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ABSTRACT

We formulate a version of the integral Hodge conjecture for categories, prove the
conjecture for two-dimensional Calabi—Yau categories which are suitably deformation
equivalent to the derived category of a K3 or abelian surface, and use this to deduce
cases of the usual integral Hodge conjecture for varieties. Along the way, we prove
a version of the variational integral Hodge conjecture for families of two-dimensional
Calabi—Yau categories, as well as a general smoothness result for relative moduli spaces
of objects in such families. Our machinery also has applications to the structure of
intermediate Jacobians, such as a criterion in terms of derived categories for when they
split as a sum of Jacobians of curves.

1. Introduction

Let X be a smooth projective complex variety. The Hodge conjecture in degree n for X states
that the subspace of Hodge classes in H?"(X, Q) is generated over Q by the classes of algebraic
cycles of codimension n on X . This conjecture holds for n = 0 and n = dim(X) for trivial reasons,
for n =1 by the Lefschetz (1,1) theorem, and for n = dim(X) — 1 by the case n =1 and the
hard Lefschetz theorem. In all other degrees, the conjecture is far from being known in general,
and is one of the deepest open problems in algebraic geometry.

There is an integral refinement of the conjecture, which is in fact the version originally
proposed by Hodge [Hod52]. Let Hdg" (X, Z) C H?"(X,Z) denote the subgroup of integral Hodge
classes, consisting of cohomology classes whose image in H>"(X, C) is of type (n,n) for the Hodge
decomposition. Then the cycle class map CH™(X) — H?"(X, Z) factors through Hdg™ (X, Z). The
integral Hodge conjecture in degree n states that the image of this map is precisely Hdg" (X, Z).
This implies the rational version from above, and is known for n = 0,1,dim(X) for the same
reasons. However, in all other degrees, the integral Hodge conjecture is false in general. Indeed,
Atiyah and Hirzebruch constructed the first of many counterexamples [AH62, BCC92, SV05,
CV12, Tot13, Sch19b, BO20] showing that Hodge’s original hope is quite far from being true.

The failure of the integral Hodge conjecture is measured by the cokernel V(X)) of the
map CH"(X) — Hdg"(X,Z), which we call the degree n Voisin group of X. This is a finitely
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generated abelian group, predicted to be finite by the Hodge conjecture. The group V"(X) is
especially interesting for n = 2 or n = dim(X) — 1 because then it is birationally invariant, as
observed by Voisin [SV05]. In particular, for rational varieties V(X vanishes in these degrees,
that is, the integral Hodge conjecture holds. This is the first in a line of results which show
that, despite the counterexamples mentioned above, the integral Hodge conjecture may hold
under interesting geometric conditions. For instance, for n = 2 the conjecture is known if X is a
threefold of negative Kodaira dimension or of Kodaira dimension 0 with H(X, Kx) # 0 [Voi06,
Tot21], a fibration in quadrics over a surface [CV12], or a fibration in at worst nodal cubic
threefolds over a curve [Voil3]. For n = dim(X) — 1, the conjecture is known if X is a Fano
fourfold [HV11], a Fano variety of index dim(X) — 3 and dim(X) =5 or dim(X) > 8 [HV11,
Flo13], or a hyperkéhler variety of K3 or generalized Kummer type [MO20].
We highlight two general questions suggested by these results.

e When does the integral Hodge conjecture hold for varieties with Kx = 07
e When does the integral Hodge conjecture hold in degree 2 for Fano fourfolds?

The second question is of particular importance because its failure obstructs rationality. The main
goal of this paper is to give a positive answer to the first question for certain ‘noncommutative
surfaces’, and to use this to provide positive answers to the second question for interesting
examples. To do so, we develop Hodge theory for suitable categories, introduce a technique
involving moduli spaces of objects in categories to prove the integral Hodge conjecture, and
prove a smoothness result for such moduli spaces in the two-dimensional Calabi—Yau case that
also has applications to hyperkahler geometry. Our Hodge-theoretic apparatus for categories can
also be applied to questions about the odd-degree cohomology of varieties, such as when an
intermediate Jacobian splits as a sum of Jacobians of curves.

1.1 The integral Hodge conjecture for categories

We will be concerned with an analogue of the above story for a ‘noncommutative smooth proper
complex variety’, that is, an admissible subcategory € C Dpere(X) of the derived category of
a smooth proper complex variety X. For any such €, we show that the (the zeroth homotopy
group of ) Blanc’s topological K-theory [Blal6] gives a finitely generated abelian group KBOP(G)
which is equipped with a canonical weight 0 Hodge structure, whose Hodge decomposition is
given in terms of Hochschild homology. Moreover, the natural map from the Grothendieck group
Ko(C) — KBOP(G) factors through the subgroup Hdg(C,Z) C KBOP((?) of integral Hodge classes.
The integral Hodge conjecture for € then states that the map Ko(C) — Hdg(C, Z) is surjective,
while the Hodge conjecture for C states that this is true after tensoring with Q.

When € = Dpe¢(X), after tensoring with Q the construction Ko(€) — Hdg(C,Z) recovers
the usual cycle class map CH*(X) ® Q — Hdg*(X, Q) to the group of rational Hodge classes
of all degrees. Therefore, the Hodge conjecture in all degrees for X is equivalent to the Hodge
conjecture for Dpere(X). The integral Hodge conjectures for X and Dpes(X) are more subtly,
but still very closely, related (Proposition 5.16).

The key motivating example for us is the Kuznetsov component Ku(X) C Dpert(X) of a cubic
fourfold X C P?, defined by the semiorthogonal decomposition

Dper (X) = (Ku(X), 0x, 0x(1), 0x(2)) -

Kuznetsov [Kuz10] proved that Ku(X) is a two-dimensional Calabi-Yau (CY2) category, that
is, Ku(X) satisfies Serre duality in the form

Ext!(E,F) = Ext* (F,E)" for E,F € Ku(X),
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and is connected in the sense that its zeroth Hochschild cohomology is one-dimensional. The
simplest example of a CY2 category is Dperf(1) where T' is a K3 or abelian surface, or more
generally the twisted derived category Dper¢ (7, ) for a Brauer class a € Br(7"). Kuznetsov proved
that for special X the category Ku(X) is equivalent to such an example, while by [AT14] no
such equivalence exists for very general X. Since then a number of further CY2 categories
have been discovered (see §6.2), the next most studied being the Kuznetsov component of a
Gushel-Mukai (GM) fourfold (a Fano fourfold that generically can be written as the intersection
of the Grassmannian Gr(2,5) with a hyperplane and a quadric). Recently, CY2 categories have
attracted a great deal of attention due to their connections to birational geometry, Hodge theory,
and the construction of hyperkéhler varieties [AT14, Huy17, HR19, BLMS22, LPZ20, BLM*21,
KuPel8, PPZ19].

Inspired by work of Addington and Thomas [AT14], for any CY2 category € we define the
Mukai Hodge structure H(C,Z) as the weight 2 Tate twist of K{®(C). The group H(C,Z) is
also equipped with a natural pairing (—, —), defined as the negative of the Euler pairing. In the
case where € = De,¢(T) for a K3 or abelian surface T, this recovers the classical Mukai Hodge
structure.

Our first main result gives a criterion for the validity of the integral Hodge conjecture for a
CY2 category. This criterion is of a variational nature, and depends on the notion of a family
of CY2 categories. In general, the notion of a family of categories can be formalized as an
S-linear admissible subcategory € C Dpers(X ), where X — S is a morphism of varieties. There
is a well-behaved notion of base change for such categories, which gives rise to a fiber category
Cs C Dper(Xs) for any point s € S. When X — S is smooth and proper, we show that a relative
version of topological K-theory from [Moul9] gives a local system KBOP(G /S) on S underlying a
canonical variation of Hodge structures of weight 0, which fiberwise recovers the Hodge structure
on K{P(€,) from above.

We say € C Dpert(X) is a CY2 category over S if X — S is smooth and proper and the fibers
Cs are CY2 categories. For example, if X — S is a family of cubic fourfolds, then, similarly to
the case where the base is a point, one can define a CY2 category Ku(X) C Dper(X) over S
with fibers Ku(X)s ~ Ku(X;) (Example 6.7). As in the absolute case, we define the Mukai local
system H(€/S,Z) of a CY2 category € over S as a Tate twist of Ki*P(€/S). We can now state
our first main theorem.

THEOREM 1.1. Let € be a C'Y2 category over C. Let v € Hdg(C, Z). Assume there exists a CY2
category D over a complex variety S with points 0,1 € S(C) such that:

(1) Do ~ C;
(2) Dy ~ Dpert(T, o) where T is a K3 or abelian surface and o € Br(T') is a Brauer class;
(3) v remains of Hodge type along S, that is, extends to a section of the local system H(D /S, Z).

Further, assume (v,v) > —2 or (v,v) > 0 according to whether T is a K3 or abelian surface.
Then v is algebraic, that is, lies in the image of Ko(C) — ﬁ(@, Z).

In particular, if the cokernel of the map Ko(C) — Hdg(C,Z) is generated by elements v as
above, then this map is in fact surjective, that is, the integral Hodge conjecture holds for C.

In practice, this reduces the integral Hodge conjecture for a given CY2 category to checking
that it deforms within any Hodge locus to a category of the form Dpere(T, o) (see Remark 8.3).
We apply the theorem to prove the integral Hodge conjecture for the Kuznetsov components of
cubic and GM fourfolds, and use this to deduce the following consequence.
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COROLLARY 1.2. The integral Hodge conjecture in degree 2 holds for cubic fourfolds and GM
fourfolds.

This result is new for GM fourfolds. For cubic fourfolds it was originally proved by Voisin
[V0i07, Theorem 18], and was recently reproved in [BLM™21] using the construction of Bridgeland
stability conditions on the Kuznetsov component and the theory of stability conditions in families.
One of the main contributions of this paper is to show that the particular geometry of cubic
fourfolds and the difficult ingredients about stability conditions can be excised from the proof
of [BLM™21], giving a general tool for attacking cases of the integral Hodge conjecture.

Corollary 1.2 is natural from the point of view of rationality problems. One of the biggest
open conjectures in classical algebraic geometry is the irrationality of very general cubic fourfolds.
The same conjecture for GM fourfolds is closely related and expected to be equally difficult.
Corollary 1.2 shows there is no obstruction to rationality for these fourfolds coming from the
integral Hodge conjecture. Our argument applies more generally to any fourfold whose derived
category decomposes into a collection of exceptional objects and a CY2 category that deforms
within any Hodge locus to one of the form Dpere(T, ). This jibes with the fact that, despite
many recent advances on the rationality problem [Voil5, CP16, Tot16, HPT18, Sch19a, Sch19b,
NS19, KT19], irrationality results remain out of reach for such fourfolds.

Our methods also lead to bounds on the torsion order of Voisin groups. As illustrations, we
show that V3(X) is 2-torsion for X a GM sixfold (Corollary 8.4), and that V*(X) is 6-torsion
for X € P? x P3 x P? a smooth (1,1,1) divisor (Corollary 6.14).

1.2 The variational integral Hodge conjecture and moduli spaces of objects

We now explain the idea of the proof of Theorem 1.1, which involves some results of independent
interest. The first is an instance of the variational integral Hodge conjecture for categories.
Recall that an object E of the derived category of a variety is called simple if Hom(F, E) is
one-dimensional, and universally gluable if Ext<°(E, F) = 0.

THEOREM 1.3. Let € be a CY2 category over a complex variety S. Let ¢ be a section of the
local system ﬁ(G/S, Z). Assume that there exists a complex point 0 € S(C) such that the fiber
o € ﬁ(@g, Z) is the class of a simple universally gluable object of Cy. Then ¢ € ﬁ((‘?s, Z) is
algebraic for every s € S(C), that is, lies in the image of Ko(Cs) — H(E,, Z).

This implies Theorem 1.1 because twisted derived categories of K3 or abelian surfaces always
contain many simple universally gluable objects.

Our proof of Theorem 1.3 relies on moduli spaces of objects in categories. For any S-linear
admissible subcategory € C Dpers(X) where X — S is a smooth proper morphism of complex
varieties, Lieblich’s work [Lie06] gives an algebraic stack M(C/S) — S parameterizing universally
gluable objects in €. For any section ¢ of the local system KBOP(G /S), there is an open substack
M(C/S, ) parameterizing objects of class ¢p. We prove that if there is a point 0 € S(C) such
that the fiber ¢y can be represented by the class of an object in €y at which the morphism
M(C/S,p) — S is smooth, then ¢ is algebraic for every s € S(C) (Proposition 8.1). This gives
a general method for proving the variational Hodge conjecture for categories, which can be
thought of as a noncommutative version of Bloch’s method from [Blo72].

In his seminal paper [Muk84], Mukai proved that the moduli space of simple sheaves on
a K3 or abelian surface is smooth. More recently, Inaba generalized this to moduli spaces of
objects in the derived category of such a surface [Inall]. The following further generalization
replaces a fixed surface with a family of CY2 categories, and implies Theorem 1.3. We write
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sM(C/S,¢) C M(C/S, ) for the open substack of simple objects, which is a G,-gerbe over an
algebraic space sM(C/S, ¢) (Lemma 7.3).

THEOREM 1.4. Let C be a CY2 category over a complex variety S. Let ¢ be a section of the
local system H(C/S,Z) whose fibers ps € H(Cs,Z) are Hodge classes for all s € S(C). Then
sM(C/S, ¢) and sM(C/S, ) are smooth over S.

In Theorem 1.4, it is in fact enough to assume a single fiber of ¢ is a Hodge class, because
then all fibers are (Lemma 5.22).

Remark 1.5. Theorem 1.4 plays a crucial role in recent constructions of hyperkéahler varieties as
moduli spaces of Bridgeland stable objects in CY2 categories [BLM 21, PPZ19]. Namely, the
theorem allows one to prove facts (e.g. nonemptiness) about such moduli spaces by deformation
from a special CY2 category (e.g. the derived category of a K3 surface). The special case of
Theorem 1.4 where € is the Kuznetsov component of a family of cubic fourfolds was first proved
in [BLM ™21, Theorem 3.1], using properties of cubic fourfolds. Our result does not use anything
about the ambient variety containing € in its derived category, and thus provides a general tool
for studying moduli spaces of objects in families of CY2 categories, which has already been put
to use in [PPZ19].

This paper’s approach to the (variational) integral Hodge conjecture via moduli spaces of
objects may be useful in other contexts. It would be interesting, for instance, to apply this method
to varieties whose Kuznetsov components are not CY2 categories. In a different direction, we
plan to develop in a sequel to this paper a version of our results in positive characteristic, with
applications to the integral Tate conjecture.

1.3 Intermediate Jacobians

The Hodge conjecture concerns the even-degree cohomology of a variety, but there are also many
interesting questions about the Hodge structures on odd-degree cohomology. The machinery
developed in this paper gives a version of Hodge theory in odd degree for noncommutative
varieties. Namely, for an admissible subcategory € C Dpe,(X) of the derived category of a smooth
proper complex variety X and any integer n, we show that the nth homotopy group of Blanc’s
topological K-theory gives a finitely generated abelian group K}f’p(e) which is equipped with a
canonical weight —n Hodge structure, whose Hodge decomposition is given in terms of Hochschild
homology. These Hodge structures are Tate twists of each other for varying even or odd n, so
there are essentially only two of interest: Ki™(€) discussed above, and K{°P(€).

When € = Dpe(X), the rational Hodge structure K|°?(C) ® Q recovers the rational odd
cohomology H°(X,Q), with the weight —1 Hodge structure obtained by taking appropri-
ate Tate twists in each degree. The integral relation is more subtle, but at least assuming
that X is odd-dimensional and its odd-degree cohomology is concentrated in degree dim(X),
K‘fﬁim( x) (Dpert (X)) recovers the polarized Hodge structure HH™X) (X Z) (Proposition 5.23).

This has many applications to the structure of intermediate Jacobians. Recall that if X
is a smooth proper complex variety, then for any odd integer k£ the intermediate Jacobian
JF(X) is a complex torus constructed from the Hodge structure H*(X,Z), which is in fact a
canonically principally polarized abelian variety if the Hodge decomposition only has two terms
(i.e. H¥*(X,C) = HP9(X) @ H9P(X) for some p, q) and k = dim(X). Intermediate Jacobians have
vast applications in algebraic geometry, ranging from irrationality results [CGT72, Bea77] and
Torelli theorems [Deb89, Voi88, Deb90] to infinite generation results for algebraic cycles [Cle83,
Voi00]. As a sample application of our techniques, we prove the following theorem.
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THEOREM 1.6. Let X be a smooth proper complex variety of odd dimension n, such that
H¥(X,Z) = 0 for all odd k < n. Assume there is a semiorthogonal decomposition

Dperf(X) = (Dperf(ifl)a v 7Dperf(Ym)>
where each Y; is a smooth proper complex variety of dimension n;, such that:

e ifn; is odd then H*(Y;, Z) = 0 for all odd k < n;; and
e if n; is even then H°4(Y;, Q) = 0.

Then there is an isomorphism of complex tori

J(X) = P Jm). (1.1)
n; odd
If we further assume that there is a fixed integer t > 0 such that for all odd n; we have
H"i(Y;, C) = HP»%(Y;) @ H%Pi(Y;) where p; — q; = 2t + 1, then H"(X, C) = HP4(X) & H?P(X)
where p — q = 2t + 1 and (1.1) is an isomorphism of principally polarized abelian varieties.

As an example, when combined with Bondal and Orlov’s description [BO95, Theorem 2.9] of
the derived category of an odd-dimensional intersection of two quadrics X, Theorem 1.6 recovers
Reid’s result identifying the intermediate Jacobian of X with the Jacobian of the associated
hyperelliptic curve [Rei72].

We highlight the following special case of our results.

COROLLARY 1.7. Let X be a smooth proper complex threefold such that H'(X,Z) = 0. Assume
there is a semiorthogonal decomposition

Dpert(X) = (Dpert(C1), - - -, Dpert (Cr), Ens - .., Eg) (1.2)

where each C; is a smooth proper curve and Ej € Dye,(X) is an exceptional object. Then there
is an isomorphism

BX)y=JC) e J(C,) (1.3)

of principally polarized abelian varieties. If we further assume that H®(X,Z) = 0, then we have
H3(X, Z)tors = 0, that is, H3(X, Z) is torsion-free.

The first part of Corollary 1.7 is an immediate consequence of Theorem 1.6, while we prove
the second part in § 5.3 as a consequence of a result (Proposition 5.23) relating odd cohomology
to odd topological K-theory.

Remark 1.8. Let X be a rationally connected smooth proper complex threefold. Then
HY(X,Z) = H?(X,Z) = 0. Hence Corollary 1.7 shows that the existence of a semiorthogonal
decomposition of the form (1.2) implies that X satisfies both the Clemens-Griffiths criterion for
rationality (the splitting of the intermediate Jacobian as a sum of Jacobians of curves) [CGT72]
and the Artin-Mumford criterion (the vanishing of H3(X, Z)ors) [AM72]. Kuznetsov’s rationality
conjectures [Kuzl6a, Kuzl0] (see also [BB12]) predict that if X is rational, then a semiorthogo-
nal decomposition of the form (1.2) exists. Thus, our result shows that Kuznetsov’s conjectural
criterion implies the classical two.

Theorem 1.6 and Corollary 1.7 (as well as Proposition 5.23 below) greatly generalize many
results in the literature relating intermediate Jacobians to derived categories [BB13, BB12, BT'16,
KuPr21]. For instance, the main result of [BB13] is the splitting (1.3) in the very special case
where X is a standard conic bundle over a rational surface with a decomposition (1.2) that is
suitably compatible with the conic bundle structure; similarly, [KuPr21, Proposition 8.4] gives
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the splitting (1.3) in the case where X is a rationally connected threefold and there is a single
curve in the decomposition (1.2).

More generally, our results can be used to relate intermediate Jacobians of varieties whose
derived categories have a semiorthogonal component in common. Bernardara and Tabuada
[BT16] previously studied this problem using noncommutative motives, but in general their
results only give isogenies between the algebraic parts of intermediate Jacobians, which can only
be shown to be isomorphisms under hypotheses that are difficult to check in practice. Our results,
on the other hand, only require cohomological hypotheses which are easy to check, give simple
proofs of the applications considered in [BT16], and also apply to many cases inaccessible by the
results there (see Example 5.26).

As a final application, we give a simple proof of a recent result of Debarre and Kuznetsov
[DK20a], which identifies the intermediate Jacobians of odd-dimensional GM varieties that are
‘generalized partners or duals’ (Theorem 5.29). Answering a question of Kuznetsov (see [DK20a,
Remark 1.2]), we show that this follows from the equivalence proved in [KuPel9, Theorem 1.6]
between the Kuznetsov components of such varieties.

The results of this paper suggest developing other aspects of the Hodge theory of cate-
gories for applications to classical algebraic geometry. For instance, it would be interesting to
study Abel-Jacobi maps taking values in the intermediate Jacobians of categories (as defined in
Definition 5.24); we leave this to future investigation.

1.4 Organization of the paper

In §2 we begin by reviewing the framework of categories linear over a base scheme. In §§3
and 4 we review some aspects of Hochschild homology and cohomology, which are needed later
in the paper for studying the Hodge theory of categories and the deformation theory of objects
in a category. In §5 we develop the Hodge theory of categories; in particular, we formulate
the (integral) Hodge conjecture for categories and relate it to the corresponding conjecture for
varieties, as well as prove the results on intermediate Jacobians described above. In § 6 we define
CY?2 categories and their associated Mukai Hodge structures, and survey the known examples
of CY2 categories. In § 7 we prove Theorem 1.4 on the smoothness of relative moduli spaces of
objects in families of CY?2 categories. Finally, in § 8 we prove our other main results (Theorem 1.1,
Corollary 1.2, and Theorem 1.3) as well as several complementary results.

1.5 Conventions

All schemes are assumed to be quasi-compact and quasi-separated. A variety over a field k is an
integral scheme which is separated and of finite type over k. For a scheme X, Dpe,¢(X) denotes
the category of perfect complexes and D (X) denotes the unbounded derived category of quasi-
coherent sheaves. If a € Br(X) is a Brauer class, Dpe(X, ) denotes the category of perfect
complexes over an Azumaya algebra A representing «, consisting of complexes of A-modules
which are locally quasi-isomorphic to a bounded complex of locally projective A-modules of
finite rank. When X is a smooth variety, as will be the case whenever Dy (X, @) is considered
in this paper, this category agrees with the bounded derived category of coherent a-twisted
sheaves [Kuz06b, Lemma 10.19]. All functors are derived by convention. In particular, for a
morphism f: X — Y of schemes we write f, and f* for the derived pushforward and pullback
functors, and for E, F' € Dperf(X) we write £ ® F' for the derived tensor product. For technical
convenience, all categories are regarded as oo-categories as reviewed in § 2, but most arguments in
the paper can be made at the triangulated level for admissible subcategories of derived categories
of varieties.
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2. Linear categories

In this paper we use the formalism of categories linear over a base scheme. We summarize the key
points of this theory here following [Per19], which is based on Lurie’s work [Lurl7]. Throughout
this section we fix a (quasi-compact and quasi-separated) base scheme S.

2.1 Small linear categories

An S-linear category € is a small idempotent-complete stable co-category equipped with a module
structure over Dpers(S). The collection of all S-linear categories is organized into an oco-category
Catg, which admits a symmetric monoidal structure. For €, D € Catg we denote by

(3’ ®Dperf(s) D (S Catg

their tensor product. A morphism € — D in Catg, also called an S-linear functor, is an exact

functor that suitably commutes with the action of Dpe(S); these morphisms form the objects

of an S-linear category Fung(C, D), which is the internal mapping object in the category Catg.
If € € Catg and T' — S is a morphism of schemes, then the tensor product

Cr=2¢ ®Dperf(5) Dperf(T) € Catp

is naturally a T-linear category, called the base change of € along T'— S. If s € S is a point with
residue field k(s), then we write Cys for the (s)-linear category obtained by base change along
Spec(k(s)) — S, and call it the fiber of € over s € S. In this way, an S-linear category € can be
thought of as a family of categories parameterized by S.

Example 2.1. Let f: X — S be a morphism of schemes. Then € = Dpe,¢(X) has the structure of
an S-linear category, with action functor € x Dper(S) — Dpert(X) given by (E, F) — E® f*F.
If T— S is a morphism of schemes, then by [BZFN10, Theorem 1.2] there is a T-linear
equivalence

Cr =~ Dpert(X7)

where X7 = X xgT — T denotes the derived fiber product, which agrees with the usual fiber
product of schemes if X — S and T' — S are Tor-independent over S.

2.2 Semiorthogonal decompositions
The above example can be amplified using the following observation. If € € Catg, a semiorthog-
onal decomposition

C=(Cy,...,Cn) (2.1)

is called S-linear if the Dpe¢(S)-action preserves each of the components C;. In this case, the
C; inherit the structure of S-linear categories. In particular, if X is an S-scheme, then S-linear
semiorthogonal components of Dpe,s(X) are S-linear categories. This will be our main source of
examples in the paper.

By [Perl9, Lemma 3.15], given an S-linear semiorthogonal decomposition (2.1) and a
morphism 7" — S, there is an induced T-linear semiorthogonal decomposition

Cr={C1)r,..., (Cn)r) -

If € =Dpert(X) and X and T are Tor-independent over S, the base changes (C;)r can be
expressed without the use of higher categories and derived algebraic geometry, by working inside
the ambient category Dpere(X7), see [Kuzll].

The property that an S-linear subcategory A C € forms part of a semiorthogonal decompo-
sition can be characterized in terms of the embedding functor a: A — €. Namely, we say A C C
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is left admissible if o admits a left adjoint, right admissible if o admits a right adjoint, and
admissible if a admits both adjoints. Then if A, B C € are S-linear subcategories, we have a
semiorthogonal decomposition C = (A, B) if and only if A is left admissible and B = LA, if and
only if B is right admissible and A = BL.

2.3 Presentable linear categories

For technical reasons it is sometimes useful to work with ‘large’ versions of linear categories,
which we review here; for clarity we sometimes say ‘small S-linear category’ to mean an S-linear
category in the sense of § 2.1. Large categories will only be needed for our discussion of Hochschild
(co)homology in §§ 3 and 4.

A presentable S-linear category € is a presentable stable oo-category € equipped with a
module structure over Dgc(S). As in the case of small linear categories, the collection of all such
categories is organized into a symmetric monoidal oco-category PrCatg, whose tensor product is
denoted by

e ®ch(s) D € PrCatg.

A morphism € — D in PrCatg is a cocontinuous S-linear functor; these morphisms form the
objects of a presentable S-linear category Fung(C, D), which is the internal mapping object in
the category PrCatg.

Many presentable S-linear categories which arise in practice are compactly generated, for
example, Dqc(5) is so by our assumption that S is quasi-compact and quasi-separated [BvdB03,
Theorem 3.1.1]. We denote by PrCat¥ the oo-category of compactly generated presentable
S-linear categories, with morphisms the cocontinuous S-linear functors which preserve com-
pact objects. Again, PrCat% admits a symmetric monoidal structure and an internal mapping
object Fung(€, D) for €,D € PrCat¢.

The various versions of linear categories Catg, PrCatg, and PrCatg are related as follows.
By definition, PrCat% is a nonfull subcategory of PrCatg. Moreover, for any € € Catg there is a
category Ind(€) € PrCaty called its Ind-completion, which roughly is obtained from € by freely
adjoining all filtered colimits. This gives a functor

Ind: Catg — PrCatg

which is in fact a symmetric monoidal equivalence with inverse the functor
(—)¢: PrCat§ — Catg

taking € € PrCatg to its subcategory C° of compact objects.

Ezxample 2.2. Let f: X — S be a morphism of schemes. Similar to Example 2.1, Dq(X) nat-
urally has the structure of a presentable S-linear category. In fact, if X is quasi-compact and
quasi-separated, then there is an equivalence Ind(Dperf(X)) =~ Dgc(X) of presentable S-linear
categories.

2.4 Mapping objects
For objects E, F € C of an oco-category, we write Mape(E, F') for the space of maps from E to
F. If € is a presentable S-linear category, then there is a mapping object

Homs(E, F) € Dge(S)
characterized by equivalences
Mapp,(s) (G, Homs(E, F)) = Mape(E @ G, F)
for G € Dgc(S).

295

https://doi.org/10.1112/50010437X22007266 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X22007266

A. PERRY

If instead € is an S-linear category, we write Homg(E, F') € Dgyc(S) for the mapping object
between E and F regarded as objects of the presentable S-linear category Ind(€); equivalently,
Homg(E, F') can be characterized by equivalences

Mapp,(s)(G, Homs(E, F)) ~ Mape(E @ G, F)

for G € Dyer(S). For i € Z we write &t (E, F) for the degree i cohomology sheaf of Homg(E, F),
and Exty(E, F') for the degree i hypercohomology of Homg(E, F).

Ezxample 2.3. Let f: X — S be a morphism of schemes. Then, for E, F' € Dq.(X), we have
j{OTnS(EwaF‘) = f*j'comX(E7F)
where Hom x (E, F') € Dyc(X) denotes the derived sheaf Hom on X.

2.5 Dualizable categories
Let (A, ®,1) be a symmetric monoidal co-category. An object A € A is called dualizable if there
exist an object A € A and morphisms

coevyg: 1 —- AR AY and evpg: AV®RA—1
such that the compositions

A coev 4 ®id 4 A®AV®A ida®eva A,

id 4 v ®coev 4 evA®id 4v
_ _

AY AV AR AY AY

are equivalent to the identity morphisms of A and AY.

Remark 2.4. Dualizability of an object A € A is detected at the level of the homotopy cate-
gory hA; moreover, if A is dualizable, then the object AY and the evaluation and coevaluation
morphisms are uniquely determined in hA.

The following gives a large source of dualizable presentable linear categories.

LEMMA 2.5 [Perl9, Lemma 4.3]. Let € be a compactly generated presentable S-linear category.
Then C is dualizable as an object of PrCatg, with dual given by

C¥ = Ind((C%)°P)

where (C%)°P denotes the opposite of the category C° of compact objects in C. There is a canonical
equivalence € ®p_ (s) C¥ ~ Fung(C, €) under which the coevaluation morphism

coeve: Dgc(S) — C®p, . (g) C”
is the canonical functor sending Og € Dqc(S) to ide € Fung(C, €). The evaluation morphism
eve: €Y ®p.(s) € = Dqe(S5)
is induced by the functor Homg(—, —): (€°)°P x € — Dgc(S).

In particular, the lemma implies the following corollary, recalling that by convention all
schemes are quasi-compact and quasi-separated.

COROLLARY 2.6. If f: X — S is a morphism of schemes, then Dqy.(X) is a dualizable presentable
S-linear category.
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Dualizability of a small S-linear category is more restrictive. Recall that if € is a small
S-linear category, then € is called:

o proper (over S) if Homg(E, F') € Dperf(S) C Dgc(S) for all E, F € C; and
e smooth (over S) if idpq(e) € Funp (g)(Ind(€), Ind(€)) is a compact object.

Moreover, € is dualizable as an object of Catg if and only if € is smooth and proper over S, in
which case the dual is given by €Y = €° [Perl9, Lemma 4.8].

This is closely related to the usual notions of smoothness and properness in geometry. For
instance, if f: X — S is a smooth and proper morphism, then Dperf(X) is smooth and proper
over S [Perl9, Lemma 4.9]. Further, semiorthogonal components of a smooth proper S-linear
category are automatically smooth, proper, and admissible [Per19, Lemma 4.15]. Putting these
observations together gives the following key examples of smooth and proper linear categories
for this paper.

LEMMA 2.7. Let f: X — S be a smooth proper morphism. If € is an S-linear semiorthogonal
component of Dy,e¢(X), then C is smooth and proper over S, and the embedding € < Dyper¢(X)
is admissible.

Smooth and proper categories enjoy many nice properties. For instance, a smooth proper
S-linear category € always admits a Serre functor Se;g over S [Perl9, Lemma 4.19]. By
definition, this means Se/g is an autoequivalence of € such that there are natural equivalences

Homs(E,S¢/g(F)) ~ Homs(F, E)”

for £, F € C. For example, if f: X — S is a smooth proper morphism of relative dimension n,
then Sp__(x)/s = — ® wx/s[n] is a Serre functor over S.

3. Hochschild homology

In this section we review the definition of Hochschild homology and various of its properties
relevant to this paper. All of the constructions and results we discuss are well known in some
form, but for convenience or lack of suitable references we often sketch the details.

There are various settings in which Hochschild homology can be defined. In this paper we
consider Hochschild homology as an invariant of small linear categories or dualizable presentable
linear categories, defined in terms of categorical traces. See [Kuz09] for a more down-to-earth
definition in the case of a semiorthogonal component of the derived category of a smooth proper
variety, which is the case needed in the main results of this paper. The definition below has the
advantage of being manifestly canonical and convenient for making abstract arguments.

In general, if (A, ®, 1) is a symmetric monoidal co-category and A € A is a dualizable object,
then the trace of an endomorphism F: A — A is the map Tr(F) € Map 4(1,1) given as the
composite

PO A AV~ A @ A AT,

1 coev 4 A A

We will be interested in the case where A is Catg or PrCatg. In this case, 1 is Dperf(S) or Dge(S),
and the functor Tr(F) is determined by its value on the structure sheaf Og.

DEFINITION 3.1. Let € be a dualizable presentable S-linear category, and let F': € — C be an
endomorphism. Then the Hochschild homology of C over S with coefficients in F' is the complex

HH,(€/S, F) = Tr(F)(0g) € Dgo(S).
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The Hochschild homology of C over S is the complex
HH,(C/S) = HH,(€C/S,ide) € Dgc(S).

If C is an S-linear category and F': € — € is an endomorphism, then Ind(C) is a dualizable
presentable S-linear category by Lemma 2.5, and we define

HH, (€/S, F) = HH, (Ind(€)/S, Ind(F)),
HIH,(C/S) = HH,(€/S, ide).

Note that any object F' € Dy (.S) gives a natural coefficient for Hochschild homology of categories
over S, by considering the corresponding endofunctor — ® F': € — C; in this situation, we use
the notation

HH,(C/S,F) = HH.(C/S,(— ® F)).
Finally, in any of the above situations, for i € Z we set

HH;(C/S, F) = H(HH.(C/S, F))
to be the degree —i cohomology sheaf of HH,(C/S, F).

Remark 3.2. If € is a dualizable small S-linear category (equivalently, a smooth and proper
small S-linear category; see §2.5) and F': € — C is an endomorphism, then by definition the
trace of F' is a functor Tr(F): Dper(S) — Dpert(S). Further, there is a canonical equivalence
Ind(Tr(F)) ~ Tr(Ind(F')), because by Remark 2.4 the functor Ind takes the duality data of € to
that of Ind(€). Thus HH,(C/S, F') ~ Tr(F)(Og) € Dpert(,5).

Below we review some well-known properties of Hochschild homology, in a guise that is
tailored to our purposes.

3.1 Functoriality
Hochschild homology (with coefficients) is suitably functorial. This functoriality exists in the
general context of traces of dualizable objects in a symmetric monoidal (0o, 2)-category (see, for
example, [BZN19, TV15, HSS17, KoPr20]), but here we only recall the relevant details in the
case of Hochschild homology of categories.

Let (C,F) be a pair where € is a dualizable presentable S-linear category and F: € — C
is an endomorphism. Let (D, G) be another such pair. We define a morphism (C, F') — (D, G)
to be a pair (®,) where ®: € — D is morphism that admits a cocontinuous right adjoint &'
(which is thus also a morphism in PrCatg), and 7: ® o F' — G o ® is a natural transformation
of functors; in other words, a morphism is a (not necessarily commutative) diagram

C C
o| |
D D

SNL
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Given such a morphism (®,~), we consider the diagram

coeve FRidev eve
D (S) "t @D (s) €7 < € ®p,(s) C . Dyc(S)

7®id(q,!)v
dR(P')V DR(P')V (3.1)

Dae(S) ——oeim= P®pues) D7 ———— D @pyes) D7 ———— Dace(S)
coevyp G@ldﬂ\/ evyp

where:
e (®")V: €Y — DV is the dual of the functor ®': D — €, defined as the composition
idev ®coevyp

—_

idev ®¢‘!®id®\/ eve®ide
_— = s

¢ € @pge(s) P Epge(s) D C" @pge(s) € Bpge(s) P D
e the 2-morphism in the first square is the natural transformation
(® @ (D)) 0 coeve ~ ((® o @) ® idpv) o coevp — coevy

induced by the counit of the adjunction between ® and ®';
e the 2-morphism in the last square is the natural transformation

eve — eve o (9o @) @idev) ~ evp o (P @ (B)Y)
induced by the unit of the adjunction between ® and @'

The compositions along the top and bottom of (3.1) are by definition the traces Tr(F') and
Tr(G), so the composition of the 2-morphisms in the diagram gives a natural transformation

Tr(®,7): Te(F) — Tr(G).
In particular, applying this to Og, we obtain a morphism on Hochschild homology
HH,(®,v): HH.(C/S,F) — HH.(D/S, G).

The functoriality of Hochschild homology implies the following result; cf. [Kuz09] which treats
the case of semiorthogonal decompositions of varieties.

LEMMA 3.3. Let C = (Cy,...,Cp) be an S-linear semiorthogonal decomposition with admissible
components. Then there is an equivalence

HH,(C/S) ~ HH.(C1/S) & --- ® HH.(C,,,/S),
where the map HH,(C/S) — HH,(C;/S) is induced by the projection functor onto the component
Ci.

3.2 Chern characters
The functoriality of Hochschild homology can be used to define a theory of Chern characters as

follows.
Let € be a presentable S-linear category. Then any object E € C determines an S-linear

functor @5 : Dy (S) — € determined by ®r(0g) = E, whose right adjoint
DYy = Homs(E, —): € — Dge(S)

is cocontinuous if and only if F is a compact object of C.
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Now we assume that F is compact, € is dualizable, and F': € — € is an endomorphism; for
instance, € could be of the form € = Ind(Cy) for a small S-linear category Cp and F € Cy. In
this setup, we will construct a morphism

ChE7F: J'Coms(E, F(E)) - HH*(G/S, F)

in Dyc(S), called the Chern character of E with coefficients in F'; in practice, we often drop the
subscripts I/ and F' in chg p when they are clear from context. By Yoneda’s lemma, it suffices
to construct functorially in G € Dyc(S) a map

Mapp_ (5)(G, Homs(E, F(E))) — Mapp__(s)(G, HH.(€/S, F)). (3.2)

The left-hand side is identified with Mape(E ® G, F(F)). This mapping space is in turn identified
with the space of natural transformations v: ®g o (— ® G) — F o ®g. The pair (Pg,~) is then
a morphism of pairs (Dqc(S5), — ® G) — (C, F') as considered in §3.1, and hence determines a
morphism on Hochschild homology

G ~ HH,(Dy(S)/S, G) — HH,(C/S, F).
All together, this gives the required map (3.2).

3.3 Base change
Hochschild homology satisfies base change in the following sense.

LEmMA 3.4. Let C be a dualizable presentable S-linear category and let F': € — € be an endo-
morphism. Let g: T — S be a morphism of schemes. Let Fr: Cr — Cr be the base change of F
along g. Then there is a canonical equivalence

g"HH.(C/S, F) ~ HH.(Cp/T, Fr).
Proof. It follows from the definitions that the trace Tr(F'): Dgc(S) — Dgc(S) commutes with

base change, which implies the result. O

For smooth proper categories in characteristic 0, the individual Hochschild homology groups
are vector bundles and satisfy base change.

THEOREM 3.5 [Kal08, Kall7, Mat20]. Let C be a smooth proper S-linear category, where S is a
Q-scheme. Then HH;(C/S) is a finite locally free sheaf on S for any i € Z. Further, if g: T — S
is a morphism of schemes, then for any i € Z there is a canonical isomorphism

9" HH;(C/S)=HH;(Cr/T).

Proof. The first part follows from the degeneration of the noncommutative Hodge-to-de Rham
spectral sequence proved by Kaledin [Kal08, Kall7]; see also Mathew’s recent proof [Mat20,
Theorem 1.3]. The second claim then follows from Lemma 3.4. u

3.4 Mukai pairing

In the smooth and proper case, Hochschild homology carries a canonical nondegenerate pairing,
known as the Mukai pairing. This pairing has been studied from many points of view in the
literature [CW10, Cal05, Shk13, Mar09].

LEMMA 3.6. Let C be a smooth proper S-linear category. Then HH,(C/S) € Dper¢(S) and there
is a canonical nondegenerate pairing HH,(C/S) ® HH,(C/S) — Og.

Proof. We sketch a short proof following [AV20]. (We already observed HH,(C/S) € Dpert(S) in
Remark 3.2, but give another proof here.) The functor HH,(—/S5): Catg — Dgc(5) is symmetric
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monoidal; see, for instance, [AV20, Proposition 2.1] (where the result is stated for S affine, but
from which the general case follows by Lemma 3.4). If € is smooth and proper over S, then it is
dualizable as an object of Catg. Since HH,(—/S) is symmetric monoidal, its value on € is also
dualizable as an object of Dgc(S), and hence belongs to Dper(.S). The evaluation morphism for
HH,(C/S) is obtained by applying the functor HH,(—/S) to the evaluation morphism for €, and
hence takes the form

HH, (€"/S) ® HH,(C/S) — Os.

But it follows from the definition of Hochschild homology that there is a canonical identification
HH,(CV/S) ~ HH,(C/S). This completes the proof. O

We will need a compatibility between the Mukai pairing, Serre duality, and Chern characters,
which we formulate in the case where the base is a field.

LEMMA 3.7. Let C be a smooth proper k-linear category, where k is a field. Then for ¢ € Z there
is an isomorphism
HH; (C/k) = Ext; ‘(ide, Se)

where Se is the Serre functor for € over k and the Ext group is considered in the category of
k-linear endofunctors of €. Moreover, for E € € if we denote by

ne: HH;(€/k) — Ext, (B, Se(E))

the natural map arising from the above isomorphism, then there is a commutative diagram

. ch
Extl (B, E) ——— HH_;(C/k)

Lk

Ext;(E, Se(E))" —— HH,(€/k)"

where the left vertical arrow is given by Serre duality and the right vertical arrow is give by the
Mukai pairing.

Proof. This is well known to the experts. We provide references to the literature where the state-
ments are proved in a slightly different setup (e.g. € assumed to be a semiorthogonal component
in the derived category of a variety): the isomorphism HH;(C/k) = Ext,;i(ide, Se) follows from
[Kuz09, Theorem 4.5 and Proposition 4.6], and the commutativity of the diagram follows from
[CW10, Proposition 11]. O

3.5 HKR isomorphism

The Hochschild-Kostant—Rosenberg (HKR) isomorphism identifies the Hochschild homology of
the derived category of a scheme in terms of Hodge cohomology. This subject has been studied by
many authors (see, for example, [HKR62, Swa96, Yek02]); the form in which we state the result
is a consequence of Yekutieli’s work [Yek02]. For a morphism X — S and an endomorphism
F': Dpert(X) — Dpert(X), we use the notation HH, (X/S, F)) = HH, (Dpert(X) /S, F).

THEOREM 3.8 [Yek02]. Let f: X — S be smooth morphism of relative dimension n, where n!
is invertible on S. Let F' € Dper(S). Then there is an equivalence

HH,(X/S,F)~PF® £ glpl-
p=0
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4. Hochschild cohomology

In this section we review the definition of Hochschild cohomology and various of its properties
relevant to this paper. As in our discussion of Hochschild homology, this material is well known
but for convenience we often sketch the details.

DEFINITION 4.1. Let C be a small or presentable S-linear category, and let F': € — € be an
endomorphism. Then the Hochschild cohomology of C over S with coefficients in F is the complex

HH*(€/S, F) = Homg(ide, F) € Dqe(S),

that is, the mapping object from ide to F' considered as objects of the S-linear category
Fung(€, €). The Hochschild cohomology of € over S is the complex

HH*(€/S) = HH"(C/S,ide) € Dyc(S).
As for Hochschild homology, if F' € Dy (S) we use the notation
HH*(C/S,F) = HH*(C/S,(— ® F)).
Finally, for i € Z we set
HH'(C/S, F) = H(HH.(C/S, F))
to be the degree i cohomology sheaf of HH*(C/S, F).

Remark 4.2. If C is a small S-linear category and F: € — € is an endofunctor, then the
Hochschild cohomologies HH*(C, F') and HH*(Ind(C€), Ind(F)) are canonically equivalent; this
follows from the fact that Ind: Catg — PrCat% is an equivalence.

4.1 Functoriality

As recalled in § 3.1, Hochschild homology is functorial with respect to functors that admit a right
adjoint. Hochschild cohomology, however, is only functorial with respect to functors which are
also fully faithful.

Let (C,F) be a small or presentable S-linear category, and let F: € — C be an
S-linear endofunctor. Let (D, G) be another such pair. We consider pairs (®,0) where &: ¢ — D
is a morphism that admits a right adjoint morphism ®: D — D (so ®' is required to be cocon-
tinuous in case € and D are presentable), and §: G o ® — ® o F is a natural transformation of
functors; in other words, we consider a (not necessarily commutative) diagram

¢ C
o| e
D D

To distinguish from the notion of a morphism (C, F') — (D, @) introduced in §3.1, we will call
such a pair (®,0) a comorphism from (C, F') to (D, G). We say that (®,¢) is fully faithful if ¢ is
fully faithful.

Now assume that (®,9): (C, F) — (D,G) is a fully faithful comorphism. In this setup, we
will construct a morphism

SN

HH*(®,6): HH*(D,G) — HH*(C, F)
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in Dgc(S). By the definition of Hochschild cohomology and Yoneda, it suffices to construct
functorially in A € Dg(S) a map

MapFuns(D,D)((_ ® A)7 G) - MapFung(G,(‘?)((_ ® A)a F)
For this, we send a: (— ® A) — G on the left-hand side to the morphism (— ® A) — F' given by
the composition
(—2A4) Lo odo(—@A) S0 o(-0A4)0d 2% 0 0God 25 0 0o F 5 F,

where the first and last equivalences come from full faithfulness of ® and the second equivalence
from the S-linearity of ®.

4.2 Base change
Like Hochschild homology, Hochschild cohomology satisfies base change. This will not be needed
in the paper, but we include it for completeness.

LEMMA 4.3. Let C be a dualizable presentable S-linear category and let F': € — € be an endo-
morphism. Let g: T — S be a morphism of schemes. Let Fr: Cr — Cr be the base change of F
along g. Then there is a canonical equivalence

g"HH*(C/S, F) ~ HH*(Cr /T, Fr).
Proof. We claim that the natural functor
Fung(C,C) QD ge(S) DqC(T) — Funp(Cr, Cr)

is an equivalence of T-linear categories. From this, the lemma follows from the definition of
Hochschild cohomology and base change for mapping objects in linear categories (see [Perl9,
Lemma 2.10]).

To prove the claim, note that by dualizability of € we have an equivalence

Fung (€, €) ~ € ®p,_ (s C.

Base change along T' — S preserves dualizability of € and (Cr)¥ ~ (€¥)r, so we similarly have
an equivalence

Funy(Cr, Cr) ~ (€¥)r ®p, (1) C1-

Since these descriptions of the functor categories are compatible with base change along 7', the
claim follows. O

4.3 Action on homology

Hochschild cohomology acts on Hochschild homology. More generally, suppose C is a dualizable
presentable S-linear category, and F,G: € — C are endomorphisms. Then there is an action
functor

Homs(F,G) ® HH,(C/S, F) — HH,(C/S,G)

where the first term is the mapping object from F' to G in Fung(C,€). This boils down to
assigning to any natural transformation 7: F' — G a morphism HH,(C/S, F) — HH.(C/S, G);
since (ide,7v): (€, F) — (€,G) is a morphism of pairs in the sense of §3.1, we can simply take
HH, (ide, 7).
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Note that as a particular case, we have an action
HH*(C/S, F) ® HH.(C/S) — HH,.(C/S, F),
and hence for any ¢, j € Z an action
HH'(C/S, F) ® HH,(C/S) — HH,_;(C/S, F).
For any F € €, there is also an evident action
HH*(C/S, F) ® Homg(E, E) — Homgs(E, F(E)).
LEMMA 4.4. For E € C the diagram

HH*(€/S, F) ® Homg(E, E) —— Homg(E, F(E))

id®ChE l lChEI‘

HH*(C/S, F) ® HH,(C/S) —— HH,(C/S, F)
commutes.

Proof. Using the functoriality of traces (see [BZN19, Proposition 3.21] or [KoPr20, Proposition
1.2.11]), this follows by unwinding the definitions. O

4.4 HKR isomorphism

The HKR isomorphism for Hochschild cohomology identifies this group in the case of the
derived category of a scheme with polyvector field cohomology. Like the HKR isomorphism
for Hochschild homology, the following form of this result can be deduced from [Yek02]. For

a morphism X — S and an endomorphism F': Dpe(X) — Dpers(X), we use the notation
HH*(X/S, F) = HH*(Dpert(X)/S, F).

THEOREM 4.5. Let f: X — S be smooth morphism of relative dimension n, where n! is
invertible on S. Let F' € Dpere(S). Then there is an equivalence

HH*(X/S, F) ~ @ F @ f.(AN'Txs)[t).
t=0

4.5 Deformation theory

Let 0 — I — A" — A — 0 be a square-zero extension of rings, and let X — Spec(A) be a smooth
morphism of schemes. A deformation of X over A’ is a smooth scheme X’ over A" equipped with
an isomorphism X/, = X. Recall that, provided one exists, the set of isomorphism classes of such
deformations form a torsor under H'(X, T X/ Spec(A) @ I) (where we abusively write I for the
pullback of I to X). If A’ — A is a trivial square-zero extension, that is, admits a section A — A’
then there is a trivial deformation X 4 obtained by base change along the section, so there is
a canonical identification of the set of deformations of X over A’ with H'(X, T X/ Spec(A) @ 1)
taking the trivial deformation to 0; in this case, for a deformation X’ — Spec(A’) we write

K(X') € HY(X, Tx/spec(a) ® 1)

for the corresponding element, called the Kodaira—Spencer class.
We will need a generalization of the Kodaira—Spencer class to the setting of categories. Note
that by Theorem 4.5, if dim(X/A)! is invertible on A (where dim(X/A) denotes the relative
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dimension of X — Spec(A)), then we have an isomorphism
HH?(X /A, I) = H(X, A*T x/ spec(a) ® 1) & HY(X, Tx/spec(ay ® 1) & H*(X, 1),
and, in particular, a natural inclusion
H' (X, Tx/spec(ay ® I) — HH*(X/A, I). (4.1)

This suggests that when we replace X by an A-linear category, the role of the cohomology of
Tx/spec(4) in deformation theory should be replaced by Hochschild cohomology.

If A’ — A is a square-zero extension and € is an A-linear category, then a deformation of
C over A’ is an A’-linear category € equipped with an equivalence €/, ~ C. If ®: € — D is a
morphism of A-linear categories, then a deformation of ® over A’ is a morphism ®': ¢’ — D’
where €’ and D’ are deformations of € and D over A" and the base change @, is equipped with
an equivalence @, ~ ®.

LEMMA 4.6. Let 0 — I — A" — A — 0 be a trivial square-zero extension of rings, and let C
be an A-linear category. Then, for any deformation € of € over A’, there is an associated
Kodaira—Spencer class

x(C) € HH*(C/A,I)
with the following properties.

(1) Let ®: € — D be a fully faithful morphism of A-linear categories which admits a right
adjoint. Let ®': €' — D’ be a deformation of ® over A’. Then the map

HH%(D/A, 1) — HH%(C/A,I)

induced by ® (see §4.1) takes k(D') to k().
(2) Let X — Spec(A) be a smooth morphism of schemes with dim(X/A)! invertible on A. Let
X' — Spec(A’) be a deformation of X over A’. Then the inclusion (4.1) takes k(X') to

K(Dpert(X')).

Proof. In [Lurl8, §16.6] the construction of a class x(€') € HH?(C/S,I) is given in the case
where A = I = k are fields, but the same construction works in our more general setting and can
be checked to satisfy the stated properties.

More concretely, in this paper we shall only need the class k(C") for € < Dpe(X) a
semiorthogonal component of a scheme X smooth over A with dim(X/A)! invertible on A,
and €’ — Dpe¢(X’) a semiorthogonal component of a deformation of X over A’. In this set-
ting, the class k(€') can be defined by stipulating that properties (1) and (2) hold. Namely, we
define £(Dpers(X')) as the image of k(X') under the map (4.1), and define x(C’) as the image of
K(Dpert(X’)) under the map HH?(Dper(X)/A, 1) — HH?(C/A, I). O

Remark 4.7. In contrast to the geometric situation, in the setting of Lemma 4.6 the set of
isomorphism classes of deformations classes of € over A’ is not necessarily a torsor under
HH?(C/A, I); cf. [Lurl8, Remark 16.6.7.6 and Theorem 16.6.10.2].

We can also describe the deformation theory of objects along a deformation of a category.
If A" — A is a square-zero extension of rings, C is an A-linear category, €’ is a deforma-
tion of € over A’, and E € C is an object, then a deformation of E to € is an object
E’ € € equipped with an equivalence E’y ~ E € € (where we have used the given identification
¢y ~0C).
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LEMMA 4.8. Let 0 — I — A’ — A — 0 be a square-zero extension of rings. Let C be an A-linear
category, C' a deformation of € over A’, and E € € an object. Then there is an obstruction class

w(E) € Ext4y(E,E®I)
with the following properties.

(1) w(F) vanishes if and only if a deformation of E to €' exists, in which case the set of
isomorphism classes of deformations of E to €' forms a torsor under Ext!\(E, E ® I).

(2) Assume the extension A" — A is trivial, so that by Lemma 4.6 we have a Kodaira—Spencer
class k(C') € HH?(@/A, I), which by the definition of Hochschild cohomology corresponds
to a natural transformation ide — (— ® I)[2]. Then, writing x(C')(E) € Ext(FE, E ® I) for
the class obtained by applying this natural transformation to E, we have an equality

w(B) = x(C)(E).

Proof. Similarly to Lemma 4.6, the result can be proved using the arguments and results of
[Lurl8, Chapter 16]; cf. [Lurl8, Remark 16.0.0.3].

More concretely, in this paper we shall only need the result in the case where € — Dpere(X)
is a semiorthogonal component for X a noetherian scheme smooth over A, ¢ — Dperf (X "Visa
semiorthogonal component of a deformation X’ of X over A’, and everything is defined over a
base field. In this setting, the result can be proved as follows. First consider the purely geometric
case where € = Dper(X) and €’ = Dpere(X’). Then [Lie06, Theorem 3.1.1] gives the existence of
a class w(F) satisfying property (1). If the extension A" — A is trivial, then by the main theorem
of [HT10] we have!

w(E) = (iddg ® k(X")) o A(E),
where A(E) € Ext'(E,E ® Qx/9pec(a)) 18 the Atiyah class of £ and x(X') is regarded as an
element of Extl(QX/ Spec(A)> ). One checks
(idp @ £(X")) 0 A(E) = K(Dpert (X))(E),

so that (2) holds. Now the case where € < Dpef(X) and € < Dpee(X') are not necessar-
ily equalities follows from two observations: an object E’ is a deformation of E to Dpe(X')
if and only if E’ is a deformation of E to C’; and we have k(Dpert(X))(E) = x(C')(E) by
Lemma 4.6(1). O

5. Hodge theory of categories

In this section we explain how to associate natural Hodge structures to C-linear categories,
via topological K-theory. We use this to formulate several variants of the Hodge conjecture for
categories, and discuss the relation between these conjectures and their classical counterparts.
We also prove the results about intermediate Jacobians described in §1.3.

5.1 Topological K-theory
Blanc [Blal6] constructed a lax symmetric monoidal topological K-theory functor
K'*P: Catc — Sp

from C-linear categories to the oo-category of spectra. The following theorem summarizes the
results about this construction that are relevant to this paper.

! This is where we use our assumption that everything is defined over a base field; see [HT14].
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THEOREM 5.1 [Blal6].

(1) If €= (Cy,...,Cyp) is a semiorthogonal decomposition of C-linear categories, then there is
an equivalence
K'P(€) ~ K'P(€) @ - @ K'P(C,,)

where the map K"*P(€) — K'P(C;) is induced by the projection functor onto the compo-
nent C;.
(2) There is a functorial commutative square

K(€) —2 s HN(€)

J l (5.1)

Ktor(e) <5 HP(E)

where K(C) denotes the algebraic K-theory of €, HN(C) the negative cyclic homology, and
HP(C) the periodic cyclic homology.
(3) If X is a scheme which is separated and of finite type over C with analytification X®", then
there exists a functorial equivalence
Ktop (Dperf(X)) ~ Ktop (Xan)7

where the right-hand side denotes the complex K-theory spectrum of the topological space
X?®". Under this equivalence, the left vertical arrow in (5.1) recovers the usual map from
algebraic K-theory to topological K-theory, and under the identification of HP(Dpers(X))
with 2-periodic de Rham cohomology, the bottom horizontal arrow in (5.1) recovers the
usual topological Chern character.

For € € Catc and an integer n, we write
K,P(€) = m,K"P(€)

for the nth homotopy group of K%*P(€). These groups carry canonical pairings in the proper
case.

LEMMA 5.2. Let € be a proper C-linear category. Then for any integer n there is a canonical
bilinear form x'P(—, —): Ki??(€) @ Ki*P(C) — Z, called the Euler pairing, with the following
properties.

(1) If €=(Cy,...,Cp,) is a semiorthogonal decomposition of C-linear categories, then the
inclusions KiP (€;) — KiP(€) preserve the Euler pairings, and the direct sum decomposition

KP(€) = KP(C1) @ - @ KiP(C)

is semiorthogonal in the sense that x*P(v;,v;) = 0 for v; € KiP(C;), vj € KinP(C;), i > j.
(2) If x(—,—): Ko(C) ® Ko(€) — Z denotes the Euler pairing defined by

X(E,F) =) (1) dimExtg(E, F)
i
for E, F € @, then the map Ky(€C) — KBOP(G) preserves the Euler pairings.
(3) If @ = Dpert(X) for a proper complex variety X, then for v,w € Ki®(X) we have

X'P (v, w) = pu(v” ® w) € K (Spec(C)) = Z,

where p: X — Spec(C) is the structure morphism.
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Proof. As the functor K'*P: Catc — Sp is lax monoidal, we have a natural map
Ktop(eop) ® Ktop(e) N Ktop(eop ®Dperf(Spec(C)) @)_

There is a canonical identification K"*P(CP) = K'P(€); indeed, this follows from the definition
of K*P(—) in [Blal6] and the corresponding identification for algebraic K-theory. Therefore,
passing to homotopy groups, we obtain a map

K7 (@) ® KPP (€) — K52 (€ @p,,(spec(c)) ©)-

As C is proper over C, we have an evaluation functor

coP ®Dperf(Spec(C)) C— Dperf(SpeC(C))
induced by the functor Homg(—,—): € X € — Dpert(Spec(C)). Taking the topological
K-theory of this functor and composing with the above map, we obtain the desired map

X'P (=, =) KiPP(€) @ Ki?P(€) — Ky (Dpert (Spec(C))) & Z.

All of the claimed properties follow directly from the definition. For instance, to show the
semiorthogonality claimed in (1), note that restriction of the pairing to KyP(€;) ®K£L°p(€j)
is induced by the functor

C” @D,ers (Spec(C)) €5 = Dpert (Spec(C)),
which is in turn induced by the functor Homc(—, —): C;¥ x €; — Dpert(Spec(C)); but if ¢ > j,
then this functor vanishes by semiorthogonality. O
Remark 5.3. We suspect that if C is a smooth proper C-linear category, then the Euler pairing
on KiP(€) is nondegenerate. As in Lemma 3.6, this (and more) would follow if, for instance,

the functor K'*P: Catc — Sp were monoidal (not only lax monoidal) when restricted to the
subcategory of smooth proper C-linear categories.

PROPOSITION 5.4. Let C C Dpert(X) be a C-linear admissible subcategory, where X is a smooth
proper complex variety.

(1) For any integer n, K}fp(e) is a finitely generated abelian group, and there is a canonical
Hodge structure of weight —n on KioP (C) such that there is a canonical isomorphism
g (K;P(€) ® C) 2 HH,19(C),

where the left-hand side denotes the pth graded piece of the Hodge filtration.
(2) For € = Dper¢(X) the Chern character induces an isomorphism

KZOp(Dperf(X)) ®Q= @ H%in(Xa Q) (k)
kEZ
of rational Hodge structures, where H**="(X, Q)(k) denotes (the Tate twist by k of) the
Betti cohomology of X.

Remark 5.5. The existence of an admissible embedding € C Dperf(X) in Proposition 5.4 allows
us in the proof below to leverage deep results about the Hodge theory of varieties into statements
for €. We conjecture, however, that Proposition 5.4 remains true for any smooth proper C-linear
category C, without assuming the existence of an embedding.

Proof. First note that Ki*P(€) is a summand of the finitely generated abelian group KiP(X2"),
and hence finitely generated. The noncommutative Hodge-to-de Rham spectral sequence and its
degeneration [Kal08, Kall7, Mat20] give a canonical filtration of HP,,(€) whose pth graded piece
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is HH,, 1 2,(€). Consider the Chern character map Kj;?(C) ® C — HP,,(C) from Theorem 5.1. We
claim that this map is an isomorphism for € as in the proposition, and the above filtration pro-
vides the desired Hodge structure on C. This claim is preserved under passing to semiorthogonal
components, so we may assume that € = Dpe(X).

In this case, it is well known that the Chern character indeed provides an isomorphism

K (Dper (X)) © Q = HH* (X, Q)
keZ
of abelian groups. Recall [Wei97] that we have an identification
HP,, (Dpert (X)) 2 (D HEE " (X)
keZ
with 2-periodic de Rham cohomology, under which the noncommutative Hodge-to-de Rham
filtration agrees with the 2-periodic Hodge-to-de Rham filtration, that is, the filtration corre-
sponding to the Hodge structure on ;.4 H?*"(X, Q)(k) under the comparison isomorphism
H%—"(X, C) = HZE"(X). We conclude that Ki®(Dpert(X)) ® C =5 HP,,(Dpert(X)) is an iso-
morphism, the noncommutative Hodge-to-de Rham filtration defines a Hodge structure of weight

—n, and the above isomorphism of abelian groups provided by the Chern character is in fact an
isomorphism of rational Hodge structures. ([l

We will need a generalization of Proposition 5.4 to families of categories. This relies on a
relative version of Blanc’s topological K-theory, due to Moulinos [Moul9]. Namely, for a scheme
S over C, Moulinos constructs a functor

K'P(—/S): Catg — Shvg,(S™")
from S-linear categories to the co-category of sheaves of spectra on the analytification S2".
THEOREM 5.6 [Moul9].
(1) If S = Spec(C), then there is an equivalence K'*P(—/S) ~ K'P(—).

(2) If €= (Cy,...,Cp) Is a semiorthogonal decomposition of S-linear categories, then there is
an equivalence

K'P(C/S) ~ K'P(C1/S) @ - -- @ K'P(C,,/S)
where the map K"P(C/S) — K'P(C;/S) is induced by the projection functor onto the
component C;.
(3) If f: X — S is a proper morphism of complex varieties and f*": X*" — S jg its ana-
Iytification, then K'P(Dpe(X)/S) is the sheaf of spectra on S*™ given by the formula
U = K((f*)~1(V)).
For C € Catg and an integer n, we write
KiP(€/S) = mK"P(C/S)
for the nth homotopy sheaf of K'*P(€/S), which is a sheaf of abelian groups on S2%.

PROPOSITION 5.7. Let € C Dpers(X) be an S-linear admissible subcategory, where f: X — S is
a smooth proper morphism of complex varieties.

(1) For any integer n, KiP(e /S) is a local system of finitely generated abelian groups on S®"
whose fiber over any point s € S(C) is KiP(Cy).

(2) K;P(€/S) underlies a canonical variation of Hodge structures of weight —n on S®, which
fiberwise for s € S(C) recovers the Hodge structure on Ki*(C,) from Proposition 5.4.
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(3) For € = Dper¢(X) there is an isomorphism
KirP (Dpert(X)/5) © Q = QR f2"Q(k)

keZ
of variations of rational Hodge structures over S®".
(4) There is a bilinear form x'*P(—,—): K}®(€/S) @ Ki*(C/S) — Z, which fiberwise for
complex points s € S(C) recovers the Euler pairing on Ky*(C,) from Lemma 5.2.

Remark 5.8. Similarly to Remark 5.5, we conjecture that Proposition 5.4 remains true for any
smooth proper S-linear category.

Proof. As in Proposition 5.4, all of the statements reduce to the case C = Dpere(X), in which case
they follow from standard results. For example, let us explain the details of (1). By Ehresmann’s
theorem and Theorem 5.6(3), K (Dpert(X)/S) is a local system of abelian groups on S*" whose
fiber over any point s € S(C) is Ki®(X;) =~ Ki® (Dpert(Xs)). This implies that KiP(€/S) is a
local system, being a summand of KjP(Dpert(X)/S), and by functoriality the fiber of this local
system over s € S(C) is the summand KjP(C) of KiP(Dpers(Xs))- O

5.2 The noncommutative Hodge conjecture and its variants
Using the above, we can formulate a natural notion of Hodge classes on a category.

DEFINITION 5.9. Let C C Dperf(X) be a C-linear admissible subcategory, where X is a smooth
proper complex variety. The group of integral Hodge classes Hdg(C,Z) on C is the subgroup
of Hodge classes in KBOP(G) for the Hodge structure given by Proposition 5.4. More explicitly,

Hdg (@, Z) consists of all classes in K{’®(€) which map to HH(€) under the Hodge decomposition
KiP(€) @ C= P HH, (©).
p+9=0
The group of rational Hodge classes is defined by Hdg(C, Q) = Hdg(C,Z) ® Q. We say an ele-

ment v € Ki*P(C) is algebraic if it is in the image of Ko(C) — K{™P(€); similarly, an element
v e K{(€) ® Q is algebraic if it is in the image of Ko(€) ® Q — KyP(€) ® Q.

By Proposition 5.4(2), if X is a smooth proper complex variety, then the Chern character
identifies HAg(Dpers(X), Q) with the usual group of rational Hodge classes Hdg* (X, Q), that is,
the group of Hodge classes for @, .z H?**(X, Q)(k). Recall that the cycle class map from the
Chow ring

CH'(X) ® Q — H'(X, Q)
factors through Hdg"* (X, Q), and the usual Hodge conjecture predicts that this map surjects
onto Hdg* (X, Q). Since the Chern character gives an isomorphism

Ko(Dpert (X)) ® Q = CH*(X) ® Q,
we conclude that the map
Ko(Dpert (X)) — Kgop(Dperf(X))

factors through Hdg(Dperf(X),Z), and the usual Hodge conjecture is equivalent to the
surjectivity of the map Ko(Dper(X)) ® Q — Hdg(Dperf(X), Q). Now using additivity under
semiorthogonal decompositions of all the invariants in sight leads to the following lemma and
conjecture.

LEMMA 5.10. Let € C Dperf(X) be a C-linear admissible subcategory, where X is a smooth
proper complex variety. Then the map Ko(C) — Ki™P(€) factors through Hdg(€, Z) c K (€).
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CONJECTURE 5.11 (Noncommutative Hodge conjecture). Let € C Dpers(X) be a C-linear
admissible subcategory, where X is a smooth proper complex variety. Then the map

is surjective.
We record the following observation from above.

LEMMA 5.12. Let X be a smooth proper complex variety. Then the Hodge conjecture holds for
X if and only if the Hodge conjecture holds for Dpers(X).

There is also an obvious integral variant of the Hodge conjecture for categories.

CONJECTURE 5.13 (Noncommutative integral Hodge conjecture). Let € C Dperf(X) be a
C-linear admissible subcategory, where X is a smooth proper complex variety. Then the map

Ko(€) — Hdg(€, Z)
is surjective.

Remark 5.14. As we explain in Example 5.19 below, Conjecture 5.13 is false in general. Nonethe-
less, we call it a ‘conjecture’ in keeping with similar terminology for the (known to be false)
integral Hodge conjecture for varieties.

The integral Hodge conjectures for varieties and categories are closely related, but not so
simply as in the rational case. The result can be conveniently formulated in terms of Voisin
groups. Recall from § 1 that for a smooth proper complex variety X, the degree n Voisin group
V"(X) is defined as the cokernel of the cycle class map CH"(X) — Hdg" (X, Z).

DEFINITION 5.15. Let € C Dperf(X) be a C-linear admissible subcategory, where X is a smooth
proper complex variety. The Voisin group of € is the cokernel

V(€) = coker(Ko(C) — Hdg(C, Z)).
Note that the integral Hodge conjecture holds for € if and only if V(C) = 0.

PROPOSITION 5.16. Let X be a smooth proper complex variety. Assume that H*(X,Z) is
torsion-free.

(1) Ifthe integral Hodge conjecture holds in all degrees for X, then the integral Hodge conjecture
holds for Dpe,¢(X).

(2) Assume further that for some integer n, the cohomology H*™(X,Z) is of Tate type for
all m > n, that is, H*™(X,C) = H™™(X) for m > n. If V(Dpe£ (X)) is d-torsion for some
integer d, then the V™ (X) is d(m — 1)!-torsion for all m > n. In particular, if n = 2 and the
integral Hodge conjecture holds for Dyers(X ), then the integral Hodge conjecture in degree
2 holds for X.

Proof. For the proof we will need the following properties, which hold by [AH61, §2.5] due to
our assumption that H*(X, Z) is torsion-free.

(1) Ki(X) is torsion-free and ch: Ki?P(X) — He®(X, Q) is injective.

(2) For any v € Ki'P(X) the leading term of ch(v) is integral, that is, if ch(v) = a; + a1 + - --
with a; € H% (X, Q) then o; € H¥(X, Z).

(3) For any o; € H*(X,Z) there exists v € K{’"(X) such that the leading term of ch(v) is .

(The analogous assertions relating K;OP(X ) and the odd cohomology of X are also true, but we

will not need this.)
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Now assume that the integral Hodge conjecture holds in all degrees for X. We must show
that any v € Hdg(Dperf(X), Z) is in the image of Ko(Dperf(X)). Write ch(v) = o + a1 + -+ - as
above. Then «; is a Hodge class by Proposition 5.4(2) and integral by property (2) above, that is,
Qi € Hdgi(X , Z). Therefore, by assumption there are closed subvarieties Z; C X of codimension
i and integers ¢ € Z such that «; is the cycle class of ) ¢xZj. Replacing v by v — ) ¢x[0z,],
we may thus assume «; = 0. Continuing in this way, we may assume that ch(v) = 0. But then
v = 0 by property (1) above, so we are done. This proves part (1) of the proposition.

Now assume that the cohomological condition in part (2) of the proposition holds, and
that V(Dpert(X)) is d-torsion. Let m > n and a,, € Hdg"(X,Z). By property (3) above we
may choose a class v € Ki?(X) such that ch(v) = ay, + Qi1 + -+ where a; € H*(X, Q). By
assumption oy, is a Hodge class, and so is a; for i > m because H? (X, Z) is of Tate type. Thus
v € Hdg(Dpert(X), Z) is a Hodge class by Proposition 5.4(2). Therefore, by assumption there is
an object E € Dpe(X) whose class in KiP(X) is dv, and so ch(E) = day, + day41 +---. By
the standard formula for the Chern character in terms of Chern classes, the vanishing of ch;(F)
for i < m implies that doa,, = ((—1)""1/(m — 1)!)en(E) in H*™(X, Q). By torsion-freeness of
H?™(X,Z), this is equivalent to d(m — 1)lay, = (=1)" ¢, (E) in H*™(X, Z). This proves that
d(m — 1)! kills the class of a, in the cokernel of CH™(X) — Hdg™ (X, Z), as required. O

COROLLARY 5.17. Let X be a smooth proper complex variety with dim(X) < 2, and assume
H*(X,Z) is torsion-free in the case where dim(X) = 2. Then the integral Hodge conjecture holds
for Dperf(X).

Proof. This follows from Proposition 5.16(1) because the integral Hodge conjecture holds for
varieties of dimension at most 2. g

COROLLARY 5.18. Let X be a smooth proper complex threefold with H*(X,Z) torsion-free.

Then the integral Hodge conjecture holds for X if and only if the integral Hodge conjecture
holds for Dpers(X).

Proof. For a threefold the integral Hodge conjecture always holds in degrees n = 0,1, 3, so the
only interesting case is n = 2. Thus the result follows from Proposition 5.16. g

Example 5.19. Let X C P* be a very general complex hypersurface of degree divisible by p? for
an integer p coprime to 6. Then Kollar showed that the integral Hodge conjecture in degree 2
fails for X [BCC92]. By Corollary 5.18 we conclude that the integral Hodge conjecture also fails
for Dperf(X).

The (integral) Hodge conjecture for categories behaves well under semiorthogonal decompo-
sitions. This will be important in our applications to the integral Hodge conjecture for varieties
with CY2 semiorthogonal components.

LEMMA 5.20. Let € C Dperf(X) be a C-linear admissible subcategory, where X is a smooth
proper complex variety. Let C = (C1, ..., Cp,) be a C-linear semiorthogonal decomposition. Then
there is an isomorphism of Voisin groups

V(C) 2 V() - ® V(Cp).

In particular, the (integral) Hodge conjecture holds for € if and only if the (integral) Hodge
conjecture holds for all of the semiorthogonal components Cy, ..., Cy,.

Proof. This follows immediately from the fact that all of the invariants involved in the definition
of V(€) are additive under semiorthogonal decompositions. O
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We can also formulate a version of the variational Hodge conjecture for categories.

CONJECTURE 5.21 (Noncommutative variational Hodge conjecture). Let € C Dperf(X) be an
S-linear admissible subcategory, where f: X — S is a smooth proper morphism of complex vari-
eties. Let  be a section of the local system KBOp(G /S) ® Q of Q-vector spaces on S?". Assume
there exists a complex point 0 € S(C) such that the fiber ¢y € Ki(C) ® Q is algebraic. Then
ps is algebraic for every s € S(C).

Note that, as in Lemma 5.12, for € = Dpe,¢(X) the noncommutative variational Hodge con-
jecture is equivalent to the usual variational Hodge conjecture. In general, this conjecture is
extremely difficult. One of the main results of this paper, Theorem 1.3, is an integral version of
the noncommutative variational Hodge conjecture for families of CY2 categories.

We note that, using deep known results for varieties, it is easy to prove the statement obtained
by replacing ‘algebraic’ with ‘Hodge’ in the noncommutative variational Hodge conjecture.

LEMMA 5.22. Let € C Dpey¢(X) be an S-linear admissible subcategory, where f: X — S is a
smooth proper morphism of complex varieties. Let ¢ be a section of the local system of Q-vector
spaces K{P(€/S) @ Q on S*. Assume there exists a complex point 0 € S(C) such that the fiber
vo € K (Cy) ® Q is a Hodge class. Then  is a Hodge class for every s € S(C).

Proof. As in earlier arguments, we may reduce to the case where € = Dpers(X). Then in view
of the isomorphism of Proposition 5.7(3), this is a well-known consequence of Deligne’s global
invariant cycle theorem; see [CS14, Proposition 11.3.5]. O

5.3 Odd-degree cohomology and intermediate Jacobians

The following gives conditions under which the odd topological K-theory of categories recovers
the odd integral cohomology of varieties. For an abelian group A, we write Ay for the quotient
by its torsion subgroup.

PROPOSITION 5.23. Let X be a smooth proper complex variety of odd dimension n, such that
H¥(X,Z) = 0 for all odd k < n. Let Dpers(X) = (Ci,. .., Cp) be a semiorthogonal decomposition.
Then the Chern character induces an isometry of weight n Hodge structures

ch: Kt_oﬁ(&)tf S---D Kt_"f{((‘fm)tf = H"(X,Z)

where the left-hand side is the orthogonal sum of the Hodge structures K'F(C;)y of
Proposition 5.4 equipped with their Euler pairings of Lemma 5.2, and the right-hand side is
equipped with its standard Hodge structure and pairing. If, moreover, H*(X,Z) = 0 for all odd
k # n, then the above isomorphism holds before quotienting by torsion, that is,
KP(Cy) & @ KP(C) = H'(X, Z).

Proof. 1f the decomposition of Dpere(X) is trivial (i.e. m = 1), then the result holds by (the proof
of) [OR18, Proposition 2.1 and Remark 2.3]. The general case follows from additivity of the
invariants involved under semiorthogonal decompositions. The only point requiring explanation
is that the direct sum decomposition is orthogonal for the Euler pairing. By Lemma 5.2 the sum
is semiorthogonal. By the m = 1 case we have a Hodge isometry Kt_OS(Dperf(X))tf >~ H"(X,Z)
where the left-hand side is equipped with the Euler pairing and the right-hand side with the
usual pairing on cohomology. But the pairing on H"(X,Z)i is anti-symmetric, so the same
is true of the Euler pairing, and orthogonality of the direct sum decomposition follows from
semiorthogonality. O
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Recall that if H is a Hodge structure of odd weight n, then its intermediate Jacobian is
Hc
(n+1)/2(HC) @ HZ’

where Hy is the underlying abelian group of H, Hc is its complexification, and F*(Hg) is
the Hodge filtration. In general, J(H) only has the structure of a complex torus, but if H is
polarized and its Hodge decomposition only has two terms (i.e. Hc = HP? @ H?P for some p, q),
then J(H) is a principally polarized abelian variety. If X is a smooth proper complex variety, for
an odd integer k we write J¥(X) for the intermediate Jacobian associated to the Hodge structure
H*(X,Z).

J(H) =+

DEFINITION 5.24. Let € C Dperf(X) be a C-linear admissible subcategory, where X is a smooth
proper complex variety. The intermediate Jacobian of C is the complex torus

J(€) = J(K™(©))
given by the intermediate Jacobian of the weight —1 Hodge structure Ki°P(€).

Remark 5.25. For any odd integer n, we can also consider the intermediate Jacobian of K%Op((?).
However, these are all isomorphic for varying odd n, because by 2-periodicity of topological
K-theory the Hodge structures Ki*P(€) are Tate twists of each other.

Using Proposition 5.23, we can prove Theorem 1.6 and Corollary 1.7.
Proof of Theorem 1.6. By Proposition 5.23 and our assumptions on the cohomology of X
and Y;, we have isomorphisms J(Dperf(X)) = J*(X) and J(Dpert(Y;)) = J™(Y;) if n; is odd.
Moreover, Proposition 5.4(2) and our cohomological assumption imply that if n; is even

then K{°P(Dpert(Y;)) is torsion, so J(Dpert(Y;)) = 0. Thus, by Proposition 5.23 applied to the
semiorthogonal decomposition of Dperf(X), we obtain an isomorphism of complex tori

JNX) = @ Jm(V). (5.2)
n; odd

Under the further assumption that H" (Y;, C) = HP%(Y;) @ H%Pi(Y;), the HKR isomorphism
shows that H"(X,C)=HP(X)® H?(X), where p;,qi,p,q are as in the statement of
Theorem 1.6. The fact that the isomorphisms of Proposition 5.23 respect the pairings on each

side then implies that the above isomorphism (5.2) respects the principal polarizations on each
side. 0

Proof of Corollary 1.7. Note that the category (E;) C Dperf(X) generated by Ej; is equivalent to
Dperf(Spec(C)). Hence the first part of Corollary 1.7 is just a special case of Theorem 1.6. Under
the further assumption that H°(X,Z) = 0, we can apply the second part of Proposition 5.23
(and the 2-periodicity of Ki?®(—)) to conclude there are isomorphisms

H3(X, Z) =2 K*P(Dpers (X))
= Kt—og(Dperf(Cl)) S D Kt—o??(Dperf(Cr))
~HY(Cy,Z)®--- o HY(C,, Z).
In particular, H3(X, Z)ors = 0. O

Ezxample 5.26. Let Vi be a six-dimensional vector space, and consider the Pliicker embedded
Grassmannian Gr(2,Vs) C P(A?Vg) and the Pfaffian cubic hypersurface Pf(4,Vy) € P(A%Vy)
parameterizing forms of rank at most 4. Let L C A%2Vg be a codimension 3 linear subspace, and
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let L+ = ker(A2Vy — LY) be its orthogonal. We assume L is generic so that the intersections
X =Gr(2,Vg) "NP(L) and Yy =Pf(4,Vy)NP(LY)

are smooth of expected dimension, in which case X, is a Fano fivefold and Y7, is an elliptic curve.
Then there is an isomorphism

J(Xp) =2 JN () (5.3)

of principally polarized abelian varieties. Indeed, by [Kuz06a, §10] there is a semiorthogonal
decomposition of Dpers(X,) consisting of Dper(Y7) and exceptional objects, and by the Lefschetz
hyperplane theorem H*(Xy,Z) = 0 for all odd k < 5, so Theorem 1.6 gives the result.

Remark 5.27. In [BT16] Bernardara and Tabuada give criteria for relating the intermediate
Jacobians of varieties whose derived categories share a semiorthogonal component, but their
criteria are quite restrictive and difficult to verify, especially in dimension 5 and higher. In
particular, they were unable to prove the isomorphism (5.3) (see [BT16, Remark 1.18]).

Homological projective geometry [Kuz07, JLX21, KuPe21, KuPel9] is a general theory for
producing varieties whose derived categories have a semiorthogonal component in common, and
gives many examples to which our methods apply. Example 5.26 is a simple instance of this. To
explain a more interesting example, we need some terminology.

DEFINITION 5.28. A Gushel-Mukai variety is a smooth n-dimensional intersection
X = Cone(Gr(2,5))NQ, 2<n<6,

where Cone(Gr(2,5)) C PV is the projective cone over the Pliicker embedded Grassmannian
Gr(2,5) € P? and Q C P'Y is a quadric hypersurface in a linear subspace P"*4 c P10,

The results of Gushel [Gus83] and Mukai [Muk89] show these varieties coincide with the
class of all smooth Fano varieties of Picard number 1, coindex 3, and degree 10 (corresponding to
n > 3), together with the Brill-Noether general polarized K3 surfaces of degree 10 (corresponding
to n = 2). Recently, GM varieties have attracted attention because of the rich structure of their
birational geometry, Hodge theory, and derived categories [DIM12, IM11, DIM15, DK18, DK20b,
DK19, DK20a, KuPel8, PPZ19).

In [DK18] Debarre and Kuznetsov classified GM varieties in terms of linear algebraic data,
by constructing for any GM variety X a Lagrangian data set (Vg(X), V5(X), A(X)), where

e V5(X) is a six-dimensional vector space,
o V5(X) C V5(X) is a hyperplane, and
e A(X) C A3Vg(X) is a Lagrangian subspace with respect to the wedge product,

and proving that X is completely determined by its dimension and these data. Interestingly,
many of the properties of X only depend on A(X). To state such a result for intermediate
Jacobians, recall that if X; and X5 are GM varieties such that dim(X;) = dim(X3) (mod 2), then
they are called generalized partners if there exists an isomorphism Vg(X7) = Vi(X2) identifying
A(X1) C A3Vg(X7) with A(X3) C A3Vs(X2), or generalized duals if there exists an isomorphism
Vs(X1) = Vs(X2) identifying A(X1) C A3V5(X1) with A(X2)t € A3V5(X2)Y. For a GM variety
of odd dimension n, we have H" (X, C) = HP4(X) ¢ H?P(X) where p — ¢ = 1 and H??(X) is 10-
dimensional [DK19, Proposition 3.1], so J™(X) is a 10-dimensional principally polarized abelian
variety.

315

https://doi.org/10.1112/50010437X22007266 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X22007266

A. PERRY

THEOREM 5.29 [DK20a]. Let X; and Xy be GM varieties of odd dimensions ny and ny which
are generalized partners or duals. Then there is an isomorphism

JM(X1) 2 T (Xo)
of principally polarized abelian varieties.

This is proved in [DK20a] by intricate geometric arguments, but, as we explain now, it
can be deduced as a consequence of a categorical statement. Recall that by [KuPel8], for any
GM variety there is a Kuznetsov component Ku(X) C Dperf(X) defined by the semiorthogonal
decomposition

Dperf(X) = <ICu(X), Ox,UY,...,0x(dim(X) — 3),U% (dim(X) — 3)> , (5.4)

where Ux and Ox (1) denote the pullbacks to X of the rank 2 tautological subbundle and Pliicker
line bundle on Gr(2,5).

LEmMA 5.30. Let X be a GM variety of odd dimension n. Then there is an isomorphism
JNX) = J(Ku(X))
of principally polarized abelian varieties.

Proof. The Lefschetz hyperplane theorem implies H*(X, Z) = 0 for all odd k < n, so the result
follows from Proposition 5.23. O

Proof of Theorem 5.29. By [DK18, Theorem 3.16] for a GM variety X of dimension at least 3,
the associated Lagrangian subspace A(X) does not contain decomposable vectors. Hence we
may apply the duality conjecture [KuPel8, Conjecture 3.7] proved in [KuPel9, Theorem 1.6] to
conclude there is an equivalence Ku(X7) ~ Ku(Xs2). Now the result follows from Lemma 5.30. [

Remark 5.31. In [DK19] an analogue of Theorem 5.29 is proved for even-dimensional GM vari-
eties, asserting that generalized partners or duals have the same period. This can also be reproved
categorically by a more elaborate version of the above argument, as explained in [BP22].

6. CY2 categories

In this section we define CY2 categories and their associated Mukai Hodge structures, and survey
the known examples of CY2 categories. We also give a sample application of the results of §5 to
torsion orders of Voisin groups (Corollary 6.14).

6.1 Definitions
DEFINITION 6.1. A CY2 category over a field k is a k-linear category € such that:

(1) there exists an admissible k-linear embedding € < Dperf(X), where X is a smooth proper
variety over k;

(2) the shift functor [2] is a Serre functor for € over k;

(3) the Hochschild cohomology of € satisfies HH(C/k) = k.

More generally, a C'Y2 category over a scheme S is an S-linear category € such that:

(1) there exists an admissible S-linear embedding € < Dpe(X), where X — S is a smooth
proper morphism;
(2) for every point s: Spec(k) — S, the fiber €, is a CY2 category over k.
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Remark 6.2. Condition (1) in the definition of a CY2 category over a field or scheme says that
C ‘comes from geometry’. For all of the results in this paper, it would be enough to instead
assume that € is smooth and proper and the conclusions of Propositions 5.4 and 5.7 hold;
cf. Remarks 5.5 and 5.8. On the other hand, condition (1) will be automatic in the examples we
consider in the paper.

Remark 6.3. Let us explain the motivation for the other conditions appearing in the definition
of a CY2 category C over k.

Condition (2), the most important part of the definition of a CY2 category, says that from
the perspective of Serre duality, € behaves like the derived category of a smooth proper surface
with trivial canonical bundle, that is, a two-dimensional Calabi—Yau variety.

Condition (3) says that € is connected in the sense of [Kuz19]. The source of this terminology
is the observation that for a smooth proper variety X over k, we have HH’(X/k) = H(X, Ox),
so X is connected if and only if HH’(X/k) = k. Note also that by Lemma 3.7 and condition (2)
we have HH(C/k) = HH,(€/k), and by Lemma 3.6 we have HHy(C/k) = HH_5(C/k); thus con-
dition (3) amounts to HHy(C/k), or equivalently HH_2(C/k), being a one-dimensional k-vector
space.

DEFINITION 6.4. Let C be a CY2 category over C. The Mukai Hodge structure of € is the weight
2 Hodge structure H(€,Z) = KiP(C)(—1), where K{**(€) is endowed with the weight 0 Hodge
structure from Proposition 5.4 and (—1) denotes a Tate twist. We equip H(C, Z) with the bilinear
form (—,—) = —x*P(—, —) given by the negative of the Euler pairing.

More generally, if C is a CY2 category over a complex variety S, then the Muka:i local
system is defined by H(€/S, Z) = Ki*®(€/S)(—1), which by Proposition 5.7 is equipped with the
structure of a variation of Hodge structures which fiberwise for s € S(C) recovers the Mukai
Hodge structure H(C,, Z).

The Tate twist in the definition is included for historical reasons; see Remark 6.6 below.

6.2 Examples

The main known examples of CY2 categories are as follows. For simplicity, we will work over the
complex numbers, but all of the examples also work over a field of sufficiently large characteristic.
We focus on the absolute case, but all of the constructions also work in families to give examples
of CY2 categories over a base scheme, as we explain in a particular case in Example 6.7.

Ezample 6.5 (K3 and abelian surfaces). Let 7" be a smooth connected proper surface with trivial
canonical bundle, that is, a K3 or abelian surface. Then Dpe¢(T) is a CY2 category. Indeed,
condition (1) of Definition 6.1 is obvious, condition (2) holds since 7" has trivial canonical bundle,
and condition (3) holds since T is connected (see Remark 6.3). More generally, if T" is equipped
with a Brauer class a € Br(7'), then the twisted derived category Dpe(7', ) is a CY2 category.

Remark 6.6. For T as above there is an isomorphism K{*(T)) = H®v*"(T, Z) which is given by
v — ch(v) td(T)'/2. This isomorphism identifies ﬁ(Dperf (T'), Z), equipped with its weight 2 Hodge
structure and pairing from Definition 6.4, with the classically defined Mukai Hodge structure on
Hev™(T',Z). Similarly, ﬁ(Dperf (T, ), Z) recovers the usual Mukai Hodge structure in the twisted
case.

Example 6.7 (Cubic fourfolds). Let X C P° be a cubic fourfold, that is, a smooth cubic hyper-
surface. The Kuznetsov component Ku(X) C Dpere(X) is the subcategory defined by the
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semiorthogonal decomposition
Dpet(X) = (Ku(X), 0x,0x(1),0x(2)) -

The category Ku(X) was introduced by Kuznetsov [Kuz10] who proved that it is an example of
a CY2 category. For very general cubic fourfolds Ku(X) is not equivalent to the derived category
of a (twisted) K3 or abelian surface, so this is a genuinely new example of a CY2 category. The
category Ku(X) has close connections to birational geometry, Hodge theory, and hyperkéhler
varieties, and has been the subject of many recent works [AT14, Huy17, HR19, BLMS22, LPZ20,
BLM™*21].

Let us also explain a relative version of the above construction. Let f: X — S be a
family of cubic fourfolds with Ox(1) the corresponding relatively ample line bundle. Then
¥ Dpert(S) = Dpere(X) is fully faithful, and the Kuznetsov component u(X) C Dpers(X) is
the S-linear category defined by the S-linear semiorthogonal decomposition

Dypert (X) = (Ku(X), f* Dpert (5), f* Dpert (5) @ Ox (1), f* Dpert(5) @ 0x(2)) -

Note that Ku(X) fiberwise recovers the Kuznetsov components of the fibers of f: X — S, that
is, for any point s € S we have Ku(X)s >~ Ku(X5).

Ezample 6.8 (Gushel-Mukai varieties). Let X be a GM variety as in Definition 5.28. Recall that
there is a Kuznetsov component Ku(X) C Dperf(X) as defined in (5.4). In [KuPel8] it is shown
that Ku(X) is a CY2 category if dim(X) is even, and if dim(X) = 4 or 6 then for very general
X the category Ku(X) is not equivalent to any of the CY2 categories discussed in Examples 6.5
and 6.7 above.

Ezample 6.9 (Debarre—Voisin varieties). A Debarre—Voisin (DV) variety is a smooth Pliicker
hyperplane section X of the Grassmannian Gr(3,10). These varieties were originally studied in
[DV10] because of their role in the construction of a certain hyperkéhler fourfold. There is a
Kuznetsov component Ku(X) C Dperf(X) defined by a semiorthogonal decomposition

Dperf(X) = (Ku(X),Bx,Bx(1),...,Bx(9)).
Here, Bx C Dpert(X) is the subcategory generated by 12 exceptional objects
BX = <Ea170‘2u5( ‘ 0< ap < 4,0 <ag < 2,0&2 < 041>,

where Ux denotes the pullback to X of the rank 3 tautological subbundle on Gr(3,10), X2
denotes the Schur functor for the Young diagram of type (a1, as), and B x (i) denotes the subcat-
egory obtained by tensoring Bx with the ith power of the Pliicker line bundle restricted to X.
By [Kuz19, Corollary 4.4], the category Ku(X) has Serre functor [2]. Moreover, a direct compu-
tation using the HKR isomorphism shows HH?(Ku(X)/C) = C, so Ku(X) is a CY2 category.
Using arguments as in [KuPel8|, one can show that for very general X, the category Ku(X)
is not equivalent to any of the CY2 categories discussed in Examples 6.5, 6.7, or 6.8, so this
provides yet another new example of a CY2 category.

Ezample 6.10. Using the results of [Kuzl9], it is easy to construct other examples of varieties
with CY2 categories as a semiorthogonal component, but a posteriori one can often show that
these CY?2 categories reduce to one of the above examples. For instance, if X C P? x P3? x P3
is a smooth divisor of class H; + Hy + Hj3, where H; is the hyperplane class on the ith factor,
then there is a CY2 category Ku(X) C Dperf(X) defined by the decomposition

Dperf(X) - <’CU(X), ﬂf? Dperf(P3 X P3)77rf2 Dperf(P3 X Pg)(H?))ﬂ Wf? Dperf(P3 X Pg)(2H3>> ’
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where m19: X — P? x P? is the projection onto the first two factors. However, one can show
that Ku(X) ~ Dpert(T), where T C P3 x P3 is a K3 surface (with generic Picard rank 2) given
as a complete intersection of four hyperplanes determined by the defining equation of X. The
geometry of this example and an associated hyperkéhler variety were studied in [IM19].

Ezample 6.11. Let X C P(wp,w1,...,w,) be a hypersurface in a weighted projective space,
regarded as a Deligne-Mumford stack. Note that by [BLS16], if X is smooth and we work
over a field of characteristic 0, then the category Dpers(X) admits an admissible embedding
into the derived category of a smooth proper variety; in particular, so does any semiorthogonal
component of Dpere(X). Using this observation, one obtains from [Kuzl9, Corollary 4.2] an
infinite list of weighted projective hypersurfaces X such that Dperf(X) contains a CY2 category
as the orthogonal to a collection of exceptional objects, but it seems that most (and possibly all)
of these categories reduce to a known example.

Ezample 6.12. Other interesting examples where the derived category of a K3 surface appears
as a semiorthogonal component can be constructed via the ‘Cayley trick’ from [Orl06,
Proposition 2.10] (see also [KKLL17]): If E is a vector bundle of rank r on a variety Y,
s € HY(Y, E) is a regular section, T C Y is the zero locus of s, and X C P(E") is the zero locus
of the section of Op(gv)(1) corresponding to s, then there is a semiorthogonal decomposition of
Dperf(X) consisting of a copy of Dperf(T') and r — 1 copies of Dpere(Y).

This construction applies, for instance, to K3 surfaces that admit a Mukai style description
as the zero locus of a section of a vector bundle (see [Muk02]). It gives Example 6.10 as a special
case, but also applies to many other K3 surfaces, including some of Picard rank 1. For a simple
example, consider a (2,2,2) complete intersection K3 surface 7' C P°, so that T is the zero
locus of a section of £ = O(2)®3. Then X C P(EY) = P% x P? described above is a hypersurface
of type (2,1), and Dperf(X) admits a decomposition consisting of a copy of Dpers(7') and 10
exceptional objects.

The classification of CY2 categories is an important open problem, especially because of
their role in constructing hyperkéhler varieties [BLM 21, PPZ19]. However, finding new CY2
categories appears to be a difficult problem. Besides the above examples, there is conjecturally a
new CY2 category arising as a semiorthogonal component in the derived category of a so-called
Kiichle fourfold [Kuz16b], and there is recent work that uses Hodge theory to find candidate
Fano varieties with CY2 categories as semiorthogonal components [FM21]. In general, Markman
and Mehrotra proved the existence of a family of categories satisfying conditions (2) and (3) of
Definition 6.1 over a Zariski open subset of any moduli space of hyperkéhler varieties of K3["
type [MM15]; we expect that these categories also satisfy condition (1), and thus give an infinite
series of CY2 categories.

Remark 6.13. The categories from Examples 6.7, 6.8, and 6.9 are all of K3 type in the sense that
their Hochschild homology agrees with that of a K3 surface. In fact, in Examples 6.7 and 6.8 it
is known that for special X the category Ku(X) is equivalent to the derived category of a K3
surface, and conjecturally the same holds in Example 6.9. It would be interesting to construct
new examples of CY2 categories which are not of K3 type. For instance, we do not know examples
of CY2 categories which have the same Hochschild homology as an abelian surface but which
are not equivalent to the derived category of such a surface.

To end this section, let us explain how the results of § 5 can be applied in Example 6.10. The
reader may apply similar arguments to other varieties admitting semiorthogonal decompositions
with simple components, like those in Example 6.12.
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COROLLARY 6.14. Let X C P3 x P3 x P3 be a smooth (1,1, 1) divisor. Then the Voisin group
V4(X) is 6-torsion.

Proof. By the Lefschetz hyperplane theorem, the group H*(X, Z) is torsion-free and H*™ (X, Z)
is of Tate type for m > 4. By Proposition 5.16(2) it thus suffices to prove the integral Hodge
conjecture for Dpere(X). But as explained in Example 6.10, this category admits a semiorthogonal
decomposition consisting of the derived category of a K3 surface and several copies of the category
Dpert(P? x P?), and Dpere(P? x P?) in turn admits a semiorthogonal decomposition consisting
of copies of the derived category of a point. Therefore the result follows from Lemma 5.20 and
Corollary 5.17. O

Remark 6.15. It would be interesting to determine whether Corollary 6.14 is optimal, that is,
whether there exists an X such that V4(X) has an order 6 element.

Corollary 6.14 illustrates the principle that the Hodge conjecture and its variants for a given
variety can often be reduced to simpler cases via semiorthogonal decompositions. Later in §8
we will use this method to prove the integral Hodge conjecture in degree 2 for cubic and GM
fourfolds (Corollary 1.2); the key new ingredient needed to handle these examples is the integral
Hodge conjecture for their Kuznetsov components (Proposition 8.2).

7. Moduli of objects in CY2 categories

In this section we prove a key result of this paper, Theorem 1.4, which asserts the smoothness
of suitable relative moduli spaces of objects in families of CY2 categories.

7.1 Moduli of objects in categories

Let € C Dperf(X) be an S-linear admissible subcategory, where X — S is a smooth proper mor-
phism of complex varieties. Recall from [BLM ™21, §9] that Lieblich’s work [Lie06] implies there
is an algebraic stack M(C/S) locally of finite presentation over S, parameterizing universally
gluable, relatively perfect objects in C. Due to our assumption that X — S is smooth, the
word ‘relatively’ can be dropped, that is, this stack can be defined as follows: for T'— S a
scheme over S, the T-points of M(C/S) are objects E € Cpr which for all points ¢ € T' satisfy

Ext S (Er, Et) = 0.

Remark 7.1. The stack M(C/S) can also be constructed for € smooth and proper without
assuming the existence of an admissible embedding € C Dpers(X); see [TVOT].

Note that any object E € € gives rise to a relative class pp € T'(S*, K{P(C/S)), whose fiber
over s € S(C) is the class of Ey in Ki'P(€,).

DEFINITION 7.2. For ¢ € I'(S*" K{P(€/S)), we denote by M(C/S,¢) the subfunctor of
M(C/S) parameterizing objects with class equal to ¢, and by sM(C/S, ) the subfunctor of
M(C/S, ) parameterizing objects which are simple.

LEMMA 7.3. For p € T(S*", K{™P(€/S)), the functors M(C/S, ) and sM(C/S, ) are algebraic
stacks locally of finite presentation over S, and the canonical morphisms

sM(C/S, ) — M(C/S, ) — M(C/S)

are open immersions. Moreover, the stack sM(C/S,y) is a Gy,-gerbe over an algebraic space
sM(C/S, ¢) locally of finite presentation over S.
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Proof. By [BLM*21, Lemma 9.8] it is enough to show that M(€/S, ) is an open substack of
M(€/S). This follows from the fact proved in Proposition 5.7 that K{’*(€/S) is a local system
on S&". O

7.2 Generalized Mukai’s theorem

We will prove Theorem 1.4 after two preparatory lemmas. The first will be useful for control-
ling deformations of simple universally gluable objects in CY2 categories. Recall from § 3.2 the
formalism of Chern classes valued in Hochschild homology.

LEMMA 7.4. Let € be a CY2 category over a Noetherian Q-scheme S. Let E € C be a simple
universally gluable object.

(1) The cohomology sheaves &ut's(E, E) of Homg(E, E) are locally free, vanish for i ¢ [0,2],
and are line bundles for i = 0 and © = 2.

(2) The formation of the sheaves &ut's(E,E) commutes with base change, that is, for any
morphism g: T — S and i € Z there is a canonical isomorphism

g* &aty(B, E) = &tl(Br, Br).
(3) The Chern character map
ch: &t%(E,E) — HH_5(C/S)
is an isomorphism.
Proof. For any morphism g: T'— S, we have the base-change formula
g"Homgs(E, E) ~ Homr(ET, ET) (7.1)
for mapping objects (see [Perl9, Lemma 2.10]). For a point is: Spec(k(s)) — S, this gives, for
any ¢ an isomorphism, an isomorphism
H'(iiHoms(E, E)) = Exty, . (Es, Es). (7.2)
Since Se, = [2] is a Serre functor for €5, we have

Exty, () (Es, Es) & Exti(j) (E,, Ey)".

We conclude that these groups vanish for ¢ ¢ [0,2] because E is universally gluable, and are
one-dimensional for i = 0,2 because F is simple. In particular, the complex Homg(E, F) is
concentrated in degrees [0, 2], as this is true of ifHomg(FE, E) for every point s.

Now we prove (7.4). As the sheaf &t%(F, E) is coherent and HH_5(C/S) is finite locally free
by Theorem 3.5, to prove ch: &t%(E, E) — HH_5(€/S) is an isomorphism it suffices to show
that for any point s € S the (underived) base-changed map

HO(i* ch): HO(i* &xt?(E, F)) — HO(i* HH_»(€/S))
is an isomorphism. Note that

HY (i} &t3(E, E)) = H2(i;Homs(E, E)) = Ext}. ) (Es, Ej),

where the first isomorphism holds because, as shown above, &:t%(E, E) is the top cohomol-
ogy sheaf of Homg(F, F), and the second isomorphism holds by (7.2). On the other hand, by
Theorem 3.5 we have

HO (i HH_5(€/S)) = it HH_5(C/S) = HH_5(Cy/k(s)).
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Under these isomorphisms, the map H°(i* ch) in question is identified with the Chern character
map

ch: Exti(s)(Es,Es) — HH_2(Cs/k(s)).

Note that the domain and target of this map are one-dimensional x(s)-vector spaces; indeed,
for the domain this was observed above, and for the target it holds by the definition of a CY2
category (see Remark 6.3). By Lemma 3.7 this map is dual to the map

Ext,(, (ide,. Se,) — Ext 2 (Es, Se, (Es)).

K(s)
Since Se, = [2] this is evidently nonzero, and hence an isomorphism. All together this proves (7.4),
and also shows that &t%(F, E) is a line bundle, because, as observed in the proof, HH_5(€/S)
is locally free of rank 1.

Now we finish the proof of (1). As E is simple, &t (E, E) = Og is a line bundle, so it remains
only to show that Erty(E, E) is locally free. Since S is Noetherian and &zt (E, E) is coherent,
by the local criterion for flatness it suffices to show H™!(i* &t (E, E)) = 0 for every point s € S.
By (7.2) we have a spectral sequence with Es-page

By’ = W (i} &ts(E, B)) = Ext, ] (Es, Ey).
By what we have already shown, ES’O and Eg’o are one-dimensional, Eg’j and ESJ vanish for
j #0, and Extg(s) (Es, E,) is one-dimensional, so the desired vanishing H=!(i* &tL(E, E)) = 0

follows.
Finally, (2) holds by the base-change formula (7.1) and the freeness of the cohomology sheaves
&ty (F, E) proved in (1). O

The following simple flatness result will be used below to reduce Theorem 1.4 to the case
where the base S is smooth.

LEMMA 7.5. Let f: X — S be a locally finite type morphism of schemes, with S reduced and
locally noetherian. Assume that there exists a surjective finite type universally closed morphism
S’ — S such that the base change f': X' = Xq — S’ is flat. Then f: X — S is flat.

Proof. By the valuative criterion for flatness [EGA4, 11.8.1], it suffices to show that the base
change X7 — T is flat for any morphism g: T' = Spec(R) — S from the spectrum of a DVR.
Let K be the fraction field of R. As S’ — S is surjective and finite type, there exist a finitely
generated field extension K’ of K and a morphism Spec(K’) — S’ whose image in S is the
image of Spec(K) — S. Let R’ be a DVR with fraction field K’ which dominates R, and let
T'" = Spec(R'). By the valuative criterion for universal closedness [Sta21, Tag 05JY] we can find
a commutative diagram

S — 8
Ik
7 — T

The base change X7 — T" is flat by the assumption that f’: X’ — S’ is flat, so since T" — T is
faithfully flat, the base change X7 — T' is also flat. U

Proof of Theorem 1.4. We will prove that sM(C/S, ¢) is smooth over S; this implies the same
for sM(C/S, ¢), because it is a G,-gerbe over sM(C/S, ¢). We prove the result in several steps.
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Step 1. Reduction to the case where the base S is smooth. Let S’ — S be a morphism from
a complex variety S’, let € be the base change of C, and let ¢’ be the pullback of the
section ¢ to S’. Then sM(C'/S’,¢’) — S’ is the base change of sM(C/S, ) — S along S’ — S.
Hence the theorem in the case where the base is a point implies smoothness of the fibers of
sM(€/S, ) — S. Similarly, taking a resolution of singularities S’ — S, by Lemma 7.5 we see
that the theorem in the case of a smooth base implies flatness of sM(C/S,¢) — S. Together,
this shows that sM(C/S, ¢) — S is smooth. Thus from now on we may assume the base S to be
smooth.

Step 2. Reduction to proving smoothness of the total space sM(C/S, ). As observed above, the
case where the base is a point implies that the closed fibers of sM(C/S, ) — S are smooth. It
follows that these fibers are also of constant dimension —x"P (¢, ) + 2, where x*°P(—, —) denotes
the Euler pairing from Proposition 5.7(4), because this number computes dim Ext!(Ey, Ep)
for any object Ep in sM(Co/Spec(C), o), 0 € S(C), as Cy is CY2. Therefore, the morphism
sM(C/S,¢) — S is smooth, being a locally finite type morphism between smooth spaces whose
closed fibers are smooth of constant dimension.

Step 8. Smoothness in terms of deformation functors of objects. Since sM(C/S, p) is locally of
finite type over C by Lemma 7.3, it is smooth if it is formally smooth at any C-point. More
precisely, let Ey be a C-point of sM(C/S, ) lying over a point 0 € S. Let Artc denote the
category of Artinian local C-algebras with residue field C, and consider the deformation functor
F: Artc — Sets

of Ep, whose value on A € Artc consists of pairs (Spec(4) — S, E') where Spec(A) — S takes the
closed point p € Spec(A) to 0 € S, and E € sM(C/S, ¢)(A) is such that E, = Ey. For simplicity
we often write E € F(A), suppressing the map Spec(A) — S from the notation. Note that in the
definition of F'(A), the condition E € sM(C/S, ¢)(A) can be replaced with E' € Cy4, since then the
condition E, = Ey € sM(C/S, ¢)(C) guarantees £ € sM(C/S, ¢)(A). To prove that sM(C/S, ¢)
is formally smooth at Ey, we must show that F' is a smooth functor, that is, for any surjection
A" — A in Artc the map F(A") — F(A) is surjective.

For this purpose, it will also be useful to consider the deformation functor G: Artc — Sets of
the point 0 € S, whose value on A € Artc consists of morphisms Spec(A4) — S taking the closed
point to 0. Note that there is a natural morphism of functors F' — G.

Step 4. Let A’ — A be a split square-zero extension in Artc, that is, A’ = Ale]/(e2). Then the
fiber Defp(A’) of the map
F(A/) — G(A/) XG(A) F(A)
over any point (Spec(A’) — S, E) is a torsor under Ext'(E, E).
By Lemma 4.8, the claim is equivalent to the vanishing of the class k(C4/)(E) € Ext%(E, E).
By Lemma 7.4(3), this is in turn equivalent to the vanishing of ch(k(C4/)(E)) € HH_2(C4/A),

which by Lemma 4.4 is equal to the product x(Cu/) - ch(E). Finally, this vanishes because by
assumption the class of F remains of Hodge type along S.

Step 5. The functor F' is smooth. For any integer n > 0, set
A, = C[t]/(t"™) and A, = A,[e]/(?).

By the T'-lifting theorem [Kaw92, FM99], the functor F is smooth if for every n > 0 the natural
map

F(A} 1) — F(A)) X, F(Ang)
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is surjective. Note that this map fits into a commutative diagram

F(A;’H-l)  — F(A,/n) XF(An) F(An+1)

| J

G(A, ) — G(A}) Xga,) G(Ant1)

where the bottom horizonal arrow is surjective because 0 € S is a smooth point. Therefore, it
suffices to prove the map

F(An41) = G(Ani1) XG(A) %, C(Ans1) (F(AR) X F(a,) F(Ans1)) (7.3)

is surjective. Let (Spec(A],,,) — S, E],Ent1) be a point of the target of this map, and set
En = (Eny1)a, = (E})a,- By Step 4, the set Defg, , (A;,, ) of deformations of E, 1 over A7
is an ExthnH(EnH, E,41)-torsor, and the set Defg, (A]) of deformations of E,, over A, is an
Ext} (E,, Ey)-torsor. The restriction map

Defg,,, (A),1) — Detp, (A}) (7.4)
is compatible with the torsor structures under the natural map
Exty ., (Ent1, Bng1) — Exty (En, En).
By Lemma 7.4(2) the map on Ext! groups is identified with the natural surjective map

EXt./l4n+1 (En+1’ E”“FI) - EXthn+1 (En+1? En+1) ®An+1 ATL?

so (7.4) is also surjective. Thus there is an element E],_, € Defg, , (A;, ;) which restricts to
E;, € Defg, (A},). Equivalently, E], |, maps to (Spec(A] ;) — S, E,, Eyy1) under (7.3), which

proves the required surjectivity. By Step 3, this completes the proof of the theorem. g

8. Proofs of results on the integral Hodge conjecture

In this section we prove Theorem 1.1, Corollary 1.2, and Theorem 1.3, as well as several
complementary results.

We start with a general criterion for verifying the noncommutative variational integral Hodge
conjecture.

PROPOSITION 8.1. Let € C Dper(X) be an S-linear admissible subcategory, where X — S is a
smooth proper morphism of complex varieties. Let ¢ be a section of the local system KBOP(G /9).
Assume there exists a complex point 0 € S(C) such that the fiber pg € KBOP((‘,’.O) is the class of
an object Ey € Cq with the property that M(C/S,¢) — S is smooth at Ey. Then ¢, € KiP(Cy)
is algebraic for every s € S(C).

Proof. Note that the conclusion of the proposition is insensitive to base change along a sur-
jective morphism S’ — S. More precisely, given such an S’ — S, choose 0/ € S’(C) mapping
to 0 € S(C). By base change we obtain an S’-linear admissible subcategory € C Dpers(X')
where X' = X xg 5 — 5" and a section ¢’ of K{’*(€'/S’) such that ), is the class of the
pullback Ey of Ey to Cy, with the property that the morphism M(€'/S’ ¢’) — S’ is smooth
at Ey. Then the conclusion of the proposition for this base-changed family implies the same
result for the original family, since it is a fiberwise statement. We freely use this observation
below.
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Let M° C M(C/S,¢) be the smooth locus of M(C/S, ) — S, that is, the maximal open
substack to which the restricted morphism is smooth (see [Sta21, Tag 0DZR]). By assumption Ey
lies in the fiber of M° — S over 0. The image of M° — S is thus a nonempty open subset U C S
containing 0. Since M° — U is smooth and surjective, there exists a surjective étale morphism
U’ — U with a point 0’ € U’(C) mapping to 0 € U(C), such that the base change M¢, — U’
admits a section taking 0’ to Ey € My;,. Thus, by base-changing along a compactification S — S
of the morphism U’ — S, we may assume that M° — U admits a section taking 0 to Ey. In other
words, if ¢ denotes the section of K{*®(Cr;/U) given by the restriction of ¢, then there exists
an object Ey € Cy of class ¢y such that (Ey)o ~ Ep.

Next we aim to produce a lift of Ey € €y to an object £ € C. First, we may assume S is
smooth by base-changing along a resolution of singularities. Then X is smooth since it is smooth
over S. It follows that the object Eyy € Cy C Dpere(Xyr) lifts to an object ' € Dpere(X); see, for
example, [Pol07, Lemma 2.3.1]. The projection of F' onto € C Dpere(X) then gives the desired
lift £ € € of Ey. The class pp € T(S*,KP(C/S)) of E must equal ¢, since these sections of
the local system KBOP(G /S) agree over the open subset U. Therefore, ps equals the class of Ej
for every s € S(C), and in particular is algebraic. O

Proof of Theorem 1.3. By Lemma 5.22 the fibers g Gﬁ(GS,Z) are Hodge classes for all
s € S(C), so by Theorem 1.4 the morphism sM(C/S,p) — S is smooth. As the morphism
sM(C/S,¢) — M(C/S) is an open immersion by Lemma 7.3, it follows that the morphism
M(€/S,p) — S is smooth at any point of the domain corresponding to a simple univer-

sally gluable object. Thus Proposition 8.1 applies to show s € H(Cs, Z) is algebraic for every
s € S(C). O

Proof of Theorem 1.1. We may assume that v is primitive, because if the result is true for v
then it is also true for any multiple of v. By Theorem 1.3, it thus suffices to show that if
w € Hdg(Dpert (T, @), Z) is primitive and satisfies (w, w) > —2 or (w,w) > 0 according to whether
T is K3 or abelian, then it is the class of a simple universally gluable object in Dper¢ (7', o). In fact,
more is true: there is a nonempty distinguished component Stab’ (T, @) of the space of Bridgeland
stability conditions on Dpere(7', @), such that, for o € StabT(T, «) generic with respect to w, the
moduli space of o-stable objects in Dper¢(T, a) of class w is nonempty of dimension (w,w) + 2.
For T a K3 surface this is [BM14b, Theorem 6.8] and [BM14a, Theorem 2.15] (based on [Yos01,
Yos06]), and for T an abelian surface and o = 0 this is [BL17, Theorem 2.3] (based on [Yos16,
MYY14]), but the case of general « holds by similar arguments. This completes the proof, because
a Bridgeland stable object is necessarily simple and universally gluable. ]

Our proof of Corollary 1.2 will be based on the following result.

PRroPOSITION 8.2. Let X be a cubic or GM fourfold. Then the integral Hodge conjecture holds
for Ku(X).

Proof. We verify the criterion of Theorem 1.1. First we claim that the cokernel of the map
Ko(Ku(X)) — Hdg(Ku(X), Z) is generated by elements v € Hdg(Ku(X),Z) with (v,v) > —2.
Indeed, the image of Ko(Ku(X)) — Hdg(Ku(X),Z) contains a class A with (A, A) > 0; in fact,
the image contains, and in the very general case equals, a canonical positive definite rank 2
sublattice; see [AT14, §2.4] and [KuPel8, Lemma 2.27]. The claim then follows because for any
v € Hdg(Ku(X),Z), we have (v + tA,v +t\) > —2 for ¢ a sufficiently large integer.

Therefore, it suffices to show that for any v € Hdg(Ku(X), Z), there exists a family of cubic
or GM fourfolds ¥ — S and points 0,1 € S(C) such that Yy = X, Ku(Y1) =~ Dpere (T, @) for a
twisted K3 surface (T, «), and v remains of Hodge type along S.
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If X is a cubic fourfold, the existence of such a family of cubic fourfolds ¥ — S follows
from [AT14, Theorem 4.1]. More precisely, the Kuznetsov component of a cubic fourfold con-
taining a plane is equivalent to the derived category of a twisted K3 surface [Kuz10], and [AT14,
Theorem 4.1] uses Laza and Looijenga’s description of the image of the period map for cubic
fourfolds [Laz10, Loo09] to show that X is deformation equivalent within the Hodge locus for v
to a cubic fourfold containing a plane.

For GM fourfolds, the argument is more complicated, because less is known about the image
of their period map. Recall that a GM fourfold is called special or ordinary according to whether
or not, in the notation of Definition 5.28, the vertex of Cone(Gr(2,Vs)) is contained in the
linear subspace P® C PV, By [KuPel8, Theorem 1.2], the Kuznetsov component of an ordinary
GM fourfold containing a quintic del Pezzo surface is equivalent to the derived category of a
K3 surface. Thus it suffices to show that if X is a GM fourfold, it is deformation equivalent
within the Hodge locus for v to such a GM fourfold. If the conjectural description of the image
of the period map for GM fourfolds were known [DIM15, Question 9.1], this could be proved
analogously to the case of cubic fourfolds by a lattice-theoretic computation. This conjecture is
not known, but we can still use the period map to complete the argument as follows.

By the construction of GM fourfolds in the proof of [DIM15, Theorem 8.1], it follows that X
is deformation equivalent within the Hodge locus for v to an ordinary GM fourfold X’ containing
a so-called o-plane. We claim that in the fiber through X’ of the period map for GM fourfolds,
there is an ordinary GM fourfold X" containing a quintic del Pezzo surface. Since preimages of
irreducible subvarieties under the period map remain irreducible (see [PPZ19, Lemma 5.12]), the
claim implies that X is deformation equivalent within the Hodge locus for v to X”.

To prove the claim, we freely use the notation and terminology on Eisenbud—Popescu—Walter
(EPW) sextics introduced in [DK18, § 3] and summarized in [KuPel8, § 3]. Because X’ contains
a o-plane, by [DK19, Remark 5.29] the EPW stratum YX(X/) C P(V5(X')) is nonempty. Let

p € Y,i(X/)L C P(V5(X")Y) be a point in the top stratum of the dual EPW sextic, such that the

corresponding hyperplane in P(V5(X")) does not contain Yj’( xny- Let X " be the ordinary GM four-
fold corresponding to the pair (A(X’), p); see [DK18, Theorem 3.10] or [KuPel8, Theorem 3.1].
Then [DK19] shows that X’ and X” lie in the same fiber of the period map, and [KuPel8,
Lemma 4.4] shows that X" contains a quintic del Pezzo surface. This finishes the proof of the
claim. 0

Remark 8.3. Proposition 5.8 in [PPZ19] gives the existence of families of GM fourfolds Y — §
satisfying even stronger conditions than those required in the above proof. We preferred to give
the above more elementary argument instead, because [PPZ19, Proposition 5.8] relies on deep
ingredients: the construction of stability conditions on Kuznetsov components of GM fourfolds,
as well as the theory of stability conditions in families from [BLM™21].

In fact, one of the motivations for this paper was to develop a technique for proving the
integral Hodge conjecture for CY2 categories that avoids the difficult problem of constructing
stability conditions. As the proof of Proposition 8.2 illustrates, if our categories occur as the
Kuznetsov components u(X) C Dper(X) of members X of a family of varieties, our technique
requires three ingredients:

(1) the existence of a class A in the image of the map Ko(Ku(X)) — Hdg(Ku(X),Z) which
satisfies (A, \) > 0;

(2) the existence of X such that u(X) ~ Dpe¢(T, o) for a twisted K3 or abelian surface;

(3) sufficient control of Hodge loci to ensure that they always contain X as in (2).
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Condition (1) holds in all of the known examples of CY2 categories from §6.2, and we expect
it holds whenever condition (2) does. In practice, checking conditions (2) and (3) requires more
work, but there are many available tools; for example, homological projective geometry [Kuz07,
JLX21, KuPe21, KuPel9] has been crucial in checking condition (2) in the known examples.

Proof of Corollary 1.2. Let X be a cubic or GM fourfold. We claim that H*(X, Z) is torsion-free
and H?™(X,Z) is of Tate type for m > 2. (In fact the Hodge diamond of X can be computed
explicitly (see [Has00, DIM15]), but the following argument gives a simpler proof of the Tate type
statement.) Indeed, for a cubic fourfold the claim holds by the Lefschetz hyperplane theorem.
If X is an ordinary GM fourfold, then projection from the vertex of Cone(Gr(2,V5)) gives an
isomorphism

X = Gr(2,Vs) NP3 NQ,

where P® € P? is a hyperplane in the Pliicker space and @ C P? is a quadric hypersurface. In
this case, the Lefschetz hyperplane theorem again gives the claim. This also implies the claim

for special GM fourfolds, because they are deformation equivalent to ordinary GM fourfolds.
By Proposition 5.16(2) it thus suffices to prove the integral Hodge conjecture for Dpere(X).
Recall there is a semiorthogonal decomposition of Dpers(X) consisting of Ku(X) and copies of the
derived category of a point. Therefore the result follows from Lemma 5.20 and Proposition 8.2.
O

Similar arguments yield the following corollary.
COROLLARY 8.4. Let X be a GM sixfold. Then the Voisin group V3(X) is 2-torsion.

Proof. By [DK16] the group H*(X, Z) is torsion-free and H?™(X,Z) is of Tate type for m > 3.
Thus, as in the proof of Corollary 1.2, by Proposition 5.16(2) we reduce to proving the integral
Hodge conjecture for Ku(X). By the duality conjecture for GM varieties [KuPel8, Conjecture
3.7] proved in [KuPel9, Theorem 1.6] and the description of generalized duals of GM varieties
from [KuPel8, Lemma 3.8], there exist a GM fourfold X’ and an equivalence Ku(X) ~ Ku(X").
Hence the result follows from Proposition 8.2. O

Remark 8.5. It would be interesting to determine whether Corollary 8.4 is optimal, that is,
whether there exists a GM sixfold X such that V3(X) # 0.
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