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Abstract

We formulate a version of the integral Hodge conjecture for categories, prove the
conjecture for two-dimensional Calabi–Yau categories which are suitably deformation
equivalent to the derived category of a K3 or abelian surface, and use this to deduce
cases of the usual integral Hodge conjecture for varieties. Along the way, we prove
a version of the variational integral Hodge conjecture for families of two-dimensional
Calabi–Yau categories, as well as a general smoothness result for relative moduli spaces
of objects in such families. Our machinery also has applications to the structure of
intermediate Jacobians, such as a criterion in terms of derived categories for when they
split as a sum of Jacobians of curves.

1. Introduction

Let X be a smooth projective complex variety. The Hodge conjecture in degree n for X states
that the subspace of Hodge classes in H2n(X,Q) is generated over Q by the classes of algebraic
cycles of codimension n on X. This conjecture holds for n = 0 and n = dim(X) for trivial reasons,
for n = 1 by the Lefschetz (1, 1) theorem, and for n = dim(X) − 1 by the case n = 1 and the
hard Lefschetz theorem. In all other degrees, the conjecture is far from being known in general,
and is one of the deepest open problems in algebraic geometry.

There is an integral refinement of the conjecture, which is in fact the version originally
proposed by Hodge [Hod52]. Let Hdgn(X,Z) ⊂ H2n(X,Z) denote the subgroup of integral Hodge
classes, consisting of cohomology classes whose image in H2n(X,C) is of type (n, n) for the Hodge
decomposition. Then the cycle class map CHn(X) → H2n(X,Z) factors through Hdgn(X,Z). The
integral Hodge conjecture in degree n states that the image of this map is precisely Hdgn(X,Z).
This implies the rational version from above, and is known for n = 0, 1, dim(X) for the same
reasons. However, in all other degrees, the integral Hodge conjecture is false in general. Indeed,
Atiyah and Hirzebruch constructed the first of many counterexamples [AH62, BCC92, SV05,
CV12, Tot13, Sch19b, BO20] showing that Hodge’s original hope is quite far from being true.

The failure of the integral Hodge conjecture is measured by the cokernel Vn(X) of the
map CHn(X) → Hdgn(X,Z), which we call the degree n Voisin group of X. This is a finitely
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generated abelian group, predicted to be finite by the Hodge conjecture. The group Vn(X) is
especially interesting for n = 2 or n = dim(X) − 1 because then it is birationally invariant, as
observed by Voisin [SV05]. In particular, for rational varieties Vn(X) vanishes in these degrees,
that is, the integral Hodge conjecture holds. This is the first in a line of results which show
that, despite the counterexamples mentioned above, the integral Hodge conjecture may hold
under interesting geometric conditions. For instance, for n = 2 the conjecture is known if X is a
threefold of negative Kodaira dimension or of Kodaira dimension 0 with H0(X, KX) �= 0 [Voi06,
Tot21], a fibration in quadrics over a surface [CV12], or a fibration in at worst nodal cubic
threefolds over a curve [Voi13]. For n = dim(X) − 1, the conjecture is known if X is a Fano
fourfold [HV11], a Fano variety of index dim(X) − 3 and dim(X) = 5 or dim(X) ≥ 8 [HV11,
Flo13], or a hyperkähler variety of K3[n] or generalized Kummer type [MO20].

We highlight two general questions suggested by these results.

• When does the integral Hodge conjecture hold for varieties with KX = 0?
• When does the integral Hodge conjecture hold in degree 2 for Fano fourfolds?

The second question is of particular importance because its failure obstructs rationality. The main
goal of this paper is to give a positive answer to the first question for certain ‘noncommutative
surfaces’, and to use this to provide positive answers to the second question for interesting
examples. To do so, we develop Hodge theory for suitable categories, introduce a technique
involving moduli spaces of objects in categories to prove the integral Hodge conjecture, and
prove a smoothness result for such moduli spaces in the two-dimensional Calabi–Yau case that
also has applications to hyperkähler geometry. Our Hodge-theoretic apparatus for categories can
also be applied to questions about the odd-degree cohomology of varieties, such as when an
intermediate Jacobian splits as a sum of Jacobians of curves.

1.1 The integral Hodge conjecture for categories
We will be concerned with an analogue of the above story for a ‘noncommutative smooth proper
complex variety’, that is, an admissible subcategory C ⊂ Dperf(X) of the derived category of
a smooth proper complex variety X. For any such C, we show that the (the zeroth homotopy
group of) Blanc’s topological K-theory [Bla16] gives a finitely generated abelian group Ktop

0 (C)
which is equipped with a canonical weight 0 Hodge structure, whose Hodge decomposition is
given in terms of Hochschild homology. Moreover, the natural map from the Grothendieck group
K0(C) → Ktop

0 (C) factors through the subgroup Hdg(C,Z) ⊂ Ktop
0 (C) of integral Hodge classes.

The integral Hodge conjecture for C then states that the map K0(C) → Hdg(C,Z) is surjective,
while the Hodge conjecture for C states that this is true after tensoring with Q.

When C = Dperf(X), after tensoring with Q the construction K0(C) → Hdg(C,Z) recovers
the usual cycle class map CH∗(X) ⊗Q → Hdg∗(X,Q) to the group of rational Hodge classes
of all degrees. Therefore, the Hodge conjecture in all degrees for X is equivalent to the Hodge
conjecture for Dperf(X). The integral Hodge conjectures for X and Dperf(X) are more subtly,
but still very closely, related (Proposition 5.16).

The key motivating example for us is the Kuznetsov component Ku(X) ⊂ Dperf(X) of a cubic
fourfold X ⊂ P5, defined by the semiorthogonal decomposition

Dperf(X) = 〈Ku(X),OX ,OX(1),OX(2)〉 .

Kuznetsov [Kuz10] proved that Ku(X) is a two-dimensional Calabi–Yau (CY2) category, that
is, Ku(X) satisfies Serre duality in the form

Exti(E, F ) ∼= Ext2−i(F, E)∨ for E, F ∈ Ku(X),
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and is connected in the sense that its zeroth Hochschild cohomology is one-dimensional. The
simplest example of a CY2 category is Dperf(T ) where T is a K3 or abelian surface, or more
generally the twisted derived category Dperf(T, α) for a Brauer class α ∈ Br(T ). Kuznetsov proved
that for special X the category Ku(X) is equivalent to such an example, while by [AT14] no
such equivalence exists for very general X. Since then a number of further CY2 categories
have been discovered (see § 6.2), the next most studied being the Kuznetsov component of a
Gushel–Mukai (GM) fourfold (a Fano fourfold that generically can be written as the intersection
of the Grassmannian Gr(2, 5) with a hyperplane and a quadric). Recently, CY2 categories have
attracted a great deal of attention due to their connections to birational geometry, Hodge theory,
and the construction of hyperkähler varieties [AT14, Huy17, HR19, BLMS22, LPZ20, BLM+21,
KuPe18, PPZ19].

Inspired by work of Addington and Thomas [AT14], for any CY2 category C we define the
Mukai Hodge structure H̃(C,Z) as the weight 2 Tate twist of Ktop

0 (C). The group H̃(C,Z) is
also equipped with a natural pairing (−,−), defined as the negative of the Euler pairing. In the
case where C = Dperf(T ) for a K3 or abelian surface T , this recovers the classical Mukai Hodge
structure.

Our first main result gives a criterion for the validity of the integral Hodge conjecture for a
CY2 category. This criterion is of a variational nature, and depends on the notion of a family
of CY2 categories. In general, the notion of a family of categories can be formalized as an
S-linear admissible subcategory C ⊂ Dperf(X), where X → S is a morphism of varieties. There
is a well-behaved notion of base change for such categories, which gives rise to a fiber category
Cs ⊂ Dperf(Xs) for any point s ∈ S. When X → S is smooth and proper, we show that a relative
version of topological K-theory from [Mou19] gives a local system Ktop

0 (C/S) on San underlying a
canonical variation of Hodge structures of weight 0, which fiberwise recovers the Hodge structure
on Ktop

0 (Cs) from above.
We say C ⊂ Dperf(X) is a CY2 category over S if X → S is smooth and proper and the fibers

Cs are CY2 categories. For example, if X → S is a family of cubic fourfolds, then, similarly to
the case where the base is a point, one can define a CY2 category Ku(X) ⊂ Dperf(X) over S
with fibers Ku(X)s � Ku(Xs) (Example 6.7). As in the absolute case, we define the Mukai local
system H̃(C/S,Z) of a CY2 category C over S as a Tate twist of Ktop

0 (C/S). We can now state
our first main theorem.

Theorem 1.1. Let C be a CY2 category over C. Let v ∈ Hdg(C,Z). Assume there exists a CY2
category D over a complex variety S with points 0, 1 ∈ S(C) such that:

(1) D0 � C;
(2) D1 � Dperf(T, α) where T is a K3 or abelian surface and α ∈ Br(T ) is a Brauer class;

(3) v remains of Hodge type along S, that is, extends to a section of the local system H̃(D/S,Z).

Further, assume (v, v) ≥ −2 or (v, v) ≥ 0 according to whether T is a K3 or abelian surface.
Then v is algebraic, that is, lies in the image of K0(C) → H̃(C,Z).

In particular, if the cokernel of the map K0(C) → Hdg(C,Z) is generated by elements v as
above, then this map is in fact surjective, that is, the integral Hodge conjecture holds for C.

In practice, this reduces the integral Hodge conjecture for a given CY2 category to checking
that it deforms within any Hodge locus to a category of the form Dperf(T, α) (see Remark 8.3).
We apply the theorem to prove the integral Hodge conjecture for the Kuznetsov components of
cubic and GM fourfolds, and use this to deduce the following consequence.
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Corollary 1.2. The integral Hodge conjecture in degree 2 holds for cubic fourfolds and GM
fourfolds.

This result is new for GM fourfolds. For cubic fourfolds it was originally proved by Voisin
[Voi07, Theorem 18], and was recently reproved in [BLM+21] using the construction of Bridgeland
stability conditions on the Kuznetsov component and the theory of stability conditions in families.
One of the main contributions of this paper is to show that the particular geometry of cubic
fourfolds and the difficult ingredients about stability conditions can be excised from the proof
of [BLM+21], giving a general tool for attacking cases of the integral Hodge conjecture.

Corollary 1.2 is natural from the point of view of rationality problems. One of the biggest
open conjectures in classical algebraic geometry is the irrationality of very general cubic fourfolds.
The same conjecture for GM fourfolds is closely related and expected to be equally difficult.
Corollary 1.2 shows there is no obstruction to rationality for these fourfolds coming from the
integral Hodge conjecture. Our argument applies more generally to any fourfold whose derived
category decomposes into a collection of exceptional objects and a CY2 category that deforms
within any Hodge locus to one of the form Dperf(T, α). This jibes with the fact that, despite
many recent advances on the rationality problem [Voi15, CP16, Tot16, HPT18, Sch19a, Sch19b,
NS19, KT19], irrationality results remain out of reach for such fourfolds.

Our methods also lead to bounds on the torsion order of Voisin groups. As illustrations, we
show that V3(X) is 2-torsion for X a GM sixfold (Corollary 8.4), and that V4(X) is 6-torsion
for X ⊂ P3 ×P3 ×P3 a smooth (1, 1, 1) divisor (Corollary 6.14).

1.2 The variational integral Hodge conjecture and moduli spaces of objects
We now explain the idea of the proof of Theorem 1.1, which involves some results of independent
interest. The first is an instance of the variational integral Hodge conjecture for categories.
Recall that an object E of the derived category of a variety is called simple if Hom(E, E) is
one-dimensional, and universally gluable if Ext<0(E, E) = 0.

Theorem 1.3. Let C be a CY2 category over a complex variety S. Let ϕ be a section of the
local system H̃(C/S,Z). Assume that there exists a complex point 0 ∈ S(C) such that the fiber
ϕ0 ∈ H̃(C0,Z) is the class of a simple universally gluable object of C0. Then ϕs ∈ H̃(Cs,Z) is
algebraic for every s ∈ S(C), that is, lies in the image of K0(Cs) → H̃(Cs,Z).

This implies Theorem 1.1 because twisted derived categories of K3 or abelian surfaces always
contain many simple universally gluable objects.

Our proof of Theorem 1.3 relies on moduli spaces of objects in categories. For any S-linear
admissible subcategory C ⊂ Dperf(X) where X → S is a smooth proper morphism of complex
varieties, Lieblich’s work [Lie06] gives an algebraic stack M(C/S) → S parameterizing universally
gluable objects in C. For any section ϕ of the local system Ktop

0 (C/S), there is an open substack
M(C/S, ϕ) parameterizing objects of class ϕ. We prove that if there is a point 0 ∈ S(C) such
that the fiber ϕ0 can be represented by the class of an object in C0 at which the morphism
M(C/S, ϕ) → S is smooth, then ϕs is algebraic for every s ∈ S(C) (Proposition 8.1). This gives
a general method for proving the variational Hodge conjecture for categories, which can be
thought of as a noncommutative version of Bloch’s method from [Blo72].

In his seminal paper [Muk84], Mukai proved that the moduli space of simple sheaves on
a K3 or abelian surface is smooth. More recently, Inaba generalized this to moduli spaces of
objects in the derived category of such a surface [Ina11]. The following further generalization
replaces a fixed surface with a family of CY2 categories, and implies Theorem 1.3. We write
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sM(C/S, ϕ) ⊂ M(C/S, ϕ) for the open substack of simple objects, which is a Gm-gerbe over an
algebraic space sM(C/S, ϕ) (Lemma 7.3).

Theorem 1.4. Let C be a CY2 category over a complex variety S. Let ϕ be a section of the
local system H̃(C/S,Z) whose fibers ϕs ∈ H̃(Cs,Z) are Hodge classes for all s ∈ S(C). Then
sM(C/S, ϕ) and sM(C/S, ϕ) are smooth over S.

In Theorem 1.4, it is in fact enough to assume a single fiber of ϕ is a Hodge class, because
then all fibers are (Lemma 5.22).

Remark 1.5. Theorem 1.4 plays a crucial role in recent constructions of hyperkähler varieties as
moduli spaces of Bridgeland stable objects in CY2 categories [BLM+21, PPZ19]. Namely, the
theorem allows one to prove facts (e.g. nonemptiness) about such moduli spaces by deformation
from a special CY2 category (e.g. the derived category of a K3 surface). The special case of
Theorem 1.4 where C is the Kuznetsov component of a family of cubic fourfolds was first proved
in [BLM+21, Theorem 3.1], using properties of cubic fourfolds. Our result does not use anything
about the ambient variety containing C in its derived category, and thus provides a general tool
for studying moduli spaces of objects in families of CY2 categories, which has already been put
to use in [PPZ19].

This paper’s approach to the (variational) integral Hodge conjecture via moduli spaces of
objects may be useful in other contexts. It would be interesting, for instance, to apply this method
to varieties whose Kuznetsov components are not CY2 categories. In a different direction, we
plan to develop in a sequel to this paper a version of our results in positive characteristic, with
applications to the integral Tate conjecture.

1.3 Intermediate Jacobians
The Hodge conjecture concerns the even-degree cohomology of a variety, but there are also many
interesting questions about the Hodge structures on odd-degree cohomology. The machinery
developed in this paper gives a version of Hodge theory in odd degree for noncommutative
varieties. Namely, for an admissible subcategory C ⊂ Dperf(X) of the derived category of a smooth
proper complex variety X and any integer n, we show that the nth homotopy group of Blanc’s
topological K-theory gives a finitely generated abelian group Ktop

n (C) which is equipped with a
canonical weight −n Hodge structure, whose Hodge decomposition is given in terms of Hochschild
homology. These Hodge structures are Tate twists of each other for varying even or odd n, so
there are essentially only two of interest: Ktop

0 (C) discussed above, and Ktop
1 (C).

When C = Dperf(X), the rational Hodge structure Ktop
1 (C) ⊗Q recovers the rational odd

cohomology Hodd(X,Q), with the weight −1 Hodge structure obtained by taking appropri-
ate Tate twists in each degree. The integral relation is more subtle, but at least assuming
that X is odd-dimensional and its odd-degree cohomology is concentrated in degree dim(X),
Ktop

− dim(X)(Dperf(X)) recovers the polarized Hodge structure Hdim(X)(X,Z) (Proposition 5.23).
This has many applications to the structure of intermediate Jacobians. Recall that if X

is a smooth proper complex variety, then for any odd integer k the intermediate Jacobian
Jk(X) is a complex torus constructed from the Hodge structure Hk(X,Z), which is in fact a
canonically principally polarized abelian variety if the Hodge decomposition only has two terms
(i.e. Hk(X,C) = Hp,q(X) ⊕ Hq,p(X) for some p, q) and k = dim(X). Intermediate Jacobians have
vast applications in algebraic geometry, ranging from irrationality results [CG72, Bea77] and
Torelli theorems [Deb89, Voi88, Deb90] to infinite generation results for algebraic cycles [Cle83,
Voi00]. As a sample application of our techniques, we prove the following theorem.
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Theorem 1.6. Let X be a smooth proper complex variety of odd dimension n, such that
Hk(X,Z) = 0 for all odd k < n. Assume there is a semiorthogonal decomposition

Dperf(X) = 〈Dperf(Y1), . . . ,Dperf(Ym)〉
where each Yi is a smooth proper complex variety of dimension ni, such that:

• if ni is odd then Hk(Yi,Z) = 0 for all odd k < ni; and
• if ni is even then Hodd(Yi,Q) = 0.

Then there is an isomorphism of complex tori

Jn(X) ∼=
⊕

ni odd

Jni(Yi). (1.1)

If we further assume that there is a fixed integer t ≥ 0 such that for all odd ni we have
Hni(Yi,C) = Hpi,qi(Yi) ⊕ Hqi,pi(Yi) where pi − qi = 2t + 1, then Hn(X,C) = Hp,q(X) ⊕ Hq,p(X)
where p − q = 2t + 1 and (1.1) is an isomorphism of principally polarized abelian varieties.

As an example, when combined with Bondal and Orlov’s description [BO95, Theorem 2.9] of
the derived category of an odd-dimensional intersection of two quadrics X, Theorem 1.6 recovers
Reid’s result identifying the intermediate Jacobian of X with the Jacobian of the associated
hyperelliptic curve [Rei72].

We highlight the following special case of our results.

Corollary 1.7. Let X be a smooth proper complex threefold such that H1(X,Z) = 0. Assume
there is a semiorthogonal decomposition

Dperf(X) = 〈Dperf(C1), . . . ,Dperf(Cr), E1, . . . , Es〉 (1.2)

where each Ci is a smooth proper curve and Ej ∈ Dperf(X) is an exceptional object. Then there
is an isomorphism

J3(X) ∼= J1(C1) ⊕ · · · ⊕ J1(Cn) (1.3)

of principally polarized abelian varieties. If we further assume that H5(X,Z) = 0, then we have
H3(X,Z)tors = 0, that is, H3(X,Z) is torsion-free.

The first part of Corollary 1.7 is an immediate consequence of Theorem 1.6, while we prove
the second part in § 5.3 as a consequence of a result (Proposition 5.23) relating odd cohomology
to odd topological K-theory.

Remark 1.8. Let X be a rationally connected smooth proper complex threefold. Then
H1(X,Z) = H5(X,Z) = 0. Hence Corollary 1.7 shows that the existence of a semiorthogonal
decomposition of the form (1.2) implies that X satisfies both the Clemens–Griffiths criterion for
rationality (the splitting of the intermediate Jacobian as a sum of Jacobians of curves) [CG72]
and the Artin–Mumford criterion (the vanishing of H3(X,Z)tors) [AM72]. Kuznetsov’s rationality
conjectures [Kuz16a, Kuz10] (see also [BB12]) predict that if X is rational, then a semiorthogo-
nal decomposition of the form (1.2) exists. Thus, our result shows that Kuznetsov’s conjectural
criterion implies the classical two.

Theorem 1.6 and Corollary 1.7 (as well as Proposition 5.23 below) greatly generalize many
results in the literature relating intermediate Jacobians to derived categories [BB13, BB12, BT16,
KuPr21]. For instance, the main result of [BB13] is the splitting (1.3) in the very special case
where X is a standard conic bundle over a rational surface with a decomposition (1.2) that is
suitably compatible with the conic bundle structure; similarly, [KuPr21, Proposition 8.4] gives
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the splitting (1.3) in the case where X is a rationally connected threefold and there is a single
curve in the decomposition (1.2).

More generally, our results can be used to relate intermediate Jacobians of varieties whose
derived categories have a semiorthogonal component in common. Bernardara and Tabuada
[BT16] previously studied this problem using noncommutative motives, but in general their
results only give isogenies between the algebraic parts of intermediate Jacobians, which can only
be shown to be isomorphisms under hypotheses that are difficult to check in practice. Our results,
on the other hand, only require cohomological hypotheses which are easy to check, give simple
proofs of the applications considered in [BT16], and also apply to many cases inaccessible by the
results there (see Example 5.26).

As a final application, we give a simple proof of a recent result of Debarre and Kuznetsov
[DK20a], which identifies the intermediate Jacobians of odd-dimensional GM varieties that are
‘generalized partners or duals’ (Theorem 5.29). Answering a question of Kuznetsov (see [DK20a,
Remark 1.2]), we show that this follows from the equivalence proved in [KuPe19, Theorem 1.6]
between the Kuznetsov components of such varieties.

The results of this paper suggest developing other aspects of the Hodge theory of cate-
gories for applications to classical algebraic geometry. For instance, it would be interesting to
study Abel–Jacobi maps taking values in the intermediate Jacobians of categories (as defined in
Definition 5.24); we leave this to future investigation.

1.4 Organization of the paper
In § 2 we begin by reviewing the framework of categories linear over a base scheme. In §§ 3
and 4 we review some aspects of Hochschild homology and cohomology, which are needed later
in the paper for studying the Hodge theory of categories and the deformation theory of objects
in a category. In § 5 we develop the Hodge theory of categories; in particular, we formulate
the (integral) Hodge conjecture for categories and relate it to the corresponding conjecture for
varieties, as well as prove the results on intermediate Jacobians described above. In § 6 we define
CY2 categories and their associated Mukai Hodge structures, and survey the known examples
of CY2 categories. In § 7 we prove Theorem 1.4 on the smoothness of relative moduli spaces of
objects in families of CY2 categories. Finally, in § 8 we prove our other main results (Theorem 1.1,
Corollary 1.2, and Theorem 1.3) as well as several complementary results.

1.5 Conventions
All schemes are assumed to be quasi-compact and quasi-separated. A variety over a field k is an
integral scheme which is separated and of finite type over k. For a scheme X, Dperf(X) denotes
the category of perfect complexes and Dqc(X) denotes the unbounded derived category of quasi-
coherent sheaves. If α ∈ Br(X) is a Brauer class, Dperf(X, α) denotes the category of perfect
complexes over an Azumaya algebra A representing α, consisting of complexes of A-modules
which are locally quasi-isomorphic to a bounded complex of locally projective A-modules of
finite rank. When X is a smooth variety, as will be the case whenever Dperf(X, α) is considered
in this paper, this category agrees with the bounded derived category of coherent α-twisted
sheaves [Kuz06b, Lemma 10.19]. All functors are derived by convention. In particular, for a
morphism f : X → Y of schemes we write f∗ and f∗ for the derived pushforward and pullback
functors, and for E, F ∈ Dperf(X) we write E ⊗ F for the derived tensor product. For technical
convenience, all categories are regarded as ∞-categories as reviewed in § 2, but most arguments in
the paper can be made at the triangulated level for admissible subcategories of derived categories
of varieties.
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2. Linear categories

In this paper we use the formalism of categories linear over a base scheme. We summarize the key
points of this theory here following [Per19], which is based on Lurie’s work [Lur17]. Throughout
this section we fix a (quasi-compact and quasi-separated) base scheme S.

2.1 Small linear categories
An S-linear category C is a small idempotent-complete stable ∞-category equipped with a module
structure over Dperf(S). The collection of all S-linear categories is organized into an ∞-category
CatS , which admits a symmetric monoidal structure. For C,D ∈ CatS we denote by

C⊗Dperf(S) D ∈ CatS

their tensor product. A morphism C → D in CatS , also called an S-linear functor, is an exact
functor that suitably commutes with the action of Dperf(S); these morphisms form the objects
of an S-linear category FunS(C,D), which is the internal mapping object in the category CatS .

If C ∈ CatS and T → S is a morphism of schemes, then the tensor product

CT = C⊗Dperf(S) Dperf(T ) ∈ CatT

is naturally a T -linear category, called the base change of C along T → S. If s ∈ S is a point with
residue field κ(s), then we write Cs for the κ(s)-linear category obtained by base change along
Spec(κ(s)) → S, and call it the fiber of C over s ∈ S. In this way, an S-linear category C can be
thought of as a family of categories parameterized by S.

Example 2.1. Let f : X → S be a morphism of schemes. Then C = Dperf(X) has the structure of
an S-linear category, with action functor C× Dperf(S) → Dperf(X) given by (E, F ) �→ E ⊗ f∗F .
If T → S is a morphism of schemes, then by [BZFN10, Theorem 1.2] there is a T -linear
equivalence

CT � Dperf(XT )

where XT = X ×S T → T denotes the derived fiber product, which agrees with the usual fiber
product of schemes if X → S and T → S are Tor-independent over S.

2.2 Semiorthogonal decompositions
The above example can be amplified using the following observation. If C ∈ CatS , a semiorthog-
onal decomposition

C = 〈C1, . . . ,Cm〉 (2.1)

is called S-linear if the Dperf(S)-action preserves each of the components Ci. In this case, the
Ci inherit the structure of S-linear categories. In particular, if X is an S-scheme, then S-linear
semiorthogonal components of Dperf(X) are S-linear categories. This will be our main source of
examples in the paper.

By [Per19, Lemma 3.15], given an S-linear semiorthogonal decomposition (2.1) and a
morphism T → S, there is an induced T -linear semiorthogonal decomposition

CT = 〈(C1)T , . . . , (Cm)T 〉 .

If C = Dperf(X) and X and T are Tor-independent over S, the base changes (Ci)T can be
expressed without the use of higher categories and derived algebraic geometry, by working inside
the ambient category Dperf(XT ), see [Kuz11].

The property that an S-linear subcategory A ⊂ C forms part of a semiorthogonal decompo-
sition can be characterized in terms of the embedding functor α : A → C. Namely, we say A ⊂ C
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is left admissible if α admits a left adjoint, right admissible if α admits a right adjoint, and
admissible if α admits both adjoints. Then if A,B ⊂ C are S-linear subcategories, we have a
semiorthogonal decomposition C = 〈A,B〉 if and only if A is left admissible and B = ⊥A, if and
only if B is right admissible and A = B⊥.

2.3 Presentable linear categories
For technical reasons it is sometimes useful to work with ‘large’ versions of linear categories,
which we review here; for clarity we sometimes say ‘small S-linear category’ to mean an S-linear
category in the sense of § 2.1. Large categories will only be needed for our discussion of Hochschild
(co)homology in §§ 3 and 4.

A presentable S-linear category C is a presentable stable ∞-category C equipped with a
module structure over Dqc(S). As in the case of small linear categories, the collection of all such
categories is organized into a symmetric monoidal ∞-category PrCatS , whose tensor product is
denoted by

C⊗Dqc(S) D ∈ PrCatS .

A morphism C → D in PrCatS is a cocontinuous S-linear functor; these morphisms form the
objects of a presentable S-linear category FunS(C,D), which is the internal mapping object in
the category PrCatS .

Many presentable S-linear categories which arise in practice are compactly generated, for
example, Dqc(S) is so by our assumption that S is quasi-compact and quasi-separated [BvdB03,
Theorem 3.1.1]. We denote by PrCatωS the ∞-category of compactly generated presentable
S-linear categories, with morphisms the cocontinuous S-linear functors which preserve com-
pact objects. Again, PrCatωS admits a symmetric monoidal structure and an internal mapping
object Funω

S(C,D) for C,D ∈ PrCatω
S .

The various versions of linear categories CatS , PrCatS , and PrCatωS are related as follows.
By definition, PrCatωS is a nonfull subcategory of PrCatS . Moreover, for any C ∈ CatS there is a
category Ind(C) ∈ PrCatω

S called its Ind-completion, which roughly is obtained from C by freely
adjoining all filtered colimits. This gives a functor

Ind: CatS → PrCatω
S

which is in fact a symmetric monoidal equivalence with inverse the functor

(−)c : PrCatω
S → CatS

taking C ∈ PrCatS to its subcategory Cc of compact objects.

Example 2.2. Let f : X → S be a morphism of schemes. Similar to Example 2.1, Dqc(X) nat-
urally has the structure of a presentable S-linear category. In fact, if X is quasi-compact and
quasi-separated, then there is an equivalence Ind(Dperf(X)) � Dqc(X) of presentable S-linear
categories.

2.4 Mapping objects
For objects E, F ∈ C of an ∞-category, we write MapC(E, F ) for the space of maps from E to
F . If C is a presentable S-linear category, then there is a mapping object

HomS(E, F ) ∈ Dqc(S)

characterized by equivalences

MapDqc(S)(G,HomS(E, F )) � MapC(E ⊗ G, F )

for G ∈ Dqc(S).
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If instead C is an S-linear category, we write HomS(E, F ) ∈ Dqc(S) for the mapping object
between E and F regarded as objects of the presentable S-linear category Ind(C); equivalently,
HomS(E, F ) can be characterized by equivalences

MapDqc(S)(G,HomS(E, F )) � MapC(E ⊗ G, F )

for G ∈ Dperf(S). For i ∈ Z we write Ext i
S(E, F ) for the degree i cohomology sheaf of HomS(E, F ),

and ExtiS(E, F ) for the degree i hypercohomology of HomS(E, F ).

Example 2.3. Let f : X → S be a morphism of schemes. Then, for E, F ∈ Dqc(X), we have

HomS(E, F ) � f∗HomX(E, F )

where HomX(E, F ) ∈ Dqc(X) denotes the derived sheaf Hom on X.

2.5 Dualizable categories
Let (A,⊗,1) be a symmetric monoidal ∞-category. An object A ∈ A is called dualizable if there
exist an object A∨ ∈ A and morphisms

coevA : 1 → A ⊗ A∨ and evA : A∨ ⊗ A → 1

such that the compositions

A
coevA⊗idA−−−−−−−→ A ⊗ A∨ ⊗ A

idA⊗evA−−−−−−→ A,

A∨ idA∨⊗coevA−−−−−−−−→ A∨ ⊗ A ⊗ A∨ evA⊗idA∨−−−−−−−→ A∨

are equivalent to the identity morphisms of A and A∨.

Remark 2.4. Dualizability of an object A ∈ A is detected at the level of the homotopy cate-
gory hA; moreover, if A is dualizable, then the object A∨ and the evaluation and coevaluation
morphisms are uniquely determined in hA.

The following gives a large source of dualizable presentable linear categories.

Lemma 2.5 [Per19, Lemma 4.3]. Let C be a compactly generated presentable S-linear category.
Then C is dualizable as an object of PrCatS , with dual given by

C∨ = Ind((Cc)op)

where (Cc)op denotes the opposite of the category Cc of compact objects in C. There is a canonical
equivalence C⊗Dqc(S) C

∨ � FunS(C,C) under which the coevaluation morphism

coevC : Dqc(S) → C⊗Dqc(S) C
∨

is the canonical functor sending OS ∈ Dqc(S) to idC ∈ FunS(C,C). The evaluation morphism

evC : C∨ ⊗Dqc(S) C → Dqc(S)

is induced by the functor HomS(−,−) : (Cc)op × Cc → Dqc(S).

In particular, the lemma implies the following corollary, recalling that by convention all
schemes are quasi-compact and quasi-separated.

Corollary 2.6. If f : X → S is a morphism of schemes, then Dqc(X) is a dualizable presentable
S-linear category.
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Dualizability of a small S-linear category is more restrictive. Recall that if C is a small
S-linear category, then C is called:

• proper (over S) if HomS(E, F ) ∈ Dperf(S) ⊂ Dqc(S) for all E, F ∈ C; and
• smooth (over S) if idInd(C) ∈ FunDqc(S)(Ind(C), Ind(C)) is a compact object.

Moreover, C is dualizable as an object of CatS if and only if C is smooth and proper over S, in
which case the dual is given by C∨ = Cop [Per19, Lemma 4.8].

This is closely related to the usual notions of smoothness and properness in geometry. For
instance, if f : X → S is a smooth and proper morphism, then Dperf(X) is smooth and proper
over S [Per19, Lemma 4.9]. Further, semiorthogonal components of a smooth proper S-linear
category are automatically smooth, proper, and admissible [Per19, Lemma 4.15]. Putting these
observations together gives the following key examples of smooth and proper linear categories
for this paper.

Lemma 2.7. Let f : X → S be a smooth proper morphism. If C is an S-linear semiorthogonal
component of Dperf(X), then C is smooth and proper over S, and the embedding C ↪→ Dperf(X)
is admissible.

Smooth and proper categories enjoy many nice properties. For instance, a smooth proper
S-linear category C always admits a Serre functor SC/S over S [Per19, Lemma 4.19]. By
definition, this means SC/S is an autoequivalence of C such that there are natural equivalences

HomS(E, SC/S(F )) � HomS(F, E)∨

for E, F ∈ C. For example, if f : X → S is a smooth proper morphism of relative dimension n,
then SDperf (X)/S = −⊗ ωX/S [n] is a Serre functor over S.

3. Hochschild homology

In this section we review the definition of Hochschild homology and various of its properties
relevant to this paper. All of the constructions and results we discuss are well known in some
form, but for convenience or lack of suitable references we often sketch the details.

There are various settings in which Hochschild homology can be defined. In this paper we
consider Hochschild homology as an invariant of small linear categories or dualizable presentable
linear categories, defined in terms of categorical traces. See [Kuz09] for a more down-to-earth
definition in the case of a semiorthogonal component of the derived category of a smooth proper
variety, which is the case needed in the main results of this paper. The definition below has the
advantage of being manifestly canonical and convenient for making abstract arguments.

In general, if (A,⊗,1) is a symmetric monoidal ∞-category and A ∈ A is a dualizable object,
then the trace of an endomorphism F : A → A is the map Tr(F ) ∈ MapA(1,1) given as the
composite

1
coevA−−−−→ A ⊗ A∨ F⊗idA∨−−−−−→ A ⊗ A∨ � A∨ ⊗ A

evA−−−→ 1.

We will be interested in the case where A is CatS or PrCatS . In this case, 1 is Dperf(S) or Dqc(S),
and the functor Tr(F ) is determined by its value on the structure sheaf OS .

Definition 3.1. Let C be a dualizable presentable S-linear category, and let F : C → C be an
endomorphism. Then the Hochschild homology of C over S with coefficients in F is the complex

HH∗(C/S, F ) = Tr(F )(OS) ∈ Dqc(S).
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The Hochschild homology of C over S is the complex

HH∗(C/S) = HH∗(C/S, idC) ∈ Dqc(S).

If C is an S-linear category and F : C → C is an endomorphism, then Ind(C) is a dualizable
presentable S-linear category by Lemma 2.5, and we define

HH∗(C/S, F ) = HH∗(Ind(C)/S, Ind(F )),

HH∗(C/S) = HH∗(C/S, idC).

Note that any object F ∈ Dqc(S) gives a natural coefficient for Hochschild homology of categories
over S, by considering the corresponding endofunctor −⊗ F : C → C; in this situation, we use
the notation

HH∗(C/S, F ) = HH∗(C/S, (−⊗ F )).

Finally, in any of the above situations, for i ∈ Z we set

HHi(C/S, F ) = H−i(HH∗(C/S, F ))

to be the degree −i cohomology sheaf of HH∗(C/S, F ).

Remark 3.2. If C is a dualizable small S-linear category (equivalently, a smooth and proper
small S-linear category; see § 2.5) and F : C → C is an endomorphism, then by definition the
trace of F is a functor Tr(F ) : Dperf(S) → Dperf(S). Further, there is a canonical equivalence
Ind(Tr(F )) � Tr(Ind(F )), because by Remark 2.4 the functor Ind takes the duality data of C to
that of Ind(C). Thus HH∗(C/S, F ) � Tr(F )(OS) ∈ Dperf(S).

Below we review some well-known properties of Hochschild homology, in a guise that is
tailored to our purposes.

3.1 Functoriality
Hochschild homology (with coefficients) is suitably functorial. This functoriality exists in the
general context of traces of dualizable objects in a symmetric monoidal (∞, 2)-category (see, for
example, [BZN19, TV15, HSS17, KoPr20]), but here we only recall the relevant details in the
case of Hochschild homology of categories.

Let (C, F ) be a pair where C is a dualizable presentable S-linear category and F : C → C

is an endomorphism. Let (D, G) be another such pair. We define a morphism (C, F ) → (D, G)
to be a pair (Φ, γ) where Φ: C → D is morphism that admits a cocontinuous right adjoint Φ!

(which is thus also a morphism in PrCatS), and γ : Φ ◦ F → G ◦ Φ is a natural transformation
of functors; in other words, a morphism is a (not necessarily commutative) diagram

C
F

��

Φ
��

C

Φ
��

γ

�� ��
��

��
�

��
��

��
�

D
G

�� D
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Given such a morphism (Φ, γ), we consider the diagram

Dqc(S)
coevC

�� C⊗Dqc(S) C
∨

�� ���������������������

���������������������

F⊗idC∨
��

Φ⊗(Φ!)∨

��

C⊗Dqc(S) C
∨

Φ⊗(Φ!)∨

��

γ⊗id
(Φ!)∨

�� ����������������������

����������������������

evC
�� Dqc(S)

�� ���������������������

���������������������

Dqc(S)
coevD

�� D⊗Dqc(S) D
∨

G⊗idD∨
�� D⊗Dqc(S) D

∨
evD

�� Dqc(S)

(3.1)

where:

• (Φ!)∨ : C∨ → D∨ is the dual of the functor Φ! : D → C, defined as the composition

C∨ idC∨⊗coevD−−−−−−−−→ C∨ ⊗Dqc(S) D⊗Dqc(S) D
∨ idC∨⊗Φ!⊗idD∨−−−−−−−−−−→ C∨ ⊗Dqc(S) C⊗Dqc(S) D

∨ evC⊗idD∨−−−−−−→ D∨;

• the 2-morphism in the first square is the natural transformation

(Φ ⊗ (Φ!)∨) ◦ coevC � ((Φ ◦ Φ!) ⊗ idD∨) ◦ coevD → coevD

induced by the counit of the adjunction between Φ and Φ!;
• the 2-morphism in the last square is the natural transformation

evC → evC ◦ ((Φ! ◦ Φ) ⊗ idC∨) � evD ◦ (Φ ⊗ (Φ!)∨)

induced by the unit of the adjunction between Φ and Φ!.

The compositions along the top and bottom of (3.1) are by definition the traces Tr(F ) and
Tr(G), so the composition of the 2-morphisms in the diagram gives a natural transformation

Tr(Φ, γ) : Tr(F ) → Tr(G).

In particular, applying this to OS , we obtain a morphism on Hochschild homology

HH∗(Φ, γ) : HH∗(C/S, F ) → HH∗(D/S, G).

The functoriality of Hochschild homology implies the following result; cf. [Kuz09] which treats
the case of semiorthogonal decompositions of varieties.

Lemma 3.3. Let C = 〈C1, . . . ,Cm〉 be an S-linear semiorthogonal decomposition with admissible
components. Then there is an equivalence

HH∗(C/S) � HH∗(C1/S) ⊕ · · · ⊕ HH∗(Cm/S),

where the map HH∗(C/S) → HH∗(Ci/S) is induced by the projection functor onto the component
Ci.

3.2 Chern characters
The functoriality of Hochschild homology can be used to define a theory of Chern characters as
follows.

Let C be a presentable S-linear category. Then any object E ∈ C determines an S-linear
functor ΦE : Dqc(S) → C determined by ΦE(OS) = E, whose right adjoint

Φ!
E = HomS(E,−) : C → Dqc(S)

is cocontinuous if and only if E is a compact object of C.
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Now we assume that E is compact, C is dualizable, and F : C → C is an endomorphism; for
instance, C could be of the form C = Ind(C0) for a small S-linear category C0 and E ∈ C0. In
this setup, we will construct a morphism

chE,F : HomS(E, F (E)) → HH∗(C/S, F )

in Dqc(S), called the Chern character of E with coefficients in F ; in practice, we often drop the
subscripts E and F in chE,F when they are clear from context. By Yoneda’s lemma, it suffices
to construct functorially in G ∈ Dqc(S) a map

MapDqc(S)(G,HomS(E, F (E))) → MapDqc(S)(G, HH∗(C/S, F )). (3.2)

The left-hand side is identified with MapC(E ⊗ G, F (E)). This mapping space is in turn identified
with the space of natural transformations γ : ΦE ◦ (−⊗ G) → F ◦ ΦE . The pair (ΦE , γ) is then
a morphism of pairs (Dqc(S),−⊗ G) → (C, F ) as considered in § 3.1, and hence determines a
morphism on Hochschild homology

G � HH∗(Dqc(S)/S, G) → HH∗(C/S, F ).

All together, this gives the required map (3.2).

3.3 Base change
Hochschild homology satisfies base change in the following sense.

Lemma 3.4. Let C be a dualizable presentable S-linear category and let F : C → C be an endo-
morphism. Let g : T → S be a morphism of schemes. Let FT : CT → CT be the base change of F
along g. Then there is a canonical equivalence

g∗ HH∗(C/S, F ) � HH∗(CT /T, FT ).

Proof. It follows from the definitions that the trace Tr(F ) : Dqc(S) → Dqc(S) commutes with
base change, which implies the result. �

For smooth proper categories in characteristic 0, the individual Hochschild homology groups
are vector bundles and satisfy base change.

Theorem 3.5 [Kal08, Kal17, Mat20]. Let C be a smooth proper S-linear category, where S is a
Q-scheme. Then HHi(C/S) is a finite locally free sheaf on S for any i ∈ Z. Further, if g : T → S
is a morphism of schemes, then for any i ∈ Z there is a canonical isomorphism

g∗ HHi(C/S)∼= HHi(CT /T ).

Proof. The first part follows from the degeneration of the noncommutative Hodge-to-de Rham
spectral sequence proved by Kaledin [Kal08, Kal17]; see also Mathew’s recent proof [Mat20,
Theorem 1.3]. The second claim then follows from Lemma 3.4. �

3.4 Mukai pairing
In the smooth and proper case, Hochschild homology carries a canonical nondegenerate pairing,
known as the Mukai pairing. This pairing has been studied from many points of view in the
literature [CW10, Căl05, Shk13, Mar09].

Lemma 3.6. Let C be a smooth proper S-linear category. Then HH∗(C/S) ∈ Dperf(S) and there
is a canonical nondegenerate pairing HH∗(C/S) ⊗ HH∗(C/S) → OS .

Proof. We sketch a short proof following [AV20]. (We already observed HH∗(C/S) ∈ Dperf(S) in
Remark 3.2, but give another proof here.) The functor HH∗(−/S) : CatS → Dqc(S) is symmetric
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monoidal; see, for instance, [AV20, Proposition 2.1] (where the result is stated for S affine, but
from which the general case follows by Lemma 3.4). If C is smooth and proper over S, then it is
dualizable as an object of CatS . Since HH∗(−/S) is symmetric monoidal, its value on C is also
dualizable as an object of Dqc(S), and hence belongs to Dperf(S). The evaluation morphism for
HH∗(C/S) is obtained by applying the functor HH∗(−/S) to the evaluation morphism for C, and
hence takes the form

HH∗(C∨/S) ⊗ HH∗(C/S) → OS .

But it follows from the definition of Hochschild homology that there is a canonical identification
HH∗(C∨/S) � HH∗(C/S). This completes the proof. �

We will need a compatibility between the Mukai pairing, Serre duality, and Chern characters,
which we formulate in the case where the base is a field.

Lemma 3.7. Let C be a smooth proper k-linear category, where k is a field. Then for i ∈ Z there
is an isomorphism

HHi(C/k) ∼= Ext−i
k (idC, SC)

where SC is the Serre functor for C over k and the Ext group is considered in the category of
k-linear endofunctors of C. Moreover, for E ∈ C if we denote by

ηE : HHi(C/k) → Ext−i
k (E, SC(E))

the natural map arising from the above isomorphism, then there is a commutative diagram

Exti
k(E, E)

chE
��

∼=
��

HH−i(C/k)

∼=
��

Ext−i
k (E, SC(E))∨

η∨
E

�� HHi(C/k)∨

where the left vertical arrow is given by Serre duality and the right vertical arrow is give by the
Mukai pairing.

Proof. This is well known to the experts. We provide references to the literature where the state-
ments are proved in a slightly different setup (e.g. C assumed to be a semiorthogonal component
in the derived category of a variety): the isomorphism HHi(C/k) ∼= Ext−i

k (idC, SC) follows from
[Kuz09, Theorem 4.5 and Proposition 4.6], and the commutativity of the diagram follows from
[CW10, Proposition 11]. �

3.5 HKR isomorphism
The Hochschild–Kostant–Rosenberg (HKR) isomorphism identifies the Hochschild homology of
the derived category of a scheme in terms of Hodge cohomology. This subject has been studied by
many authors (see, for example, [HKR62, Swa96, Yek02]); the form in which we state the result
is a consequence of Yekutieli’s work [Yek02]. For a morphism X → S and an endomorphism
F : Dperf(X) → Dperf(X), we use the notation HH∗(X/S, F ) = HH∗(Dperf(X)/S, F ).

Theorem 3.8 [Yek02]. Let f : X → S be smooth morphism of relative dimension n, where n!
is invertible on S. Let F ∈ Dperf(S). Then there is an equivalence

HH∗(X/S, F ) �
n⊕

p=0

F ⊗ f∗Ω
p
X/S [p].
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4. Hochschild cohomology

In this section we review the definition of Hochschild cohomology and various of its properties
relevant to this paper. As in our discussion of Hochschild homology, this material is well known
but for convenience we often sketch the details.

Definition 4.1. Let C be a small or presentable S-linear category, and let F : C → C be an
endomorphism. Then the Hochschild cohomology of C over S with coefficients in F is the complex

HH∗(C/S, F ) = HomS(idC, F ) ∈ Dqc(S),

that is, the mapping object from idC to F considered as objects of the S-linear category
FunS(C,C). The Hochschild cohomology of C over S is the complex

HH∗(C/S) = HH∗(C/S, idC) ∈ Dqc(S).

As for Hochschild homology, if F ∈ Dqc(S) we use the notation

HH∗(C/S, F ) = HH∗(C/S, (−⊗ F )).

Finally, for i ∈ Z we set

HHi(C/S, F ) = Hi(HH∗(C/S, F ))

to be the degree i cohomology sheaf of HH∗(C/S, F ).

Remark 4.2. If C is a small S-linear category and F : C → C is an endofunctor, then the
Hochschild cohomologies HH∗(C, F ) and HH∗(Ind(C), Ind(F )) are canonically equivalent; this
follows from the fact that Ind: CatS → PrCatω

S is an equivalence.

4.1 Functoriality
As recalled in § 3.1, Hochschild homology is functorial with respect to functors that admit a right
adjoint. Hochschild cohomology, however, is only functorial with respect to functors which are
also fully faithful.

Let (C, F ) be a small or presentable S-linear category, and let F : C → C be an
S-linear endofunctor. Let (D, G) be another such pair. We consider pairs (Φ, δ) where Φ: C → D

is a morphism that admits a right adjoint morphism Φ! : D → D (so Φ! is required to be cocon-
tinuous in case C and D are presentable), and δ : G ◦ Φ → Φ ◦ F is a natural transformation of
functors; in other words, we consider a (not necessarily commutative) diagram

C
F

��

Φ
��

C

Φ
��

D
G

��

δ
���������

�������
D

To distinguish from the notion of a morphism (C, F ) → (D, G) introduced in § 3.1, we will call
such a pair (Φ, δ) a comorphism from (C, F ) to (D, G). We say that (Φ, δ) is fully faithful if Φ is
fully faithful.

Now assume that (Φ, δ) : (C, F ) → (D, G) is a fully faithful comorphism. In this setup, we
will construct a morphism

HH∗(Φ, δ) : HH∗(D, G) → HH∗(C, F )
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in Dqc(S). By the definition of Hochschild cohomology and Yoneda, it suffices to construct
functorially in A ∈ Dqc(S) a map

MapFunS(D,D)((−⊗ A), G) → MapFunS(C,C)((−⊗ A), F ).

For this, we send α : (−⊗ A) → G on the left-hand side to the morphism (−⊗ A) → F given by
the composition

(−⊗ A) ∼−→ Φ! ◦ Φ ◦ (−⊗ A) ∼−→ Φ! ◦ (−⊗ A) ◦ Φ Φ!αΦ−−−→ Φ! ◦ G ◦ Φ Φ!δ−−→ Φ! ◦ Φ ◦ F
∼−→ F,

where the first and last equivalences come from full faithfulness of Φ and the second equivalence
from the S-linearity of Φ.

4.2 Base change
Like Hochschild homology, Hochschild cohomology satisfies base change. This will not be needed
in the paper, but we include it for completeness.

Lemma 4.3. Let C be a dualizable presentable S-linear category and let F : C → C be an endo-
morphism. Let g : T → S be a morphism of schemes. Let FT : CT → CT be the base change of F
along g. Then there is a canonical equivalence

g∗ HH∗(C/S, F ) � HH∗(CT /T, FT ).

Proof. We claim that the natural functor

FunS(C,C) ⊗Dqc(S) Dqc(T ) → FunT (CT ,CT )

is an equivalence of T -linear categories. From this, the lemma follows from the definition of
Hochschild cohomology and base change for mapping objects in linear categories (see [Per19,
Lemma 2.10]).

To prove the claim, note that by dualizability of C we have an equivalence

FunS(C,C) � C∨ ⊗Dqc(S) C.

Base change along T → S preserves dualizability of C and (CT )∨ � (C∨)T , so we similarly have
an equivalence

FunT (CT ,CT ) � (C∨)T ⊗Dqc(T ) CT .

Since these descriptions of the functor categories are compatible with base change along T , the
claim follows. �

4.3 Action on homology
Hochschild cohomology acts on Hochschild homology. More generally, suppose C is a dualizable
presentable S-linear category, and F, G : C → C are endomorphisms. Then there is an action
functor

HomS(F, G) ⊗ HH∗(C/S, F ) → HH∗(C/S, G)

where the first term is the mapping object from F to G in FunS(C,C). This boils down to
assigning to any natural transformation γ : F → G a morphism HH∗(C/S, F ) → HH∗(C/S, G);
since (idC, γ) : (C, F ) → (C, G) is a morphism of pairs in the sense of § 3.1, we can simply take
HH∗(idC, γ).

303

https://doi.org/10.1112/S0010437X22007266 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007266


A. Perry

Note that as a particular case, we have an action

HH∗(C/S, F ) ⊗ HH∗(C/S) → HH∗(C/S, F ),

and hence for any i, j ∈ Z an action

HHi(C/S, F ) ⊗ HHj(C/S) → HHj−i(C/S, F ).

For any E ∈ C, there is also an evident action

HH∗(C/S, F ) ⊗HomS(E, E) → HomS(E, F (E)).

Lemma 4.4. For E ∈ C the diagram

HH∗(C/S, F ) ⊗HomS(E, E) ��

id⊗chE

��

HomS(E, F (E))

chE,F

��

HH∗(C/S, F ) ⊗ HH∗(C/S) �� HH∗(C/S, F )

commutes.

Proof. Using the functoriality of traces (see [BZN19, Proposition 3.21] or [KoPr20, Proposition
1.2.11]), this follows by unwinding the definitions. �

4.4 HKR isomorphism
The HKR isomorphism for Hochschild cohomology identifies this group in the case of the
derived category of a scheme with polyvector field cohomology. Like the HKR isomorphism
for Hochschild homology, the following form of this result can be deduced from [Yek02]. For
a morphism X → S and an endomorphism F : Dperf(X) → Dperf(X), we use the notation
HH∗(X/S, F ) = HH∗(Dperf(X)/S, F ).

Theorem 4.5. Let f : X → S be smooth morphism of relative dimension n, where n! is
invertible on S. Let F ∈ Dperf(S). Then there is an equivalence

HH∗(X/S, F ) �
n⊕

t=0

F ⊗ f∗(∧tTX/S)[−t].

4.5 Deformation theory
Let 0 → I → A′ → A → 0 be a square-zero extension of rings, and let X → Spec(A) be a smooth
morphism of schemes. A deformation of X over A′ is a smooth scheme X ′ over A′ equipped with
an isomorphism X ′

A
∼= X. Recall that, provided one exists, the set of isomorphism classes of such

deformations form a torsor under H1(X, TX/ Spec(A) ⊗ I) (where we abusively write I for the
pullback of I to X). If A′ → A is a trivial square-zero extension, that is, admits a section A → A′,
then there is a trivial deformation XA′ obtained by base change along the section, so there is
a canonical identification of the set of deformations of X over A′ with H1(X, TX/ Spec(A) ⊗ I)
taking the trivial deformation to 0; in this case, for a deformation X ′ → Spec(A′) we write

κ(X ′) ∈ H1(X, TX/ Spec(A) ⊗ I)

for the corresponding element, called the Kodaira–Spencer class.
We will need a generalization of the Kodaira–Spencer class to the setting of categories. Note

that by Theorem 4.5, if dim(X/A)! is invertible on A (where dim(X/A) denotes the relative
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dimension of X → Spec(A)), then we have an isomorphism

HH2(X/A, I) ∼= H0(X,∧2TX/ Spec(A) ⊗ I) ⊕ H1(X, TX/ Spec(A) ⊗ I) ⊕ H2(X, I),

and, in particular, a natural inclusion

H1(X, TX/ Spec(A) ⊗ I) ↪→ HH2(X/A, I). (4.1)

This suggests that when we replace X by an A-linear category, the role of the cohomology of
TX/ Spec(A) in deformation theory should be replaced by Hochschild cohomology.

If A′ → A is a square-zero extension and C is an A-linear category, then a deformation of
C over A′ is an A′-linear category C′ equipped with an equivalence C′

A � C. If Φ: C → D is a
morphism of A-linear categories, then a deformation of Φ over A′ is a morphism Φ′ : C′ → D′

where C′ and D′ are deformations of C and D over A′ and the base change Φ′
A is equipped with

an equivalence Φ′
A � Φ.

Lemma 4.6. Let 0 → I → A′ → A → 0 be a trivial square-zero extension of rings, and let C

be an A-linear category. Then, for any deformation C′ of C over A′, there is an associated
Kodaira–Spencer class

κ(C′) ∈ HH2(C/A, I)

with the following properties.

(1) Let Φ: C → D be a fully faithful morphism of A-linear categories which admits a right
adjoint. Let Φ′ : C′ → D′ be a deformation of Φ over A′. Then the map

HH2(D/A, I) → HH2(C/A, I)

induced by Φ (see § 4.1) takes κ(D′) to κ(C′).
(2) Let X → Spec(A) be a smooth morphism of schemes with dim(X/A)! invertible on A. Let

X ′ → Spec(A′) be a deformation of X over A′. Then the inclusion (4.1) takes κ(X ′) to
κ(Dperf(X ′)).

Proof. In [Lur18, § 16.6] the construction of a class κ(C′) ∈ HH2(C/S, I) is given in the case
where A = I = k are fields, but the same construction works in our more general setting and can
be checked to satisfy the stated properties.

More concretely, in this paper we shall only need the class κ(C′) for C ↪→ Dperf(X) a
semiorthogonal component of a scheme X smooth over A with dim(X/A)! invertible on A,
and C′ ↪→ Dperf(X ′) a semiorthogonal component of a deformation of X over A′. In this set-
ting, the class κ(C′) can be defined by stipulating that properties (1) and (2) hold. Namely, we
define κ(Dperf(X ′)) as the image of κ(X ′) under the map (4.1), and define κ(C′) as the image of
κ(Dperf(X ′)) under the map HH2(Dperf(X)/A, I) → HH2(C/A, I). �
Remark 4.7. In contrast to the geometric situation, in the setting of Lemma 4.6 the set of
isomorphism classes of deformations classes of C over A′ is not necessarily a torsor under
HH2(C/A, I); cf. [Lur18, Remark 16.6.7.6 and Theorem 16.6.10.2].

We can also describe the deformation theory of objects along a deformation of a category.
If A′ → A is a square-zero extension of rings, C is an A-linear category, C′ is a deforma-
tion of C over A′, and E ∈ C is an object, then a deformation of E to C′ is an object
E′ ∈ C′ equipped with an equivalence E′

A � E ∈ C (where we have used the given identification
C′

A � C).
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Lemma 4.8. Let 0 → I → A′ → A → 0 be a square-zero extension of rings. Let C be an A-linear
category, C′ a deformation of C over A′, and E ∈ C an object. Then there is an obstruction class

ω(E) ∈ Ext2A(E, E ⊗ I)

with the following properties.

(1) ω(E) vanishes if and only if a deformation of E to C′ exists, in which case the set of
isomorphism classes of deformations of E to C′ forms a torsor under Ext1A(E, E ⊗ I).

(2) Assume the extension A′ → A is trivial, so that by Lemma 4.6 we have a Kodaira–Spencer
class κ(C′) ∈ HH2(C/A, I), which by the definition of Hochschild cohomology corresponds
to a natural transformation idC → (−⊗ I)[2]. Then, writing κ(C′)(E) ∈ Ext2A(E, E ⊗ I) for
the class obtained by applying this natural transformation to E, we have an equality

ω(E) = κ(C′)(E).

Proof. Similarly to Lemma 4.6, the result can be proved using the arguments and results of
[Lur18, Chapter 16]; cf. [Lur18, Remark 16.0.0.3].

More concretely, in this paper we shall only need the result in the case where C ↪→ Dperf(X)
is a semiorthogonal component for X a noetherian scheme smooth over A, C′ ↪→ Dperf(X ′) is a
semiorthogonal component of a deformation X ′ of X over A′, and everything is defined over a
base field. In this setting, the result can be proved as follows. First consider the purely geometric
case where C = Dperf(X) and C′ = Dperf(X ′). Then [Lie06, Theorem 3.1.1] gives the existence of
a class ω(E) satisfying property (1). If the extension A′ → A is trivial, then by the main theorem
of [HT10] we have1

ω(E) = (idE ⊗ κ(X ′)) ◦ A(E),

where A(E) ∈ Ext1(E, E ⊗ ΩX/ Spec(A)) is the Atiyah class of E and κ(X ′) is regarded as an
element of Ext1(ΩX/ Spec(A), I). One checks

(idE ⊗ κ(X ′)) ◦ A(E) = κ(Dperf(X))(E),

so that (2) holds. Now the case where C ↪→ Dperf(X) and C′ ↪→ Dperf(X ′) are not necessar-
ily equalities follows from two observations: an object E′ is a deformation of E to Dperf(X ′)
if and only if E′ is a deformation of E to C′; and we have κ(Dperf(X))(E) = κ(C′)(E) by
Lemma 4.6(1). �

5. Hodge theory of categories

In this section we explain how to associate natural Hodge structures to C-linear categories,
via topological K-theory. We use this to formulate several variants of the Hodge conjecture for
categories, and discuss the relation between these conjectures and their classical counterparts.
We also prove the results about intermediate Jacobians described in § 1.3.

5.1 Topological K-theory
Blanc [Bla16] constructed a lax symmetric monoidal topological K-theory functor

Ktop : CatC → Sp

from C-linear categories to the ∞-category of spectra. The following theorem summarizes the
results about this construction that are relevant to this paper.

1 This is where we use our assumption that everything is defined over a base field; see [HT14].
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Theorem 5.1 [Bla16].

(1) If C = 〈C1, . . . ,Cm〉 is a semiorthogonal decomposition of C-linear categories, then there is
an equivalence

Ktop(C) � Ktop(C1) ⊕ · · · ⊕ Ktop(Cm)

where the map Ktop(C) → Ktop(Ci) is induced by the projection functor onto the compo-
nent Ci.

(2) There is a functorial commutative square

K(C)
ch

��

��

HN(C)

��

Ktop(C)
chtop

�� HP(C)

(5.1)

where K(C) denotes the algebraic K-theory of C, HN(C) the negative cyclic homology, and
HP(C) the periodic cyclic homology.

(3) If X is a scheme which is separated and of finite type over C with analytification Xan, then
there exists a functorial equivalence

Ktop(Dperf(X)) � Ktop(Xan),

where the right-hand side denotes the complex K-theory spectrum of the topological space
Xan. Under this equivalence, the left vertical arrow in (5.1) recovers the usual map from
algebraic K-theory to topological K-theory, and under the identification of HP(Dperf(X))
with 2-periodic de Rham cohomology, the bottom horizontal arrow in (5.1) recovers the
usual topological Chern character.

For C ∈ CatC and an integer n, we write

Ktop
n (C) = πnKtop(C)

for the nth homotopy group of Ktop(C). These groups carry canonical pairings in the proper
case.

Lemma 5.2. Let C be a proper C-linear category. Then for any integer n there is a canonical
bilinear form χtop(−,−) : Ktop

n (C) ⊗ Ktop
n (C) → Z, called the Euler pairing, with the following

properties.

(1) If C = 〈C1, . . . ,Cm〉 is a semiorthogonal decomposition of C-linear categories, then the
inclusions Ktop

n (Ci) → Ktop
n (C) preserve the Euler pairings, and the direct sum decomposition

Ktop
n (C) ∼= Ktop

n (C1) ⊕ · · · ⊕ Ktop
n (Cm)

is semiorthogonal in the sense that χtop(vi, vj) = 0 for vi ∈ Ktop
n (Ci), vj ∈ Ktop

n (Cj), i > j.
(2) If χ(−,−) : K0(C) ⊗ K0(C) → Z denotes the Euler pairing defined by

χ(E, F ) =
∑

i

(−1)i dim Exti
C(E, F )

for E, F ∈ C, then the map K0(C) → Ktop
0 (C) preserves the Euler pairings.

(3) If C = Dperf(X) for a proper complex variety X, then for v, w ∈ Ktop
n (X) we have

χtop(v, w) = p∗(v∨ ⊗ w) ∈ Ktop
2n (Spec(C)) ∼= Z,

where p : X → Spec(C) is the structure morphism.
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Proof. As the functor Ktop : CatC → Sp is lax monoidal, we have a natural map

Ktop(Cop) ⊗ Ktop(C) → Ktop(Cop ⊗Dperf(Spec(C)) C).

There is a canonical identification Ktop(Cop) = Ktop(C); indeed, this follows from the definition
of Ktop(−) in [Bla16] and the corresponding identification for algebraic K-theory. Therefore,
passing to homotopy groups, we obtain a map

Ktop
n (C) ⊗ Ktop

n (C) → Ktop
2n (Cop ⊗Dperf(Spec(C)) C).

As C is proper over C, we have an evaluation functor

Cop ⊗Dperf(Spec(C)) C → Dperf(Spec(C))

induced by the functor HomC(−,−) : Cop × C → Dperf(Spec(C)). Taking the topological
K-theory of this functor and composing with the above map, we obtain the desired map

χtop(−,−) : Ktop
n (C) ⊗ Ktop

n (C) → Ktop
2n (Dperf(Spec(C))) ∼= Z.

All of the claimed properties follow directly from the definition. For instance, to show the
semiorthogonality claimed in (1), note that restriction of the pairing to Ktop

n (Ci) ⊗ Ktop
n (Cj)

is induced by the functor

C
op
i ⊗Dperf(Spec(C)) Cj → Dperf(Spec(C)),

which is in turn induced by the functor HomC(−,−) : Cop
i × Cj → Dperf(Spec(C)); but if i > j,

then this functor vanishes by semiorthogonality. �
Remark 5.3. We suspect that if C is a smooth proper C-linear category, then the Euler pairing
on Ktop

n (C) is nondegenerate. As in Lemma 3.6, this (and more) would follow if, for instance,
the functor Ktop : CatC → Sp were monoidal (not only lax monoidal) when restricted to the
subcategory of smooth proper C-linear categories.

Proposition 5.4. Let C ⊂ Dperf(X) be a C-linear admissible subcategory, where X is a smooth
proper complex variety.

(1) For any integer n, Ktop
n (C) is a finitely generated abelian group, and there is a canonical

Hodge structure of weight −n on Ktop
n (C) such that there is a canonical isomorphism

grp(Ktop
n (C) ⊗C) ∼= HHn+2p(C),

where the left-hand side denotes the pth graded piece of the Hodge filtration.
(2) For C = Dperf(X) the Chern character induces an isomorphism

Ktop
n (Dperf(X)) ⊗Q ∼=

⊕
k∈Z

H2k−n(X,Q)(k)

of rational Hodge structures, where H2k−n(X,Q)(k) denotes (the Tate twist by k of) the
Betti cohomology of X.

Remark 5.5. The existence of an admissible embedding C ⊂ Dperf(X) in Proposition 5.4 allows
us in the proof below to leverage deep results about the Hodge theory of varieties into statements
for C. We conjecture, however, that Proposition 5.4 remains true for any smooth proper C-linear
category C, without assuming the existence of an embedding.

Proof. First note that Ktop
n (C) is a summand of the finitely generated abelian group Ktop

n (Xan),
and hence finitely generated. The noncommutative Hodge-to-de Rham spectral sequence and its
degeneration [Kal08, Kal17, Mat20] give a canonical filtration of HPn(C) whose pth graded piece
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is HHn+2p(C). Consider the Chern character map Ktop
n (C) ⊗C → HPn(C) from Theorem 5.1. We

claim that this map is an isomorphism for C as in the proposition, and the above filtration pro-
vides the desired Hodge structure on C. This claim is preserved under passing to semiorthogonal
components, so we may assume that C = Dperf(X).

In this case, it is well known that the Chern character indeed provides an isomorphism

Ktop
n (Dperf(X)) ⊗Q ∼=

⊕
k∈Z

H2k−n(X,Q)

of abelian groups. Recall [Wei97] that we have an identification

HPn(Dperf(X)) ∼=
⊕
k∈Z

H2k−n
dR (X)

with 2-periodic de Rham cohomology, under which the noncommutative Hodge-to-de Rham
filtration agrees with the 2-periodic Hodge-to-de Rham filtration, that is, the filtration corre-
sponding to the Hodge structure on

⊕
k∈Z H2k−n(X,Q)(k) under the comparison isomorphism

H2k−n(X,C) ∼= H2k−n
dR (X). We conclude that Ktop

n (Dperf(X)) ⊗C ∼−→ HPn(Dperf(X)) is an iso-
morphism, the noncommutative Hodge-to-de Rham filtration defines a Hodge structure of weight
−n, and the above isomorphism of abelian groups provided by the Chern character is in fact an
isomorphism of rational Hodge structures. �

We will need a generalization of Proposition 5.4 to families of categories. This relies on a
relative version of Blanc’s topological K-theory, due to Moulinos [Mou19]. Namely, for a scheme
S over C, Moulinos constructs a functor

Ktop(−/S) : CatS → ShvSp(San)

from S-linear categories to the ∞-category of sheaves of spectra on the analytification San.

Theorem 5.6 [Mou19].

(1) If S = Spec(C), then there is an equivalence Ktop(−/S) � Ktop(−).
(2) If C = 〈C1, . . . ,Cm〉 is a semiorthogonal decomposition of S-linear categories, then there is

an equivalence

Ktop(C/S) � Ktop(C1/S) ⊕ · · · ⊕ Ktop(Cm/S)

where the map Ktop(C/S) → Ktop(Ci/S) is induced by the projection functor onto the
component Ci.

(3) If f : X → S is a proper morphism of complex varieties and fan : Xan → San is its ana-
lytification, then Ktop(Dperf(X)/S) is the sheaf of spectra on San given by the formula
U �→ Ktop((fan)−1(U)).

For C ∈ CatS and an integer n, we write

Ktop
n (C/S) = πnKtop(C/S)

for the nth homotopy sheaf of Ktop(C/S), which is a sheaf of abelian groups on San.

Proposition 5.7. Let C ⊂ Dperf(X) be an S-linear admissible subcategory, where f : X → S is
a smooth proper morphism of complex varieties.

(1) For any integer n, Ktop
n (C/S) is a local system of finitely generated abelian groups on San

whose fiber over any point s ∈ S(C) is Ktop
n (Cs).

(2) Ktop
n (C/S) underlies a canonical variation of Hodge structures of weight −n on San, which

fiberwise for s ∈ S(C) recovers the Hodge structure on Ktop
n (Cs) from Proposition 5.4.
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(3) For C = Dperf(X) there is an isomorphism

Ktop
n (Dperf(X)/S) ⊗Q ∼=

⊕
k∈Z

R2k−nfan
∗ Q(k)

of variations of rational Hodge structures over San.
(4) There is a bilinear form χtop(−,−) : Ktop

n (C/S) ⊗ Ktop
n (C/S) → Z, which fiberwise for

complex points s ∈ S(C) recovers the Euler pairing on Ktop
n (Cs) from Lemma 5.2.

Remark 5.8. Similarly to Remark 5.5, we conjecture that Proposition 5.4 remains true for any
smooth proper S-linear category.

Proof. As in Proposition 5.4, all of the statements reduce to the case C = Dperf(X), in which case
they follow from standard results. For example, let us explain the details of (1). By Ehresmann’s
theorem and Theorem 5.6(3), Ktop

n (Dperf(X)/S) is a local system of abelian groups on San whose
fiber over any point s ∈ S(C) is Ktop

n (Xs) � Ktop
n (Dperf(Xs)). This implies that Ktop

n (C/S) is a
local system, being a summand of Ktop

n (Dperf(X)/S), and by functoriality the fiber of this local
system over s ∈ S(C) is the summand Ktop

n (Cs) of Ktop
n (Dperf(Xs)). �

5.2 The noncommutative Hodge conjecture and its variants
Using the above, we can formulate a natural notion of Hodge classes on a category.

Definition 5.9. Let C ⊂ Dperf(X) be a C-linear admissible subcategory, where X is a smooth
proper complex variety. The group of integral Hodge classes Hdg(C,Z) on C is the subgroup
of Hodge classes in Ktop

0 (C) for the Hodge structure given by Proposition 5.4. More explicitly,
Hdg(C,Z) consists of all classes in Ktop

0 (C) which map to HH0(C) under the Hodge decomposition

Ktop
0 (C) ⊗C ∼=

⊕
p+q=0

HHp−q(C).

The group of rational Hodge classes is defined by Hdg(C,Q) = Hdg(C,Z) ⊗Q. We say an ele-
ment v ∈ Ktop

0 (C) is algebraic if it is in the image of K0(C) → Ktop
0 (C); similarly, an element

v ∈ Ktop
0 (C) ⊗Q is algebraic if it is in the image of K0(C) ⊗Q → Ktop

0 (C) ⊗Q.

By Proposition 5.4(2), if X is a smooth proper complex variety, then the Chern character
identifies Hdg(Dperf(X),Q) with the usual group of rational Hodge classes Hdg∗(X,Q), that is,
the group of Hodge classes for

⊕
k∈Z H2k(X,Q)(k). Recall that the cycle class map from the

Chow ring
CH∗(X) ⊗Q → H∗(X,Q)

factors through Hdg∗(X,Q), and the usual Hodge conjecture predicts that this map surjects
onto Hdg∗(X,Q). Since the Chern character gives an isomorphism

K0(Dperf(X)) ⊗Q ∼= CH∗(X) ⊗Q,

we conclude that the map
K0(Dperf(X)) → Ktop

0 (Dperf(X))

factors through Hdg(Dperf(X),Z), and the usual Hodge conjecture is equivalent to the
surjectivity of the map K0(Dperf(X)) ⊗Q → Hdg(Dperf(X),Q). Now using additivity under
semiorthogonal decompositions of all the invariants in sight leads to the following lemma and
conjecture.

Lemma 5.10. Let C ⊂ Dperf(X) be a C-linear admissible subcategory, where X is a smooth
proper complex variety. Then the map K0(C) → Ktop

0 (C) factors through Hdg(C,Z) ⊂ Ktop
0 (C).
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Conjecture 5.11 (Noncommutative Hodge conjecture). Let C ⊂ Dperf(X) be a C-linear
admissible subcategory, where X is a smooth proper complex variety. Then the map

K0(C) ⊗Q → Hdg(C,Q)

is surjective.

We record the following observation from above.

Lemma 5.12. Let X be a smooth proper complex variety. Then the Hodge conjecture holds for
X if and only if the Hodge conjecture holds for Dperf(X).

There is also an obvious integral variant of the Hodge conjecture for categories.

Conjecture 5.13 (Noncommutative integral Hodge conjecture). Let C ⊂ Dperf(X) be a
C-linear admissible subcategory, where X is a smooth proper complex variety. Then the map

K0(C) → Hdg(C,Z)

is surjective.

Remark 5.14. As we explain in Example 5.19 below, Conjecture 5.13 is false in general. Nonethe-
less, we call it a ‘conjecture’ in keeping with similar terminology for the (known to be false)
integral Hodge conjecture for varieties.

The integral Hodge conjectures for varieties and categories are closely related, but not so
simply as in the rational case. The result can be conveniently formulated in terms of Voisin
groups. Recall from § 1 that for a smooth proper complex variety X, the degree n Voisin group
Vn(X) is defined as the cokernel of the cycle class map CHn(X) → Hdgn(X,Z).

Definition 5.15. Let C ⊂ Dperf(X) be a C-linear admissible subcategory, where X is a smooth
proper complex variety. The Voisin group of C is the cokernel

V(C) = coker(K0(C) → Hdg(C,Z)).

Note that the integral Hodge conjecture holds for C if and only if V(C) = 0.

Proposition 5.16. Let X be a smooth proper complex variety. Assume that H∗(X,Z) is
torsion-free.

(1) If the integral Hodge conjecture holds in all degrees for X, then the integral Hodge conjecture
holds for Dperf(X).

(2) Assume further that for some integer n, the cohomology H2m(X,Z) is of Tate type for
all m > n, that is, H2m(X,C) = Hm,m(X) for m > n. If V(Dperf(X)) is d-torsion for some
integer d, then the Vm(X) is d(m − 1)!-torsion for all m ≥ n. In particular, if n = 2 and the
integral Hodge conjecture holds for Dperf(X), then the integral Hodge conjecture in degree
2 holds for X.

Proof. For the proof we will need the following properties, which hold by [AH61, § 2.5] due to
our assumption that H∗(X,Z) is torsion-free.

(1) Ktop
0 (X) is torsion-free and ch: Ktop

0 (X) → Heven(X,Q) is injective.
(2) For any v ∈ Ktop

0 (X) the leading term of ch(v) is integral, that is, if ch(v) = αi + αi+1 + · · ·
with αj ∈ H2j(X,Q) then αi ∈ H2i(X,Z).

(3) For any αi ∈ H2i(X,Z) there exists v ∈ Ktop
0 (X) such that the leading term of ch(v) is αi.

(The analogous assertions relating Ktop
1 (X) and the odd cohomology of X are also true, but we

will not need this.)
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Now assume that the integral Hodge conjecture holds in all degrees for X. We must show
that any v ∈ Hdg(Dperf(X),Z) is in the image of K0(Dperf(X)). Write ch(v) = αi + αi+1 + · · · as
above. Then αi is a Hodge class by Proposition 5.4(2) and integral by property (2) above, that is,
αi ∈ Hdgi(X,Z). Therefore, by assumption there are closed subvarieties Zk ⊂ X of codimension
i and integers ck ∈ Z such that αi is the cycle class of

∑
ckZk. Replacing v by v − ∑

ck[OZk
],

we may thus assume αi = 0. Continuing in this way, we may assume that ch(v) = 0. But then
v = 0 by property (1) above, so we are done. This proves part (1) of the proposition.

Now assume that the cohomological condition in part (2) of the proposition holds, and
that V(Dperf(X)) is d-torsion. Let m ≥ n and αm ∈ Hdgm(X,Z). By property (3) above we
may choose a class v ∈ Ktop

0 (X) such that ch(v) = αm + αm+1 + · · · where αi ∈ H2i(X,Q). By
assumption αm is a Hodge class, and so is αi for i > m because H2i(X,Z) is of Tate type. Thus
v ∈ Hdg(Dperf(X),Z) is a Hodge class by Proposition 5.4(2). Therefore, by assumption there is
an object E ∈ Dperf(X) whose class in Ktop

0 (X) is dv, and so ch(E) = dαm + dαm+1 + · · · . By
the standard formula for the Chern character in terms of Chern classes, the vanishing of chi(E)
for i < m implies that dαm = ((−1)m−1/(m − 1)!)cm(E) in H2m(X,Q). By torsion-freeness of
H2m(X,Z), this is equivalent to d(m − 1)!αm = (−1)m−1cm(E) in H2m(X,Z). This proves that
d(m − 1)! kills the class of αm in the cokernel of CHm(X) → Hdgm(X,Z), as required. �
Corollary 5.17. Let X be a smooth proper complex variety with dim(X) ≤ 2, and assume
H∗(X,Z) is torsion-free in the case where dim(X) = 2. Then the integral Hodge conjecture holds
for Dperf(X).

Proof. This follows from Proposition 5.16(1) because the integral Hodge conjecture holds for
varieties of dimension at most 2. �
Corollary 5.18. Let X be a smooth proper complex threefold with H∗(X,Z) torsion-free.
Then the integral Hodge conjecture holds for X if and only if the integral Hodge conjecture
holds for Dperf(X).

Proof. For a threefold the integral Hodge conjecture always holds in degrees n = 0, 1, 3, so the
only interesting case is n = 2. Thus the result follows from Proposition 5.16. �
Example 5.19. Let X ⊂ P4 be a very general complex hypersurface of degree divisible by p3 for
an integer p coprime to 6. Then Kollár showed that the integral Hodge conjecture in degree 2
fails for X [BCC92]. By Corollary 5.18 we conclude that the integral Hodge conjecture also fails
for Dperf(X).

The (integral) Hodge conjecture for categories behaves well under semiorthogonal decompo-
sitions. This will be important in our applications to the integral Hodge conjecture for varieties
with CY2 semiorthogonal components.

Lemma 5.20. Let C ⊂ Dperf(X) be a C-linear admissible subcategory, where X is a smooth
proper complex variety. Let C = 〈C1, . . . ,Cm〉 be a C-linear semiorthogonal decomposition. Then
there is an isomorphism of Voisin groups

V(C) ∼= V(C1) ⊕ · · · ⊕ V(Cm).

In particular, the (integral) Hodge conjecture holds for C if and only if the (integral) Hodge
conjecture holds for all of the semiorthogonal components C1, . . . ,Cm.

Proof. This follows immediately from the fact that all of the invariants involved in the definition
of V(C) are additive under semiorthogonal decompositions. �
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We can also formulate a version of the variational Hodge conjecture for categories.

Conjecture 5.21 (Noncommutative variational Hodge conjecture). Let C ⊂ Dperf(X) be an
S-linear admissible subcategory, where f : X → S is a smooth proper morphism of complex vari-
eties. Let ϕ be a section of the local system Ktop

0 (C/S) ⊗Q of Q-vector spaces on San. Assume
there exists a complex point 0 ∈ S(C) such that the fiber ϕ0 ∈ Ktop

0 (C0) ⊗Q is algebraic. Then
ϕs is algebraic for every s ∈ S(C).

Note that, as in Lemma 5.12, for C = Dperf(X) the noncommutative variational Hodge con-
jecture is equivalent to the usual variational Hodge conjecture. In general, this conjecture is
extremely difficult. One of the main results of this paper, Theorem 1.3, is an integral version of
the noncommutative variational Hodge conjecture for families of CY2 categories.

We note that, using deep known results for varieties, it is easy to prove the statement obtained
by replacing ‘algebraic’ with ‘Hodge’ in the noncommutative variational Hodge conjecture.

Lemma 5.22. Let C ⊂ Dperf(X) be an S-linear admissible subcategory, where f : X → S is a
smooth proper morphism of complex varieties. Let ϕ be a section of the local system of Q-vector
spaces Ktop

0 (C/S) ⊗Q on San. Assume there exists a complex point 0 ∈ S(C) such that the fiber
ϕ0 ∈ Ktop

0 (C0) ⊗Q is a Hodge class. Then ϕs is a Hodge class for every s ∈ S(C).

Proof. As in earlier arguments, we may reduce to the case where C = Dperf(X). Then in view
of the isomorphism of Proposition 5.7(3), this is a well-known consequence of Deligne’s global
invariant cycle theorem; see [CS14, Proposition 11.3.5]. �

5.3 Odd-degree cohomology and intermediate Jacobians
The following gives conditions under which the odd topological K-theory of categories recovers
the odd integral cohomology of varieties. For an abelian group A, we write Atf for the quotient
by its torsion subgroup.

Proposition 5.23. Let X be a smooth proper complex variety of odd dimension n, such that
Hk(X,Z) = 0 for all odd k < n. Let Dperf(X) = 〈C1, . . . ,Cm〉 be a semiorthogonal decomposition.
Then the Chern character induces an isometry of weight n Hodge structures

ch: Ktop
−n(C1)tf ⊕ · · · ⊕ Ktop

−n(Cm)tf
∼−→ Hn(X,Z)tf

where the left-hand side is the orthogonal sum of the Hodge structures Ktop
−n(Ci)tf of

Proposition 5.4 equipped with their Euler pairings of Lemma 5.2, and the right-hand side is
equipped with its standard Hodge structure and pairing. If, moreover, Hk(X,Z) = 0 for all odd
k �= n, then the above isomorphism holds before quotienting by torsion, that is,

Ktop
−n(C1) ⊕ · · · ⊕ Ktop

−n(Cm) ∼−→ Hn(X,Z).

Proof. If the decomposition of Dperf(X) is trivial (i.e. m = 1), then the result holds by (the proof
of) [OR18, Proposition 2.1 and Remark 2.3]. The general case follows from additivity of the
invariants involved under semiorthogonal decompositions. The only point requiring explanation
is that the direct sum decomposition is orthogonal for the Euler pairing. By Lemma 5.2 the sum
is semiorthogonal. By the m = 1 case we have a Hodge isometry Ktop

−n(Dperf(X))tf ∼= Hn(X,Z)tf
where the left-hand side is equipped with the Euler pairing and the right-hand side with the
usual pairing on cohomology. But the pairing on Hn(X,Z)tf is anti-symmetric, so the same
is true of the Euler pairing, and orthogonality of the direct sum decomposition follows from
semiorthogonality. �
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Recall that if H is a Hodge structure of odd weight n, then its intermediate Jacobian is

J(H) =
HC

F (n+1)/2(HC) ⊕ HZ
,

where HZ is the underlying abelian group of H, HC is its complexification, and F •(HC) is
the Hodge filtration. In general, J(H) only has the structure of a complex torus, but if H is
polarized and its Hodge decomposition only has two terms (i.e. HC = Hp,q ⊕ Hq,p for some p, q),
then J(H) is a principally polarized abelian variety. If X is a smooth proper complex variety, for
an odd integer k we write Jk(X) for the intermediate Jacobian associated to the Hodge structure
Hk(X,Z).

Definition 5.24. Let C ⊂ Dperf(X) be a C-linear admissible subcategory, where X is a smooth
proper complex variety. The intermediate Jacobian of C is the complex torus

J(C) = J(Ktop
1 (C))

given by the intermediate Jacobian of the weight −1 Hodge structure Ktop
1 (C).

Remark 5.25. For any odd integer n, we can also consider the intermediate Jacobian of Ktop
n (C).

However, these are all isomorphic for varying odd n, because by 2-periodicity of topological
K-theory the Hodge structures Ktop

n (C) are Tate twists of each other.

Using Proposition 5.23, we can prove Theorem 1.6 and Corollary 1.7.

Proof of Theorem 1.6. By Proposition 5.23 and our assumptions on the cohomology of X
and Yi, we have isomorphisms J(Dperf(X)) ∼= Jn(X) and J(Dperf(Yi)) ∼= Jni(Yi) if ni is odd.
Moreover, Proposition 5.4(2) and our cohomological assumption imply that if ni is even
then Ktop

1 (Dperf(Yi)) is torsion, so J(Dperf(Yi)) = 0. Thus, by Proposition 5.23 applied to the
semiorthogonal decomposition of Dperf(X), we obtain an isomorphism of complex tori

Jn(X) ∼=
⊕

ni odd

Jni(Yi). (5.2)

Under the further assumption that Hni(Yi,C) = Hpi,qi(Yi) ⊕ Hqi,pi(Yi), the HKR isomorphism
shows that Hn(X,C) = Hp,q(X) ⊕ Hq,p(X), where pi, qi, p, q are as in the statement of
Theorem 1.6. The fact that the isomorphisms of Proposition 5.23 respect the pairings on each
side then implies that the above isomorphism (5.2) respects the principal polarizations on each
side. �
Proof of Corollary 1.7. Note that the category 〈Ej〉 ⊂ Dperf(X) generated by Ej is equivalent to
Dperf(Spec(C)). Hence the first part of Corollary 1.7 is just a special case of Theorem 1.6. Under
the further assumption that H5(X,Z) = 0, we can apply the second part of Proposition 5.23
(and the 2-periodicity of Ktop

n (−)) to conclude there are isomorphisms

H3(X,Z) ∼= Ktop
−3 (Dperf(X))

∼= Ktop
−3 (Dperf(C1)) ⊕ · · · ⊕ Ktop

−3 (Dperf(Cr))

∼= H1(C1,Z) ⊕ · · · ⊕ H1(Cr,Z).

In particular, H3(X,Z)tors = 0. �
Example 5.26. Let V6 be a six-dimensional vector space, and consider the Plücker embedded
Grassmannian Gr(2, V6) ⊂ P(∧2V6) and the Pfaffian cubic hypersurface Pf(4, V ∨

6 ) ⊂ P(∧2V ∨
6 )

parameterizing forms of rank at most 4. Let L ⊂ ∧2V6 be a codimension 3 linear subspace, and
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let L⊥ = ker(∧2V ∨
6 → L∨) be its orthogonal. We assume L is generic so that the intersections

XL = Gr(2, V6) ∩P(L) and YL = Pf(4, V ∨
6 ) ∩P(L⊥)

are smooth of expected dimension, in which case XL is a Fano fivefold and YL is an elliptic curve.
Then there is an isomorphism

J5(XL) ∼= J1(YL) (5.3)

of principally polarized abelian varieties. Indeed, by [Kuz06a, § 10] there is a semiorthogonal
decomposition of Dperf(XL) consisting of Dperf(YL) and exceptional objects, and by the Lefschetz
hyperplane theorem Hk(XL,Z) = 0 for all odd k < 5, so Theorem 1.6 gives the result.

Remark 5.27. In [BT16] Bernardara and Tabuada give criteria for relating the intermediate
Jacobians of varieties whose derived categories share a semiorthogonal component, but their
criteria are quite restrictive and difficult to verify, especially in dimension 5 and higher. In
particular, they were unable to prove the isomorphism (5.3) (see [BT16, Remark 1.18]).

Homological projective geometry [Kuz07, JLX21, KuPe21, KuPe19] is a general theory for
producing varieties whose derived categories have a semiorthogonal component in common, and
gives many examples to which our methods apply. Example 5.26 is a simple instance of this. To
explain a more interesting example, we need some terminology.

Definition 5.28. A Gushel–Mukai variety is a smooth n-dimensional intersection

X = Cone(Gr(2, 5)) ∩ Q, 2 ≤ n ≤ 6,

where Cone(Gr(2, 5)) ⊂ P10 is the projective cone over the Plücker embedded Grassmannian
Gr(2, 5) ⊂ P9 and Q ⊂ P10 is a quadric hypersurface in a linear subspace Pn+4 ⊂ P10.

The results of Gushel [Gus83] and Mukai [Muk89] show these varieties coincide with the
class of all smooth Fano varieties of Picard number 1, coindex 3, and degree 10 (corresponding to
n ≥ 3), together with the Brill–Noether general polarized K3 surfaces of degree 10 (corresponding
to n = 2). Recently, GM varieties have attracted attention because of the rich structure of their
birational geometry, Hodge theory, and derived categories [DIM12, IM11, DIM15, DK18, DK20b,
DK19, DK20a, KuPe18, PPZ19].

In [DK18] Debarre and Kuznetsov classified GM varieties in terms of linear algebraic data,
by constructing for any GM variety X a Lagrangian data set (V6(X), V5(X), A(X)), where

• V6(X) is a six-dimensional vector space,
• V5(X) ⊂ V6(X) is a hyperplane, and
• A(X) ⊂ ∧3V6(X) is a Lagrangian subspace with respect to the wedge product,

and proving that X is completely determined by its dimension and these data. Interestingly,
many of the properties of X only depend on A(X). To state such a result for intermediate
Jacobians, recall that if X1 and X2 are GM varieties such that dim(X1) ≡ dim(X2) (mod 2), then
they are called generalized partners if there exists an isomorphism V6(X1) ∼= V6(X2) identifying
A(X1) ⊂ ∧3V6(X1) with A(X2) ⊂ ∧3V6(X2), or generalized duals if there exists an isomorphism
V6(X1) ∼= V6(X2) identifying A(X1) ⊂ ∧3V6(X1) with A(X2)⊥ ⊂ ∧3V6(X2)∨. For a GM variety
of odd dimension n, we have Hn(X,C) = Hp,q(X) ⊕ Hq,p(X) where p − q = 1 and Hp,q(X) is 10-
dimensional [DK19, Proposition 3.1], so Jn(X) is a 10-dimensional principally polarized abelian
variety.
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Theorem 5.29 [DK20a]. Let X1 and X2 be GM varieties of odd dimensions n1 and n2 which
are generalized partners or duals. Then there is an isomorphism

Jn1(X1) ∼= Jn2(X2)

of principally polarized abelian varieties.

This is proved in [DK20a] by intricate geometric arguments, but, as we explain now, it
can be deduced as a consequence of a categorical statement. Recall that by [KuPe18], for any
GM variety there is a Kuznetsov component Ku(X) ⊂ Dperf(X) defined by the semiorthogonal
decomposition

Dperf(X) =
〈Ku(X),OX ,U∨

X , . . . ,OX(dim(X) − 3),U∨
X(dim(X) − 3)

〉
, (5.4)

where UX and OX(1) denote the pullbacks to X of the rank 2 tautological subbundle and Plücker
line bundle on Gr(2, 5).

Lemma 5.30. Let X be a GM variety of odd dimension n. Then there is an isomorphism

Jn(X) ∼= J(Ku(X))

of principally polarized abelian varieties.

Proof. The Lefschetz hyperplane theorem implies Hk(X,Z) = 0 for all odd k < n, so the result
follows from Proposition 5.23. �
Proof of Theorem 5.29. By [DK18, Theorem 3.16] for a GM variety X of dimension at least 3,
the associated Lagrangian subspace A(X) does not contain decomposable vectors. Hence we
may apply the duality conjecture [KuPe18, Conjecture 3.7] proved in [KuPe19, Theorem 1.6] to
conclude there is an equivalence Ku(X1) � Ku(X2). Now the result follows from Lemma 5.30. �
Remark 5.31. In [DK19] an analogue of Theorem 5.29 is proved for even-dimensional GM vari-
eties, asserting that generalized partners or duals have the same period. This can also be reproved
categorically by a more elaborate version of the above argument, as explained in [BP22].

6. CY2 categories

In this section we define CY2 categories and their associated Mukai Hodge structures, and survey
the known examples of CY2 categories. We also give a sample application of the results of § 5 to
torsion orders of Voisin groups (Corollary 6.14).

6.1 Definitions
Definition 6.1. A CY2 category over a field k is a k-linear category C such that:

(1) there exists an admissible k-linear embedding C ↪→ Dperf(X), where X is a smooth proper
variety over k;

(2) the shift functor [2] is a Serre functor for C over k;
(3) the Hochschild cohomology of C satisfies HH0(C/k) = k.

More generally, a CY2 category over a scheme S is an S-linear category C such that:

(1) there exists an admissible S-linear embedding C ↪→ Dperf(X), where X → S is a smooth
proper morphism;

(2) for every point s : Spec(k) → S, the fiber Cs is a CY2 category over k.
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Remark 6.2. Condition (1) in the definition of a CY2 category over a field or scheme says that
C ‘comes from geometry’. For all of the results in this paper, it would be enough to instead
assume that C is smooth and proper and the conclusions of Propositions 5.4 and 5.7 hold;
cf. Remarks 5.5 and 5.8. On the other hand, condition (1) will be automatic in the examples we
consider in the paper.

Remark 6.3. Let us explain the motivation for the other conditions appearing in the definition
of a CY2 category C over k.

Condition (2), the most important part of the definition of a CY2 category, says that from
the perspective of Serre duality, C behaves like the derived category of a smooth proper surface
with trivial canonical bundle, that is, a two-dimensional Calabi–Yau variety.

Condition (3) says that C is connected in the sense of [Kuz19]. The source of this terminology
is the observation that for a smooth proper variety X over k, we have HH0(X/k) = H0(X,OX),
so X is connected if and only if HH0(X/k) = k. Note also that by Lemma 3.7 and condition (2)
we have HH0(C/k) ∼= HH2(C/k), and by Lemma 3.6 we have HH2(C/k) ∼= HH−2(C/k); thus con-
dition (3) amounts to HH2(C/k), or equivalently HH−2(C/k), being a one-dimensional k-vector
space.

Definition 6.4. Let C be a CY2 category over C. The Mukai Hodge structure of C is the weight
2 Hodge structure H̃(C,Z) = Ktop

0 (C)(−1), where Ktop
0 (C) is endowed with the weight 0 Hodge

structure from Proposition 5.4 and (−1) denotes a Tate twist. We equip H̃(C,Z) with the bilinear
form (−,−) = −χtop(−,−) given by the negative of the Euler pairing.

More generally, if C is a CY2 category over a complex variety S, then the Mukai local
system is defined by H̃(C/S,Z) = Ktop

0 (C/S)(−1), which by Proposition 5.7 is equipped with the
structure of a variation of Hodge structures which fiberwise for s ∈ S(C) recovers the Mukai
Hodge structure H̃(Cs,Z).

The Tate twist in the definition is included for historical reasons; see Remark 6.6 below.

6.2 Examples
The main known examples of CY2 categories are as follows. For simplicity, we will work over the
complex numbers, but all of the examples also work over a field of sufficiently large characteristic.
We focus on the absolute case, but all of the constructions also work in families to give examples
of CY2 categories over a base scheme, as we explain in a particular case in Example 6.7.

Example 6.5 (K3 and abelian surfaces). Let T be a smooth connected proper surface with trivial
canonical bundle, that is, a K3 or abelian surface. Then Dperf(T ) is a CY2 category. Indeed,
condition (1) of Definition 6.1 is obvious, condition (2) holds since T has trivial canonical bundle,
and condition (3) holds since T is connected (see Remark 6.3). More generally, if T is equipped
with a Brauer class α ∈ Br(T ), then the twisted derived category Dperf(T, α) is a CY2 category.

Remark 6.6. For T as above there is an isomorphism Ktop
0 (T ) ∼= Heven(T,Z) which is given by

v �→ ch(v) td(T )1/2. This isomorphism identifies H̃(Dperf(T ),Z), equipped with its weight 2 Hodge
structure and pairing from Definition 6.4, with the classically defined Mukai Hodge structure on
Heven(T,Z). Similarly, H̃(Dperf(T, α),Z) recovers the usual Mukai Hodge structure in the twisted
case.

Example 6.7 (Cubic fourfolds). Let X ⊂ P5 be a cubic fourfold, that is, a smooth cubic hyper-
surface. The Kuznetsov component Ku(X) ⊂ Dperf(X) is the subcategory defined by the
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semiorthogonal decomposition

Dperf(X) = 〈Ku(X),OX ,OX(1),OX(2)〉 .

The category Ku(X) was introduced by Kuznetsov [Kuz10] who proved that it is an example of
a CY2 category. For very general cubic fourfolds Ku(X) is not equivalent to the derived category
of a (twisted) K3 or abelian surface, so this is a genuinely new example of a CY2 category. The
category Ku(X) has close connections to birational geometry, Hodge theory, and hyperkähler
varieties, and has been the subject of many recent works [AT14, Huy17, HR19, BLMS22, LPZ20,
BLM+21].

Let us also explain a relative version of the above construction. Let f : X → S be a
family of cubic fourfolds with OX(1) the corresponding relatively ample line bundle. Then
f∗ : Dperf(S) → Dperf(X) is fully faithful, and the Kuznetsov component Ku(X) ⊂ Dperf(X) is
the S-linear category defined by the S-linear semiorthogonal decomposition

Dperf(X) = 〈Ku(X), f∗ Dperf(S), f∗ Dperf(S) ⊗ OX(1), f∗ Dperf(S) ⊗ OX(2)〉 .

Note that Ku(X) fiberwise recovers the Kuznetsov components of the fibers of f : X → S, that
is, for any point s ∈ S we have Ku(X)s � Ku(Xs).

Example 6.8 (Gushel–Mukai varieties). Let X be a GM variety as in Definition 5.28. Recall that
there is a Kuznetsov component Ku(X) ⊂ Dperf(X) as defined in (5.4). In [KuPe18] it is shown
that Ku(X) is a CY2 category if dim(X) is even, and if dim(X) = 4 or 6 then for very general
X the category Ku(X) is not equivalent to any of the CY2 categories discussed in Examples 6.5
and 6.7 above.

Example 6.9 (Debarre–Voisin varieties). A Debarre–Voisin (DV) variety is a smooth Plücker
hyperplane section X of the Grassmannian Gr(3, 10). These varieties were originally studied in
[DV10] because of their role in the construction of a certain hyperkähler fourfold. There is a
Kuznetsov component Ku(X) ⊂ Dperf(X) defined by a semiorthogonal decomposition

Dperf(X) = 〈Ku(X),BX ,BX(1), . . . ,BX(9)〉 .

Here, BX ⊂ Dperf(X) is the subcategory generated by 12 exceptional objects

BX = 〈Σα1,α2U∨
X | 0 ≤ α1 ≤ 4, 0 ≤ α2 ≤ 2, α2 ≤ α1〉 ,

where UX denotes the pullback to X of the rank 3 tautological subbundle on Gr(3, 10), Σα1,α2

denotes the Schur functor for the Young diagram of type (α1, α2), and BX(i) denotes the subcat-
egory obtained by tensoring BX with the ith power of the Plücker line bundle restricted to X.
By [Kuz19, Corollary 4.4], the category Ku(X) has Serre functor [2]. Moreover, a direct compu-
tation using the HKR isomorphism shows HH0(Ku(X)/C) = C, so Ku(X) is a CY2 category.
Using arguments as in [KuPe18], one can show that for very general X, the category Ku(X)
is not equivalent to any of the CY2 categories discussed in Examples 6.5, 6.7, or 6.8, so this
provides yet another new example of a CY2 category.

Example 6.10. Using the results of [Kuz19], it is easy to construct other examples of varieties
with CY2 categories as a semiorthogonal component, but a posteriori one can often show that
these CY2 categories reduce to one of the above examples. For instance, if X ⊂ P3 ×P3 ×P3

is a smooth divisor of class H1 + H2 + H3, where Hi is the hyperplane class on the ith factor,
then there is a CY2 category Ku(X) ⊂ Dperf(X) defined by the decomposition

Dperf(X) =
〈Ku(X), π∗

12 Dperf(P3 ×P3), π∗
12 Dperf(P3 ×P3)(H3), π∗

12 Dperf(P3 ×P3)(2H3)
〉
,
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where π12 : X → P3 ×P3 is the projection onto the first two factors. However, one can show
that Ku(X) � Dperf(T ), where T ⊂ P3 ×P3 is a K3 surface (with generic Picard rank 2) given
as a complete intersection of four hyperplanes determined by the defining equation of X. The
geometry of this example and an associated hyperkähler variety were studied in [IM19].

Example 6.11. Let X ⊂ P(w0, w1, . . . , wn) be a hypersurface in a weighted projective space,
regarded as a Deligne–Mumford stack. Note that by [BLS16], if X is smooth and we work
over a field of characteristic 0, then the category Dperf(X) admits an admissible embedding
into the derived category of a smooth proper variety; in particular, so does any semiorthogonal
component of Dperf(X). Using this observation, one obtains from [Kuz19, Corollary 4.2] an
infinite list of weighted projective hypersurfaces X such that Dperf(X) contains a CY2 category
as the orthogonal to a collection of exceptional objects, but it seems that most (and possibly all)
of these categories reduce to a known example.

Example 6.12. Other interesting examples where the derived category of a K3 surface appears
as a semiorthogonal component can be constructed via the ‘Cayley trick’ from [Orl06,
Proposition 2.10] (see also [KKLL17]): If E is a vector bundle of rank r on a variety Y ,
s ∈ H0(Y, E) is a regular section, T ⊂ Y is the zero locus of s, and X ⊂ P(E∨) is the zero locus
of the section of OP(E∨)(1) corresponding to s, then there is a semiorthogonal decomposition of
Dperf(X) consisting of a copy of Dperf(T ) and r − 1 copies of Dperf(Y ).

This construction applies, for instance, to K3 surfaces that admit a Mukai style description
as the zero locus of a section of a vector bundle (see [Muk02]). It gives Example 6.10 as a special
case, but also applies to many other K3 surfaces, including some of Picard rank 1. For a simple
example, consider a (2, 2, 2) complete intersection K3 surface T ⊂ P5, so that T is the zero
locus of a section of E = O(2)⊕3. Then X ⊂ P(E∨) ∼= P5 ×P2 described above is a hypersurface
of type (2, 1), and Dperf(X) admits a decomposition consisting of a copy of Dperf(T ) and 10
exceptional objects.

The classification of CY2 categories is an important open problem, especially because of
their role in constructing hyperkähler varieties [BLM+21, PPZ19]. However, finding new CY2
categories appears to be a difficult problem. Besides the above examples, there is conjecturally a
new CY2 category arising as a semiorthogonal component in the derived category of a so-called
Küchle fourfold [Kuz16b], and there is recent work that uses Hodge theory to find candidate
Fano varieties with CY2 categories as semiorthogonal components [FM21]. In general, Markman
and Mehrotra proved the existence of a family of categories satisfying conditions (2) and (3) of
Definition 6.1 over a Zariski open subset of any moduli space of hyperkähler varieties of K3[n]

type [MM15]; we expect that these categories also satisfy condition (1), and thus give an infinite
series of CY2 categories.

Remark 6.13. The categories from Examples 6.7, 6.8, and 6.9 are all of K3 type in the sense that
their Hochschild homology agrees with that of a K3 surface. In fact, in Examples 6.7 and 6.8 it
is known that for special X the category Ku(X) is equivalent to the derived category of a K3
surface, and conjecturally the same holds in Example 6.9. It would be interesting to construct
new examples of CY2 categories which are not of K3 type. For instance, we do not know examples
of CY2 categories which have the same Hochschild homology as an abelian surface but which
are not equivalent to the derived category of such a surface.

To end this section, let us explain how the results of § 5 can be applied in Example 6.10. The
reader may apply similar arguments to other varieties admitting semiorthogonal decompositions
with simple components, like those in Example 6.12.
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Corollary 6.14. Let X ⊂ P3 ×P3 ×P3 be a smooth (1, 1, 1) divisor. Then the Voisin group
V4(X) is 6-torsion.

Proof. By the Lefschetz hyperplane theorem, the group H∗(X,Z) is torsion-free and H2m(X,Z)
is of Tate type for m > 4. By Proposition 5.16(2) it thus suffices to prove the integral Hodge
conjecture for Dperf(X). But as explained in Example 6.10, this category admits a semiorthogonal
decomposition consisting of the derived category of a K3 surface and several copies of the category
Dperf(P3 ×P3), and Dperf(P3 ×P3) in turn admits a semiorthogonal decomposition consisting
of copies of the derived category of a point. Therefore the result follows from Lemma 5.20 and
Corollary 5.17. �
Remark 6.15. It would be interesting to determine whether Corollary 6.14 is optimal, that is,
whether there exists an X such that V4(X) has an order 6 element.

Corollary 6.14 illustrates the principle that the Hodge conjecture and its variants for a given
variety can often be reduced to simpler cases via semiorthogonal decompositions. Later in § 8
we will use this method to prove the integral Hodge conjecture in degree 2 for cubic and GM
fourfolds (Corollary 1.2); the key new ingredient needed to handle these examples is the integral
Hodge conjecture for their Kuznetsov components (Proposition 8.2).

7. Moduli of objects in CY2 categories

In this section we prove a key result of this paper, Theorem 1.4, which asserts the smoothness
of suitable relative moduli spaces of objects in families of CY2 categories.

7.1 Moduli of objects in categories
Let C ⊂ Dperf(X) be an S-linear admissible subcategory, where X → S is a smooth proper mor-
phism of complex varieties. Recall from [BLM+21, § 9] that Lieblich’s work [Lie06] implies there
is an algebraic stack M(C/S) locally of finite presentation over S, parameterizing universally
gluable, relatively perfect objects in C. Due to our assumption that X → S is smooth, the
word ‘relatively’ can be dropped, that is, this stack can be defined as follows: for T → S a
scheme over S, the T -points of M(C/S) are objects E ∈ CT which for all points t ∈ T satisfy
Ext<0

κ(t)(Et, Et) = 0.

Remark 7.1. The stack M(C/S) can also be constructed for C smooth and proper without
assuming the existence of an admissible embedding C ⊂ Dperf(X); see [TV07].

Note that any object E ∈ C gives rise to a relative class ϕE ∈ Γ(San, Ktop
0 (C/S)), whose fiber

over s ∈ S(C) is the class of Es in Ktop
0 (Cs).

Definition 7.2. For ϕ ∈ Γ(San, Ktop
0 (C/S)), we denote by M(C/S, ϕ) the subfunctor of

M(C/S) parameterizing objects with class equal to ϕ, and by sM(C/S, ϕ) the subfunctor of
M(C/S, ϕ) parameterizing objects which are simple.

Lemma 7.3. For ϕ ∈ Γ(San, Ktop
0 (C/S)), the functors M(C/S, ϕ) and sM(C/S, ϕ) are algebraic

stacks locally of finite presentation over S, and the canonical morphisms

sM(C/S, ϕ) → M(C/S, ϕ) → M(C/S)

are open immersions. Moreover, the stack sM(C/S, ϕ) is a Gm-gerbe over an algebraic space
sM(C/S, ϕ) locally of finite presentation over S.
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Proof. By [BLM+21, Lemma 9.8] it is enough to show that M(C/S, ϕ) is an open substack of
M(C/S). This follows from the fact proved in Proposition 5.7 that Ktop

0 (C/S) is a local system
on San. �

7.2 Generalized Mukai’s theorem
We will prove Theorem 1.4 after two preparatory lemmas. The first will be useful for control-
ling deformations of simple universally gluable objects in CY2 categories. Recall from § 3.2 the
formalism of Chern classes valued in Hochschild homology.

Lemma 7.4. Let C be a CY2 category over a Noetherian Q-scheme S. Let E ∈ C be a simple
universally gluable object.

(1) The cohomology sheaves Ext i
S(E, E) of HomS(E, E) are locally free, vanish for i /∈ [0, 2],

and are line bundles for i = 0 and i = 2.
(2) The formation of the sheaves Ext i

S(E, E) commutes with base change, that is, for any
morphism g : T → S and i ∈ Z there is a canonical isomorphism

g∗ Ext i
S(E, E) ∼= Ext i

T (ET , ET ).

(3) The Chern character map

ch: Ext2
S(E, E) → HH−2(C/S)

is an isomorphism.

Proof. For any morphism g : T → S, we have the base-change formula

g∗HomS(E, E) � HomT (ET , ET ) (7.1)

for mapping objects (see [Per19, Lemma 2.10]). For a point is : Spec(κ(s)) → S, this gives, for
any i an isomorphism, an isomorphism

Hi(i∗sHomS(E, E)) ∼= Exti
κ(s)(Es, Es). (7.2)

Since SCs = [2] is a Serre functor for Cs, we have

Exti
κ(s)(Es, Es) ∼= Ext2−i

κ(s)(Es, Es)∨.

We conclude that these groups vanish for i /∈ [0, 2] because E is universally gluable, and are
one-dimensional for i = 0, 2 because E is simple. In particular, the complex HomS(E, E) is
concentrated in degrees [0, 2], as this is true of i∗sHomS(E, E) for every point s.

Now we prove (7.4). As the sheaf Ext2
S(E, E) is coherent and HH−2(C/S) is finite locally free

by Theorem 3.5, to prove ch: Ext2
S(E, E) → HH−2(C/S) is an isomorphism it suffices to show

that for any point s ∈ S the (underived) base-changed map

H0(i∗s ch) : H0(i∗s Ext
2
S(E, E)) → H0(i∗s HH−2(C/S))

is an isomorphism. Note that

H0(i∗s Ext
2
S(E, E)) ∼= H2(i∗sHomS(E, E)) ∼= Ext2κ(s)(Es, Es),

where the first isomorphism holds because, as shown above, Ext2
S(E, E) is the top cohomol-

ogy sheaf of HomS(E, E), and the second isomorphism holds by (7.2). On the other hand, by
Theorem 3.5 we have

H0(i∗s HH−2(C/S)) ∼= i∗s HH−2(C/S) ∼= HH−2(Cs/κ(s)).
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Under these isomorphisms, the map H0(i∗s ch) in question is identified with the Chern character
map

ch: Ext2κ(s)(Es, Es) → HH−2(Cs/κ(s)).

Note that the domain and target of this map are one-dimensional κ(s)-vector spaces; indeed,
for the domain this was observed above, and for the target it holds by the definition of a CY2
category (see Remark 6.3). By Lemma 3.7 this map is dual to the map

Ext−2
κ(s)(idCs , SCs) → Ext−2

κ(s)(Es, SCs(Es)).

Since SCs = [2] this is evidently nonzero, and hence an isomorphism. All together this proves (7.4),
and also shows that Ext2

S(E, E) is a line bundle, because, as observed in the proof, HH−2(C/S)
is locally free of rank 1.

Now we finish the proof of (1). As E is simple, Ext0
S(E, E) ∼= OS is a line bundle, so it remains

only to show that Ext1
S(E, E) is locally free. Since S is Noetherian and Ext1

S(E, E) is coherent,
by the local criterion for flatness it suffices to show H−1(i∗s Ext

1
S(E, E)) = 0 for every point s ∈ S.

By (7.2) we have a spectral sequence with E2-page

Ei,j
2 = Hj(i∗s Ext

i
S(E, E)) =⇒ Exti+j

κ(s)(Es, Es).

By what we have already shown, E0,0
2 and E2,0

2 are one-dimensional, E0,j
2 and E2,j

2 vanish for
j �= 0, and Ext0κ(s)(Es, Es) is one-dimensional, so the desired vanishing H−1(i∗s Ext

1
S(E, E)) = 0

follows.
Finally, (2) holds by the base-change formula (7.1) and the freeness of the cohomology sheaves

Ext i
S(E, E) proved in (1). �
The following simple flatness result will be used below to reduce Theorem 1.4 to the case

where the base S is smooth.

Lemma 7.5. Let f : X → S be a locally finite type morphism of schemes, with S reduced and
locally noetherian. Assume that there exists a surjective finite type universally closed morphism
S′ → S such that the base change f ′ : X ′ = XS′ → S′ is flat. Then f : X → S is flat.

Proof. By the valuative criterion for flatness [EGA4, 11.8.1], it suffices to show that the base
change XT → T is flat for any morphism g : T = Spec(R) → S from the spectrum of a DVR.
Let K be the fraction field of R. As S′ → S is surjective and finite type, there exist a finitely
generated field extension K ′ of K and a morphism Spec(K ′) → S′ whose image in S is the
image of Spec(K) → S. Let R′ be a DVR with fraction field K ′ which dominates R, and let
T ′ = Spec(R′). By the valuative criterion for universal closedness [Sta21, Tag 05JY] we can find
a commutative diagram

S′ �� S

T ′ ��

��

T

g

��

The base change XT ′ → T ′ is flat by the assumption that f ′ : X ′ → S′ is flat, so since T ′ → T is
faithfully flat, the base change XT → T is also flat. �
Proof of Theorem 1.4. We will prove that sM(C/S, ϕ) is smooth over S; this implies the same
for sM(C/S, ϕ), because it is a Gm-gerbe over sM(C/S, ϕ). We prove the result in several steps.
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Step 1. Reduction to the case where the base S is smooth. Let S′ → S be a morphism from
a complex variety S′, let C′ be the base change of C, and let ϕ′ be the pullback of the
section ϕ to S′. Then sM(C′/S′, ϕ′) → S′ is the base change of sM(C/S, ϕ) → S along S′ → S.
Hence the theorem in the case where the base is a point implies smoothness of the fibers of
sM(C/S, ϕ) → S. Similarly, taking a resolution of singularities S′ → S, by Lemma 7.5 we see
that the theorem in the case of a smooth base implies flatness of sM(C/S, ϕ) → S. Together,
this shows that sM(C/S, ϕ) → S is smooth. Thus from now on we may assume the base S to be
smooth.

Step 2. Reduction to proving smoothness of the total space sM(C/S, ϕ). As observed above, the
case where the base is a point implies that the closed fibers of sM(C/S, ϕ) → S are smooth. It
follows that these fibers are also of constant dimension −χtop(ϕ, ϕ) + 2, where χtop(−,−) denotes
the Euler pairing from Proposition 5.7(4), because this number computes dim Ext1(E0, E0)
for any object E0 in sM(C0/ Spec(C), ϕ0), 0 ∈ S(C), as C0 is CY2. Therefore, the morphism
sM(C/S, ϕ) → S is smooth, being a locally finite type morphism between smooth spaces whose
closed fibers are smooth of constant dimension.

Step 3. Smoothness in terms of deformation functors of objects. Since sM(C/S, ϕ) is locally of
finite type over C by Lemma 7.3, it is smooth if it is formally smooth at any C-point. More
precisely, let E0 be a C-point of sM(C/S, ϕ) lying over a point 0 ∈ S. Let ArtC denote the
category of Artinian local C-algebras with residue field C, and consider the deformation functor

F : ArtC → Sets

of E0, whose value on A ∈ ArtC consists of pairs (Spec(A) → S, E) where Spec(A) → S takes the
closed point p ∈ Spec(A) to 0 ∈ S, and E ∈ sM(C/S, ϕ)(A) is such that Ep

∼= E0. For simplicity
we often write E ∈ F (A), suppressing the map Spec(A) → S from the notation. Note that in the
definition of F (A), the condition E ∈ sM(C/S, ϕ)(A) can be replaced with E ∈ CA, since then the
condition Ep

∼= E0 ∈ sM(C/S, ϕ)(C) guarantees E ∈ sM(C/S, ϕ)(A). To prove that sM(C/S, ϕ)
is formally smooth at E0, we must show that F is a smooth functor, that is, for any surjection
A′ → A in ArtC the map F (A′) → F (A) is surjective.

For this purpose, it will also be useful to consider the deformation functor G : ArtC → Sets of
the point 0 ∈ S, whose value on A ∈ ArtC consists of morphisms Spec(A) → S taking the closed
point to 0. Note that there is a natural morphism of functors F → G.

Step 4. Let A′ → A be a split square-zero extension in ArtC, that is, A′ ∼= A[ε]/(ε2). Then the
fiber DefE(A′) of the map

F (A′) → G(A′) ×G(A) F (A)

over any point (Spec(A′) → S, E) is a torsor under Ext1A(E, E).
By Lemma 4.8, the claim is equivalent to the vanishing of the class κ(CA′)(E) ∈ Ext2A(E, E).

By Lemma 7.4(3), this is in turn equivalent to the vanishing of ch(κ(CA′)(E)) ∈ HH−2(CA/A),
which by Lemma 4.4 is equal to the product κ(CA′) · ch(E). Finally, this vanishes because by
assumption the class of E remains of Hodge type along S.

Step 5. The functor F is smooth. For any integer n ≥ 0, set

An = C[t]/(tn+1) and A′
n = An[ε]/(ε2).

By the T 1-lifting theorem [Kaw92, FM99], the functor F is smooth if for every n ≥ 0 the natural
map

F (A′
n+1) → F (A′

n) ×F (An) F (An+1)
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is surjective. Note that this map fits into a commutative diagram

F (A′
n+1) ��

��

F (A′
n) ×F (An) F (An+1)

��

G(A′
n+1) �� G(A′

n) ×G(An) G(An+1)

where the bottom horizonal arrow is surjective because 0 ∈ S is a smooth point. Therefore, it
suffices to prove the map

F (A′
n+1) → G(A′

n+1) ×G(A′
n)×G(An)G(An+1) (F (A′

n) ×F (An) F (An+1)) (7.3)

is surjective. Let (Spec(A′
n+1) → S, E′

n, En+1) be a point of the target of this map, and set
En = (En+1)An

∼= (E′
n)An . By Step 4, the set DefEn+1(A

′
n+1) of deformations of En+1 over A′

n+1

is an Ext1An+1
(En+1, En+1)-torsor, and the set DefEn(A′

n) of deformations of En over A′
n is an

Ext1An
(En, En)-torsor. The restriction map

DefEn+1(A
′
n+1) → DefEn(A′

n) (7.4)

is compatible with the torsor structures under the natural map

Ext1An+1
(En+1, En+1) → Ext1An

(En, En).

By Lemma 7.4(2) the map on Ext1 groups is identified with the natural surjective map

Ext1An+1
(En+1, En+1) → Ext1An+1

(En+1, En+1) ⊗An+1 An,

so (7.4) is also surjective. Thus there is an element E′
n+1 ∈ DefEn+1(A

′
n+1) which restricts to

E′
n ∈ DefEn(A′

n). Equivalently, E′
n+1 maps to (Spec(A′

n+1) → S, E′
n, En+1) under (7.3), which

proves the required surjectivity. By Step 3, this completes the proof of the theorem. �

8. Proofs of results on the integral Hodge conjecture

In this section we prove Theorem 1.1, Corollary 1.2, and Theorem 1.3, as well as several
complementary results.

We start with a general criterion for verifying the noncommutative variational integral Hodge
conjecture.

Proposition 8.1. Let C ⊂ Dperf(X) be an S-linear admissible subcategory, where X → S is a
smooth proper morphism of complex varieties. Let ϕ be a section of the local system Ktop

0 (C/S).
Assume there exists a complex point 0 ∈ S(C) such that the fiber ϕ0 ∈ Ktop

0 (C0) is the class of
an object E0 ∈ C0 with the property that M(C/S, ϕ) → S is smooth at E0. Then ϕs ∈ Ktop

0 (Cs)
is algebraic for every s ∈ S(C).

Proof. Note that the conclusion of the proposition is insensitive to base change along a sur-
jective morphism S′ → S. More precisely, given such an S′ → S, choose 0′ ∈ S′(C) mapping
to 0 ∈ S(C). By base change we obtain an S′-linear admissible subcategory C′ ⊂ Dperf(X ′)
where X ′ = X ×S S′ → S′ and a section ϕ′ of Ktop

0 (C′/S′) such that ϕ′
0′ is the class of the

pullback E0′ of E0 to C0′ , with the property that the morphism M(C′/S′, ϕ′) → S′ is smooth
at E0′ . Then the conclusion of the proposition for this base-changed family implies the same
result for the original family, since it is a fiberwise statement. We freely use this observation
below.
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Let M◦ ⊂ M(C/S, ϕ) be the smooth locus of M(C/S, ϕ) → S, that is, the maximal open
substack to which the restricted morphism is smooth (see [Sta21, Tag 0DZR]). By assumption E0

lies in the fiber of M◦ → S over 0. The image of M◦ → S is thus a nonempty open subset U ⊂ S
containing 0. Since M◦ → U is smooth and surjective, there exists a surjective étale morphism
U ′ → U with a point 0′ ∈ U ′(C) mapping to 0 ∈ U(C), such that the base change M◦

U ′ → U ′

admits a section taking 0′ to E0′ ∈ M◦
U ′ . Thus, by base-changing along a compactification S′ → S

of the morphism U ′ → S, we may assume that M◦ → U admits a section taking 0 to E0. In other
words, if ϕU denotes the section of Ktop

0 (CU/U) given by the restriction of ϕ, then there exists
an object EU ∈ CU of class ϕU such that (EU )0 � E0.

Next we aim to produce a lift of EU ∈ CU to an object E ∈ C. First, we may assume S is
smooth by base-changing along a resolution of singularities. Then X is smooth since it is smooth
over S. It follows that the object EU ∈ CU ⊂ Dperf(XU ) lifts to an object F ∈ Dperf(X); see, for
example, [Pol07, Lemma 2.3.1]. The projection of F onto C ⊂ Dperf(X) then gives the desired
lift E ∈ C of EU . The class ϕE ∈ Γ(San, Ktop

0 (C/S)) of E must equal ϕ, since these sections of
the local system Ktop

0 (C/S) agree over the open subset U . Therefore, ϕs equals the class of Es

for every s ∈ S(C), and in particular is algebraic. �
Proof of Theorem 1.3. By Lemma 5.22 the fibers ϕs ∈ H̃(Cs,Z) are Hodge classes for all
s ∈ S(C), so by Theorem 1.4 the morphism sM(C/S, ϕ) → S is smooth. As the morphism
sM(C/S, ϕ) → M(C/S) is an open immersion by Lemma 7.3, it follows that the morphism
M(C/S, ϕ) → S is smooth at any point of the domain corresponding to a simple univer-
sally gluable object. Thus Proposition 8.1 applies to show ϕs ∈ H̃(Cs,Z) is algebraic for every
s ∈ S(C). �
Proof of Theorem 1.1. We may assume that v is primitive, because if the result is true for v
then it is also true for any multiple of v. By Theorem 1.3, it thus suffices to show that if
w ∈ Hdg(Dperf(T, α),Z) is primitive and satisfies (w, w) ≥ −2 or (w, w) ≥ 0 according to whether
T is K3 or abelian, then it is the class of a simple universally gluable object in Dperf(T, α). In fact,
more is true: there is a nonempty distinguished component Stab†(T, α) of the space of Bridgeland
stability conditions on Dperf(T, α), such that, for σ ∈ Stab†(T, α) generic with respect to w, the
moduli space of σ-stable objects in Dperf(T, α) of class w is nonempty of dimension (w, w) + 2.
For T a K3 surface this is [BM14b, Theorem 6.8] and [BM14a, Theorem 2.15] (based on [Yos01,
Yos06]), and for T an abelian surface and α = 0 this is [BL17, Theorem 2.3] (based on [Yos16,
MYY14]), but the case of general α holds by similar arguments. This completes the proof, because
a Bridgeland stable object is necessarily simple and universally gluable. �

Our proof of Corollary 1.2 will be based on the following result.

Proposition 8.2. Let X be a cubic or GM fourfold. Then the integral Hodge conjecture holds
for Ku(X).

Proof. We verify the criterion of Theorem 1.1. First we claim that the cokernel of the map
K0(Ku(X)) → Hdg(Ku(X),Z) is generated by elements v ∈ Hdg(Ku(X),Z) with (v, v) ≥ −2.
Indeed, the image of K0(Ku(X)) → Hdg(Ku(X),Z) contains a class λ with (λ, λ) > 0; in fact,
the image contains, and in the very general case equals, a canonical positive definite rank 2
sublattice; see [AT14, § 2.4] and [KuPe18, Lemma 2.27]. The claim then follows because for any
v ∈ Hdg(Ku(X),Z), we have (v + tλ, v + tλ) ≥ −2 for t a sufficiently large integer.

Therefore, it suffices to show that for any v ∈ Hdg(Ku(X),Z), there exists a family of cubic
or GM fourfolds Y → S and points 0, 1 ∈ S(C) such that Y0

∼= X, Ku(Y1) � Dperf(T, α) for a
twisted K3 surface (T, α), and v remains of Hodge type along S.

325

https://doi.org/10.1112/S0010437X22007266 Published online by Cambridge University Press

https://stacks.math.columbia.edu/tag/0DZR
https://doi.org/10.1112/S0010437X22007266


A. Perry

If X is a cubic fourfold, the existence of such a family of cubic fourfolds Y → S follows
from [AT14, Theorem 4.1]. More precisely, the Kuznetsov component of a cubic fourfold con-
taining a plane is equivalent to the derived category of a twisted K3 surface [Kuz10], and [AT14,
Theorem 4.1] uses Laza and Looijenga’s description of the image of the period map for cubic
fourfolds [Laz10, Loo09] to show that X is deformation equivalent within the Hodge locus for v
to a cubic fourfold containing a plane.

For GM fourfolds, the argument is more complicated, because less is known about the image
of their period map. Recall that a GM fourfold is called special or ordinary according to whether
or not, in the notation of Definition 5.28, the vertex of Cone(Gr(2, V5)) is contained in the
linear subspace P8 ⊂ P10. By [KuPe18, Theorem 1.2], the Kuznetsov component of an ordinary
GM fourfold containing a quintic del Pezzo surface is equivalent to the derived category of a
K3 surface. Thus it suffices to show that if X is a GM fourfold, it is deformation equivalent
within the Hodge locus for v to such a GM fourfold. If the conjectural description of the image
of the period map for GM fourfolds were known [DIM15, Question 9.1], this could be proved
analogously to the case of cubic fourfolds by a lattice-theoretic computation. This conjecture is
not known, but we can still use the period map to complete the argument as follows.

By the construction of GM fourfolds in the proof of [DIM15, Theorem 8.1], it follows that X
is deformation equivalent within the Hodge locus for v to an ordinary GM fourfold X ′ containing
a so-called σ-plane. We claim that in the fiber through X ′ of the period map for GM fourfolds,
there is an ordinary GM fourfold X ′′ containing a quintic del Pezzo surface. Since preimages of
irreducible subvarieties under the period map remain irreducible (see [PPZ19, Lemma 5.12]), the
claim implies that X is deformation equivalent within the Hodge locus for v to X ′′.

To prove the claim, we freely use the notation and terminology on Eisenbud–Popescu–Walter
(EPW) sextics introduced in [DK18, § 3] and summarized in [KuPe18, § 3]. Because X ′ contains
a σ-plane, by [DK19, Remark 5.29] the EPW stratum Y 3

A(X′) ⊂ P(V6(X ′)) is nonempty. Let
p ∈ Y 1

A(X′)⊥ ⊂ P(V6(X ′)∨) be a point in the top stratum of the dual EPW sextic, such that the
corresponding hyperplane in P(V6(X ′)) does not contain Y 3

A(X′). Let X ′′ be the ordinary GM four-
fold corresponding to the pair (A(X ′),p); see [DK18, Theorem 3.10] or [KuPe18, Theorem 3.1].
Then [DK19] shows that X ′ and X ′′ lie in the same fiber of the period map, and [KuPe18,
Lemma 4.4] shows that X ′′ contains a quintic del Pezzo surface. This finishes the proof of the
claim. �
Remark 8.3. Proposition 5.8 in [PPZ19] gives the existence of families of GM fourfolds Y → S
satisfying even stronger conditions than those required in the above proof. We preferred to give
the above more elementary argument instead, because [PPZ19, Proposition 5.8] relies on deep
ingredients: the construction of stability conditions on Kuznetsov components of GM fourfolds,
as well as the theory of stability conditions in families from [BLM+21].

In fact, one of the motivations for this paper was to develop a technique for proving the
integral Hodge conjecture for CY2 categories that avoids the difficult problem of constructing
stability conditions. As the proof of Proposition 8.2 illustrates, if our categories occur as the
Kuznetsov components Ku(X) ⊂ Dperf(X) of members X of a family of varieties, our technique
requires three ingredients:

(1) the existence of a class λ in the image of the map K0(Ku(X)) → Hdg(Ku(X),Z) which
satisfies (λ, λ) > 0;

(2) the existence of X such that Ku(X) � Dperf(T, α) for a twisted K3 or abelian surface;
(3) sufficient control of Hodge loci to ensure that they always contain X as in (2).
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Condition (1) holds in all of the known examples of CY2 categories from § 6.2, and we expect
it holds whenever condition (2) does. In practice, checking conditions (2) and (3) requires more
work, but there are many available tools; for example, homological projective geometry [Kuz07,
JLX21, KuPe21, KuPe19] has been crucial in checking condition (2) in the known examples.

Proof of Corollary 1.2. Let X be a cubic or GM fourfold. We claim that H∗(X,Z) is torsion-free
and H2m(X,Z) is of Tate type for m > 2. (In fact the Hodge diamond of X can be computed
explicitly (see [Has00, DIM15]), but the following argument gives a simpler proof of the Tate type
statement.) Indeed, for a cubic fourfold the claim holds by the Lefschetz hyperplane theorem.
If X is an ordinary GM fourfold, then projection from the vertex of Cone(Gr(2, V5)) gives an
isomorphism

X ∼= Gr(2, V5) ∩P8 ∩ Q,

where P8 ⊂ P9 is a hyperplane in the Plücker space and Q ⊂ P8 is a quadric hypersurface. In
this case, the Lefschetz hyperplane theorem again gives the claim. This also implies the claim
for special GM fourfolds, because they are deformation equivalent to ordinary GM fourfolds.

By Proposition 5.16(2) it thus suffices to prove the integral Hodge conjecture for Dperf(X).
Recall there is a semiorthogonal decomposition of Dperf(X) consisting of Ku(X) and copies of the
derived category of a point. Therefore the result follows from Lemma 5.20 and Proposition 8.2.

�
Similar arguments yield the following corollary.

Corollary 8.4. Let X be a GM sixfold. Then the Voisin group V3(X) is 2-torsion.

Proof. By [DK16] the group H∗(X,Z) is torsion-free and H2m(X,Z) is of Tate type for m > 3.
Thus, as in the proof of Corollary 1.2, by Proposition 5.16(2) we reduce to proving the integral
Hodge conjecture for Ku(X). By the duality conjecture for GM varieties [KuPe18, Conjecture
3.7] proved in [KuPe19, Theorem 1.6] and the description of generalized duals of GM varieties
from [KuPe18, Lemma 3.8], there exist a GM fourfold X ′ and an equivalence Ku(X) � Ku(X ′).
Hence the result follows from Proposition 8.2. �
Remark 8.5. It would be interesting to determine whether Corollary 8.4 is optimal, that is,
whether there exists a GM sixfold X such that V3(X) �= 0.
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duality, J. Eur. Math. Soc. (JEMS) 23 (2021), 1859–1898.
Kal08 D. Kaledin, Non-commutative Hodge-to-de Rham degeneration via the method of Deligne-

Illusie, Pure Appl. Math. Q. 4 (2008), Special Issue: In honor of Fedor Bogomolov, Part 2,
785–875.

Kal17 D. Kaledin, Spectral sequences for cyclic homology, Algebra, geometry, and physics in the 21st
century, Progress in Mathematics, vol. 324 (Birkhäuser/Springer, Cham, 2017), 99–129.
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MA, 2010), 219–243.

Kuz11 A. Kuznetsov, Base change for semiorthogonal decompositions, Compos. Math. 147 (2011),
852–876.

Kuz16a A. Kuznetsov, Derived categories view on rationality problems, in Rationality problems in
algebraic geometry, Lecture Notes in Mathematics, vol. 2172 (Springer, Cham, 2016), 67–104.
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