for nodes’ member-
ships.
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5. Theoretical results. In this section, we establish the consistency of the estimated
nodes’ membership based on the independent likelihood and the approximate likelihood ap-
proaches. In addition, we provide the computational convergence theorem for the proposed
iterative algorithm in Section 4. Compared to the independent likelihood approach, we show
that the approximate likelihood approach leads to a computationally faster convergence rate
regarding nodes’ membership estimation.

5.1. Consistency of nodes’ membership estimation. In this subsection, we study the con-
sistency of the maximization likelihood estimator for both the independent likelihood and the
approximate likelihood at the population level. With the independence assumption among
within-community edges, the consistency and convergence rate of the MLE estimator can be
obtained by [15, 81]. However, the convergence property of the MLE remains unknown if
there exists a local dependence among edges.

One significant distinction using the independence assumption if the edges are correlated
is that the increasing number of nodes and number of edges do not necessarily guarantee
a lower misclassification rate and computationally faster convergence. This is because the
discrepancy between marginal means from within-community and between-community is
not accumulated due to the pairwise correlation, though it can be accumulated through in-
creasing the number of sample networks. However, we show that the proposed approximated
approach is able to benefit from the increasing number of nodes and, therefore, achieves a
faster computational convergence compared to the independent likelihood approach.

In the following theorems, we consider the homogeneous stochastic block model that
edges within the same block have the same marginal mean such that μzizj

:= E(Ym
ij |i ∈

q, j ∈ l) = ηNcij , where ηN ∈ (0,1] is a sparsity parameter controlling the average node de-
gree. We denote that the true marginal means as � = {μql,1 ≤ q < l ≤ K}, and assume the
following two regularity conditions regarding identifiability:

(C1). Suppose for every q �= q ′, 1 ≤ q , q ′ ≤ K , there exists at least one l ∈ {1, . . . ,K} such
that μql �= μq ′l . In addition, all the cql are bounded such that cql ∈ [ζ,1 − ζ ], q, l = 1, . . . ,K

with ζ > 0.

REMARK 3. Theorem 5.1 and Theorem 5.2 can be extended to heterogeneous stochastic
block model (2.2) where the edgewise marginal means within a community could be different
due to varying covariates of the corresponding edges. Accordingly, we can replace Condition
(C1) by a similar community identifiability condition (C1.b):

(C1.b). Let Cq (q = 1, . . . ,K) denote a node set for the qth community. For two different
communities Cq , Cq ′ , q �= q ′, there exists at least one community Cl such that

sup
i1∈Cq,j1∈Cl

E(Yi1j1) ≤ inf
i2∈Cq′ ,j2∈Cl

E(Yi2j2) or sup
i2∈Cq′ ,j2∈Cl

E(Yi2j2) ≤ inf
i1∈Cq,j1∈Cl

E(Yi1j1).

Or equivalently, nodes from two different communities are differentiable in that their proba-
bilities of connecting nodes from other communities are unique.

(C2). Community sizes from all sample networks are bounded above and below by κ1N ≤
|{i ∈ {1,2, . . . ,N} : Z∗

iq = 1}| ≤ κ2N , q = 1, . . . ,K , where κ1 and κ2 are constants such that
0 < κ1 < κ2 < 1.

In the following, we establish the consistency of membership estimation for both the in-
dependent likelihood approach and the proposed approximate likelihood approach. For the
within-community edges, we define the edgewise second-order pairwise correlation density
as

(5.1)
λ = λm

ij := #|{(u, v) : | corr(Ym
ij , Ym

uv)| > 0,Z∗
u = Z∗

v = k}|
Nk(Nk − 1)/2 − 1

for edge Ym
ij in community k,
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where k = 1,2, . . . ,K and Nk(Nk − 1)/2 − 1 is the number of edges within community k

for the sample network Ym. For simplicity, we assume the homogeneous second-order cor-
relation density such that λm

ij = λ for all the within-community edges. Here, λ ∈ [0,1] severs
as a counterpart of sparsity parameter ηN commensurate with edge correlation density, and
determines the intensity of local dependency within a community. Specifically, λ = 0 indi-
cates that within-community edges are all independent, while λ = 1 indicates that all edges
within a community are pairwisely correlated. In addition, correlation density λ is allowed to
depend on the number of nodes, and increases such that it can model a more general class of
correlation structure. For example, in a hub structure, an edge is only correlated with those
sharing the same hub nodes and the density λ = Nk−1

N2
k −1

= ON( 1
Nk

).

To establish asymptotic consistency for the proposed likelihood, we assume the sparsity
of high-order correlation among within-community edges.

(C3). The number of third and fourth-order correlations defined in (3.1) among within-
community edges do not exceed the order of the size of second-order correlations.
Specifically, for edge Ym

ij in community k, #|{(u1, v1), (u2, v2) : E(Ŷij Ŷu1v1 Ŷu2v2) �= 0}| ≤
ON(λ(N2

k )). In addition, #|{(u1, v1), (u2, v2), (u3, v3) : E(Ŷij Ŷu1v1 Ŷu2v2 Ŷu3v3) �= 0}| ≤
ON(λ(N2

k )), k = 1,2, . . . ,K .
In general, assume that the pairwise correlations among the within-community edges are

sufficient to cover a broad class of Markov dependence modeling under the general expo-
nential random graph model. This includes the most commonly used edge dependence con-
figurations such as a star, a triangular shape subnetwork [55] and the k-triangles shape [58].
Although considering that the additional higher-order edge correlation improves the model’s
complexity, it could increase higher computational cost and instability. Empirically, it is sen-
sible to assume that higher-order correlation only exists when second-order correlation al-
ready exists among edges, for the sake of identifiability and interpretability of the model.
Otherwise, it could lead to the “near degeneracy” [29] when a higher-order dependency masks
a lower-order dependency.

Let PZ∗ := P(·|Z = z∗;�) denote the conditional distribution of edges given the true
membership of nodes z∗ and true parameters.

THEOREM 5.1. Under the regularity conditions (C1)–(C3), we establish the conver-
gence rate of the membership estimator z using the independent likelihood approach. That
is, for every t > 0 and z �= z∗,

PZ∗
{

Lind(Y |Z = z;�)

Lind(Y |Z = z∗;�)
> t

}
=O

(
exp

{
−C1

c∗rηNNM

1 + ρκ2ηNN min(r, κ2λN)

})
,(5.2)

where r = ‖z− z∗‖0 is the number of misclassified nodes up to the permutation labeling, ρ is
the largest pairwise correlation among within-community edges, C1 is a positive constant and
c∗ = min(q,l),(q ′,l′){DKL(cql||cq ′l′) : cql �= cq ′l′ }, where DKL denotes the Kullback–Leibler
divergence distance.

Given the convergence rate based on the independent likelihood ratio, we can characterize
the convergence of its estimated node membership as following.

COROLLARY 5.1. Under the same conditions given in Theorem 5.1, using the indepen-
dent likelihood approach, for every t > 0,

PZ∗
{

sup
{z �=z∗}

Lind(Y |Z = z;�)

Lind(Y |Z = z∗;�)
> t

}
= O

(
N exp

{
− c∗ηNNM

1 + ηNλN2

})
.(5.3)
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For the independent likelihood approach, the convergence rate depends on the number of
sample network M , the marginal sparsity parameter ηN and the density of the pairwise cor-
relation λ among within-community edges. If there is no pairwise correlation among edges,
for example, λ = 0, then the convergence rate in (5.3) increases to ON,M{N exp(−ηNNM)},
which degenerates to the convergence rate established in [15] under the conditional inde-
pendent modeling given constant marginal mean ηN = 1. In addition, the consistency of
nodes’ membership estimation from the independent likelihood can be guaranteed given that
ηN ≥ O{(logN)c/NM}, c > 1 based on Corollary 5.1. This result is also consistent with the
existing condition on membership recovery for a single sparse network (M = 1) where the
increase of node degree is faster than a polylogarithmic rate [11, 18].

However, if the underlying within-community dependency exists, for example, λ > 0, us-
ing an independent model does not guarantee the consistency of membership estimation,
neither under sparse nor dense network regimes. For example, in the case of the exchange-
able correlation structure for within-community edges when λ = 1, the convergence rate in
(5.2) decreases to the order of ON,M{exp(− rM

min(r,κ2N)
)} and, therefore, does not benefit from

the increasing number of nodes. In this case, the consistency relies on accumulating indepen-
dent sample networks. Theorem 5.1 also implies that the independent likelihood approach
is unable to fully accumulate discriminative power from the increasing number of nodes
when there exists dependency among within-community edges. Indeed, the convergence rate
of the independent likelihood approach decreases in terms of network size N as the within-
community correlation density λ increases. However, we show that the proposed approximate
likelihood approach still benefits from increasing nodes size even under the exchangeable
correlation structure among edges.

THEOREM 5.2. Under the regularity conditions (C1)–(C3), we establish the conver-
gence rate of the estimator z using the proposed approximate likelihood approach. That is,
for every t > 0 and z �= z∗,

PZ∗
{

L̃(Y |Z = z;�)

L̃(Y |Z = z∗;�)
> t

}
= O

(
exp

{
−C2

rλNM(c∗ηN + λN2)

1 + ρκ2N min(r, κ2λN)

})
,(5.4)

where 1
λ

< ON(NM), r = ‖z − z∗‖0 is the number of misclassified nodes up to the permuta-
tion labeling, C2 is a positive constant, ρ is the largest within-community correlation and c∗
is defined in Theorem 5.1.

Similarly, we characterize the convergence of the proposed method by the following corol-
lary.

COROLLARY 5.2. Under the same conditions given in Theorem 5.2, the proposed ap-
proximate likelihood approach leads to the following convergence rate, for every t > 0,

PZ∗
{

sup
{z �=z∗}

L̃(Y |Z = z;�)

L̃(Y |Z = z∗;�)
> t

}
= O

(
N exp

{
−(c∗ηN + λN2)M

N

})
.(5.5)

Given λ > 0, for the same number of networks M and node size N , the proposed ap-
proximate likelihood approach is able to achieve a faster convergence rate in (5.5) compared
with (5.3) since the convergence rate in (5.4) has an additional term of λ2N3M on the nu-
merator compared to the convergence rate in (5.2). Specifically, the proposed approach is
most superior under the exchangeable correlation structure (λ = 1), where the convergence
rate of the independent likelihood is at the order of ON,M{exp(−M/N)}, in contrast to the
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proposed convergence rate of ON,M{exp(−NM)}. Therefore, based on Corollary 5.2, the
consistency of membership estimation from the proposed approach can be guaranteed given
correlation density λ ≥ O(logc N/(NM)), c > 1 regardless of whether the multiple networks
are sparse or dense. Intuitively, incorporating the correlation information increases the effec-
tive sample size of within-community edges. Under the sparsity assumption of higher-order
correlation among edges, the proposed approach benefits from accumulating information on
the second-order interactions among edges, while the independent likelihood approach only
accumulates information from the first-order marginal mean of edges. It is noticeable that
the marginal sparsity ηN affects the convergence rate of the membership estimator not only
through marginal information but also through its constraints on the edgewise correlation
with intensity λ. Although the marginal sparsity ηN does not affect the order of conver-
gence rate directly in Corollary 5.2, it imposes an implicit constraint on the possible within-
community dependency intensity λ in that 0 ≤ λ ≤ O(ηN), which affects the convergence
rate of membership estimation. This is because that the number of correlated edges decreases
as the networks become sparse.

5.2. Computational convergence for the proposed algorithm. In this subsection, we pro-
vide the computational convergence property of the proposed Algorithm 1 in Section 4. The
main difference between the proposed method and the variational EM lies in the Bayes factor
of (3.5) in the expectation step from Algorithm 1. If we replace L̃(Y |Z) by the conditional
independent likelihood Lind(Y |Z) in (2.4) in the expectation step, the standard variational
EM becomes a special case of Algorithm 1. Notice that [81] establishes computational con-
vergence with the minimax rate of misclassification only when the within-community edges
are independent. In addition, it assumes that the within-community marginal means are all
the same, which is too restrictive in practice.

In the following, we establish the computational convergence for the proposed approxi-
mate likelihood based on the homogeneous stochastic block model (2.1). Specifically, we are
able to show a faster convergence speed and a lower estimation bias compared to the existing
one based on the independent likelihood in [81]. The following Theorem 5.3 also relaxes
the marginal mean assumption in [81] and allows the within-community marginal means
μqq , q ∈ {1, . . . ,K} to be different to each other, and between-community marginal means
μql , q �= l ∈ {1, . . . ,K} to be different to each other. We denote the estimated memberships

of nodes at the sth iteration as α(s) = (α
(s)
1 , . . . , α

(s)
N ) from Algorithm 1. In addition to the

assumptions (C1)–(C3) in Section 5.1, we require a regularity condition for the following
theorem:

(C4). Suppose the distance between initial membership α(0) and true membership z∗ is
bounded: ‖α(0) − z∗‖1 ≤ cN1−φ , where φ ∈ (0,1) is a constant.

A common issue for most EM-type algorithms including the one proposed is that they only
guarantee convergence to a local optimum. If the likelihood function is unimodal, then the
EM-type algorithm converges to the MLE as the unique global optimum. However, the pro-
posed approximate likelihood is nonconvex and multimodal. Therefore, we assume that the
initials are in the neighborhood of the MLE to ensure the convergence of the EM algorithm
[6, 77]. Condition C4 is a common assumption to guarantee computational convergence for
EM-type algorithms [36, 38, 81].

THEOREM 5.3. Under the regularity conditions (C1)–(C4) and given N is sufficiently
large, we establish the convergence property of Algorithm 1 through incorporating correla-

tion information. That is, with the correlation density 1
λ

= oN(N
φ
2 ), in each iteration for the



COMMUNITY DETECTION WITH DEPENDENT CONNECTIVITY 2393

Algorithm 1, we have

(5.6)
∥∥α(s+1) − z∗∥∥

1 ≤ c1NK exp
{
−c2

λ(c∗ηN + λN2)M

N

}
+ c3‖α(s) − z∗‖1

(λNM)1−γ
∀s ≥ 0

with probability at least 1 − exp(−cλNM) − (λNM)−γ − ε, where γ ∈ (0,1), ε = oM(1),
c, c1, c2, c3 are positive constants, and c∗ is defined in Theorem 5.1.

In Theorem 5.3, the first term on the right-hand side of the inequality represents the esti-
mation bias, which measures the discrepancy between the community structure and its real-
ization. Although we do not show that the order of estimation bias in the first term achieves
the minimax rate, there is a connection between our result and the minimax rate when M = 1.
Given that the dependency among edges exits, the bias term in our Theorem 5.3 has the order
O{N exp(−λNM)}, where N is the number of nodes and M is the sample size of networks.
The minimax rate established in Theorem 3 in [81] under multiple networks with indepen-
dent edges is O{N exp(−NM)}. Therefore, our Theorem 5.3 indicates that our bias term has
the same order as the minimax rate established in [81] given λ = O(1).

The second term provides a decreasing rate of misclassification along each iteration. The-
orem 5.3 indicates that the estimated memberships are closer to the true memberships com-
pared to the previous iteration step at a rate of 1

(λNM)1−γ , where a larger sample size M or
node size N contribute a faster convergence and a lower estimation bias. In general, Theo-
rem 5.3 guarantees the convergence of the iterative algorithm given that the edge dependency
exists, and improves the convergence rate and estimation bias when the intensity of depen-
dency increases.

In contrast to the computational convergence rates in Theorem 3.1 of [81], our Theo-
rem 5.3 shows that incorporating the correlation information enables us to reduce the esti-
mation bias and accelerate the convergence rate. Specifically, if the edges are truly indepen-
dent, computational convergence using the independent likelihood method under the mul-
tiple networks setting can be extended from [81] in that its bias term and convergence rate
have the order O{N exp(−NM}) and O( 1

M
√

N
), respectively. However, if dependency among

edges exists, the order of bias term assuming the independent likelihood becomes larger than
O{N exp(−NM}) because of a smaller effective sample size. Similarly, the convergence rate
using the independent method becomes slower than O( 1

M
√

N
). In contrast, the order of bias

term and the convergence rate are O{N exp(−λNM)} and O{ 1
(λMN)1−γ } based on Theo-

rem 5.3 under the dependent setting. Therefore, the proposed method achieves a smaller esti-
mation bias given λ = O(1) and a faster convergence rate given λ > O{(Mγ Nγ−0.5)1/(1−γ )}
and γ < 0.5. It is noticeable that Theorem 5.3 can be generalized to the heterogeneous
stochastic block model (2.2) with Condition (C1) replaced by (C1.b).

6. Numerical studies. In this section, we conduct simulation studies to illustrate the
performance of the proposed method on community detection in networks for dependent
edges within-community. In particular, we compare our method to the existing variational
EM method which assumes conditional independence among edges. Besides the comparison
between the proposed method and independent likelihood method, we also conduct numeri-
cal comparisons between the propose method and existing multiple network community de-
tection methods under different within-community dependency structure. Specifically, [47]
proposes a spectral methods based on the optimal weighted average of multiple adjacent
matrices, and the weighted average low-rank approximation which replaces an average of
adjacent matrices by an average of low-rank approximation to each adjacent matrix. Wang
et al. [74] proposes to jointly embed multiple adjacent matrices to a common subspace for
clustering. Le et al. [44] proposes an EM-based algorithm to recover community structure
from the multiple noisy realizations of network.
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6.1. Study 1: Networks with dependent within-community connectivity. In the first sim-
ulation study, we consider networks where edges within the same community are correlated
and compare the performance of various methods under different network sample sizes with
various magnitudes of marginal means for within-community and between-community.

Suppose the memberships of nodes Z∗ = {Z1, . . . ,Zn} in the networks are given with
K communities, where Zi is a binary indicator vector corresponding to the membership
of nodes i. Conditional on Z∗, edges in each sample network are generated following the
Bernoulli marginal distribution as in (2.1), where within-community edges follow an ex-
changeable correlation structure as in (3.1). Here, we assume that between-community edges
are independent from each other. The blockwise marginal means μql (q, l = 1, . . . ,K) are as-
sociated with edgewise covariates through (2.2). In addition, the edgewise covariates follow
a uniform distribution, where within-communities covariates

xm
ij ∼ Unif(a1, a2) if Ziq = Zjq = 1,(6.1)

and between-community covariates

xm
ij ∼ Unif(b1, b2) if Ziq �= Zjq, q = 1, . . . ,K.(6.2)

Although the probability of each edge is different, the edges within the same community share
the same coefficient βql in (2.2). In the following simulation studies, we generate correlated
unweighted edges through the R package “MultiOrd.”

Specifically, the sample networks consist of 40 nodes split into two communities. In a
balanced community network, each community has 20 nodes. In an unbalanced case, two
communities are comprised of 10 and 30 nodes, respectively. We compare the performance
under different sample sizes of networks with M = 20, 40 and 60, and different intensities of
within-community dependency with correlation coefficient ρ = 0, 0.3 and 0.6.

To simulate a weak marginal signal case, we let the blockwise parameters be β11 = 1,
β22 = 1.5 and β12 = β21 = 0. The means of within-community and between-community co-
variates are 0 with a1 = b1 = −0.2 and a2 = b2 = 0.2 in (6.1) and (6.2). Here, both the
average marginal means of within-community edges and between-community edges are very
close to 0.5.

For a strong marginal signal case, the blockwise parameters are β11 = 0.3, β22 = 0.6 and
β12 = β21 = 0.2. The within-community covariates are generated via (6.1) with a1 = 0.9
and a2 = 1.1, and between-community covariates are generated from (6.2) with b1 = −0.8
and b2 = −0.6. Note that there is a distinct gap between within-community and between-
community marginal means, thus the marginal signal is more dominant for nodes within
communities. Specifically, the average marginal means for the edges within two communities
are 0.57 and 0.64, respectively. The average marginal mean for the between-community edges
is 0.46.

We use the Adjusted Rand Index (ARI) to measure the performance of clustering. The
ARI takes a value between −1 and 1, where 1 represents a perfect matching of true member-
ships and predicted memberships of clustering, 0 indicates a random clustering and a negative
value indicates that the agreement is less than the expectation from a random result. In the
following simulations, we choose five fixed initial memberships of nodes in both balanced
and unbalanced communities. These initials can be obtained from spectral clustering on sam-
ple networks. The Adjusted Rand Indices based on these chosen initials range between 0.30
to 0.34 under the unbalanced community case and between 0.25 to 0.29 under the balanced
community case, which are far from the true memberships.

We compare the performance of clustering and parameter estimation for the proposed
method applying the second-order (Bahadur2nd) and the fourth-order (Bahadur4th) Bahadur
approximation, and the variational EM (VEM) approach with only marginal information.
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TABLE 1
Adjusted Rand Index between estimated membership and true membership for networks with two communities

and weak marginal signal averaging on 50 replicates

Unbalanced community Balanced community

M = 20 M = 40 M = 60 M = 20 M = 40 M = 60

ρ = 0
VEM 0.38 0.41 0.48 0.31 0.28 0.28

Bahadur2nd 0.36 0.41 0.47 0.32 0.29 0.29
Bahadur4th 0.35 0.37 0.47 0.30 0.29 0.30

ρ = 0.3
VEM 0.34 0.34 0.34 0.28 0.28 0.28

Bahadur2nd 0.94 0.98 0.99 0.96 0.99 1.00
Bahadur4th 0.96 0.99 1.00 0.99 0.99 1.00

ρ = 0.6
VEM 0.34 0.34 0.34 0.29 0.28 0.28

Bahadur2nd 0.96 0.99 0.99 0.97 1.00 1.00
Bahadur4th 0.99 1.00 1.00 0.99 1.00 1.00

In Table 1 and Table 2, the proposed method with the second-order and fourth-order
approximations outperform the variational EM in clustering. Specifically, under the weak
marginal signal case in Table 1, the Adjusted Rand Index of the variational EM are 0.34 under
different network sizes and correlation strengths, which are similar to the ones calculated by
fixed initials. In addition, since the distributions of marginal means from within-community
and between-community are similar, the variational EM marginal approach barely improves
over the initial memberships as it only utilizes the marginal information. However, the pro-
posed method with the second-order or fourth-order Bahadur representation improves on the
ARI by about 280%, compared to the VEM when ρ = 0.3 and ρ = 0.6. In addition, the per-
formance of the proposed method improves by 1 ∼ 5% as the number of sample networks
increases from 20 to 60. Furthermore, incorporating the fourth-order interaction can slightly
improve the accuracy of clustering.

We notice that when the correlation is as moderate as 0.3, the proposed method still
achieves significant improvement over the variational EM and almost fully recovers the true
memberships of clustering. We consider this as an intrinsic advantage of the proposed method
in capturing the relatively weak dependency among edges to improve the clustering. This is

TABLE 2
Adjusted Rand Index between estimated membership and true membership for networks with two communities

and strong marginal signal averaging on 50 replicates

Unbalanced community Balanced community

M = 20 M = 40 M = 60 M = 20 M = 40 M = 60

ρ = 0
VEM 0.78 0.92 0.98 0.76 0.90 0.97

Bahadur2nd 0.73 0.91 0.97 0.77 0.92 0.98
Bahadur4th 0.69 0.86 0.95 0.72 0.92 0.98

ρ = 0.3
VEM 0.78 0.81 0.83 0.68 0.79 0.84

Bahadur2nd 0.99 0.99 1.00 0.98 1.00 1.00
Bahadur4th 0.99 0.99 1.00 0.99 1.00 1.00

ρ = 0.6
VEM 0.78 0.89 0.83 0.84 0.92 0.88

Bahadur2nd 0.99 1.00 1.00 0.99 1.00 1.00
Bahadur4th 0.99 1.00 1.00 0.99 1.00 1.00
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TABLE 3
Estimation of within-community parameter β11 = 1 for networks with two communities and weak marginal

signal

Unbalanced community Balanced community

M = 20 M = 40 M = 60 M = 20 M = 40 M = 60

ρ = 0
VEM 0.560.42 0.590.29 0.580.20 0.640.32 0.570.16 0.640.18

Bahadur2nd 0.570.42 0.580.30 0.570.21 0.610.28 0.570.16 0.660.20
Bahadur4th 0.520.42 0.550.28 0.570.19 0.580.27 0.580.18 0.650.19

ρ = 0.3
VEM 0.490.30 0.500.17 0.520.14 0.580.24 0.580.18 0.590.12

Bahadur2nd 0.810.48 0.840.32 0.890.27 0.950.24 0.930.16 0.920.14
Bahadur4th 0.850.47 0.830.31 0.890.27 0.960.24 0.930.16 0.930.14

ρ = 0.6
VEM 0.560.22 0.540.20 0.520.15 0.610.27 0.610.16 0.600.14

Bahadur2nd 1.010.42 1.040.35 1.000.29 0.950.31 1.000.19 0.960.15
Bahadur4th 0.990.25 1.050.15 1.010.13 0.970.31 1.010.19 0.970.16

because the proposed method not only captures pairwise dependency but also reflects connec-
tivities among nodes within a community. That is, even a weak dependency among pairwise
connectivities can lead to an accumulative information recovery of clustering.

Table 2 illustrates the clustering performance when the marginal signal is strong. In con-
trast to Table 1, the variational EM significantly improves on clustering because of the large
discrepancy between the within-community marginal mean and the between-community
marginal mean. Nevertheless, incorporating the correlation among within-community edges
still improves the clustering accuracy by 20% to 26% under various sample sizes of networks
and intensities of correlation. The clustering accuracy of the proposed method improves when
either the sample size or the correlation increases. In general, stronger correlation and a larger
sample size lead to better performance when the marginal signal itself is strong.

In addition to clustering, we also provide estimation of the marginal parameters. Tables 3,
4 and 5 compare parameter estimation between the proposed method and the variational EM
when the marginal signal is weak. For within-community parameters β11 and β22, the esti-
mation of the proposed method consistently reduces bias 30 ∼ 99% more than the variational
method, except when M = 20 and ρ = 0.6. This is because the sample size M = 20 is not suf-
ficiently large to offset the high variance among highly-correlated within-community edges.

TABLE 4
Estimation of within-community parameter β22 = 1.5 for networks with two communities and weak marginal

signal

Unbalanced community Balanced community

M = 20 M = 40 M = 60 M = 20 M = 40 M = 60

ρ = 0
VEM 1.430.43 1.420.34 1.450.26 1.180.40 0.940.16 0.940.15

Bahadur2nd 1.500.39 1.490.31 1.450.25 1.210.42 0.930.21 0.970.22
Bahadur4th 1.560.37 1.490.30 1.460.23 1.190.47 0.940.24 0.960.22

ρ = 0.3
VEM 1.310.23 1.400.11 1.370.11 1.050.21 0.920.16 0.920.16

Bahadur2nd 1.560.19 1.500.10 1.490.09 1.480.22 1.450.19 1.440.14
Bahadur4th 1.550.19 1.500.09 1.490.09 1.480.22 1.450.19 1.450.14

ρ = 0.6
VEM 1.460.16 1.430.16 1.380.13 1.160.21 1.090.21 1.060.22

Bahadur2nd 1.730.29 1.600.15 1.520.12 1.730.28 1.600.29 1.640.15
Bahadur4th 1.690.25 1.600.15 1.520.13 1.730.26 1.610.29 1.640.15
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TABLE 5
Estimation of within-community parameter β12 = 0 for networks with two communities and weak marginal

signal

Unbalanced community Balanced community

M = 20 M = 40 M = 60 M = 20 M = 40 M = 60

ρ = 0
VEM 0.520.35 0.570.24 0.470.22 0.220.31 0.390.14 0.410.11

Bahadur2nd 0.510.32 0.580.23 0.480.21 0.230.30 0.410.16 0.390.15
Bahadur4th 0.510.29 0.630.22 0.480.20 0.250.28 0.400.17 0.410.13

ρ = 0.3
VEM 0.680.24 0.680.13 0.690.10 0.420.14 0.350.12 0.400.10

Bahadur2nd −0.020.25 0.000.15 0.000.11 0.030.20 −0.050.16 −0.020.12
Bahadur4th −0.020.24 0.000.14 0.000.11 0.030.18 −0.060.16 0.030.12

ρ = 0.6
VEM 0.720.17 0.710.11 0.700.09 0.410.18 0.450.11 0.480.11

Bahadur2nd −0.050.17 −0.030.13 0.020.11 0.000.19 0.010.12 0.030.12
Bahadur4th −0.040.17 −0.030.13 −0.020.11 −0.020.18 0.000.12 0.030.11

For the between-community parameter β12, the estimation bias of the proposed method con-
sistently decreases more than 80% compared to the VEM under all settings. Additionally, the
standard errors of the proposed estimator decrease faster than the variational method as the
sizes of networks increase.

In addition to comparing to the independent likelihood approach, we also compare the pro-
posed method with other multinetwork community detection methods, for example, weighted
networks average (WNA) [47], weighted low-rank average (WLRA) through replacing ad-
jacency matrices by their low-rank approximations [47], the network denoising method [44]
and joint embedding [74]. In addition, we extend the dependency structure of the within-
community edges to the mixture correlation structure and Toeplitz correlation structure, and
their submatrix structures are provided as follows:⎡

⎢⎢⎣
1 ρ ρ 0
ρ 1 ρ ρ

ρ ρ 1 ρ

0 ρ ρ 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 ρ −ρ ρ

ρ 1 ρ −ρ

−ρ ρ 1 ρ

ρ −ρ ρ 1

⎤
⎥⎥⎦ .

Toeplitz correlation structure Mixture correlation structure.

For the mixture correlation structure, each pair of within-community edges is either posi-
tively or negatively correlated, alternatively. For the Toeplitz correlation structure, we choose
a specific width of the nonzero diagonal band such that about 20% of all pairs of edges are
correlated. In addition, we consider the exchangeable correlation structure with a correlation
density λ in (5.1) varying from 10% to 50%. The magnitude of pairwise edge correlation ρ

is 0.5 for all the settings. The sample networks consist of two balanced communities. For the
simulations on multiple networks with 200 nodes, the connecting probabilities for within-
community edges and between-community edges are 0.52 and 0.51, respectively. Figure 2
provides the distributions of within-community connection density in M = 100 sample net-
works under different edge-dependency structures.

Table 6 indicates that the proposed approach achieves the best performance under different
edge-dependency structures. Specifically, the proposed method improves on the ARI by about
50% and 15% compared to the best competing method WLRA for the mixture and Toeplitz
correlation structures, respectively. Under the exchangeable correlation structure, WLRA and
joint embedding have similar performance as the proposed method when the correlation den-
sity is larger than 20%, while the proposed method outperforms them when the correlation
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FIG. 2. The distribution of within-community connection density over sample networks under different correla-
tion structures. The Y-axis denotes the percentage of M = 100 sample networks with a specific within-community
connection density. The blue vertical line indicates the between-community connection density at 0.51.

density is 10%. Different from other competing methods, WLRA and joint embedding utilize
the latent space model to represent sample networks and extract shared community struc-
tures. The latent space can capture a sufficiently large gap in connection density between
within-community edges and between-community edges due to the exchangeable correlation
structure. However, the connection density gap is not necessarily significant when the within-
community edges follow a Toeplitz or mixture correlation structure. On the other hand, the

TABLE 6
Comparison of ARI under different correlation structures, varying network sizes and sample sizes. Proposed: the
proposed method, VEM: independent likelihood, WNA: weighted networks average [47], WLRA: weighted low
rank approximation [47], ND: network denoising [44], JE: joint embedding [74]. Toeplitz and Mixture stand for

the Toeplitz and mixture correlation structures. Ex10%, Ex20% and Ex50% stand for the exchangeable
correlation structure with correlation density at 10%, 20% and 50%

Corr. struc. Network size Sample size Proposed VEM WNA WLRA ND JE

Toeplitz N = 200
M = 50 0.83 0.23 0.42 0.80 0.21 0.57
M = 100 0.97 0.19 0.43 0.84 0.29 0.64

Ex10% N = 200
M = 50 0.16 0.02 0.00 0.00 0.01 0.02
M = 100 0.23 0.12 −0.01 0.01 0.04 0.03

Ex20% N = 200
M = 50 1.00 0.52 −0.02 0.88 0.01 0.18
M = 100 1.00 0.53 −0.01 0.98 0.04 0.35

Ex50% N = 200
M = 50 1.00 0.78 0.28 1.00 0.04 0.96
M = 100 1.00 0.80 0.19 1.00 0.07 1.00

Mixture
N = 200

M = 50 0.83 0.14 0.18 0.56 0.16 0.38
M = 100 0.97 0.22 0.19 0.63 0.15 0.38

N = 1000 M = 100 0.79 0.50 0.47 0.22 0.00 0.34
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FIG. 3. Clustering performance comparisons between independent likelihood and the proposed approximate
likelihood approach incorporating the second-order and fourth-order correlations. The power of recovering com-
munity structure from the proposed method increases as the intensity of within-community dependency (λ) in-
creases.

proposed method is able to identify communities through directly capturing the correlations
among edges, and still performs well under nonexchangeable dependency structures.

Furthermore, we investigate the performance of the proposed method on large node size
of multinetworks, for example, 1000 nodes splitting into two balanced communities. The
network sample size is 100. Within each community, we let edges from a subgroup of 250
nodes follow a mixture correlation structure with ρ = 0.5, while the marginal mean of edges
in the subgroup is fixed at 0.52. To model the heterogeneity of edges across sample networks,
the marginal mean of within-community edges is 0.53 for half of the sample networks, and
0.49 for the other half of the sample networks for uncorrelated edges. The marginal mean of
between-community edges is 0.51. Table 6 shows that the proposed method improves on the
ARI by about 60% compared with the best performance using the independent likelihood.

We also investigate the clustering performance of the independent likelihood and the
proposed approximate likelihood approach given different within-community second-order
correlation density λ in (5.1). The setting is similar to the weak marginal signal cases.
Specifically, the sample networks contain two communities with identical pairwise within-
community correlation ρ = 0.6. The sizes of the sample networks and nodes are M = 40,
N = 40. The density λ increases from 0.01 to 1. The Adjusted Rand Index comparisons
are illustrated in Figure 3. In general, the approximate likelihood approach has improving
performance when the correlation connectivities among within-community edges increase,
in contrast to the independent likelihood approach. Figure 3 shows that the true member-
ship recovery using the approximate likelihood approach is high even when the second-order
within-community correlation is relatively sparse (λ = 0.05), while the independent likeli-
hood approach performs poorly with a constant ARI regardless of λ. This finding supports
Theorems 5.1 and 5.2 in that the proposed method produces an accelerated decay in misclas-
sification rate as λ increases.

6.2. Study 2: Robustness to model specification and unbalanced community size. In
Study 2, we study the robustness of the proposed approach to the model misspecification.
We first investigate whether the proposed method holds for a more general dependency struc-
ture among edges from different communities, for example, correlation among edges between
different communities,

corr
(
Ym

i1j1
, Ym

i2j2

) = ρ̃ given zi1 = zj1 = q, zi2 = zj2 = l, q �= l,(6.3)

where ρ̃ ≤ ρq in (3.1) in general. While (3.1) characterizes the concordance of edges within
a community, (6.3) also captures the heterogeneity of sample networks. The heterogeneity of
multilayer networks is common in community detection.
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TABLE 7
Performance comparison given misspecified intercommunity correlation with balanced community and weak

marginal signal averaging on 50 replicates

σ = 0.5 σ = 1.5

M = 20 M = 40 M = 60 M = 20 M = 40 M = 60

ρ = 0.3
VEM 0.28 0.28 0.29 0.28 0.28 0.29

Bahadur2nd 0.90 0.99 1.00 0.76 0.99 0.99
Bahadur4th 0.96 1.00 1.00 0.87 0.98 1.00

ρ = 0.6
VEM 0.28 0.28 0.29 0.28 0.28 0.29

Bahadur2nd 0.94 0.99 1.00 0.87 0.99 1.00
Bahadur4th 0.99 1.00 1.00 0.94 0.99 1.00

In this simulation, we demonstrate that the proposed method is still robust when there is
heterogeneity of connectivities among sample networks. To simulate the dependency among
inter-community connectivity, we split M sample networks into 10 groups. Within each
group, we add the random effects γk to the within-community marginal means:

μm
qq = exp(βqlx

m
ij )

1 + exp(βqlx
m
ij )

+ γk, M
k − 1

10
≤ m ≤ M

k

10
,

where γk ∼ N(0, σ 2), k = 1, . . . ,10, m = 1, . . . ,M , and q = 1, . . . ,K . The variance σ of
the random effect γk captures the intensity of dependency among inter-community connec-
tivities, which increases as σ increases. We set σ = 0.5 to represent a weak intercommunity
dependency and σ = 1.5 for a strong intercommunity dependency, while the other settings
remain the same as in simulation Study 1. Our primary interest is to compare clustering per-
formance between the proposed method and the variational method under the weak marginal
signal case.

Tables 7 and 8 illustrate the clustering performance between the variational method and the
proposed method under balanced and unbalanced community sizes, respectively. When the
within-community correlation is moderate at 0.3, the proposed method improves the clus-
tering accuracy by 170% to 257% for various network sizes and σ . For strong correlation
ρ = 0.6, the improvement is between 210% to 257%. In particular, the proposed method
has better performance when the networks have strong intracommunity correlation and large
sample sizes under both weak and strong inter-community correlation cases. In addition, us-
ing the fourth-order Bahadur representation improves the accuracy by 6% and 14% when

TABLE 8
Performance comparison given misspecified inter-community correlation with unbalanced community and weak

marginal signal averaging on 50 replicates

σ = 0.5 σ = 1.5

M = 20 M = 40 M = 60 M = 20 M = 40 M = 60

ρ = 0.3
VEM 0.32 0.33 0.33 0.33 0.33 0.33

Bahadur2nd 0.89 0.98 0.99 0.89 0.95 0.97
Bahadur4th 0.95 0.99 0.99 0.93 0.94 0.94

ρ = 0.6
VEM 0.34 0.33 0.34 0.33 0.33 0.33

Bahadur2nd 0.91 0.96 0.98 0.91 0.95 0.94
Bahadur4th 0.95 0.96 0.97 0.92 0.93 0.92
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TABLE 9
Comparison of ARI under (1) misspecified K case, where the true multiple networks have K = 3 with balanced

communities, and the misspecified the number of clusters is K = 2; (2) unbalanced size case, where the true
multiple networks consist of three unbalanced communities with the size of 130, 80, 40, and the number of

clusters is correctly specified as K = 3

Proposed VEM WNA WLRA ND JE

misspecified K 0.53 0.14 0.31 0.19 0.11 0.18
unbalanced size 0.73 0.26 0.25 0.49 0.17 0.41

σ = 0.5 and σ = 1.5 compared to the second-order Bahadur representation, indicating that
the higher-order method still enhances the clustering outcome under the misspecified model.
It is interesting to note that the performance of the proposed method decreases by 5% to 15%
when the intercommunity correlation is strong and the number of networks is small, com-
pared to the same setting with weak intercommunity correlation. However, the performances
under both weak or strong inter-community correlation are similar when the sample size of
networks increases.

In addition, we investigate the robustness of the proposed method on misspecifying the
number of communities and unbalanced community sizes. For the case of misspecified num-
ber of communities, the true K = 3 communities, N = 300 and M = 100. The within-
community edges follow a mixture correlation structure with ρ = 0.5. The marginal means
of within-community edges and between-community edges are 0.52 and 0.51, respectively.
Table 9 provides the performances of different methods under the misspecified K = 2. The
proposed method performs the best, and has an ARI 70% more than the second best method,
WLRA.

For the case of unbalanced community size, the sample networks contain N = 250 nodes
splitting into three communities. The size of each community is 130, 80 and 40, respectively.
The remaining settings are the same as the previous case of misspecified number of commu-
nities. Table 9 shows that the proposed method still performs the best, and has an ARI 50%
more than the second best WLRA. These results indicate that the proposed method is still
robust when the number of communities is misspecified, or community sizes are unbalanced.

7. Real data example. In this section, we analyze two multinetwork datasets: food trad-
ing networks and brain fMRI imaging networks. We apply the proposed method and other
competing methods introduced in Section 6 to detect the community structure within the
multiple networks.

7.1. Food trading networks. In this subsection, we apply the proposed method to the
2010 Worldwide Food Import/Export Network dataset [21] from the Food and Agriculture
Organization of the United Nations (http://www.fao.org). We create 364 networks among
214 countries with a total of 318,346 binary edges, where each network captures the trading
connections of a specific food product among countries.

The primary goal of the study is to identify the common trading communities among
different countries shared by food and agricultural product networks. The phenomenon of
common community structure for international food-trade multinetworks has been recently
studied and confirmed in [3, 8, 45, 71]. In general, the community structure in trade networks
of food products is highly influenced by the geopolitical, socioeconomic and political rela-
tions among the countries. Therefore, countries tend to be in the same trading community
across different food product networks if they have geographical or economic similarity.

http://www.fao.org
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One significant feature of these networks is that the average empirical correlation of the
pairwise connection among trading countries is 0.29. Therefore, the SBM based on the con-
ditional independent assumption among edges could possibly lead to a biased network clus-
tering of countries.

We first preprocess the data to select nodes corresponding to the trading countries which
are most relevant, the number of communities and the initial memberships of countries. Note
that several major countries dominate the world economy and lead a high number of trad-
ing connectivities, while the other countries with limited agricultural product categories have
fewer trading connections with other countries for specific product networks. Here, we focus
on the partial trading networks consisting of major countries whose corresponding degrees
of nodes are larger than 9, which results in 51 countries with major economic impact in the
world, such as the United States, mainland China, Japan and some European countries. The
average empirical correlation of the trading connections among these countries is 0.22, indi-
cating that the connectivity dependency should be considered in clustering these countries’
trading networks.

In general, there are two major procedures to select the number of communities. First, we
can perform the Louvain method for community detection on each individual trading net-
work to obtain the number of communities which maximizes the modularity and the size
of the largest community. Next, we take the average of the number of communities on net-
works whose number of communities is smaller than 10 and whose largest community size
is larger than 14. This procedure removes the 18% of the product trading networks whose
countries are commercially isolated from other countries, as our goal is to detect the com-
mercial communities among the countries which are more connected with other countries.
After preprocessing, the average number of communities is 4.9 and we set it to be 4, and
there are 296 sample networks remaining in the following analysis. For the proposed method,
we apply the homogeneous stochastic block model (2.1) with no edgewise covariate, and the
marginal trading intensity between two nations is modeled based on their community mem-
berships.

Table 10 provides the estimated agricultural products trading communities among 51 coun-
tries based on the proposed method and other competing methods including the independent
likelihood model using variational EM, WNA, WLRA, the network denoising and joint em-
bedding. In the following, we focus on the comparison of clustering results between the
independent likelihood method and the proposed method as the results from comparisons
between the proposed method and other competing methods could be inferred similarly.

The countries in the same community under the proposed method are marked with the
same color, while the countries in newly formed communities based on competing methods
are colored according to their memberships from the proposed method. In general, the Ad-
justed Rand Index for clustering between the variational method and the proposed method is
0.43, indicating that the communities detected by the two methods are quite different. The
clustering results from the proposed method incorporating within-community dependency
are more interpretable compared to the variational EM using only marginal information.

In particular, the proposed method identifies communities 1 and 2 (red and cyan color com-
munities on Table 10) which are highly associated with their geographical and climate envi-
ronments. However, these features are not detected by the variational method. For example,
community 1 based on the variational method mainly consists of two types of countries: one
group comprises Nordic and Eastern European countries with the cyan color, and the other
group consists of countries in Latin American and Africa with the blue color. In contrast,
the proposed method clusters countries from geographically neighboring countries in east
Europe, including Austria, Poland and Romania which are clustered with other communities
by the variational method. Community 2 based on the variational method contains northern
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TABLE 10
Clustering of nations for the agricultural products trading networks based on different methods, the countries

are colored according to their community memberships from the proposed method

countries such as Canada as well as tropical countries. However, the proposed method iden-
tifies community 2 with tropical coastal countries and Arabian Peninsula countries, which
provides more meaningful community clusters compared to the variational EM method.

The variational method and proposed method detect the same third community with orange
color in Table 10 which contains 7 major countries from the European Union: Belgium,
France, Germany, Italy, Netherlands, Spain and the UK.

The fourth community from the variational method consists of 11 Eastern European coun-
tries, and all are categorized in community 1 from the proposed method. Community 4 with
red color on Table 10 in the proposed method includes countries with large populations or
more developed agricultural product trading, such as mainland China, U.S.A, India and Japan.

Similar to the independent likelihood approach, the clustering of countries based on other
competing methods (e.g., WNA, WLRA and joint embedding) do not show clear intrinsic
patterns or similarity among nations within the same community. In contrast, the proposed
method groups countries based on geographical and climatic similarity. In particular, geo-
graphical distance has a significant impact on the tendency that two countries belong to the
same trading community across different food products, and this finding is also supported by
[71].

In terms of parameter estimation, the average probability of having trading connections
for communities 1 and 2 based on the variational method are 0.21 and 0.52, respectively. For
the proposed method, the estimated correlations of connectivities within communities 1 and
2 are both 0.22, and the corresponding average within-communities connection rates are 0.28
and 0.22, respectively. The relatively low connection rates and correlations may be related to



2404 Y. YUAN AND A. QU

the low diversity and high overlaps of product categories due to more restrictive geographical
and climate environments.

For community 3, the corresponding estimated marginal parameters β33 from the proposed
method and the variational method are 2.58 and 2.00, respectively, both of which indicate that
the trading connection rate within European Union communities is greater than 88% on aver-
age. This strong marginal signal of within-community connection explains that the additional
correlation information is less influential in clustering. Additionally, the estimated correlation
within the third community is 0.58, implying a high connection rate within-community. For
community 4, the corresponding average connection rate is 0.49 based on the variational
method, and the estimated within-community average connection rate and the correlation are
0.61 and 0.27, respectively. This is because community 4 involves large population countries
with more frequent trading on product categories due to their higher food diversity than other
countries.

7.2. Brain fMRI imaging networks. In this subsection, we apply the proposed method
to the brain fMRI dataset from the Center for Biomedical Research Excellence (http://
fcon_1000.projects.nitrc.org/indi/retro/cobre.html). The data consist of raw anatomical and
functional magnetic resonance imaging data from 72 schizophrenia subjects and 75 normal
subjects. Schizophrenia is a serious mental disorder which impairs cognitive abilities such
as memory, attention and executive function. Although the causes and mechanisms of the
disease are still unclear, empirical studies show that schizophrenia is related to abnormal
functional connectivity and topological structures in brain neural networks [27, 49].

We preprocess the original imaging data using the Matlab toolbox “CONN” [76] for reg-
istration, background subtraction and normalization. Specifically, the fMRI for each subject
is reconstructed as a single network where the vertices represent the predefined 132 regions
of interest (ROIs) in the brain based on the well-established FSL Harvard–Oxford brain atlas
[20, 25] and the AAL brain atlas [72]; and each edge represents the functional connectivity
between a pair of brain regions, measured by Pearson correlations between the processed
regional time series of blood oxygen levels when the subject is resting. After preprocessing,
we obtain 147 correlation matrices with a dimension of 132 × 132. The goal of this analysis
is to detect the functional communities among the 132 predefined brain regions which could
be associated with schizophrenia.

To construct the brain functional connectivity network for the mth subject, where m =
1, . . . ,147, we dichotomize elements in the mth correlation matrix Ym

132×132 such that Ym
ij = 1

if the absolute value of correlation between region i and region j is larger than 0.35 and Ym
ij =

0 otherwise. The cutoff correlation of 0.35 is proposed by [44]. To avoid too small a size of
estimated communities (e.g., containing less than 5 regions) and facilitate the comparison
between the proposed method and the existing methods introduced in Section 6, we set the
number of communities as K = 3. Both the proposed method and the independent model
utilize initial values generated from spectral clustering on randomly selected individual brain
networks. We perform community detection on the brain networks from patients and normal
subjects separately. One important feature of the networks is that 14% of the absolute values
of pairwise correlations between the brain functional connectivities are larger than 0.2, which
also justifies the proposed method in incorporating dependent connectivities.

Figure 4 and Figure 5 provide the visualization of the brain network clusterings for patients
and normal subjects via the BrainNet Viewer [78] where regions in the same community are
marked with the same color. The graphs in the left and right columns of Figure 4 and Figure 5
illustrate the communities in the brain networks of schizophrenic subjects, and normal sub-
jects, respectively. We adopt the adjusted rand index (ARI) to quantify the similarity between
patients’ communities and normal subjects’ communities. The proposed method shows that

http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
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FIG. 4. Clusters of patient and normal subject brain networks based on the proposed method, independent
likelihood method and WNA. The similarity of brain network clusters between patient and normal subject is
measured by the ARI. The regions with different community memberships in patient brain network and normal
brain network are displayed with larger size and labels.

the community memberships from 26 brain regions differ between schizophrenic and normal
subjects. These 26 regions mainly consist of the temporal pole involving semantic representa-
tion and socio-emotional processing, the middle and inferior temporal gyrus associated with
visual information processing, the hippocampus related to memory encoding and retrieval
and the cerebellum involved in attention and emotional control. The detailed memberships
of brain regions based on the proposed method and competing methods are provided in the
Supplementary Material [80] and the exact definition of each region label can be found in the
Matlab toolbox “CONN.”

One of the significant features of schizophrenia is the relatively low connectivity within
patients’ brain neural networks in that functional connectivity density among relevant brain
regions is significantly reduced for schizophrenic patients compared with normal subjects
[14, 48]. Accordingly, Table 11 illustrates the functional connectivity density within patients’
brain network communities based on each method where the density is defined as the aver-
age within-community connectivity density of each patient network. Specifically, the within-
community density from the proposed method is slightly lower than the independent model
for all three communities, while the connectivity density in Community 2 from the proposed
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FIG. 5. Clusters of patient and normal subject brain networks based on WLRA, network denoising and joint
embedding. The similarity of brain network clusters between patient and normal subject is measured by the
ARI. The regions with different community memberships in patient brain network and normal brain network are
displayed with larger size and labels.

TABLE 11
Within-community connectivity density in patient network based on

different clustering methods

Proposed method 0.26 0.25 0.19
VEM 0.28 0.26 0.20
WNA 0.50 0.19 0.45
WLRA 0.50 0.19 0.45
Network Denoising 0.54 0.19 0.26
Joint Embedding 0.52 0.19 0.47
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TABLE 12
Within-community patient network efficiency based on different clustering

methods

Proposed method 0.57 0.60 0.40
VEM 0.58 0.61 0.47
WNA 0.74 0.55 0.71
WLRA 0.74 0.55 0.71
Network Denoising 0.77 0.55 0.58
Joint Embedding 0.76 0.55 0.72

method is slightly higher than that from WNA, WLRA, network denoising and joint embed-
ding. However, the proposed method achieves much lower within-community densities for
brain Community 1 and Community 3.

In addition, the empirical studies [27, 79] show that schizophrenic patients have a de-
creased efficiency of the brain network among certain regions. Network efficiency [41]
measures the efficiency of information exchange within a network and is defined as

1
n(n−1)

∑
i �=j∈G

1
d(i,j)

, where G is a network or subnetwork and d(i, j) denotes the length
of the shortest path between node i and node j in G. Therefore, we calculate the average
within-community efficiency of the patients’ brain networks based on different clustering
methods. The result in Table 12 shows that the average within-community efficiency based
on the proposed method is slightly lower than the independent method for all three com-
munities. Compared with other competing methods, the proposed method has a comparable
efficiency for Community 2, but a lower efficiency for Community 1 and Community 3 in
the patients’ brain networks. In summary, the proposed method is able to detect communities
among brain regions which better capture the global brain network features associated with
schizophrenia.

Furthermore, study [34] indicates that the connectivities between the superior frontal gyrus
and the cerebellum regions significantly decrease among schizophrenic patients. Accordingly,
the proposed method groups the superior frontal gyrus and 4 cerebellum regions into the same
community, while the superior frontal gyrus is clustered with 9 cerebellum regions by the
independent model, 15 cerebellum regions by the WNA and WLRA, 18 cerebellum regions
by network denoising and 15 cerebellum regions by joint embedding. Compared with other
methods, the communities detected from the proposed method are more consistent with the
phenomenon of decreased connections between the superior frontal gyrus and the cerebellum
for schizophrenic patients.

8. Discussion. In this paper, we propose a new community detection method for net-
works incorporating the underlying dependency structure among connectivities. To model the
correlation without specifying a joint likelihood for correlated edges, we construct an approx-
imate likelihood based on the Bahadur representation which decomposes a joint distribution
into a marginal term and high-order interaction terms. The proposed method provides flexible
modeling on the correlation structure, which can be specified through the interaction term in
the approximate likelihood.

In theory, we establish the consistency of the nodes’ membership estimator based on the
proposed approximate likelihood and show that it achieves a faster convergence than the
independent method. In addition, we show that the proposed iterative algorithm possesses
desirable convergence properties. In particular, we show that the proposed approximate ap-
proach can achieve a faster computational convergence and a lower clustering bias compared
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to the variational EM algorithm. Furthermore, we show that the variational EM algorithm is
a special case of our algorithm under the conditional independent model, which confirms that
incorporating correlation information improves the accuracy for community detection.

Our numeric studies indicate that incorporating the within-community correlation among
edges can improve the clustering performance compared to the marginal model, even un-
der a moderately misspecified model on intercommunity dependency. The improvement of
community detection is more significant when the marginal signal is weak, which is less in-
formative for distinguishing between within-community and between-community networks.
In addition, the proposed method enables us to achieve more accurate parameter estimation.

In this paper, we only consider incorporating the within-community dependency. It would
be worthy of further research to investigate more generalized dependency structures to in-
clude between-community dependency as well.

APPENDIX: PROOF OF THE MAIN THEOREMS

In the following, we denote the membership of node as random variable zi , i = 1, . . . ,N .
Then Z = {z1, z2, . . . , zN }. Accordingly, we define the true membership of nodes as z∗

i ∈
{1,2, . . . ,K}, i = 1, . . . ,N and z∗ = {z∗

1, z
∗
2, . . . , z

∗
N }. We denote P ∗(·) = P(·|Z = z∗) as

the conditional probability of observed networks given the true nodes’ membership z∗. The
number of misclassified nodes is denoted as r such that ‖z − z∗‖0 = r for z �= z∗. Define
the mth sample network as Ym = (Ym

ij )N×N and mth sample network standardized by μ̂aa

as Ŷ m,a = (Ŷ
t,a
ij )N×N where Ŷ

m,a
ij = Ym

ij −μ̂aa√
μ̂aa(1−μ̂aa)

, a = 1, . . . ,K , m = 1, . . . ,M . We further

define the sth column of Ŷ m,a as Ŷ m,a·s .
Denote α = (α1, . . . , αN) as the estimated probability of nodes’ memberships. Specifi-

cally, let αi = (αi1, . . . , αiK)1×K be the probability of nodes i belonging to each community
where

∑K
q=1 αiq = 1, i = 1, . . . ,N . For simplicity of notation, if the subscripts indicate the

community then αq = (α1q, . . . , αNq)1×N represents the probability of each node belonging
to community q , where q = 1, . . . ,K . Similarly, z∗

q = {z∗
1q, z∗

2q, . . . , z
∗
Nq} is a binary vector

indicating nodes whose true membership belongs to community q , q = 1, . . . ,K . Let vec(·)
stand for the operation of vectorizing a matrix into a column.

A.1. Proof of Theorem 5.1. For the independent model logLind(Y |Z = z), we can sim-
plify the likelihood ratio between a random membership z and the true membership z∗ as

log
Pind(Y |Z = z)

Pind(Y |Z = z∗)
=

M∑
m=1

∑
i<j

{
Ym

ij log
μzizj

μz∗
i z

∗
j

+ (
1 − Ym

ij

)
log

1 − μzizj

1 − μz∗
i z

∗
j

}
.(A.1)

We define two transformation functions f1(x) and f2(x) as

f1(x) =
√√√√{

x log
μzizj

μz∗
i z

∗
j

+ (1 − x) log
1 − μzizj

1 − μz∗
i z

∗
j

}
+
,

f2(x) =
√√√√{

x log
μzizj

μz∗
i z

∗
j

+ (1 − x) log
1 − μzizj

1 − μz∗
i z

∗
j

}
−
,

where {}+ and {}− are positive part and negative part of a random variable. The previous
summation can be decomposed as positive part and negative part:

log
Pind(Y |Z = z)

Pind(Y |Z = z∗)
=

M∑
m=1

∑
i<j

{
f 2

1
(
Ym

ij

) − f 2
2

(
Ym

ij

)}
.
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Define the vectorized edges in the t th sample network as

(A.2)
X+

m = {
f1

(
Ym

12
)
, f1

(
Ym

13
)
, . . . , f1

(
Ym

N−1,N

)}
,

X−
m = {

f2
(
Ym

12
)
, f2

(
Ym

13
)
, . . . , f2

(
Ym

N−1,N

)}
.

Note that each element in X+
m or X−

m is a bounded binary random variable. In addition, as
f1(Y

m
ij ) or f2(Y

m
ij ) only rescale Ym

ij then they preserve the within-community correlation
among Ym

ij . Then we consider the following quadratic forms:

Q1 =
M∑

m=1

〈
X+

m,X+
m

〉
, Q2 =

M∑
m=1

〈
X−

m,X−
m

〉
.

such that

log
Pind(Y |Z = z)

Pind(Y |Z = z∗)
= Q1 − Q2 and E

(
log

Pind(Y |Z = z)

Pind(Y |Z = z∗)

)
= EQ1 − EQ2.

Denote the centralized version quadratic forms Q1 and Q2 as Q1 and Q2 such that

Q1 =
M∑

m=1

〈
X+

m − E
(
X+

m

)
,X+

m − E
(
X+

m

)〉
, Q2 =

M∑
m=1

〈
X−

m − E
(
X−

m

)
,X−

m − E
(
X−

m

)〉
.

Denote the following quadratic difference as

�(Q1,Q1) := (
Q1 − E(Q1)

) − (
Q1 − E(Q1)

) = 2
M∑

m=1

〈
E

(
X+

m

)
,X+

m − E
(
X+

m

)〉
,

�(Q2,Q2) := (
Q2 − E(Q2)

) − (
Q2 − E(Q2)

) = 2
M∑

m=1

〈
E

(
X−

m

)
,X−

m − E
(
X−

m

)〉
.

For any t > 0, we have

P ∗
{

Pind(Y |Z = z)

Pind(Y |Z = z∗)
> t

}

= P ∗{
(Q1 − EQ1) − (Q2 − EQ2) > log t − E(Q1 − Q2)

}
≤ P ∗

{
Q1 − EQ1 >

log t − E(Q1 − Q2)

2

}

+ P ∗
{
Q2 − EQ2 < − log t − E(Q1 − Q2)

2

}

= P ∗
{
Q1 − EQ1 >

log t − E(Q1 − Q2)

2
− �(Q1,Q1)

}

+ P ∗
{
Q2 − EQ2 < − log t − E(Q1 − Q2)

2
− �(Q2,Q2)

}
,

where

P ∗
{
Q1 − EQ1 >

log t − E(Q1 − Q2)

2
− �(Q1,Q1)

}

≤ 1

2
P ∗

{
|Q1 − EQ1| > log t − E(Q1 − Q2)

2
− �(Q1,Q1)

}
,

(A.3)
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P ∗
{
Q2 − EQ2 >

log t − E(Q1 − Q2)

2
− �(Q2,Q2)

}

≤ 1

2
P ∗

{
|Q2 − EQ2| > log t − E(Q1 − Q2)

2
− �(Q2,Q2)

}
.

(A.4)

Next, we estimate each of the term in (A.3). Given the {Ym
ij }Mm=1 are binary random variables

and the setting that any two within-community edges Yi1j1 and Yi2j2 have a nonnegative
correlation corr(Yi1j1, Yi2j2) ≥ 0. Notice that

corr
(
f1(Yi1j1), f1(Yi2j2)

) =
⎧⎨
⎩corr(Yi1j1, Yi2j2) if μzizj

≥ μz∗
i z

∗
j
,

− corr(Yi1j1, Yi2j2) if μzizj
< μz∗

i z
∗
j
.

We denote the covariance matrix of X+
m and X−

m as �1 and �2. Notice that a term in (A.1) is
zero only when its corresponding node membership is misclassified. Define the the number
of nonzero term in (1) as Nr given ‖z − z∗‖0 = r . Then we have Nr = 1

2rNM . According to
Lemma 0.1, X+

m is a sub-Gaussian vector with a bounded sub-Gaussian norm L ≤ C1 where
C1 is a positive constant and

L = inf
{
α ≥ 0 : E(

exp
(〈
z,X+

m − E
(
X+

m

)〉)) ≤ exp
{
α2〈�1z, z〉}/2

}
.(A.5)

Next, we estimate ‖�1‖F , ‖�1‖op and ‖�2‖F , ‖�2‖op where ‖ · ‖F is the matrix Frobenius
norm and ‖ · ‖op is the matrix spectral norm. Denote

� = diag
(√

Var
{(

X+
m

)
12

}
,

√
Var

{(
X+

m

)
13

}
, . . . ,

√
Var

{(
X+

m

)
N−1,N

})
.

Then ‖�1‖op = ‖�R�‖op ≤ C2‖R‖op where R is the correlation matrix of X+
m and based on

(C1),

C2 ≤ max
1≤i<j≤n

Var
{(

X+
m

)
ij

} ≤ ηN max
{

log
ζ

1 − ζ
, log

1 − ζ

ζ

}
.

Denote the largest eigenvalue of R as λR . From the Gershgorin circle theorem, we have

λR ≤ 1 + max
i=1,...,N(N−1)/2

∑
j �=i

|Rij |.

Denote the number of node in the largest community is Nk . Note that the misclassification
number of node ‖z − z∗‖0 = r and edgewise correlation density λ both affect the sparsity of
R, we have for each row in R:∑

j �=i

|Rij | ≤ ρNk min(r, λNk) ≤ ρκ2N min(r, κ2λN),

where ρ = maxi,j Rij . Therefore, we have

‖�1‖op ≤ C
{
1 + ρκ2ηNN min(r, κ2λN)

}
,

for some constant C. Similarly, we have a same upper bound for ‖�2‖op. Notice that the
dimension of R is Nr × Nr and Nr ≤ rN . In each row of R, the number of nonzero elements
is less than 1 + Nk min(r, λNk). Therefore, we have

‖�1‖2
F ≤ C2ρ

2rηNN
{
1 + κ2ηNN min(r, κ2λN)

}
.

Then we are able to estimate the upper bound for the first term in (A.3). According to the
generalized Hanson–Wright inequality in [16], we have

(A.6)
1

2
P ∗{|Q1 − EQ1| > s

} ≤ exp
{
−C min

(
s2

L4‖�1‖2
F ‖A‖2

F

,
s

L2‖�1‖op‖A‖op

)}
,
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where s = log t−E(Q1−Q2)
2 − �(Q1,Q1), A = IM×M and L is sub-Gaussian norm of X+

m

defined in (A.5). Then we have L ≤ C1 and ‖A‖2
F = M , ‖A‖op = 1. To estimate s, notice

E(Q1 − Q2) = E

[
M∑

m=1

∑
i<j

{
Ym

ij log
μzizj

μz∗
i z

∗
j

+ (
1 − Ym

ij

)
log

1 − μzizj

1 − μz∗
i z

∗
j

}]

= −M
∑
i<j

{
μz∗

i z
∗
j

log
μz∗

i z
∗
j

μzizj

+ (1 − μz∗
i z

∗
j
) log

1 − μz∗
i z

∗
j

1 − μzizj

}
,

where there are total Nr nonzero terms in the summation. We introduce the function

k(x, y) = x log(x/y) + (1 − x) log(1 − x)/(1 − y).

Notice that k(x, y) > 0 for every x, y ∈ (0,1). Then we define

c∗ := min
{
k(cql, cq ′l′)

}
> 0,(A.7)

where the minimum are taken over {((q, l), (q ′, l′))|cq,l �= cq ′,l′ }. Given that ηN = oN(1),
it can be shown that k(μql,μq ′l′) � ηNk(cql, cq ′l′). Combined with Nr = 1

2rNM , we have

−E(Q1 − Q2) > c∗
2 rηNNM . To estimate �(Q1,Q1), given elements in X+

m are bounded,
we denote ω1 = max1≤i<j≤n E{(X+

m)ij }, ω2 = max1≤i<j≤n Var {(X+
m)ij }

P

(∣∣�(Q1,Q1)
∣∣ >

c∗

2
rNM

)

≤ P(ω1

∣∣∣∣∣
M∑

m=1

Nr∑
i=1

(
X+

t i − E
(
X+

t i

)∣∣∣∣∣ >
c∗

2
rNM

)

≤ ω2
1M Var(

∑Nr

i=1 X+
t i )

c∗2r2N2M2/4
≤ ω2

1(ω2rN(2 + ρλrN))

c∗2r2N2M
≤ O

(
ηNλ

M

)
.

Therefore, as M or N increases s is dominated by −E(Q1 − Q2) with probability approach-
ing 1. Then for any fixed t > 0, s >ON(c∗

2 rNM). Therefore, we have

min
(

s2

L4‖�1‖2
F ‖A‖2

F

,
s

L2‖�1‖op‖A‖op

)

≥ min
(

( c∗
2 rηNNM)2

C2
1MC2ρ2rN{1 + κ2ηNN min(r, κ2λN)} ,

c∗
2 rηNNM

C1C2{1 + ρκ2ηNN min(r, κ2λN)

)

≥ C3
c∗rηNNM

1 + ρκ2ηNN min(r, κ2λN)
,

where C3 = c∗
C2

1C2ρ
2 . Hence for (A.6), we have

1

2
P ∗{|Q1 − EQ1| > s

} ≤ exp
{
−C

c∗rηNNM

1 + ρκ2ηNN min(r, κ2λN)

}
,

where C is a positive constant. Follow Lemma 0.1, X−
m is also subgaussian vector. Then we

can obtain a same upper bound for

1

2
P ∗

{
|Q2 − EQ2| > log t − E(Q1 − Q2)

2

}
in (A.3) through the above procedure. Therefore,

P ∗
{

Pind(Y |Z = z)

Pind(Y |Z = z∗)
> t

}
≤ exp

{
−C

c∗rηNNM

1 + ρκ2ηNN min(r, κ2λN)

}
.
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A.2. Proof of Theorem 5.2. We continue use the notation in the previous proof of The-
orem 5.1. First decompose the proposed approximate likelihood in two parts:

log
L̃(Y |Z = z)

L̃(Y |Z = z∗)
= log

Pind(Y |Z = z)

Pind(Y |Z = z∗)

+
M∑

m=1

log

1 + ∑K
k=1 max{∑N

i<j ;u<v
(i,j) �=(u,v)

zikzjkzukzvkρij,uvŶ
m,k
ij Ŷ m,k

uv ,0}

1 + ∑K
k=1 max{∑N

i<j ;u<v
(i,j) �=(u,v)

z∗
ikz

∗
jkz

∗
ukz

∗
vkρij,uvŶ

m,k
ij Ŷ

m,k
uv ,0} .

Based on the mean value theorem, we have for some constant C1 that

(A.8)

log

1 + ∑K
k=1 max{∑N

i<j ;u<v
(i,j) �=(u,v)

zikzjkzukzvkρij,uvŶ
m,k
ij Ŷ m,k

uv ,0}

1 + ∑K
k=1 max{∑N

i<j ;u<v
(i,j) �=(u,v)

z∗
ikz

∗
jkz

∗
ukz

∗
vkρij,uvŶ

m,k
ij Ŷ

m,k
uv ,0}

= C1

K∑
k=1

{
max

(
N∑

i<j ;u<v
(i,j) �=(u,v)

zikzjkzukzvkρij,uvŶ
m,k
ij Ŷ m,k

uv ,0

)

− max

(
N∑

i<j ;u<v
(i,j) �=(u,v)

z∗
ikz

∗
jkz

∗
ukz

∗
vkρij,uvŶ

m,k
ij Ŷ m,k

uv ,0

)}

≤ C1

K∑
k=1

{
N∑

i<j ;u<v
(i,j) �=(u,v)

(
zikzjkzukzvk − z∗

ikz
∗
jkz

∗
ukz

∗
vk

)
ρij,uvŶ

m,k
ij Ŷ m,k

uv

}
.

Notice in summation (A.8), the terms are nonzero only when zikzjkzukzvk �= z∗
ikz

∗
jkz

∗
ukz

∗
vk .

We denote two node sets

ξ1 = {
(i, j, u, v)|zikzjkzukzvk = 1, z∗

ikz
∗
jkz

∗
ukz

∗
vk = 0, k = 1, . . . ,K

}
,

ξ2 = {
(i, j, u, v)|z∗

ikz
∗
jkz

∗
ukz

∗
vk = 1, zikzjkzukzvk = 0, k = 1, . . . ,K

}
,

where #|ξ1| = N1 and #|ξ2| = N2. Given the number of misclassified nodes ‖z−z∗‖0 = r , we
have N1 = O(rN3) and N2 = O(rN3). In the following, we construct the augmented edge
vectors for the t th sample network by incorporating the vectorized pairwise edge interaction
in (A.8) such that

X̃+
m =

{
X+

m,

(√
C1

2

{
ρij,uvŶ

m,k
ij Ŷ

m,k
uv

}
+

)
1×N1︸ ︷︷ ︸

(i,j,u,v)∈ξ1
zikzjkzukzvk=1

k=1,...,K

,

(√
C1

2

{−ρij,uvŶ
m,k
ij Ŷ

m,k
uv

}
+

)
1×N2︸ ︷︷ ︸

(i,j,u,v)∈ξ2
z∗
ikz

∗
jkz

∗
ukz

∗
vk=1

k=1,...,K

}
,

X̃−
m =

{
X−

m,

(√
C1

2

{
ρij,uvŶ

m,k
ij Ŷ

m,k
uv

}
−

)
1×N1︸ ︷︷ ︸

(i,j,u,v)∈ξ1
zikzjkzukzvk=1

k=1,...,K

,

(√
C1

2

{−ρij,uvŶ
m,k
ij Ŷ

m,k
uv

}
−

)
1×N2︸ ︷︷ ︸

(i,j,u,v)∈ξ2
z∗
ikz

∗
jkz

∗
ukz

∗
vk=1

k=1,...,K

}
,

where X+
m and X−

m are defined in (A.2). Denote the covariance matrix for X̃+
m and

X̃−
m are �̃1 and �̃2, respectively. Since the second-order terms in X+

m and X−
m such as
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C1
2 {ρij,uvŶ

m,k
ij Ŷ

m,k
uv }+ only rescale the original edgewise interaction Ŷ

m,k
ij Ŷ m,k

uv then they
preserve the third-order and fourth-order correlation within communities such that

∣∣∣∣E
{
f1

(
Ym

i1j1

)√
C

2

{
ρij,uvŶ

m,k
i2j2

Ŷ
m,k
i3j3

}
+

}∣∣∣∣ = ∣∣E(
Ŷ

m,k
i1j1

Ŷ
m,k
i2j2

Ŷ
m,k
i3j3

)∣∣,
∣∣∣∣E

{
f2

(
Ym

i1j1

)√
C

2

{
ρij,uvŶ

m,k
i2j2

Ŷ
m,k
i3j3

}
−

}∣∣∣∣ = ∣∣E(
Ŷ

m,k
i1j1

Ŷ
m,k
i2j2

Ŷ
m,k
i3j3

)∣∣,
∣∣∣∣E

{√
C

2

{
ρij,uvŶ

m,k
i1j1

Ŷ
m,k
i2j2

}
+

√
C

2

{
ρij,uvŶ

m,k
i3j3

Ŷ
m,k
i4j4

}
+

}∣∣∣∣ = ∣∣E(
Ŷ

m,k
i1j1

Ŷ
m,k
i2j2

Ŷ
m,k
i3j3

Ŷ
m,k
i4j4

)∣∣,
∣∣∣∣E

{√
C

2

{
ρij,uvŶ

m,k
i1j1

Ŷ
m,k
i2j2

}
−

√
C

2

{
ρij,uvŶ

m,k
i3j3

Ŷ
m,k
i4j4

}
−

}∣∣∣∣ = ∣∣E(
Ŷ

m,k
i1j1

Ŷ
m,k
i2j2

Ŷ
m,k
i3j3

Ŷ
m,k
i4j4

)∣∣.
Notice that each element in X̃+

m or X̃−
m is a bounded binary random variable. Follow the

same procedure in Lemma 0.1, we can show that both X̃+
m and X̃−

m are sub-Gaussian random
vectors such that L1 ≤ C2, L2 ≤ C2 for some constant C2 where L1, L2 are sub-Gaussian
norm of X̃+

m and X̃−
m . Then consider the following quadratic forms:

Q̃1 =
M∑

m=1

〈
X̃+

m, X̃+
m

〉
, Q̃2 =

M∑
m=1

〈
X̃−

m, X̃−
m

〉
.

Therefore, we have

log
L̃(Y |Z = z)

L̃(Y |Z = z∗)
≤ Q̃1 − Q̃2.

Denote the centralized version quadratic forms Q̃1 and Q̃2 as Q̃1 and Q̃2 such that

Q̃1 =
M∑

m=1

〈
X̃+

m − E
(
X̃+

m

)
, X̃+

m − E
(
X̃+

m

)〉
, Q̃2 =

M∑
m=1

〈
X̃−

m − E
(
X̃−

m

)
, X̃−

m − E
(
X̃−

m

)〉
.

Denote the following quadratic difference as

�(Q̃1, Q̃1) := (
Q̃1 − E(Q̃1)

) − (
Q̃1 − E(Q̃1)

) = 2
M∑

m=1

〈
E

(
X̃+

m

)
, X̃+

m − E
(
X̃+

m

)〉
,

�(Q̃2, Q̃2) := (
Q̃2 − E(Q̃2)

) − (
Q̃2 − E(Q̃2)

) = 2
M∑

m=1

〈
E

(
X̃−

m

)
, X̃−

m − E
(
X̃−

m

)〉
.

Similar to (A.3), for any fixed t > 0:

P ∗
{

L̃(Y |Z = z)

L̃(Y |Z = z∗)
> t

}

≤ P ∗{Q̃1 − Q̃2 > log t}

≤ P ∗
{
Q̃1 − EQ̃1 >

log t − E(Q̃1 − Q̃2)

2

}

+ P ∗
{
Q̃2 − EQ̃2 < − log t − E(Q̃1 − Q̃2)

2

}
(A.9)
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= P ∗
{
Q̃1 − EQ̃1 >

log t − E(Q̃1 − Q̃2)

2
− �(Q̃1, Q̃1)

}

+ P ∗
{
Q̃2 − EQ̃2 < − log t − E(Q̃1 − Q̃2)

2
− �(Q̃2, Q̃2)

}

≤ 1

2
P ∗

{
|Q̃1 − EQ̃1| > log t − E(Q̃1 − Q̃2)

2
− �(Q̃1, Q̃1)

}

+ 1

2
P ∗

{
|Q̃2 − EQ̃2| > log t − E(Q̃1 − Q̃2)

2
− �(Q̃2, Q̃2)

}
.

Next, we estimate ‖�̃1‖F , ‖�̃1‖op and ‖�̃2‖F , ‖�̃2‖op. Denote

�̃ = diag
(
�, sd

(√
1

2

{
ρij,uvŶ

m,k
ij Ŷ

m,k
uv

}
+

)
1×N1︸ ︷︷ ︸

(i,j,u,v)∈ξ1
zikzjkzukzvk=1

k=1,...,K

, sd
(√

1

2

{−ρij,uvŶ
m,k
ij Ŷ

m,k
uv

}
+

)
1×N2︸ ︷︷ ︸

(i,j,u,v)∈ξ2
z∗
ikz

∗
jkz

∗
ukz

∗
vk=1

k=1,...,K

)
,

then ‖�̃1‖op = ‖�̃R̃�̃‖op ≤ C3‖R̃‖op where R̃ is the correlation matrix of X̃+
m and C3 is

the largest variance of elements in X̃+
m . Denote the largest eigenvalue of R̃ as λ

R̃
. From the

Gershgorin circle theorem, we have

λ
R̃

≤ 1 + max
i

∑
j �=i

|R̃ij |.

Given that the misclassification number of node ‖z − z∗‖0 = r , edgewise correlation density
λ and condition C3, for each row in R̃, there exists some constant C4 > 0 such that∑

j �=i

|Rij | ≤ C4ρNk min(r, λNk) = C4ρκ2N min(r, κ2λN),(A.10)

where ρ = maxi,j R̃ij . Therefore, we have

‖�̃1‖op ≤ C3
{
1 + C4ρκ2N min(r, κ2λN)

}
.

Similarly, ‖�̃2‖op follows a same upper bound. Notice that the dimension of R̃ is (Nr +N1 +
N2) × (Nr + N1 + N2). Under the condition C3, in each row of R̃, the number of nonzero
elements is less than 1 + C4Nk min(r, λNk). Therefore, we have for a constant C′ > 0:

‖�̃1‖2
F ≤ C3ρ

2(Nr + N1 + N2)
{
1 + C4κ2N min(r, κ2λN)

}
≤ C′ρ2(

rN + rN3){
1 + C4κ2N min(r, κ2λN)

}
.

According to the generalized Hanson–Wright inequality in ([16]):

(A.11)
1

2
P ∗{|Q̃1 − EQ̃1| > s

} ≤ exp
{
−C min

(
s2

L4
1‖�̃1‖2

F ‖A‖2
F

,
s

L2
1‖�̃1‖op‖A‖op

)}
,

where s = log t−E(Q̃1−Q̃2)
2 − �(Q̃1, Q̃1), A = IM×M and L1 is sub-Gaussian norm of X̃+

m .
Notice ‖A‖2

F = M , ‖A‖op = 1. Given (A.8), we have

E(Q̃1 − Q̃2) = E(Q1 − Q2)

+ C1

M∑
m=1

K∑
k=1

{
N∑

i<j ;u<v
(i,j) �=(u,v)

(
zikzjkzukzvk − z∗

ikz
∗
jkz

∗
ukz

∗
vk

)
ρij,uvE

(
Ŷ

m,k
ij Ŷ m,k

uv

)}
.
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Denote ρmin as the lower bound of all nonzero correlation among edges such that
E(Ŷ

m,k
ij Ŷ m,k

uv ) = ρij,uv ≥ ρmin. Given the edges from different communities are independent
and within-community correlation density λ, we have for some positive constant C5,

#
∣∣{(i, j, u, v) : E(

Ŷ
m,k
ij Ŷ m,k

uv

) �= 0, (i, j, u, v) ∈ ξ2
}∣∣ = λN1 = λC5rN

3,

#
∣∣{(i, j, u, v) : E(

Ŷ
m,k
ij Ŷ m,k

uv

) �= 0, (i, j, u, v) ∈ ξ1
}∣∣ ≤ λ

(
r

4

)
.

Assume that r ≤ cN for some constant 0 < c < 1, we have for some constant c0 > 0:

−E(Q̃1 − Q̃2) ≥ c∗

2
rNM + λM

C1ρ
2
min

2

(
C5rN

3 −
(
r

4

))
≥ c0r

(
c∗ηNN + λN3)

M.

To estimate �(Q̃1, Q̃1), given all the elements in X̃+
m are bounded, we denote

ω3 = max
i

E
{(

X̃+
m

)
i

}
, ω4 = max

i
Var

{(
X̃+

m

)
i

}
.

According to the definition of X̃+
m and N1 = O(rN3), N2 = O(rN3), there exists a positive

constant C+ such that #|X̃+
m| = rN

2 + C+rN3, therefore

(A.12)

P
(∣∣�(Q̃1, Q̃1)

∣∣ > c0r
(
c∗ηNN + λN3)

M
)

≤ P(ω3

∣∣∣∣∣
M∑

m=1

#|X̃+
m |∑

i=1

(
X̃+

mi − E
(
X̃+

mi

)∣∣∣∣∣ > c0r
(
c∗ηNN + λN3)

M
)

≤ ω2
3M Var(

∑#|X̃+
m |

i=1 X̃+
mi)

c2
0r

2(c∗ηNN + λN3)2M2
.

From the assumption (C3), there exists a positive constant ω5 such that

(A.13)

Var

(#|X̃+
m |∑

i=1

X̃+
mi

)
=

#|X̃+
m |∑

i=1

Var
(
X̃+

mi

) + ∑
i,j

Cov
(
X̃+

mi, X̃
+
mj

)

≤ ω4

(
rN

2
+ C+rN3

)

+ w4ρ

(
λr2N2

4
+ rN3 · ω5λN2 + rN · ω5λN2

)
.

Through combining (A.12) and (A.13), give λ > 0 we have

P
(∣∣�(Q̃1, Q̃1)

∣∣ > c0r
(
c∗ηNN + λN3)

M
)

≤ ω2
3ω4

c2
0M

(
1

2rλ2N5 + C+

rλ2N3 + ρ

4λN4 + ρω5

rλN
+ ρω5

rλN3

)
.

Therefore, given 1
λ

< ON(NM) and M , N increasing, s is dominated by −E(Q̃1 − Q̃2) with
probability approaching 1. Given any fixed t > 0, s > ON(r(c∗ηNN +λN3)M). For the first
term in (A.11),

s2

L4
1‖�̃1‖2

F ‖A‖2
F

≥ r2(c∗ηNN + λN3)2M2

L4
1C

′ρ2(rN + rN3){1 + C4κ2N min(r, κ2λN)}M .
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For the second term in (A.11),

s

L2
1‖�̃1‖op‖A‖op

≥ r(c∗ηNN + λN3)M

L2
1C

′{1 + C4ρκ2N min(r, κ2λN)} .

Given λ > 0, we have for some constant C6 > 0,

min
(

s2

L4
1‖�̃1‖2

F ‖A‖2
F

,
s

L2
1‖�̃1‖op‖A‖op

)
≥ C6

rλNM(c∗ηN + λN2)

1 + C4ρκ2N min(r, κ2λN)
.(A.14)

Following the same procedure, we can show a upper bound for P ∗{|Q̃2 − EQ̃2| > s} with a
same order to (A.14). Combined with (A.9) and (A.11), we have for λ > 0 and some constant
C > 0:

PZ∗
{

L̃(Y |Z = z;�)

L̃(Y |Z = z∗;�)
> t

}
≤ exp

{
−C

rλNM(c∗ηN + λN2)

1 + C4ρκ2N min(r, κ2λN)

}
.

A.3. Proof of Theorem 5.3. Part One: we show that given the ‖α − z∗‖1 = cN1−φ , the
estimated marginal mean μ̂ql based on the nodes’ memberships α concentrates toward the
true μql with high probability for q, l ∈ {1, . . . ,K}. Based on the M-step in Algorithm 1,

|μ̂ql − μql| =
∣∣∣∣
∑M

m=1
∑N

i �=j αiqαjlY
m
ij∑M

m=1
∑N

i �=j αiqαjl

− μql

∣∣∣∣
≤

∣∣∣∣
∑M

m=1
∑N

i �=j αiqαjl(Y
m
ij − EYm

ij )∑M
m=1

∑N
i �=j αiqαjl

∣∣∣∣ +
∣∣∣∣
∑M

m=1
∑N

i �=j αiqαjlEYm
ij∑M

m=1
∑N

i �=j αiqαjl

− μql

∣∣∣∣.
Given ‖α − z∗‖ = cN1−φ , for each q = 1, . . . ,K , ‖αq − z∗

q‖1 ≥ c(N − N1−φ) for some

constant c. Combined with Condition C2, we have
∑N

i �=j αiqαjl � (N − N1−φ)2. For the nu-

merator of first term in previous inequality, we chose a ε = oM(1) such that γ = (Mε)−1/2 =
oM(1). Notice that Var(Ym

ij ) = O(ηN) where ηN is the sparsity parameter defined in Sec-
tion 5.1. Then

P

{∣∣∣∣∣
M∑

m=1

N∑
i �=j

αiqαjl

(
Ym

ij − EYm
ij

)∣∣∣∣∣ > γM
(
N − N1−φ)2

}

≤
∑M

m=1 Var(
∑N

i �=j αiqαjl(Y
m
ij − EYm

ij ))

γ 2M2(N − N1−φ)4

= εO

{∑M
m=1

∑
i �=j α2

iqα
2
j lηN + ∑M

m=1 ηN

∑
i �=j,u�=v αiqαjlαuqαvlρij,uv

M(N − N1−φ)4

}

= εO

{
ηNN2 + ληNN4

(N − N1−φ)4

}
< ε.

Therefore, with probability at least 1 − ε we have

∣∣∣∣
∑M

m=1
∑N

i �=j αiqαjl(Y
m
ij − EYm

ij )∑M
m=1

∑N
i �=j αiqαjl

∣∣∣∣ = O

{
γM(N − N1−φ)2

M(N − N1−φ)2

}
= O(γ ).



COMMUNITY DETECTION WITH DEPENDENT CONNECTIVITY 2417

For the second term, denote 1 = (1, . . . ,1)N×1 we have

∣∣∣∣
∑M

m=1
∑N

i �=j αiqαjlEYm
ij∑M

m=1
∑N

i �=j αiqαjl

− μql

∣∣∣∣
=

∣∣∣∣
∑M

m=1〈EYm − μql11T ,αqα
T
l 〉∑M

m=1
∑N

i �=j αiqαjl

∣∣∣∣
≤

∣∣∣∣
∑M

m=1 max(q,l),(q ′,l′) |μql − μq ′l′ |〈11T − z∗
qz∗T

l , αqα
T
l − z∗

qz∗T
l 〉∑M

m=1
∑N

i �=j αiqαjl

∣∣∣∣
= O

{‖αqαT
l − z∗

qz
∗T
l ‖1

(N − N1−φ)2

}
= O

{‖α − z∗‖1(‖αq‖1 + ‖z∗
l ‖1)

(N − N1−φ)2

}
= O

(
N−φ)

.

Therefore, given the nodes’ memberships satisfying ‖α − z∗‖1 = cN1−φ we have ‖μ̂ql −
μql‖ = oN(1) + oM(1) with probability at least 1 − ε.

Part Two: Given the nodes’ memberships estimation α satisfying ‖α − z∗‖1 = cN1−φ and
the marginal mean estimation μ̂ql with |μ̂ql − μql| = oN(1) + oM(1), let E stands for the
operator of E-step in Algorithm 1, we prove that

∥∥E(α) − z∗∥∥
1 ≤ c1NK exp

{
−c2

λ(c∗ηN + λN2)M

N

}
+ c3‖α − z∗‖1

(λNM)1−γ
,

with probability at least 1 − exp(−cλNM)− (λNM)−γ −oM(1), where γ ∈ (0,1), c, c1, c2,
c3 are positive constants, and c∗ is defined in Theorem 5.1.

Follow the notation introduced in Theorem 5.1 and Theorem 5.2, we further define that
w = max P (s)(Zi=q)

P (s)(Zi=l)
, i = 1, . . . ,N , q, l = 1, . . . ,K . We first consider the misclassification of

updated estimated membership for a specific node t , for example, E(zt ) from the current
estimation αt . We denote that α−t as the estimations of nodes’ memberships except node t

and denote the true membership of node t as b, that is, z∗
t = b. For the proposed approximate

likelihood L̃, we have

(A.15)

∥∥E(αt ) − z∗
t

∥∥
1

=
∣∣∣∣ P(zt = 1)L̃(Y |α−t ; zt = 1)∑K

q=1 P(zt = q)L̃(Y |α−t ; zt = q)
− 0

∣∣∣∣ + · · ·

+
∣∣∣∣ P(zt = b)L̃(Y |α−t ; zt = b)∑K

q=1 P(zt = K)L̃(Y |α−t ; zt = K)
− 1

∣∣∣∣
≤ 2

∑
q �=b P (zt = q)L̃(Y |α−t ; zt = q)∑K
q=1 P(zt = q)L̃(Y |α−t ; zt = q)

≤ 2w

K∑
q �=b

L̃(Y |α−t ; zt = q)

L̃(Y |α−t ; zt = b)

= 2w

K∑
q �=b

min
[
1, exp

{
log L̃(Y |α−t ; zt = q) − log L̃(Y |α−t ; zt = b)

}]
.

Then given that node t belongs to different communities while the estimated membership
for other nodes α−t are fixed, we decompose the proposed approximate likelihood into
marginal part and correlation part in the following: log L̃(Y |α−t ; zt ) = logLmar(Y |α−t ; zt )+
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logLcor(Y |α−t ; zt ). The marginal likelihood logLmar(Y |α−t ; zt ) can be expanded as

logLmar(Y |α−t ; zt = a)

=
M∑

m=1

[
log

K∏
q,l

N∏
i �=j �=t

{
μ

Ym
ij

ql (1 − μql)
(1−Ym

ij )}αiqαjl

︸ ︷︷ ︸
not depend on zt

+
K∏

q=1

N∏
i �=t

{
μ

Ym
it

qa (1 − μqa)
(1−Ym

it )}αiq

]
.

Therefore, the discrepancy among marginal likelihood is

logLmar(Y |α−t ; zt = a) − logLmar(Y |α−t ; zt = b)

=
M∑

m=1

K∑
q=1

N∑
i �=t

[
αiq

{
Ym

it log
μ̂qa

μ̂qb

+ (
1 − Ym

it

)
log

1 − μ̂qa

1 − μ̂qb

}]

=
M∑

m=1

K∑
q=1

N∑
i �=t

[
αiq

{
Ym

it log
μqa

μqb

+ (
1 − Ym

it

)
log

1 − μqa

1 − μqb

}]

+
M∑

m=1

K∑
q=1

N∑
i �=t

[
αiq

{
Ym

it log
μqaμ̂qb

μ̂qaμqb

+ (
1 − Ym

it

)
log

(1 − μqa)(1 − μ̂qb)

(1 − μ̂qa)(1 − μ̂qb)

}]
.

We can decompose the marginal discrepancy into four parts:

logLmar(Y |α−t ; zt = a) − logLmar(Y |α−t ; zt = b)

=
M∑

m=1

K∑
q=1

N∑
i �=t

(
αiq − z∗

iq

){
Ym

it − E
(
Ym

it

)}(
log

μqa

μqb

− log
1 − μqa

1 − μqb

)
︸ ︷︷ ︸

A1

+
M∑

m=1

K∑
q=1

N∑
i �=t

[(
αiq − z∗

iq

){
EYm

it log
μqa

μqb

+ (
1 − EYm

it

)
log

1 − μqa

1 − μqb

}]
︸ ︷︷ ︸

A2

+
M∑

m=1

K∑
q=1

N∑
i �=t

[
z∗
iq

{
Ym

it log
μqa

μqb

+ (
1 − Ym

it

)
log

1 − μqa

1 − μqb

}]
︸ ︷︷ ︸

A3

+
M∑

m=1

K∑
q=1

N∑
i �=t

[
αiq

{
Ym

it log
μqaμ̂qb

μ̂qaμqb

+ (
1 − Ym

it

)
log

(1 − μqa)(1 − μ̂qb)

(1 − μ̂qa)(1 − μ̂qb)

}]
︸ ︷︷ ︸

A4

.

For the correlation part, we consider the pairwise interaction terms in the logLcor(Y |α). No-
tice that for any within-community pairwise correlation |ρ̂ij,kg −ρij.kg| = oM(1) with proba-
bility at least 1−oM(1) then we replace ρ̂ij,kg within Lcor in Algorithm 1 by the true ρij,kg in
the following proof and the results hold with probability at least 1−oM(1). For m = 1, . . . ,M

and consider the node t ,

N∑
i<j ;k<g

(i,j) �=(k,g)

αiaαjaαkaαgaρij,kgŶ
m,a
ij Ŷ

m,a
kg = αta

N∑
i �=t

αia

N∑
k<g

αkaαgaρit,kgŶ
m,a
it Ŷ

m,a
kg + Am

a ,
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where Am
q does not depend on the membership of node t . We define the vectorized pairwise

interactions of edges associating with node t as Ym,a
t = {ρit,kgŶ

m,a
it Ŷ

m,a
kg |i �= t;k < g}. For

the correlation part logLcor(Y |α−t ; zt ), if αsq = 0, q �= a and αsa = 1:

logLcor(Y |α−t ; zt = a) =
M∑

m=1

{
1 +

K∑
q=1

max

(
N∑

i<j ;k<g
(i,j) �=(k,g)

αiqαjqαkqαgqρij,kgŶ
t,q
ij Ŷ

t,q
kg ,0

)}

= 1 +
M∑

m=1

K∑
q=1

Am
q

︸ ︷︷ ︸
A

+
M∑

m=1

N∑
i �=t

αia

N∑
k<g

αkaαgaρit,kgŶ
m,a
it Ŷ

m,a
kg︸ ︷︷ ︸

Ba

.

Through the Taylor expansion, the discrepancy of correlation information when node t be-
longs to different communities a and b:

logLcor(Y |α−t ; zt = a) − logLcor(Y |; zt = b) = log(1 + A + Ba) − log(1 + A + Bb)

= log
(

1 + Ba − Bb

1 + A + Bb

)
≤ CA(Ba − Bb),

where CA is a constant relating to the gradient of function log(1 + 1/x) at A. Then we let
ρ = minρij,kg and αa = (z1a, z2a, . . . , zNa), a ∈ {1, . . . ,K},

Ba − Bb =
M∑

m=1

N∑
i �=t

αia

N∑
k<g

αkaαgaρit,kgŶ
m,a
it Ŷ

m,a
kg −

M∑
m=1

N∑
i �=t

αib

N∑
k<g

αkbαgbρit,kgŶ
m,b
it Ŷ

m,b
kg

≤
M∑

m=1

(〈
αa ⊗ vec

(
αT

a αa

)
,Ym,a

t

〉 − 〈
αb ⊗ vec

(
αT

b αb

)
,Ym,b

t

〉)
.

For the simplicity of notation, we define and decompose the correlation discrepancy as fol-
lowing:

B :=
M∑

m=1

CA

(〈
αa ⊗ vec

(
αT

a αa

)
,Ym,a

t

〉 − 〈
αb ⊗ vec

(
αT

b αb

)
,Ym,b

t

〉)

= CA

M∑
m=1

(〈
αa ⊗ vec

(
αT

a αa

) − z∗
a ⊗ vec

(
z∗T
a z∗

a

)
,Ym,a

t

〉 − 〈
αb ⊗ vec

(
αT

b αb

) − z∗
b ⊗ vec

(
z∗T
b z∗

b

)
,Ym,b

t

〉)
︸ ︷︷ ︸

misclassification error: B1

+ CA

M∑
m=1

(〈
z∗
a ⊗ vec

(
z∗T
a z∗

a

)
,Ym,a

t

〉 − 〈
z∗
b ⊗ vec

(
z∗T
b z∗

b

)
,Ym,b

t

〉)
︸ ︷︷ ︸

estimation bias: B2

.

Notice that min{1, exp(x)} ≤ exp(x0) + ∑m−1
l=0

1−exp(x0)
m

1{x ≥ (1 − l/m)x0} and set x0 =
−α′MN , where α′ = λ(c∗ηN+λN2)

1+λN2 . Combined with (A.15) we have

(A.16)
∥∥α − z∗∥∥

1 ≤ 2wNK exp
(−α′MN

) + 2w

m−1∑
l=0

K∑
a=1

∑
b �=a

∑
i:z∗

i =b

1 − exp(−α′MN)

m
L,
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where L = 1{A + B ≥ m−l
m

x0}. For some specific T > 0,

(A.17)

1
(
A + B ≥ m − l

m
x0

)

= 1
(
A1 + A2 + A3 + A4 + B1 + B2 ≥ m − l

m
x0

)

≤ 1(A1 + B1 ≥ T ) + 1
(
A3 + B2 ≥ m − l

m
x0 − T − A2 − A4

)
.

We then transfer A3 + B2 into a quadratic form. For each community q , q = 1, . . . ,K and
each sample network m = 1, . . . ,M , define the transformations:

f +
q (x) =

√[
z∗
iq

{
Ym

it log
μqa

μqb

+ (
1 − Ym

it

)
log

1 − μqa

1 − μqb

}]
+
,

f −
q (x) =

√[
z∗
iq

{
Ym

it log
μqa

μqb

+ (
1 − Ym

it

)
log

1 − μqa

1 − μqb

}]
−
,

X+
m = {

f +
1

(
Ym

1t

)
, . . . , f +

1

(
Ym

nt

)
, f +

2

(
Ym

1t

)
, . . . , f +

2

(
Ym

Nt

)
, . . . , f +

K

(
Ym

1t

)
, . . . , f +

K

(
Ym

Nt

)}
,

X−
m = {

f −
1

(
Ym

1t

)
, . . . , f −

1

(
Ym

Nt

)
, f −

2

(
Ym

1t

)
, . . . , f −

2

(
Ym

Nt

)
, . . . , f −

K

(
Ym

1t

)
, . . . , f −

K

(
Ym

Nt

)}
.

Notice that the total number of nonzero terms in X+
m or X−

m is N . We define the node sets

ξ̃a = {
(i1, i2, i3)|z∗

i1a
z∗
i2a

z∗
i3a

= 1
}
, ξ̃b = {

(i1, i2, i3)|z∗
i1b

z∗
i2b

z∗
i3b

= 1
}
.

Note #|ξ̃a| = o(N3
a ) and #|ξ̃b| = o(N3

b ) where Na and Nb are number of node in community
a and b. We further define augmented edges vectors:

X̄+
m =

(
X+

m,

(
CA

4

√{
ρi1t,i2i3 Ŷ

m,a
i1t

Ŷ
m,a
i2i3

}
+

)
1×#|ξ̃a |︸ ︷︷ ︸

(i1,i2,i3)∈ξ̃a

,

(
CA

4

√{−ρi1t,i2i3 Ŷ
m,b
i1t

Ŷ
m,b
i2i3

}
+

)
1×#|ξ̃b|︸ ︷︷ ︸

(i1,i2,i3)∈ξ̃b

)
,

X̄−
m =

(
X−

m,

(
CA

4

√{
ρi1t,i2i3 Ŷ

m,a
i1t

Ŷ
m,a
i2i3

}
−

)
1×#|ξ̃a |︸ ︷︷ ︸

(i1,i2,i3)∈ξ̃a

,

(
CA

4

√{−ρi1t,i2i3 Ŷ
m,b
i1t

Ŷ
m,b
i2i3

}
−

)
1×#|ξ̃b|︸ ︷︷ ︸

(i1,i2,i3)∈ξ̃b

)
.

Denote the covariance of X̄+
m and X̄−

m as �̄1 and �̄2. Note that each element in X̄+
m or X̄−

m is a
bounded binary random variable. Similarly, X̄+

m and X̄−
m are subgaussian vectors. Therefore,

A3 + B2 =
M∑

m=1

(〈
X̄+

m, X̄+
m

〉 − 〈
X̄−

m, X̄−
m

〉) = Q̄1 − Q̄2,

E(A3 + B2) = EQ̄1 − EQ̄2.

Denote s = m−l
m

x0 − T − A2 − A4 − E(A3 + B2), we estimate E(A3 + B2), A2 and A4 in
the following. Given z∗

t = b and the result in (A.7), we have for some constant c > 0 and
q = 1, . . . ,K :

E

[{
Ym

it log
μqa

μqb

+ (
1 − Ym

it

)
log

1 − μqa

1 − μqb

}]

= μqb log
μqa

μqb

+ (1 − μqb) log
1 − μqa

1 − μqb

< −c < 0.
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Then

EA3 =
M∑

m=1

K∑
q=1

N∑
i �=t

[
z∗
iq

{
μqb log

μqa

μqb

+ (1 − μqb) log
1 − μqa

1 − μqb

}]
< −c∗ηN(N − 1)M.

Given that edges from different communities are independent and correlation density λ, there
exists a constant C > 0 such that

EB2 =
M∑

m=1

CA

[〈
αa ⊗ vec

(
αT

a αa

)
,E

{
Ym,a

t

}〉 − 〈
αb ⊗ vec

(
αT

b αb

)
,E

{
Ym,b

t

}〉]

= −
M∑

m=1

CA

〈
αb ⊗ vec

(
αT

b αb

)
,E

{
Ym,b

t

}〉 ≤ −CλN3
b .

Therefore, −E(A3 + B2) ≥ c′(c∗ηNN + λN3)M for some positive constant c′. Based on
condition C1 that μql , q, l = 1, . . . ,K are bounded and condition C4, it can be shown that

|EYm
it log μqa

μqb
+ (1 − EYm

it ) log 1−μqa

1−μqb
| is bounded then |A2| = O(N1−φM). Based on that

|μ̂ql − μql| = oN(1) + oM(1), we have

log
μqaμ̂qb

μ̂qaμqb

= oN(1) + oM(1), log
(1 − μqa)(1 − μ̂qb)

(1 − μ̂qa)(1 − μ̂qb)
= oN(1) + oM(1).

Then we have

|A4| =
∣∣∣∣∣

M∑
m=1

K∑
q=1

N∑
i �=t

[
αiq

{
Ym

it log
μqaμ̂qb

μ̂qaμqb

+ (
1 − Ym

it

)
log

(1 − μqa)(1 − μ̂qb)

(1 − μ̂qa)(1 − μ̂qb)

}]∣∣∣∣∣
= NoM(M) + MoN(N).

Therefore, we have |A2 + A4| = oN,M(NM). We choose T = −E(A3+B2)
2 and x0 = −α′MN

where α′ > 0. Then m−l
m

x0 = oN {E(A3 + B2)}. Therefore, E(A3 + B2) is dominant term in
s such that s ≥ −C′λN3 where C′ > 0 is a constant. Follow a similar discussion in (A.10)
and condition C3, we have the upper bound for ‖�̄1‖op:

‖�̄1‖op ≤ c0
(
1 + c1λN2)

.

In addition, from #|X+
m| = N , #|ξ̄a| = o(N3

a ), #|ξ̄b| = o(N3
b ) and condition C3, we have the

upper bound for ‖�̄1‖2
F :

‖�̄1‖2
F ≤ C1N

(
1 + c1λN2) + C2N

3(
1 + c2λN2)

,

where C1, C2, c1, c2 are constants. Then we estimate the upper bound for the second term
in (A.17) following the similar decentralized quadratic decomposition in Theorem 5.1 and
Theorem 5.2:

P

(
A3 + B2 ≥ m − l

m
x0 − t − A2 − A4

)
= P

{
(Q̄1 − EQ̄1) − (Q̄2 − EQ̄2) > Ms

}
≤ 1

2
P

{
|Q̄1 − EQ̄1| > Ms

2

}
+ 1

2
P

{
|Q̄2 − EQ̄2| > Ms

2

}
.

According to the generalized Hanson–Wright inequality in ([16]):

(A.18)
1

2
P

{|Q̄1 − EQ̄1| > s
} ≤ exp

{
−C min

(
s2M2

L̄4
1‖�̄1‖2

F ‖A‖2
F

,
sM

L̄2
1‖�̄1‖op‖A‖op

)}
,
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where A = IM×M and L̄1 is sub-Gaussian norm of X̄+
m . Notice that

s2M2

L̄4
1‖�̄1‖2

F ‖A‖2
F

≥ (C′λN3)2M2

L̄4
1{C1N(1 + c1λN2) + C2N3(1 + c2λN2)}M ,

sM

L̄2
1‖�̄1‖op‖A‖op

≥ C′λN3M

L̄2
1c0(1 + c3λN2)

.

Given λN
φ
2 > 1, we have for some constant C∗ > 0,

C min
(

s2M2

L̄4
1‖�̄1‖2

F ‖A‖2
F

,
sM

L̄2
1‖�̄1‖op‖A‖op

)
≥ C∗α′MN.

The upper bound for P{|Q̄2 − EQ̄2| > Ms
2 } can be similarly obtained. Therefore, there exist

constant C′

E

{
K∑

a=1

∑
b �=a

∑
i:z∗

i =b

1
(
A3 + B2 ≥ m − l

m
x0 − T − A2 − A4

)}

=
K∑

a=1

∑
b �=a

∑
i:z∗

i =b

P

(
A3 + B2 ≥ m − l

m
x0 − T − A2 − A4

)

= O
{
KN exp

(−C∗α′MN
)} = O

{
exp

(−C′α′MN
)}

.

By applying Markov inequality, we have

P

{
K∑

a=1

∑
b �=a

∑
i:z∗

i =b

1
(
A3 + B2 ≥ m − l

m
x0 − T − A2 − A4

)
≥ exp

(−C′α′MN/2
)}

≤ exp
(−C′α′MN/2

)
.

Therefore, with probability at least 1 − exp(−C′α′MN/2),

(A.19)
K∑

a=1

∑
b �=a

∑
i:z∗

i =b

1
(
A3 + B2 ≥ m − l

m
x0 − T − A2 − A4

)
≤ exp

(−C′α′MN/2
)
.

Next, we estimate the term P(A1 + B1 ≥ t). Notice

E(A1) = E

[
M∑

m=1

K∑
q=1

N∑
i �=t

(
αiq − z∗

iq

){
Ym

it − E
(
Ym

it

)}(
log

μqa

μqb

− log
1 − μqa

1 − μqb

)]
= 0,

E(B1) = CA

M∑
m=1

[〈
αa ⊗ vec

(
αT

a αa

) − z∗
a ⊗ vec

(
z∗T
a z∗

a

)
,E

{
Ym,a

t

}〉
− 〈

αb ⊗ vec
(
αT

b αb

) − z∗
b ⊗ vec

(
z∗T
b z∗

b

)
,E

{
Ym,b

t

}〉]
.

Given condition C4 such that ‖α − z∗‖1 = cN1−φ , 0 < φ < 1,

B1 = CA

M∑
m=1

{〈
αa ⊗ vec

(
αT

a αa

) − z∗
a ⊗ vec

(
z∗T
a z∗

a

)
,Ym,a

t

〉
− 〈

αb ⊗ vec
(
αT

b αb

) − z∗
b ⊗ vec

(
z∗T
b z∗

b

)
,Ym,b

t

〉}
.
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Notice that for any community a = 1, . . . ,K ,∥∥(
vec

(
αT

a αa

) − vec
(
z∗T
a z∗

a

))∥∥
2 ≤ ∥∥αa ⊗ (

αa − z∗
a

)∥∥
2 + ∥∥(

αa − z∗
a

) ⊗ z∗
a

∥∥
2

≤ ‖αa‖2
∥∥(

αa − z∗
a

)∥∥
2 + ∥∥(

αa − z∗
a

)∥∥
2

∥∥z∗
a

∥∥
2,∥∥E

(
Ym,a

t

)∥∥
2 ≤ N3/2

μ̂aa(1 − μ̂aa)
.

Therefore, we have〈
αa ⊗ vec

(
αT

a αa

) − z∗
a ⊗ vec

(
z∗T
a z∗

a

)
,E

{
Ym,a

t )
}〉

≤ ∥∥αa ⊗ vec
(
αT

a αa

) − z∗
a ⊗ vec

(
z∗T
a z∗

a

)∥∥
2

∥∥E
{
Ym,a

t

}∥∥
2

≤ (∥∥αa ⊗ vec
(
αT

a αa

) − vec
(
z∗T
a z∗

a

))∥∥
2 + ∥∥(

αa − z∗
a

) ⊗ vec
(
z∗T
a z∗

a

)∥∥
2)

∥∥E
{
Ym,a

t

}∥∥
2

≤ ∥∥αa − z∗
a

∥∥
2 · (‖αa‖2

2 + ∥∥z∗
a

∥∥2
2 + ‖αa‖2

∥∥z∗
a

∥∥
2

) · ∥∥E
(
Ŷ

m,a·t
)∥∥

2 · ∥∥E
(
Ŷ m,a)∥∥

2

≤ 3N ∗ N3/2

μ̂aa(1 − μ̂aa)

∥∥αa − z∗
a

∥∥
2.

Since ‖αa − z∗
a‖2 =

√
‖αa − z∗

a‖2
2 ≤ √‖α − z∗‖1 for any a = 1, . . . ,K , then based on condi-

tion C4 for some constant C > 0, ∣∣E(B1)
∣∣ ≤ CN3− φ

2 .

We define edge vectors Ỹm, m = 1, . . . ,M and membership vector θa,b as

Ỹm = {
Ym·t − E

(
Ym·t

)
, . . . , Ym·t − E

(
Ym·t

)︸ ︷︷ ︸
NK

,Ym,a
t Ym,b

t

}
,

θa,b =
[(

αiq − z∗
iq

)(
log

μqa

μqb

− log
1 − μqa

1 − μqb

)
︸ ︷︷ ︸

i=1...,N

, . . . ,
(
αiK − z∗

iK

)(
log

μKa

μKb

− log
1 − μKa

1 − μKb

)
︸ ︷︷ ︸

i=1...,N

,

CA

{
αa ⊗ vec

(
αT

a αa

) − z∗
a ⊗ vec

(
z∗T
a z∗

a

)}
,CA

{
αb ⊗ vec

(
αT

b αb

) − z∗
b ⊗ vec

(
z∗T
b z∗

b

)}]
.

Notice for a, b = 1, . . . ,K , we have

‖θa,b‖2
2 ≤ μ2

∥∥α − z∗∥∥2
2 + ∥∥αa ⊗ vec

(
αT

a αa

) − z∗
a ⊗ vec

(
z∗T
a z∗

a

)∥∥2
2

+ ∥∥αb ⊗ vec
(
αT

b αb

) − z∗
b ⊗ vec

(
z∗T
b z∗

b

)∥∥2
2

≤ μ2
∥∥α − z∗∥∥

1 + C1N
2(∥∥αa − z∗

a

∥∥
1 + ∥∥αb − z∗

b

∥∥
1

)
,

where μ2 := max{(log μqa

μqb
− log 1−μqa

1−μqb
)}, q = 1, . . . ,K and C1 > 0 is a constant. Then we

can transform Var(A1 + B1) into

Var(A1 + B1) =
M∑

m=1

Var(θa,bỸm) =
M∑

m=1

θT
a,b Cov(Ỹm, Ỹm)θa,b ≤ ∥∥Cov(Ỹm, Ỹm)

∥∥
op‖θa,b‖2

2.

From the condition C3 and same discussion in (A.10), we have for some constant C > 0 and
c > 0: ∥∥Cov(Ỹm, Ỹm)

∥∥
op ≤ C

(
1 + cλN2)

.
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Given 1
λ

= o(N
φ
2 ), we have E(A1 + B1) = oN(E(A3 + B2)) then the E(A3 + B2) is dom-

inating in the term {T − E(A1 + B1)}2. Based on the Markov inequality, for some constant
C2 > 0,

P(A1 + B1 ≥ T ) ≤ M Var(A1 + B1)

{T − E(A1 + B1)}2 ≤
∑M

m=1 ‖Cov(Ỹm, Ỹm)‖op‖θa,b‖2
2

M2{c′(N + λN3)}2

≤ C(1 + cλN2){μ2‖α − z∗‖1 + C1N
2(‖αa − z∗

a‖1 + ‖αb − z∗
b‖1)}

(c′(N + λN3))2M

≤ 2Cc{μ2‖α − z∗‖1 + C1N
2(‖αa − z∗

a‖1 + ‖αb − z∗
b‖1)}

c′2(1 + √
λN2)2M

≤ C2
(‖αa − z∗

a‖1 + ‖αb − z∗
b‖1)

λN2M
.

For γ ∈ (0,1), by applying Markov inequality we have

P

{
K∑

a=1

∑
b �=a

∑
i:z∗

i =b

1(A1 + B1 ≥ T ) >
‖α − z∗‖1

(λNM)1−γ

}

≤
∑K

a=1
∑

b �=a

∑
i:z∗

i =b C2
(‖αa−z∗

a‖1+‖αb−z∗
b‖1)

λN2M

‖α−z∗‖1
(λNM)1−γ

=
C2‖α−z∗‖1

λNM
‖α−z∗‖1

(λNM)1−γ

= C2(λNM)−γ .

Therefore, with probability at least 1 − (λNM)−γ we have

K∑
a=1

∑
b �=a

∑
i:z∗

i =b

1(A1 + B1 ≥ T ) ≤ ‖α − z∗‖1

(λNM)1−γ
.(A.20)

Combine (A.19), (A.20), (A.16) and α′ = λ(c∗ηN+λN2)

1+λN2 , we have with probability at least

1 − exp(−cλNM) − (λNM)−γ − oM(1)

∥∥E(α) − z∗∥∥
1 ≤ c1NK exp

{−c2α
′NM

} + c3‖α − z∗‖1

(λNM)1−γ
,

where c, c1, c2, c3 are positive constants. A combination of results from Part One and Part
Two immediately implies the theorem.
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SUPPLEMENTARY MATERIAL

Supplementary material: “Community detection with dependent connectivity” (DOI:
10.1214/20-AOS2042SUPP; .pdf). All remaining proofs and memberships of brain regions
based on different methods in Section 7.2 are provided in the Supplementary Material.
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