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HOMOLOGICAL PROJECTIVE DUALITY
FOR QUADRICS

ALEXANDER KUZNETSOV AND ALEXANDER PERRY

Abstract

We show that over an algebraically closed field of characteristic not equal
to 2, homological projective duality for smooth quadric hypersurfaces
and for double covers of projective spaces branched over smooth quadric
hypersurfaces is a combination of two operations: one interchanges a
quadric hypersurface with its classical projective dual and the other
interchanges a quadric hypersurface with the double cover branched
along it.

1. Introduction

The theory of homological projective duality (HPD) was introduced in [6] as
a way to describe derived categories of linear sections of interesting algebraic
varieties. Since then it was generalized to the noncommutative situation [15]
and significantly developed in [13]. See [8] and [18] for surveys of the subject.

Roughly, HPD says that the derived categories of linear sections of a smooth
projective variety mapping to a projective space X — P(V) are governed
by a single (noncommutative) algebraic variety X% — P(V") over the dual
projective space, called the HP dual of X. The computation of X thus
becomes the main step in understanding these categories.

It is no surprise then that the computation of HP duals is quite hard in
general. There are not so many examples for which an explicit geometric
description of the HP dual is known; most are listed in [8] (see also [16], [17],
and [9, §§C-D] for examples that appeared later). One of the most basic
examples, HPD for smooth quadrics, was stated in [8, Theorem 5.2] without
proof. The goal of this paper is to supply a proof.
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458 ALEXANDER KUZNETSOV AND ALEXANDER PERRY

To give a precise statement, which we call quadratic HPD, recall that HPD
deals with varieties f: X — P(V) that are equipped with a Lefschetz struc-
ture, which is a special type of semiorthogonal decomposition of the bounded
derived category of coherent sheaves D(X) (see §2.1). In Theorem 1.1 below,
both f: Q@ — P(V) and f%: Q% — P(V) are equipped with natural Lefschetz
structures defined in terms of spinor bundles (see Lemma 2.4).

We work over an algebraically closed field k of characteristic not equal to 2.
Recall that the classical projective dual of a smooth quadric hypersurface
Q C P(V) is itself a smooth quadric hypersurface Q¥ C P(V"). The HP dual
of () is more subtle:

Theorem 1.1. Let f: Q — P(V) be either the embedding of a smooth
irreducible quadric hypersurface or a double cover branched along a smooth
quadric hypersurface, equipped with its natural Lefschetz structure as in
Lemma 2.4. The HP dual f*: Q* — P(VV) of f: Q — P(V) is given as
follows:

(1) If f is an embedding and dim(Q) is even, then Q% = Q" is the classical
projective dual of Q and f*: Q% — P(VY) is its natural embedding.

(2) If f is an embedding and dim(Q) is odd, then f%: Q% — P(VY) is the
double cover branched along the classical projective dual of Q.

(3) If f is a double covering and dim(Q) is even, then f*: Q% — P(VY) is
the classical projective dual of the branch locus of f.

(4) If f is a double covering and dim(Q) is odd, then f%: Q% — P(VY) is
the double cover branched along the classical projective dual of the branch
locus of f.

In all cases Q" is considered with the Lefschetz structure defined in Lemma 2.4.
An important ingredient in HPD is the HPD kernel, which is an object

€ € D"((X x X%) xp)xp(vv) H),

where H C P(V) x P(VV) is the incidence divisor, that provides all of the
important functors. At the end of the paper (Remark 3.2) we describe the
HPD kernels for quadratic HPD.

Theorem 1.1 is a key ingredient in [12], where using categorical cones we
bootstrap to a description of HPD even when @ is not smooth and its image
does not span P(V'). As shown in [12], this leads to a powerful description of
the derived categories of quadratic sections of varieties, which among other
things proves the duality conjecture for Gushel-Mukai varieties from [11].

In general the HP dual of a Lefschetz variety is noncommutative (i.e., is
a suitably enhanced triangulated category, see the discussion before Defini-
tion 2.1), but quadratic HPD turns out to be a purely commutative statement.
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HOMOLOGICAL PROJECTIVE DUALITY FOR QUADRICS 459

Thanks to this, in the present paper we do not need the noncommutative
setup of [15]. However, we need some results on HPD that were proved in [15]
and [12]; to reformulate the corresponding statements in the commutative
setup of this paper, one just has to replace Lefschetz categories by derived
categories of Lefschetz varieties.

The paper is organized as follows. In §2 we briefly review the theory of
HPD and describe the Lefschetz structure of a quadric. Then in §3 we prove
Theorem 1.1.

All functors (pullbacks, pushforwards, tensor products) in this paper are
derived, and the base field k is an algebraically closed field of characteristic
not equal to 2.

2. HPD and the Lefschetz structure of quadrics

In this section, we begin by describing the framework of HPD. Then we
explain how quadrics can naturally be regarded as Lefschetz varieties, and
hence can be considered as objects of this theory.

2.1. Homological projective duality. We recall the basics of HPD in
the form presented in [15] and [13], but to simplify the exposition we focus
on the purely smooth and proper commutative setting, which is sufficient for
our purposes.

Let X be a smooth proper variety over k, and let f: X — P(V') be a mor-
phism to a projective space. We denote by DP(X) the bounded derived cate-
gory of coherent sheaves on X. A Lefschetz center of DP(X) is an admissible
subcategory Ao C DP(X) such that there are semiorthogonal decompositions

DP(X) = (A, A1(1), ..., Ap_i(m — 1)),

2.1
( ) Db(X): <‘A17m(1_m)v'“a‘Afl(_l)v‘AO%

called respectively the right and left Lefschetz decomposition of DP(X), whose
components, called the Lefschetz components of DP(X), form two chains of
admissible subcategories

0OcA-,C---CA1CA)DA1 D+ DAm_1D0.

Here, A; (i) denotes the image of A; under the autoequivalence of DP(X) given
by tensoring with f*Op(vy(i). We call f: X — P(V) a Lefschetz variety if
it is equipped with a Lefschetz center Ay C DP(X). By [15, Lemma 6.3] the
existence of one of the decompositions (2.1) implies the existence of the other,
the components A; are completely determined by the Lefschetz center Ay,
and A,,—1 # 0 if and only if A;_,, # 0. The minimal m with this property
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460 ALEXANDER KUZNETSOV AND ALEXANDER PERRY

is called the length of the Lefschetz variety X. We say X is moderate if
m < dim(V') (see [13, Remark 2.12] for a discussion of this notion).
Let H C P(V) x P(VV) be the natural incidence divisor. Let

H(X) =X Xp(v) H,

so that we have a commutative diagram

P(VY)
with cartesian squares. We denote by
mx: H(X) > X and hx:H(X)—>PVY)

the natural projections.
The HPD category of a Lefschetz variety f: X — P(V) is the triangulated
subcategory of DP(H(X)) defined by

D"(X)%:= {F € D"(H(X)) | 6.(F) € AcRDP(P(VY)) }.

Here, AoXDP (P (V")) denotes the triangulated subcategory of DP(X xP (V"))
generated by box tensor products of objects in each factor. The HPD cate-
gory can alternatively be characterized by the P(VV)-linear semiorthogonal
decomposition

DP(H(X)) = (DP(X)%.6" (41(1) RD*(P(VY))). ...,
(2.2)
6" (Am-1(m = )R D" (P(V))) ),

where the A; are the Lefschetz components of DP(X).

Morally, the HP dual variety of X is a variety whose derived category is
equivalent to the HPD category of X. A priori, the HP dual of X may not
exist as an algebraic variety. However, if X is moderate, then the HP dual
always exists as a noncommutative Lefschetz variety [15, Theorem 8.7(1)].
More precisely, DP(X)* has the structure of a P(V")-linear category in the
sense of [15, §2]. The notion of a Lefschetz center extends to such categories,
and DP(X)® has a canonical Lefschetz center given by

(2.3) Al =~ 1% (Ao) € DP(X)F,
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HOMOLOGICAL PROJECTIVE DUALITY FOR QUADRICS 461

where «v* denotes the left adjoint of the inclusion ~v: DP(X)# — DP(H(X)).
This gives D (X)? the structure of a Lefschetz category over P(V") and allows
us to make the following definition.

Definition 2.1. A Lefschetz variety f%: X — P(VV) is HP dual to a
moderate Lefschetz variety f: X — P (V) if there is a Fourier-Mukai kernel

€ € DP(H(X) xpv) X7),
called the HPD kernel, such that the corresponding Fourier—Mukai functor
de: DP(XH) — DP(H(X))

induces a Lefschetz equivalence DP(X%) ~ DP(X)! i.e., an equivalence that
identifies the Lefschetz centers on each side.

The definition of HPD can be conveniently reformulated as follows: if Ag
and By are the Lefschetz centers of X and X!, then

(2.4) de: DP(XT) =5 DP(X)* ¢ DP(H(X)),  and
(2.5) @ (1% (Ag)) = By € DP(XH),

where ®% is the left adjoint functor of ®¢. Indeed, by (2.4) the functor ®¢
can be written as ®¢ = yoge, where ¢¢ : DP(X?) — DP(X)® is an equivalence
and v: DP(X)% — DP(H(X)) is the inclusion. Thus by the definition (2.3)
of the Lefschetz center AE) C DP(X?), condition (2.5) can be rewritten as
o (.Ag) = By. Since ¢%: DP(X)¥ — DP(X?) is inverse to the equivalence ¢¢,
this shows that ®¢ identifies the Lefschetz centers of DP(X#) and DP(X)E.

To finish this brief introduction, we recall two important properties. First,
HPD is really a duality: if X — P(V") is the HP dual variety of a smooth
proper moderate Lefschetz variety X — P (V') with its natural Lefschetz struc-
ture, then the HP dual variety of X% is X (see [6, Theorem 7.3] or [15, Theorem
8.9]). Second, there is a tight connection between HPD and classical projec-
tive duality. For instance, if the map f: X — P(V) is an embedding, then
the classical projective dual X~ C P(V"Y) coincides with the set of critical
values of the map X% — P(V") from the HP dual variety [6, Theorem 7.9].

2.2. Spinor bundles and the Lefschetz structure of quadrics. Let
Q@ be a smooth quadric, i.e., an integral scheme over k which admits a closed
immersion into a projective space as a quadric hypersurface. We denote by
0¢(1) the restriction of the line bundle O(1) from this ambient space. The
main result of this paper is a description of the HP dual of (). To make sense
of this, we need to specify the structure of a Lefschetz variety on @, i.e., a
morphism to a projective space and a Lefschetz center of DP(Q).

First, we specify the class of morphisms that we consider.
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462 ALEXANDER KUZNETSOV AND ALEXANDER PERRY

Definition 2.2. We say a morphism f: Q — P(V) is standard if there is

an isomorphism
[ O0py(1) = 0q(1).
We call f nondegenerate if its image is not contained in a hyperplane of P(V).

In this paper we will only be concerned with nondegenerate standard maps
of smooth quadrics; see [12, §5] for results about degenerate maps, which are
obtained using the nondegenerate case as a starting point. If f is standard
and nondegenerate, then it is either a divisorial embedding or a double cov-
ering. Indeed, by definition any standard morphism f is the composition of
an embedding @ — P" as a quadric hypersurface followed by a linear em-
bedding P™ — P (V) into a larger projective space, or by a linear projection
P" --» P(V) to a smaller projective space. In the first case the embedding
must be an isomorphism in order for f to be nondegenerate, and in the second
case the map P" --» P(V) must be linear projection from a point not on @ in
order for f to be a regular morphism. In the second case, f is then a double
cover of P(V) branched along a quadric hypersurface.

The Lefschetz center of @ will be defined in terms of spinor bundles. We
follow [14] for our conventions on spinor bundles, and recall some of the key
facts here (see [14, Theorem 2.8]).

Let @ be a smooth quadric of even dimension 2d, and write H for the
hyperplane class so that O(H) = Og(1). Let Spin(Q) be the universal covering
of the special orthogonal group SO(Q) associated with the quadric @. Then @
carries a pair of Spin(Q)-equivariant vector bundles 8, and §_ of rank 291,
called the spinor bundles.

Example 2.3. If d = 1, then Q = P! x P! and one has §; = O(-1,0)
and §_ = 0(0,—1). If d = 2, then @ = Gr(2,4) and the bundles §; and §_
are the two tautological subbundles of rank 2.

If d > 2, then 84 and $_ both have determinant Og(—2?72). Denoting
by Si the 2?-dimensional half-spinor representations of Spin(Q), there are
canonical exact sequences

08 -S4+ ®0g —8_(H) =0,

2.6
(2:6) 0—-8_—=S_®0g—8+(H)—0.

Moreover, if f: @ — P(V) is an embedding of @ as a quadric hypersurface,

the pushforwards of the spinor bundles have the standard resolutions
@7 0—=S_®0pw)(—H) =S ®O0py) — fu(8_(H)) — 0,
' O—)S+®Op(v)(—H)—)S_®OP(V) —)f*(8+(H))—>O

(see, e.g., [3, Example 3.4], but note that [3] uses a different convention for
spinor bundles). Another nice property of spinor bundles is their self-duality
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HOMOLOGICAL PROJECTIVE DUALITY FOR QUADRICS 463

up to a twist:

8y, if dis even,
(2.8) SL(H)y={ ¥ 7
8%, ifdis odd.

Similarly, if @ is a smooth quadric of odd dimension 2d — 1, it carries one
spinor bundle § of rank 297! that fits into an exact sequence

(2.9) 0>8—=S®0g —8(H)—0,
where S is the spinor representation of Spin(@), and such that
(2.10) S(H) = 8.

Moreover, if @) is represented as a hyperplane section of a smooth quadric Q’
of even dimension, then § is isomorphic to the restriction of either of the
spinor bundles 84 on @',

(2.11) 8%5i|Q;

see [14, Theorem 1.4(i)].

In what follows, when @ is a smooth quadric of arbitrary dimension, we will
denote by 8 a chosen spinor bundle on it—the only one in the odd-dimensional
case, or one of the two in the even-dimensional case. With this convention,
we have the following result.

Lemma 2.4. Let f: Q@ — P(V) be a standard morphism of a smooth
quadric Q. Let 8§ denote a spinor bundle on Q). Then @ has the structure of
a Lefschetz variety over P(V) of length dim(Q) with Lefschetz center

Qo = (8,0) € D(Q).
Further, if p € {0,1} is the parity of dim(Q), i.e., p = dim(Q) (mod 2), then
the nonzero Lefschetz components of DP(Q) are given by
9. — (8,0)  for|i| <1—p,
o) for1—p< il < dim(Q) — 1.

Proof. Kapranov’s semiorthogonal decomposition of the derived category
of a smooth m-dimensional quadric [5] gives

DP(Q) = (8,,8_,0,0(1),...0(m — 1)) if m is even,
DP(Q) = (8,0,0(1),...0(m — 1)) if m is odd.

Thus, in the odd-dimensional case we obtain the required Lefschetz structure.
In the even-dimensional case we use (2.6) to rewrite the decomposition in form

Db(Q) = <8+7 O,S+(1), O(l)a EEE) O(m - 1)>a
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464 ALEXANDER KUZNETSOV AND ALEXANDER PERRY

(or similarly with 8 replaced by 8_) and also obtain the required Lefschetz
structure. (]

Remark 2.5. Let f: @ — P(V) be a standard morphism of a smooth
quadric Q. Then we always regard () as a Lefschetz variety using the center
from Lemma 2.4. If dim(Q) = 2d is even, there are two spinor bundles 8,
and 8_, so there is an apparent choice involved in the Lefschetz structure of Q.
However, there exists an (noncanonical) automorphism a of @ over P(V') such
that a*(8+) ~ 8+ (corresponding to the automorphism of the Dynkin diagram
of type Dgy1). The resulting autoequivalence a* of DP(Q) identifies the Lef-
schetz center of Lemma 2.4 defined by § = & with that defined by § = &_.
Hence, if dim(Q) is even, the structure of @ as a Lefschetz variety over P(V)
is still uniquely determined, up to noncanonical equivalence.

Remark 2.6. The Lefschetz center Qy of DP(Q) can be also written as

QO = <O>S/v>7

where 8’ = 8 if dim(Q) is not divisible by 4, and the other spinor bundle
otherwise. This follows from the exact sequences (2.6) and (2.9) and the
dualities (2.8) and (2.10).

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We divide the proof into a number
of steps, which we overview here. Most of the proof concerns case (1). In this
case dim(Q) = 2d, f: Q — P(V) is a divisorial embedding, and we aim to
prove that the HP dual is given by Q¥ C P(VV), the classical projective dual
of Q. During the proof, we actively use the machinery of Clifford algebras;
we suggest [7] as a general reference for this subject.

We consider the universal hyperplane section H(Q) C @ x P(VV) as a
family of quadrics

(3.1) hg: H(Q) — P(VY)
of dimension 2d — 1.

e In §3.1 we introduce a sheaf Cliffo (W) of Clifford algebras on P(V") and use
the fibration h¢ to isolate a semiorthogonal component of DP(H(Q)) equiva-
lent to the derived category DP(P(VY), Cliffo(W)) of modules over Cliffo(W).

e In §3.2 we use central reduction to rewrite D®(P(V"), Cliffo(W)) as the
Z /2-equivariant category DP(Z, R)%/? of the derived category of modules
over an Azumaya algebra R on the double covering Z of P(V") branched
over the quadric @Q".
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e In §3.3 we show that the Azumaya algebra R is Morita trivial, and thus
obtain an identification D(Z, R)%/? ~ D(Z)%/? with the Z/2-equivariant
derived category of Z.

e In §3.4 we decompose the category DP(Z)%/2
DP(QY) and DP(P(VY)).

e In §3.5 we rewrite in a simpler form the embedding functor of D®(P (V"))
into DP(H(Q)).

e In §3.6 we check that the image of D?(P(V")) together with the other com-
ponents of the semiorthogonal decomposition discussed in §3.1 generate
the Lefschetz part of DP(H(Q)), i.e., the subcategory of DP(H(Q)) gener-
ated by the components to the right of D?(Q)% in the decomposition (2.2)
for X = Q. This proves that the remaining component DP(Q") is equivalent
to the HPD category DP(Q)%. We check that this equivalence is given by
a Fourier-Mukai functor with kernel € on H(Q) xp(yvy @, thus verifying
part (2.4) of the definition of HPD.

e In §3.7 we describe the kernel € in terms of spinor bundles on @ and Q.

e In §3.8 we use this to check that the functor ®* o 77, takes the Lefschetz
center of @ to that of @V, so condition (2.5) in the definition of the HP
dual holds.

e Finally, in §3.9 we deduce the remaining cases (2)—(4) of Theorem 1.1 from
case (1) by applying a result from [1].

In §§3.1-3.8, we assume as above that dim(Q) = 2d, f: Q@ — P(V)
is a divisorial embedding, and that the Lefschetz structure of DP(Q) is
chosen so that Qp = (84,0). Let H and H’ denote the hyperplane classes on
P(V) and P(VY), as well as their pullbacks to H(Q) and other varieties.

3.1. A decomposition of D’(H(Q)). Consider the family of quadrics
(3.1). Recall that by definition H(Q) is the zero locus of the tautological
global section of the line bundle O(H + H') on @Q x P(V"). Therefore, H(Q)
sits as a family of (2d — 1)-dimensional quadrics in the projectivization of the
rank 2d + 1 vector bundle on P(VY)

W= (h@«Om(q)(H))"
& coker(O(—H') - VY ® 0)Y 2 ker(V @ O — O(H')) = Qp vy (H'),

into two components:

and it is defined by the family of quadratic forms given by the composition
(3.2) O — Sym* VY ® O — Sym* WY,

where the first morphism is given by the equation of () and the second is
the tautological surjection. By [7, Theorem 4.2] we have a semiorthogonal
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decomposition
(3:3) D"(H(Q)) = (D"(P(V"), Cliffo(W)),

ho(DP(P(VY)))(H), ..., hp(DP(P(VY)))((2d — 1) H)),
where Cliffo(W) is the sheaf of even parts of the universal Clifford algebra on
P(VY) for this family of quadrics, and DP(P(V"), Cliffo(W)) is the bounded

derived category of Cliffo(W)-modules on P(VV). The embedding of this
category into DP(H(Q)) is given by the functor

(3.4) ~: DP(P(VY), Cliffo(W)) — D°(H(Q)), F = h§;F Qciifro (w) €S,

where €8 is the sheaf of Cliff(W)-modules on H(Q) defined by the exact
sequence

(3.5) 0 — O(—H) & Cliffg(W) = O @ Cliffy (W) — 1,8 — 0

on H = Pp(yv)(W), where i: H(Q) — H is the natural embedding. Further-
more, Cliff{ (W) is the pullback to H of the sheaf of odd parts of the Clifford
algebra, and the first morphism is induced by the Clifford multiplication.

We call €8 the Clifford spinor bundle. Note that the space H is simply the
universal hyperplane in P(V).

3.2. Central reduction. Next, we use the argument of [7, §3.6]
to describe the first component DP(P(VV), Cliffo(W)) of (3.3) in more
detail. We denote by Cliff(V') the Clifford algebra of the quadric @, and by
Cliffo (V') and Cliff1 (V) its even and odd parts.

The family of quadratic forms (3.2) is given by a morphism O — Sym? W
from a trivial line bundle, hence the Clifford multiplication provides the direct
sum Cliffo (W) @ Cliff; (W) with an algebra structure. As a sheaf of O-modules
it has rank 229! and can be written as

Cliff (W) = Cliffo(W) @ Cliff (W) 2 0aWa AW - - &AW C Cliff (V)20
and is naturally a subalgebra in Cliff(V) ® O. As explained in [7, §3.6], the
rank 2 subalgebra

3=30® 31 =0 AW C Cliff (W)

is central (and moreover Cliff(W) is the centralizer of 3 in Cliff(V)), and the
morphism
¢: Z = Specp(yv)(3) = P(VY)

is the double covering branched along the classically projective dual quadric
QY CP(VY).

Note that Z is a smooth quadric of dimension 2d+ 1. We consider the Z/2-
action on Z generated by the involution of the double covering. Note that it
is induced by the natural Z/2-grading of 3. The sheaf of algebras Cliff(W) is
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HOMOLOGICAL PROJECTIVE DUALITY FOR QUADRICS 467

a module over 3, hence there is a sheaf of algebras R of rank 224 on Z such
that

Cliff(W) =2 (,R.
Furthermore, the direct sum decomposition Cliff(W) = Cliffo(W) @ Cliff; (W)
provides Cliff(W) with the structure of a Z/2-graded 3-module, hence provides
the algebra R with a Z/2-equivariant structure. By definition the invariant
part of (R is

(3.6) (C.R)Z/? = Cliffo (W),
hence there is an equivalence of categories
(3.7)  ¢: DP(Z,R)%/2 = DP(P(VY), Cliffg (W), T (¢F)%/2,

between the Z/2-equivariant derived category of R-modules on Z and the
derived category of Cliffo(W)-modules on P(VV).

3.3. Morita triviality of R. The sheaf of algebras R is Azumaya by [7,
Proposition 3.15]. We claim it is in fact Morita trivial. Indeed, let S; and S_
be the two 2¢-dimensional half-spinor modules for Cliffo(V') (which appeared
earlier as the half-spinor representations of Spin(@)). Then the sum

(3.8) S=S,®S_

is naturally a Cliff(V)-module, and hence by restriction a Cliff(W)-module
as well. In particular, it is a 3-module, hence gives a vector bundle on Z.
Moreover, the action of 3 preserves the summands, and the action of 3; swaps
them, so thinking of the direct sum decomposition (3.8) as a Z/2-grading, we
see that this provides S with the structure of a Z/2-equivariant 3-module, i.e.,
a Z/2-equivariant vector bundle on Z. Since S is also a Cliff(W)-module, we
see that there is an object 8% of DP(Z,R)%/2 such that

(3.9) (87 = (S @®S_)®0pyv) and (C.8%)%?~S, @ Opvy-

Actually, 8% is the dual spinor bundle (of rank 2%) on the smooth odd-
dimensional quadric Z (of dimension 2d+ 1), hence the notation. Indeed, this
follows easily from Kapranov’s semiorthogonal decomposition of the quadric Z
(see the proof of Lemma 2.4) since by (3.9) the sheaf 8} is semi-
orthogonal to Oz(1), 0z(2), ..., Oz(2d + 1).

Since the bundle 8% is an equivariant R-module on Z, we have a natural
equivariant morphism R — &nd(8Y), which is fiberwise injective because R
is an Azumaya algebra, and hence is an isomorphism because the ranks of
the source and the target are both equal to 22¢. Consequently, we have an
equivalence

(3.10) p: DP(2)%/2 =5 DM (Z2,R)%/2, Fs F®8Y.
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3.4. Root stack decomposition. The equivariant category Db(Z)Z/2
can be considered as the derived category of the quotient stack [Z/(Z/2)],
i.e., of the root stack of P(VV) along Q. Consequently, by [10, Theorem 4.1]
(see also [2] and [4, Theorem 1.6]) it has a semiorthogonal decomposition

(3.11) D"(2)%/? = (DP(Q"), D" (P(V")))
with the embedding functors given by

(3.12) ag: DP(QY) — DP(2)%/2, F— T,

where j: @Y — Z is the embedding of the ramification divisor and x is the
nontrivial character of the group Z/2, and by

(3.13) ap: DP(P(VY)) = DP(2)%/2, F—('F,

where (*F is given the natural equivariant structure.
Combining (3.3) with (3.7), (3.10), and (3.11), we obtain a P(V")-linear
semiorthogonal decomposition

(3.14) D"(H(Q)) = (2(D"(Q")), ¥(D*(P(V"))),
ho(DP(P(VY)(H), ..., hy(DP(P(VY)))(2d = 1) H)).

The embedding functors ® and ¥ of the first two components are discussed
below.

3.5. Rewriting the functor ¥. By the construction in §§3.1-3.4 above,
the second component of (3.14) is embedded by the functor

U =~o0¢popuoap: DP(P(VY)) = DP(H(Q)),

where the factors are defined by (3.4), (3.7), (3.10), and (3.13). Note that
each of the factors is a Fourier—Mukai functor, hence so is their composition .
Below we describe its kernel object. We consider the commutative diagram

(3.15) H(Q) ——H
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with cartesian square. The functor ¥ is given by

F— hzz (C* (C&f@ Sé)z/z) ®C|ifr0(w) (6853

~ h*Q (9:® (C*SE)ZN) QCliffo (W) ()
= (hoF ® S4) @ciifr, (w) €S,
where we used the equivariant projection formula for the first isomorphism,

and (3.9) for the second. This means that the Fourier-Mukai kernel for ¥ is
the object

S+ ®ciiry(w) €S € DP(H(Q)).
To compute it, we use the resolution (3.5) and obtain on H a distinguished
triangle

(3.16) Sy ®ciifo(w) (O(=H) @ Cliffo(W)) — S1 ®ciiro (w) (O @ Cliff1 (W)
= 1.(S+ @ciifry(w) €8)

with the first map induced by the Clifford multiplication. The first term is
evidently isomorphic to S; ® O(—H). For the second note that

S+ ®ciifrg(w) Cliffy (W) = S ®ciifry (v (Cliffo(V) @ciisr, (w) Cliff1(W))
(3.17) ~S, QCliffo (V) Cliff, (V)

=S_.

Here the first isomorphism is evident. The second is induced by Clifford
multiplication; its surjectivity is evident, and its injectivity follows from the

fact that Cliff;(W) is locally projective over Cliffo('W); see [7, Lemma 3.8].
Finally, the last isomorphism follows from the standard isomorphisms

and

Cliff1 (V) 2 Hom(S+,S-) @ Hom(S_,S4).

Hence the second term in (3.16) is isomorphic to S_ ® O. Thus, we can
rewrite (3.16) as

(3.18) Sy ®0(—H) = S_® 0 — i, (St Qciifry (w) CS)

with the first map induced by the Clifford multiplication.

On the other hand, on P(V) we have exact sequences (2.7). Pulling the
second of them back via 7: H — P (V') and using the base change isomorphism
for the square in diagram (3.15), we deduce an isomorphism

i« (S+ ciifry (w) €8) = 77 (fe(84.(H))) = ix(mgy(84.(H)))-
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Since i is a closed embedding and 7(,(84.(H)) is a coherent sheaf, it follows
that

S+ ®ciiff(w) C8 = 5 (84 (H)).

In summary, we conclude that the second component of the semiorthogonal
decomposition (3.14) is embedded via the functor

(3.19) U: DY(P(VY)) = DP(H(Q)), Fr hyF @ (Sy(H)).

3.6. An equivalence between D?(Q") and D?(Q). Next, we relate the
functor ¥ to the decomposition (2.2) of H(Q). Note that this decomposition
takes the form

(3.20) D(H(Q)) = (D*(Q)*%, 6" (21 (H) XD (P(V))),
§*(Q(2H)®DP(P(VY))),...,6"(a-1((2d — 1)H) KD (P(V)))),
where Q1 = (84,0) and Qo = --- = Q51 = (O) are the Lefschetz components
of D(Q) given by Lemma 2.4. Since the sheaf 8§, (H) is one of the two
exceptional objects generating Q1 (H), the image of the functor ¥ is contained

in the component §*(Q; (H) X DP(P(V"))) of (3.20). Furthermore, it follows
that we can rewrite the components in the Lefschetz part of (3.20) as

§(Q(H) KD (P(VY))) = (T(D(P(VY))), hey (DY (P(VY)))(H)), and
§*(Q;(H)®DP(P(VY))) = h(DP(P(VY)))(iH), for i > 2.

Comparing this with decomposition (3.14), we conclude there is a P(V")-lin-
ear equivalence

(3.21) D"(Q¥) = D"(Q)".
This equivalence is induced by the functor
¢ =70¢opoag: D(Q") = D (H(Q)),

where the factors are defined by (3.4), (3.7), (3.10), and (3.12). Note that each
of the factors is a Fourier—Mukai functor, hence so is their composition ®. This
shows that condition (2.4) is fulfilled.

Let us describe the Fourier-Mukai kernel for ® explicitly. We consider the
commutative diagram

H(Q, Q") —— Q¥

(3.22) gl } lq X

P(VY) Z
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with cartesian square, where g: Q¥ — P (V") is the inclusion of the branch di-
visor of the double covering (: Z — P(V") and H(Q, Q") is the fiber product.
The functor ® is given by

T (6 (T @) ©8%) ) ©camyaw) €
> by, (C*j* (Foj*(Sy® X)Z/Z)) Bciifry (W) C8
=~ héygs (3’@ (7°8% ® X)Z/2) Qciiffo(w) €S
=~ g.h* (5’@ (8% ® X)Z/2) Qciiff (W) €S,

where the first isomorphism is the equivariant projection formula, the second
is evident, and the third is base change. This means that the kernel object
for ® is isomorphic to

(3.23) &= 1" (785 © 0)%2) Gaim(w) 7€

on H(Q, Q).

To complete the proof of case (1) of Theorem 1.1, we will rewrite the
formula for the kernel object € and then use it to verify condition (2.5).

3.7. Rewriting the kernel €. Note that by definition from §3.3 the
bundle j*8Y in (3.23) is the cokernel of the natural map

S+®S)®g" 31 = S+dS)®0

induced by the action of 3; C Cliff; (W) C Cliff{ (V) ®@ O on (S ®S_) ® O.
Since this action swaps the grading and 3; = det(W) = O(—H’), it follows
that on P(V") we have two exact sequences

0-S_ ®O(—H') =S,y ®0 — g.((5%8%)%/2) - 0,
0—S, @O0(=H") = S_®0 = g.((j"8% ©x)*/?) = 0,

with the first morphisms given by the Clifford multiplication. Comparing
these sequences with (2.7) for the spinor bundles 8’ and 8’ on Q¥ C P(V"),
we obtain isomorphisms

(j*87)?/? =8 (H')  and  (j*8y @ x)*/* =8/ (H').

Combining this with the formula (3.23) for €, we find that € can be rewritten
as

(3.24) &= "8/ (H') @ciifry(w) §"€S € DP(H(Q,Q")).

Licensed to Univ of Michigan. Prepared on Tue May 31 14:54:01 EDT 2022 for download from IP 141.211.4.224.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



472 ALEXANDER KUZNETSOV AND ALEXANDER PERRY

To rewrite this further, we consider the space H(P(V'), Q") = Hxpyv)Q",
which fits into a commutative diagram

h
H(Q, Q) —~>/\—> Q"

7 pro

H(P((V),Q)
b
H
ks

pry

where the squares are cartesian by the definitions of H(Q) and H(Q, Q").
Using the projection formula and base change, we compute

1.€ = pry(8L (H')) @ciiry(w) 2=G7C8 = pr3 (8 (H')) ®ciifr, (w) 971(4+C8).
Using the resolution (3.5) of 7,8 and taking into account that
8; ®C|iff0(w) Cliffy (W) ~g

(which follows from (3.17) and the resolutions (2.7) for 8/.), we obtain an
exact sequence

0 = priOpv)(—H) @ pr38’ (H') = priOpv) @ pr38_(H') = i€ — 0

on H(P(V),Q"), where the first map is induced by the Clifford multiplication.
It follows that € is a sheaf on H(Q, @), which fits into an exact sequence

T 0g(—H) @ h*8 (H') = #*0q @ h*8'_(H') — & — 0,
where the first map is induced by the Clifford multiplication. Consider the

diagram

S_. @ 0g(—H) ® h*Ogv —— S, @ 70 @ h*Ogv

l |

70 (—H) ® h*8/, (H') ——— 7*0g @ h*8"_(H'),

where the vertical arrows are induced by (2.7) (hence surjective), and the hor-
izontal arrows are induced by the Clifford multiplication (hence the diagram
commutes). By (2.6) the image of the top horizontal arrow is the bundle
T84 ® B*OQv on H(Q,Q"), hence we obtain an exact sequence

78 @ h*Ogv — 70 @ h*S_(H') = &€ =0
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on H(Q, Q). Therefore, we have on @ X Q¥ an exact sequence
(3.25) 084 KOgv = 0o RS8_(H') —e.& =0,

where e: H(Q, Q) — @ x Q" is the natural embedding.
3.8. Lefschetz center. To complete the proof of Theorem 1.1 in case (1),
we verify condition (2.5), i.e., check that the functor

& o m5: DP(Q) - DY(QY)
takes the Lefschetz center Qqp of @ (see Lemma 2.4) to that of QY. It suffices
to check that ®* o, takes the generators Oq and 84 of Qg to some generators

of the Lefschetz center of DP(QV).
For this, note that

T« 0 ®: D*(Q”) —» D”(Q)

is the Fourier-Mukai functor given by the kernel £,& € DP(Q x QY), so its
left adjoint functor ®* o 77, is given by the kernel (€+8)Y ® p*wg, where
p: @ x Q¥ — Q is the projection and wq is the dualizing complex of Q.
By (3.25) we have a distinguished triangle

(64€)Y @p*wg = wg W8 (—H') = (8 ®wgq) X Oqv.

It follows that ®* (7, (Q0)) is the subcategory generated by 8™ (—H') and Oqv.
From (2.8) it follows that 8" (—H’) = 8/, (depending on parity of d), hence
this subcategory coincides with the Lefschetz center of D”(QY). This proves
condition (2.5), and since together with condition (2.4) proved in §3.6 it is
equivalent to the HPD statement, this completes the proof of case (1) of
Theorem 1.1.

3.9. Other types of quadrics. We deduce the other cases of Theo-
rem 1.1 by using a general result on the behavior of HPD under linear pro-
jection. This result can be phrased in simple terms by saying that linear
projections on one side of HPD correspond to taking hyperplane sections on
the other. The following rigorous formulation of this result is a special case
of [1, Theorem 1.1]; see also [12, Proposition A.10 and Remark A.12] for a
quick proof in the context considered here.

Theorem 3.1. Let f: X — P(V) be a Lefschetz variety with Lefschetz
center Ag. Let V. — V be a surjection with kernel K such that f~(P(K)) is
empty, so that the composition

f: X J, P(V) --» P(V)

is a regular morphism providing X with the structure of a Lefschetz vari-
ety over P(V) with Lefschetz center Ay. Assume that the Lefschetz variety
f: X — P(V) is moderate.
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If f2: Xt — P(VY) is a Lefschetz variety with Lefschetz center By which

is HP dual to f: X — P(V), then the derived fiber product
f: XE Xppoy P(VY) = P(VY)

obtained by base change along the natural embedding P(VY) C P(f/v) has the
structure of a Lefschetz variety with Lefschetz center the image of By under
the restriction functor

D(X*) = D*(X* xp vy P(VY)).
Moreover, when equipped with this Lefschetz structure,
ff X Xy P(VY) = P(VY)

is HP dual to f: X — P(V).

Let us prove case (3). Let f: @ — P(V) be a double covering of an even-
dimensional quadric Q. Choose an embedding f: Q — P (V) as a hypersur-
face. Then f is the composition of f with a linear projection P(V) --> P(V)
from a point of P(V) which does not lie on f(Q). Let K C V be the corre-
sponding one-dimensional subspace, so that V = f// K.

By case (1) of Theorem 1.1 proved in §§3.1-3.8, we know that Q¥ C P(V")

is HP dual to Q C P(V). Therefore, by Theorem 3.1 we find that
Q" xpyvy P(VY) = P(VY)

is HP dual to @ — P(V). Note that Q¥ Xp(iv) P (V") is projectively dual to
the branch divisor of @ — P(V'). This proves case (3) of Theorem 1.1.

Since the operation of HPD is a duality (see [6, Theorem 7.3] or [15, The-
orem 8.9]), this also proves case (2) of the theorem.

Finally, let us prove case (4). Let f: @ — P(V) be a double covering
of an odd-dimensional quadric . Choose an embedding f: Q — P(f/)
as a hypersurface. Then f is the composition of f with a linear projec-
tion P(V) --» P(V) from a point of P(V) which does not lie on f(Q).
Let K C V be the corresponding one-dimensional subspace, so that V = 1% /K.

Applying case (2) of Theorem 1.1 proved above, we deduce that the dou-
ble cover (QV).., — P(V") branched along the projective dual Q¥ C P(V")
is HP dual to Q@ c P(V). Thus, using Theorem 3.1 again, we find that
(@) eov Xpirvy P(VY) = P(VY) is HP dual to @ — P(V). Note that
the variety QY Xp(iv) P(VV) is projectively dual to the branch divisor of
Q — P(V), and that (Q").., Xpyv) P(VY) = P(V") is the double cover
branched along Q" Xp vy P(V). This proves case (4) of Theorem 1.1. [
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Remark 3.2. We finish the paper by noting that the HPD kernel € in all
the cases of Theorem 1.1 fits into an exact sequence

0= 8K O0gv = O K8 (H) = e.& =0,

where £: H(Q, Q) — Q x Q" is the embedding, 8§ and 8 are appropriate
spinor bundles on Q and @V, and the first morphism is the composition of
(the pullback from @ of) the natural embedding of 8 into the half-spinor
representation with (the pullback from @Y of) the surjection from the half-
spinor representation onto 8'(H’) (see (2.6) and (2.9)). Indeed, in case (1)
this was already shown in (3.25). Further, in case (3) the HPD kernel is
obtained by restriction, hence (2.11) shows that the above formula is still
true. Further, in case (2) the HPD kernel is obtained by transposition and
dualization, hence (2.8) and (2.10) imply the formula. Finally, in case (4) the
HPD kernel is again obtained by restriction, so we again conclude by (2.11).
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