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This paper proposes a spatio-temporal reference trajectory planner approach to safely plan continuum
deformation coordination of a multi-agent system (MAS) in an obstacle-laden environment. We
formulate a desired n-D continuum deformation as a leader—follower problem guided by n+ 1 leaders
and followed by the remaining follower agents either through direct communication with leaders
or communication with neighboring agents. To plan a safe continuum deformation coordination, we
first provide sufficient conditions for inter-agent and obstacle collision avoidance. Then, we spatially
optimize the continuum deformation coordination using the A* search to determine leaders’ desired
waypoints in an obstacle-laden environment. Leaders’ desired waypoints are connected through ¢!
continuous paths that are assigned by the spline curve fitting method. The desired trajectories of the
leaders are then determined by planning a piece-wise constant reference input such that travel time
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is minimized and safety of the continuum deformation coordination is ensured.
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1. Introduction

Multi-agent coordination has been extensively studied over
the past two decades. Cooperative and formation control can
enhance robustness of multi-agents systems (MASs) to mission
failure and minimize the mission cost. Formation flight (Li &
Liu, 2008), surveillance (Remagnino, Tan, & Baker, 1998), multi-
agent coverage (Zhai & Hong, 2013), save and rescue (Al Tair,
Taha, Al-Qutayri, & Dias, 2015), and cooperative payload trans-
port (Klausen, Fossen, Johansen, & Aguiar, 2015) are some existing
applications of multi-agent coordination.

Consensus (Li et al., 2018; Lin & Zheng, 2016; Liu, Cheng,
Tan, & Hou, 2018; Zhou, Sang, Li, Fang, & Wang, 2018), con-
tainment control (Liu, Cheng, Tan, & Hou, 2015), and continuum
deformation (Rastgoftar, Atkins, & Kolmanovsky, 2021; Rastgoftar
& Kolmanovsky, 2021) are some of the existing multi-agent
system (MAS) coordination methods. The delayed multi-agent
consensus problems (Zhou et al., 2018), and finite-time con-
sensus under fixed and switching communication topologies (Li
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et al, 2018; Lin & Zheng, 2016; Liu et al., 2018) have also
been addressed. More recently, conditions for resilient consensus
problem and for reaching consensus in the presence of anoma-
lous/deceptive/failure agents (Dibaji & Ishii, 2017; Shang, 2018)
have been developed. Containment control is a decentralized
leader-follower multi-agent coordination approach in which lead-
ers independently lead collective motion and followers infer
the desired group coordination via communication with their
in-neighbors. Containment control of a multi-agent system un-
der fixed (Li, Chen, Liu, Zhang, & Zhang, 2016) and switching
(Liu et al, 2015) communication topologies have been
analyzed. Retarded containment with fixed (Li et al,, 2016) and
time-varying (Zhao, He, Saberi Nik, & Ren, 2015) time-delays and
finite-time containment control and coordination (Zhao & Duan,
2015) have also been investigated. Wang and Wang (2019) pro-
vide necessary and sufficient conditions for stability of discrete-
time containment control in the absence and presence of time
delays. In continuum deformation coordination methods agents
are treated as particles of a deformable body (or continuum)
and their coordination is achieved by exploiting a continuum
deformation function (Rastgoftar & Kolmanovsky, 2021). Similar
to containment control, continuum deformation is a decentralized
leader-follower approach, leaders guide the collective motion,
and followers communicate with their in-neighbors to learn the
desired coordination through local communication (Rastgoftar
et al,, 2021; Rastgoftar & Kolmanovsky, 2021). While the stability
and convergence of the MAS to the convex hull defined by leader
agents has been studied in the containment control literature (Ji,
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Ferrari-Trecate, Egerstedt, & Buffa, 2008; Wang & Wang, 2019),
the proposed continuum deformation approach formally charac-
terizes the deviation from the desired continuum deformation
coordination and ensures that followers always remain inside the
n-D leading simplex, defined by the leader agents by constraining
the lower and upper bounds of the eigenvalues of the Jacobian
matrix involved into the continuum deformation coordination.

In the existing literature (De Badyn, Eren, Acikmese, & Mes-
bahi, 2018), the MAS coordination is often approached in a setting
of an optimal mass transport where the mass density transforma-
tion is assigned as the solution of a constrained optimal control
problem. In this paper, MAS is represented by a finite number of
particles of a deformable body (or continuum) and the optimiza-
tion of continuum deformation is interpreted as a variant of a
reference governor problem by defining a trajectory optimization
problem for formation leaders and by decomposing it into spatial
and temporal planning (optimization) problems. For the spatial
optimization problem, A* search method (Rastgoftar et al., 2021;
Rastgoftar & Kolmanovsky, 2021; Tseng, Liang, Lee, Der Chou, &
Chao, 2014) is applied to assign optimal configurations of the
leader agents by minimizing the travel distance between the ini-
tial and target configurations of the MAS. For every leader agent,
the optimal path is then defined by a ¢! continuous polynomial
function connecting every two consecutive way-points, assigned
by the A* planner. For the temporal optimization, we first define
the leaders’ desired trajectories based on a piece-wise constant
reference input. Then, the reference input is planned such that
optimal leaders’ trajectories minimize the travel time between
the way points and satisfy all safety constraints (i.e., ensure
agent containment with no inter-agent or obstacle collisions).
Compared to the existing literature and the authors’ previous
work (Rastgoftar et al., 2021), we propose an approach to speed
up the computations of collision-free continuum deformation
coordination by removing the previously needed requirement
to bring the formation to rest at each waypoint. Furthermore,
this paper provides sufficient safety conditions for continuum
deformation coordination of a heterogeneous agent team with
different sizes and characteristics.

The problem statement is presented in Section 2 and is fol-
lowed by the derivation of the MAS collective and error dynamics
in Section 3. The proposed approach to continuum deformation
coordination planning is addressed in Section 4. Simulation re-
sults are presented in Section 5 and followed by the discussion
and conclusions in Section 6.

2. Preliminaries and problem formulation

We consider an MAS consisting of N agents moving collec-
tively in a 3-D space where every agent is uniquely identified by
an index number i € V = {1,..., N}. By classifying agents as
leaders and followers, V can be expressed as V = V; | J Vr, where
Vi = {1,...,n+ 1} and V¢ = V \ V, define the leaders’ and
followers’ index numbers, respectively, in an n-D affine transfor-
mation where n € {1, 2, 3}. Inter-agent communication is defined
by digraph G (V, £) with node set V and edge set £ C V x V. Given
an edge set &, in-neighbor agents of agent i € V are defined by
Ni={je V|(i, i) € £}. Note that leaders move independently,
therefore N; = 0, if i € V.

The dynamics of each of N agents i € V is modeled by

X =fi (x) +g &) u
I = C,‘Xi

(1)

with state x; € R™*1 input u; € R™i*! and output r; € R™,
Here, C; € R™™i, r; is the actual position of agent i € V, and
fi : R™i — R™i and g; : R™i — R™.i*™.i are smooth functions.
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We assume that the dynamics of every agent i € V is feedback-
linearizable; with state transformation x; — (y;, @;), the model
(1) is converted to

. | Onp—yxn -1 | Ongo—1yxn |
yi= [ On><n 0n><n(p—l) yi + ln i (2)
w; = h (@, Y, 8) , (3)
d-1r\"T
where h (@, y;, §;) is smooth, and y; = |:1-1T ; 1’ } .
tP—

For every agent i € V, we define a global desired position
r; yr(t) over the time interval [tin, t; | with fixed initial time i
and final time ¢, by homogeneous transformation that is given by

ripr(t) = Q) rio +d(t),

where Q (t) € R™" is a non-singular Jacobian matrix, d(t) € R"
is the rigid-body displacement vector at time t, and r;¢ is the
reference position of agente i € V. Each agent i € V is controlled
to stably track the desired trajectory

Viev, (4)

T 0t iey

riqg(t) = . . Vt € |to, t 5
i.d (£) S Wik Vi€ Ve [to. tr] (5)
by choosing
p—1 h
d" (rig —1;
Si = Z)’i,h%, (6)
h=0

where y; ; through y; ,_; are constant control gains and w;; > 0
is the communication weight between agent i € V and the in-
neighbor agent j € ;. Given control gains y; ; through y; ,—_1, we
define gain matrix

Gy =diag (y1n,....wn)., h=0,....,p—1 (7)
Then the model for the external dynamics of the MAS is obtained

as follows (Rastgoftar, 2020):
1

d°y =
() > (1, ® Gr (—1+1)))

dee

d" (Yo(t) — Y())
dth

=
Il
- O

(8)

+> (1, ® (GiLo))

hS)

d"Ry(t)
deh

=
o

where Ly = [In+] O]T e RN*(+D) while the matrix L = [Lij] €
RN*N and vectors R;(t) € RM™DX1 y (t) € R™*1 and Y(t) e
R™*1 aggregating components of the global desired positions
of leaders, reference desired positions of all agents, and actual
positions of all agents, respectively, are defined as follows:

el
Ru(¢) = vec ([rrur(0) r(®]). Vee [t ]
(9b)
Ya(t) = vec ([rl,d(t) rN,d(r)]T) Yt € [t 7] (9¢)
Y(t) = vec ([rl(t) rN(t)]T) Yt € [t 7] (9d)

where “vec” is the matrix vectorization symbol.

The main objective of this paper is to develop a method for
planning a safe continuum deformation by prescribing the vector
R;(t) over a finite time interval. To this end, we define

Ri(t) = P [(n(t) — n(te))’? () —net) 1] (10)
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for t € [ty, tip1) and k = 1,..., n,, where P, € R4 jg the
kth shape matrix that remains constant over [ty, ty+1), and the
evolution of the generalized coordinate 7 is defined as follows:

) =vk,  t €[t trs1), (11)
subject to conditions

n) =k  k=1,...,n, -1, (12a)

N () =k+1, (12b)

where vy is constant over the time-interval [ty, tyt1). Thus, v, =

Tik is constant at any time t € [ty, tyrq) for k = 1,...,n, — 1,

where Ty = ti+1 — t. As a result, R (t), can be written as follows:
T

_ t—6\° t—5\° -t ]
RL(f)—Pk[( T > ( T ) T 1 (13)

Given the above problem setting, continuum deformation
planning is decomposed into spatial and temporal optimization
problems. For the spatial optimization, we determine leaders’
intermediate waypoints by minimizing the travel distance be-
tween the leaders’ initial and final configurations. Then, the
shape matrix Py is assigned using the spline method such that
leaders’ desired paths are defined by ¢! continuous polynomial
connecting consecutive leaders’ way-points. For the temporal
optimization, we solve the following problem:

k=1,...,n, — 1,

Ny—1
(Tf.....T; _,) = argmin Z Ty (14)
V1yeens Vny-1 4
such that
ve, A\ () = riar(0)l] < 81) (15a)
iey
vt, Vi,j eV, i#], Iri(t) — ()l = € + ¢ (15b)
ve, N\ @®(0) e Bt), (15¢)
iey
where Ty =ty 1—te (k= 1,...,n,—1),and §; is an upper-bound

on the deviation of every agent i € V from global desired position
r; yr(t), defined by Eq. (4) at time ¢, and

B(t) = {r: [Ir — d(t)]| < rmax} (16)

is the rigid containment ball with radius rya.x which is centered
at d(t) at any time t.

Although, we assume that dynamics of every agent i € V
is deterministic, the deviation upper-bound §; can account for
model uncertainty and control errors when planning a large-
scale continuum deformation coordination. Let ¢; and ¢; be the
radii of the smallest rigid balls enclosing agents i and j (i # j),
then constraint equation (15b) ensures the inter-agent collision
avoidance for every two different agents at any time t. The above
optimization problem is computationally-expensive and the com-
putation cost is large, if n,, is large. To reduce the computation
cost, we impose the following condition:

).

d]rl tk) d]rl HT(tk)
(17)

k=1,...,n, — 1

met ([ e
zeV

for0 < B < 1( = 1,..., p). Then we can plan continuum

deformation by solving the following independent optimization

problems:

k=1,...,n

min Ty (18)

Uk

w_]7
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subject to constraint equations (15a), (15b), (15c), and (17) for
te <t < tigr.

In what follows, we first obtain the MAS collective dynamics
and assign the coordination error (Section 3). Then, Section 4
addresses planning of a safe plan continuum deformation co-
ordination using the above spatio-temporal reference trajectory
planner approach.

3. MAS collective dynamics

Given R((t), defined by Eq. (13
are obtained as

), the time derivatives of R;(t)

! .
j=1,...,p— : : t—t)" 7. (19
J P a0 (h— 1P (t =t (19)
h=j
where
1 1 1
[Psk -+ Pox]| = Pidiag (T T 1) . (20)
p—lRL
Substituting R;(t), - - -, = (t) into Eq. (8), the MAS collective
dynamics becomes
3
t € [te, tis1) Xuas(t) = AMASXMAS(t)+Z (t —t)" e, (21)
h=0
where
T
de=1Y(t)\"
— T Nx1
XMAS(t) - |:Y (t) e (dl’pl € RV 5 (223)
0nN Inn OHN
Amas = : : :
(U (U |

I ® (Go (—Iy +L)) 1, ® (G (=Iy +1)) I ® (G,—1 (—Iy + 1))

(22b)
’ 0
Chk = Z [ nl(p@;)?é'ﬁ;n} Ph+j k> (22¢)
j=0 h=0
¢(j) = min{3, 3 — j}. (22d)

Theorem 1. Definine Yyr(t) = vec ([rl,m rN’HT]T) , and
E = Y — YyT as the error vector, characterizing from theglobal
desired positions. If p < 4, the error dynamics is given by

3

t € [ty tig1), Z(t) = AwnsZ(t) + Z dp i (8 — 1) (23)
h=0
T
" 1E()\ "
= T e i npNx1
where Z(t) = |:E (t) ( = ) e R"™Nx1 gnd
1% (h+ o) [ Oonsengnt1
dpy = ; W |:ln ® (GpLo)] Phtp.k (24)

forke[ty, tgrq)and k=1,...,n, — 1.

Proof. Per Theorem 3 of Rastgoftar and Kolmanovsky (2021).

d'Ry @E
'n®(Gj( 1N+L) +G,Lod])=ln®<cj(—lN+L)dﬂ>
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forj=1,---, p and the error dynamics becomes

: 05— )N xn(n+1) d’Ry

Z(t) = AmasZ(t z — 25
(t) MasZ(t) + |:ln® (Gp (—Iy + L) lLo) dir (25)

d’R
for t € [ty, ty+1). By substituting pL from Eq. (19) in Eq. (25),

Eq. (25) can be written in the form of Eq. (23) where dj,  is given
by (24). O

Per Theorem 1,

¢(p)
Z(t) = (¢, ty)Z + Z on(t, t)dp k, (26)
h=0

at t € [ty, tyyr1) where p < 4,

B(t, i) = ets=l), (27a)
t

on(t, t) = / (1 — t) ePns T g (27Db)
tk

and Z;, = Z(ty) fork=1,...,n, — 1.

Remark 1. To characterize error, we can write

; ; 2
d’l‘i d’l‘,',HT T T
‘ 0 ) =7 (t)OUOijZ(t) (28)
where | - ||, denotes the 2-norm symbol,j =0,...,p—1,i €V,

0; = Oif{h{] € R™MN) and the (I, h) element of matrix Oy is
defined as follows:

o._11 ALy (h=jNn+ (1= 1)N + i)
Up =

29
0 otherwise. (29)

Note that n € {1, 2, 3} is the dimension of the homogeneous
transformation coordination, N = |V| is the total number of
agents, and p is the dimension of the feedback linearized dynam-
ics (see Eq. (2)).

Remark 2. Note that positive control gains y11, -+, ¥p,1, -,
V1N, -+, Vpn are such that the matrix Ayas is Hurwitz. As the
result, the external dynamics of the MAS, given by (8), is BIBO
stable.

Theorem 2. Define

Prnaxj = \/max 1787(t, 0)0;0;%(t, 0)1.
t,Viey

forj = 0,...,p — 1. Assume safety condition (17) is satisfied,

0 < B <1forj=0,...,p0— 1, and control gains y;p (i € V

and h € {0, ..., p — 1}) are selected such that

Bi < min( di ) , (30)

Vie{o,...
el viev \ Pmax,j

,p— 1},

where 1 is the one-entry vector. Then, there exist travel times
T1, ..., Tn,—1 such that safety condition (15a) and (17) are satisfied
at any time t € [ty, tn, | where ti =ty and t,, = ty are the initial
and final time, respectively.

Proof. Because Ayas is Hurwitz, ®(t, t,) and ©(t, t;), defined
by (27), are bounded. Per Egs. (24) and (20), dy, — O, if
Ty — oo. This implies that the second term on the right-hand
side of Eq. (26) converges to 0, if T, — oo. Therefore, safety
condition (15a) can be satisfied, if

N\ (Zi @' (t, 6)0j0y@(t, 6)Zi < 87) ,
ij.k

vt € [ty terr) . (31)
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Continuum Deformation Planning.

Planning of Safe Leaders' reference
trajectories.

no=n|(5) () e o

Desired Path Planning (Cubic-Spline)
Assign shape matrices

Specification

MAS Collective Dynamics and Contrbi\‘

Uevi

s, r
u = M;'s —N;
u

[Y“}(-M@L)[ H

()
% o)

Ry
+ (1pn ® Lo) Li”’l ; = 3
g X; = f(x;) + g(x)w;

Fig. 1. Functionality of the continuum deformation guidance.

If (17) is satisfied, then,
Niji (@' (¢, 6)0}059(t, t)Z < 17 B(t, tx)O[ 0 (¢, t;)1)

where
N\ (7@ (t, 6)0j058(t, 6)1 < @2, ) .
ij.k

Hence, (31) is satisfied, if (30) holds. O

Theorem 2 assures safety by assigning an upper bound for f;
(j=0,...,p0—1)in a continuum deformation planning problem
minimizing the cost function (18) and satisfying the constraints
given in (15a) and (17).

4. Continuum deformation coordination planning

We propose a two-layer continuum deformation planning ap-
proach to ensure safety by defining leaders’ desired trajectories
at every time t € [tiy;, tr] (see Fig. 1). At the top level, the
continuum deformation shape functions P; through P, _; are
assigned through planning desired leaders’ paths. At the low
level, desired trajectories of leaders are assigned by planning the
generalized coordinate 5 as the solution of optimization problem
(18) subject to the constraints (15). This paper assumes that the
geometry of the obstacles, the initial displacement vector d; =
dinie = d (ti;e), the initial Jacobian matrix Q; = Qinir = Q (tinit),
the final displacement vector dy,, = d; = d (ty), the final Jacobian
matrix Q,, = Qs = Q(tf) are assumed to be known, where & =
tn, is free. Then, dy, ....d,, _; and Q, ...,Q,,—1 are determined
in Section 4.1.

4.1. High-level planning: Leader path planning

To plan leaders’ desired paths, we first determine leaders’ de-
sired waypoints and then the leaders’ desired paths are obtained
using the cubic spline method.

4.1.1. Way-point planing
The desired way-points of leader i € V, are denoted by
Tiur k = Tipr(tc) and given by

ripr ke = Qulio + di,

where Q, = Q(t;) and d; = d(t;) are the Jacobian matrix and
rigid-body displacement vector at time t; (k =1,2,...,n, — 1).
Therefore, the desired way-points of each leader i € V, are
assigned at discrete time instants t;, by determining d; and Qy
as described below.



H. Rastgoftar and LV. Kolmanovsky

4.1.1.1. Assignment of rigid-body displacement. The A* search
(Tseng et al., 2014) is applied to determine desired way-points
of the center of containment ball B by minimizing the travel
distance between the initial position and target destination. To
this end, we uniformly discretize the space and represent it by a
finite number of characteristic nodes defined by set

D= { a = (hAv ey lnA) Dk € {ik,mina ey ik,max} s ik,minv
ik,max € 7, k= 1,...,1’1,A €R>0 },
Obstacles defined by a set M C D must be avoided by the

containment ball. Therefore, the immediate in-neighbors of a
characteristic node d € D \ M form a set

z(a) - {a/ eD\M: |d —d| < Alm}. (32)

For everyd € D\ M and d’ eI(a),

C (&, df) = |ld —df|

Co (&, &’) —jd—d

(33a)

(33b)

are defined as the heuristic cost and the operation cost for a given
final destination d.

Proposition 1. By choosing A > rmax, We can ensure that the
containment ball does not collide with obstacles, if: (i) the MAS is
always contained by the containment ball B, and (ii) the center of
the containment ball B moves along the line segment connecting

deD\ M anda/eI(a).

Proof. If followers always remain inside the containment ball
B, and the containment ball B moves along the line segment

connecting deD \ M and dcz(d , the minimum distance of

the center of the containment ball from any obstacle node defined
by O is A. If rmax < A, then, no interior point of the containment
ball can collide with obstacle nodes and hence collision avoidance
is guaranteed. O

Per Proposition 1, our multi-agent path planning can be re-
duced to a way-point planning problem, where the intermediate
way-points of the center of the containment ball, denoted by d,,
.-+, dy, 1, are determined by Algorithm 1.

4.1.1.2. Assignment of Jacobian matrix. Given d; through d,, as-
signed by the A* solver, Qinit, and Qy, Qy is interpolated by

Q = (1 — k) Qnie + lLka, (34)

Y lidy —dy ]|

fork=2,...,n, — 1, where u, = e [0, 1].
O, Iy — dy |

4.1.2. Desired leaders’ paths
The desired position of leader i € V, is defined by a third-order
polynomial

3
k=0,... . ny, t€lti,tix1),  Fimr(t) =Y hi(t—0)'
=0

subject to l',‘,HT(l',;) = ri,HT(t;j) and i‘i,HT(t]:) = l.',‘,HT(t,:L) for
k = 2,...,n, — 1. This paper uses the cubic spline method
to determine h;;; € R¥>! for every i € v, I = 1,2,3, and

k = 0,1,...,n, — 1. Therefore, R;(t) is defined as in Eq. (13)
where

h=1,...,3,

Phk = Vvec ([hl,h,k hn+l,h,k]T) :
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Algorithm 1 A* Procedure for Optimal Planning of the Leaders’
Paths

1: Get: dy, dy, obstacle set M

2: Deﬁne:~0pen set O = {d,}, Closed set C = @, and dpes; = d4

3: while dyes # df or O # ¢ do

4: abest < argmin (g (&) + Cy (&, df))

deo
5: Update 0: O < O\ {&best} andc: ¢ «<clJ {&best}

6: Assign T (&best)

7 R (&best) «~z (&best) \ (I (&best) N c)

8: for < every der (&best)> do

o: if d € O then

10: if g (dbe5t> 16 (dbest, d) <g (d) then
11: g (a> <~ 8 (abest) + Co (abestv a)

12: b (&) < dpeg

13: end if

14: end if

15: end for

16 O <R (&best> Uo
17: end while

4.2. Trajectory planning

Given the leaders’ desired paths, the shape matrix Py is known
over the time interval [ty, tyr1). Then, the optimal travel inter-
vals Ty through T ; are assigned by solving the optimization
problem (18) subject to constraints (15).

It is computationally-expensive to ensure inter-agent colli-
sion avoidance and agent containment using constraint equa-
tions (15b) and (15c) when the total number of agents is large.
In Lemma 1 and Theorem 3, we exploit the properties of the ho-
mogeneous deformation to reduce the computation cost by pro-
viding sufficient conditions for inter-agent and obstacle collision
avoidance and agent containment.

Lemma 1. Let every agent i € V be enclosed by a ball of radius ¢;
and the deviation of agent i from its global desired position be less
than §; at any time t (safety condition (15a)). Then,

ve ijeve i In) = 5Ol = (8 + )| < lIrnr(t) — Gl

(35)
Also, inter-agent collision between two different agents i and j is to
be avoided if

Vt, i,jeV, i#j, Ixi () — 0 pr(0)Il = € + & + € + 5.

(36)

Proof. Letri—rj = (r; — ripr)+ (finr — Tinr) + (tj.ar — 1j). Then,

Iti — 5|l <lti — Tinrll + X0 — Garll + 166 — 5l
<8i + [Iviur — Tjurll + 6.

Iti — 5jll =lIti — Cinrll — X0 — Garll — 6.0 — 1l
2|t ur — Tiprll — & — 6.

Eq. (37b) implies that inter-agent collision avoidance condition,

given in (15b), is satisfied, if ||rjgr — Xjurll > € +6i +¢+6;. O

(37a)

(37b)
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Theorem 3. Assume every agent can execute proper trajectory
controller such that the safety condition (15a) is satisfied where
the global desired position of every agent i € V is defined by

homogeneous transformation, given in (4), and ), ., ¥io = O.
Inter-agent collision avoidance is guaranteed for t € [tinic, tr], if
ief{l,...,n}, Ai(t) = Amin (38)

at any time t € [ty tf] where A;(t) is the ith eigenvalue of
1

deformation matrix Up(t) = (Q"()Q(t))* and

Site+d+e

max —————.

ijev. j# |t — ol

Furthermore, agents are all located inside the containment ball B(t),

defined by Eq. (16) if

(39)

Amin =

i€ {17 2» 3}5 )Li(t) =< )\ma)u vt € [tinitv tf] (40)
where
Tmax — 8i — €;
Jumax = min X 0T € (41)
i€y lIri0ll2

Proof. Using Eq. (4), we can write

T
Irinr — Xzl = (rio — 1j0) QQ(ri0 — o).
Thus,

lI7i, 7 (£) — 1 mr(0)ll2

Irio — rjoll2

where Amin = minte[tmit,tf] {)Vl(t)» )\Z(t), )VB(t)} and Amax =
MaX¢e(t, ¢ {A1(t), A2(t), A3(t)}. Inter-agent collision avoidance is
guaranteed if

min (It () = ()l — 6 — & — ¢ —
teltinie trl, LjeV, i#j

vt € [tinic, tr],

)&min = = )\max

§) =

,-ng;i,r}# (Aminllrio =m0l — € — 8 — & — &) = 0.

Thus, Ami, is obtained by Eq. (39) and inter-agent collision avoid-

ance is guaranteed, if Eq. (38) is satisfied at any time t € [tn, tf].

Moreover, all agents remain inside the containment ball 3(t), if
max  ([Irur(t) — d(t)ll2 + € + &) =

tEltinie tf 1, iey

I}‘é&\l}x ()\max”ri,OHZ + €+ 51’) = Tmax-

This implies that An.x is obtained by Eq. (41) and follower con-
tainment is assured if Eq. (40) is satisfied. O

Given the sufficient conditions provided by Theorem 3, a de-
sired continuum deformation coordination is planned by solving
the following constrained optimization problem:

k=1,...,n, — 1, min Ty
subject to
¢(p)
Ve €ty to,—1l,  Z() = B(t 0)Z+ Y Op(t, b)dpy  (422)
h=0
Vt € [ty ty,—1], ViEV, j=1,...,p, ZT(r)o,.Tjol-jZ(t) <62
(42b)

k=1,....n, Yiev,j=1....0,  Z'(6)OJ0;Z(t) < B76}

(42¢)

vt € [ty, t,—1], i=1,2,3, (42d)

where ®(t, ty), Ox(t, tk), Oy, Amin, and Amax Were previously de-
fined, and A;(t) is the ith eigenvalue of the deformation matrix
1

Up(t) = (Q(N)Q(1) .

)\min =< )\i(t) = }\max,
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5. Simulation results

We consider an MAS consisting of N = 8 UGVs, with the half-
car dynamic model given in Rastgoftar, Zhang, and Atkins (2018).
In this example, UGV team is identified by unique index numbers
defined by set v = {1,2.---,8} with leaders and followers
defined by v, = {1,2,3} and V¥ = {4, ..., 8}, respectively. The
MAS is supposed to move in an obstacle-laden environment from
the initial (reference) configuration, shown in Fig. 2(a), to the
target configuration shown in Fig. 2(b). UGVs are assumed to have
the same size and characteristics: € = ¢, = 0.25,§ = §; = 1m,
for every i € V, and 8 = 81 = B, = 0.05. Given UGVs’ reference
(initial) formation, Eq. (39) is used and A, = 0.7217 is obtained.
We constrain UGVs to remain inside the containment ball 5(t)
with constant ry,x = 40 m at any time t. This requirement is
satisfied by assigning Amax = 1.2917 using Eq. (41). Therefore, it
is necessary that eigenvalues of the matrix Up(t) = (QT(t)Q(t))
satisfy the following safety constraints at any time t: 0.7217 <
Ai(t) <1.2917, i=1,2.

Fig. 2(c) plots the paths of all agents (shown by blue) and
the center of the containment ball B (shown by red), from the
initial configuration to the target destination. Continuum defor-
mation coordination is simulated under two different inter-agent
communication protocols shown in Fig. 2(d, e). Under the com-
munication topology defined by graph Gy, every follower directly
accesses position information of the three leaders, thus A; =
{1,2,3} for every agent i € V. Under the communication
topology defined by graph G,, each follower communicates with
three in-neighbor agents shown in Fig. 2(e) where w;; = % for
every follower UGV i € Vr and every in-neighbor agent j € A;.

In Fig. 3(a, b), |Ir; — rjpr|l is plotted versus time for UGVs 1
through 8. It is shown that deviation of every UGV does not § =
1m. Also, ||ri(tx) — ripr(ty)|| <0.058 fork=1,...,21 (n, = 21),
where 8 = 0.05. It is observed that safety conditions (15a) and
(17) are both satisfied when MAS applies graph G; or graph G, to
acquire the desired coordination. Fig. 3(c) plots travel intervals
T; through T,y under communication graphs G; or graph G,.
Note that the total travel time under communication topology G,
(ty1 — t; = 491.17 s) is smaller than the total travel time under
communication topology G, (t;; — t; = 763.38 s), respectively.

6. Conclusion and discussion

This paper proposed an approach to planning a decentralized
homogeneous deformation coordination of an MAS in an obstacle
laden environment. We use the A* search to assign the optimal
path of the center of the containment ball B, assuring collision
avoidance of the MAS with obstacles, while the follower con-
tainment and inter-agent collision avoidance are independently
planned and ensured by using the underlying principles of con-
tinuum mechanics. The proposed A*-based planning, is much
faster than the one used in Rastgoftar et al. (2021) to assign
the optimal paths of leaders and assures (i) obstacle collision
avoidance, (ii) inter-agent collision avoidance, and (iii) follower
containment through constraining the eigenvalues of the matrix
Up(t) = (QTQ)T in every single search. While spatial planning
of continuum deformation was completed in 8.01 seconds in
this paper, Rastgoftar et al. (2021) need at least 10 minutes to
spatially plan the leaders’ paths optimizing a continuum deforma-
tion coordination in an obstacle-laden environment. Furthermore,
the entire (spatial and temporal) continuum deformation plan-
ning was completed is 65.30 seconds. Note that the proposed
temporal planning approach also speeds up the continuum de-
formation planning since the generalized coordinate n; is inde-
pendently determined over the time-interval [ty, ;1] for every
k=1,...,n,—1. Compared to Rastgoftar et al. (2021), Rastgoftar
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Fig. 2. (a, b) MAS initial and final formations enclosed by containment ball with radius ry.x = 40 m. (c) UGVs’ paths (shown by blue) and path of the center of the
containment ball (shown by red) from initial positions to target destinations. (d, e) Graphs G; and &,. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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Fig. 3. Deviation of every UGV i € v = {1,..., 8} versus time t under (a) communication protocol defined by graph g; (v, &) and (b) communication protocol
defined by graph G (V, £2). (c) Optimal travel intervals T; through T,: (n, = 21) under communication protocols G; and G,.

and Kolmanovsky (2021), our proposed approach also speeds up
the continuum deformation coordination, since the agents are not
required to fully stop at the intermediate configurations obtained
by integration of the A* search and eigen-decomposition of the
homogeneous transformation coordination.
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