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a b s t r a c t

This paper proposes a spatio-temporal reference trajectory planner approach to safely plan continuum
deformation coordination of a multi-agent system (MAS) in an obstacle-laden environment. We
formulate a desired n-D continuum deformation as a leader–follower problem guided by n+1 leaders
and followed by the remaining follower agents either through direct communication with leaders
or communication with neighboring agents. To plan a safe continuum deformation coordination, we
first provide sufficient conditions for inter-agent and obstacle collision avoidance. Then, we spatially
optimize the continuum deformation coordination using the A* search to determine leaders’ desired
waypoints in an obstacle-laden environment. Leaders’ desired waypoints are connected through C1

continuous paths that are assigned by the spline curve fitting method. The desired trajectories of the
leaders are then determined by planning a piece-wise constant reference input such that travel time
is minimized and safety of the continuum deformation coordination is ensured.

© 2022 Published by Elsevier Ltd.
1. Introduction

Multi-agent coordination has been extensively studied over
he past two decades. Cooperative and formation control can
nhance robustness of multi-agents systems (MASs) to mission
ailure and minimize the mission cost. Formation flight (Li &
iu, 2008), surveillance (Remagnino, Tan, & Baker, 1998), multi-
gent coverage (Zhai & Hong, 2013), save and rescue (Al Tair,
aha, Al-Qutayri, & Dias, 2015), and cooperative payload trans-
ort (Klausen, Fossen, Johansen, & Aguiar, 2015) are some existing
pplications of multi-agent coordination.
Consensus (Li et al., 2018; Lin & Zheng, 2016; Liu, Cheng,

an, & Hou, 2018; Zhou, Sang, Li, Fang, & Wang, 2018), con-
ainment control (Liu, Cheng, Tan, & Hou, 2015), and continuum
eformation (Rastgoftar, Atkins, & Kolmanovsky, 2021; Rastgoftar
Kolmanovsky, 2021) are some of the existing multi-agent

ystem (MAS) coordination methods. The delayed multi-agent
onsensus problems (Zhou et al., 2018), and finite-time con-
ensus under fixed and switching communication topologies (Li

✩ This work has been supported by the National Science Foundation under
Award Nos. 2133690 and 1914581. The material in this paper was not presented
at any conference. This paper was recommended for publication in revised
form by Associate Editor Vijay Gupta under the direction of Editor Christos G.
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(I.V. Kolmanovsky).
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005-1098/© 2022 Published by Elsevier Ltd.
et al., 2018; Lin & Zheng, 2016; Liu et al., 2018) have also
been addressed. More recently, conditions for resilient consensus
problem and for reaching consensus in the presence of anoma-
lous/deceptive/failure agents (Dibaji & Ishii, 2017; Shang, 2018)
have been developed. Containment control is a decentralized
leader–follower multi-agent coordination approach in which lead-
ers independently lead collective motion and followers infer
the desired group coordination via communication with their
in-neighbors. Containment control of a multi-agent system un-
der fixed (Li, Chen, Liu, Zhang, & Zhang, 2016) and switching
(Liu et al., 2015) communication topologies have been
analyzed. Retarded containment with fixed (Li et al., 2016) and
time-varying (Zhao, He, Saberi Nik, & Ren, 2015) time-delays and
finite-time containment control and coordination (Zhao & Duan,
2015) have also been investigated. Wang and Wang (2019) pro-
vide necessary and sufficient conditions for stability of discrete-
time containment control in the absence and presence of time
delays. In continuum deformation coordination methods agents
are treated as particles of a deformable body (or continuum)
and their coordination is achieved by exploiting a continuum
deformation function (Rastgoftar & Kolmanovsky, 2021). Similar
to containment control, continuum deformation is a decentralized
leader–follower approach, leaders guide the collective motion,
and followers communicate with their in-neighbors to learn the
desired coordination through local communication (Rastgoftar
et al., 2021; Rastgoftar & Kolmanovsky, 2021). While the stability
and convergence of the MAS to the convex hull defined by leader
agents has been studied in the containment control literature (Ji,
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errari-Trecate, Egerstedt, & Buffa, 2008; Wang & Wang, 2019),
he proposed continuum deformation approach formally charac-
erizes the deviation from the desired continuum deformation
oordination and ensures that followers always remain inside the
-D leading simplex, defined by the leader agents by constraining
he lower and upper bounds of the eigenvalues of the Jacobian
atrix involved into the continuum deformation coordination.
In the existing literature (De Badyn, Eren, Açikmeşe, & Mes-

ahi, 2018), the MAS coordination is often approached in a setting
f an optimal mass transport where the mass density transforma-
ion is assigned as the solution of a constrained optimal control
roblem. In this paper, MAS is represented by a finite number of
articles of a deformable body (or continuum) and the optimiza-
ion of continuum deformation is interpreted as a variant of a
eference governor problem by defining a trajectory optimization
roblem for formation leaders and by decomposing it into spatial
nd temporal planning (optimization) problems. For the spatial
ptimization problem, A* search method (Rastgoftar et al., 2021;
astgoftar & Kolmanovsky, 2021; Tseng, Liang, Lee, Der Chou, &
hao, 2014) is applied to assign optimal configurations of the
eader agents by minimizing the travel distance between the ini-
ial and target configurations of the MAS. For every leader agent,
he optimal path is then defined by a C1 continuous polynomial
unction connecting every two consecutive way-points, assigned
y the A* planner. For the temporal optimization, we first define
he leaders’ desired trajectories based on a piece-wise constant
eference input. Then, the reference input is planned such that
ptimal leaders’ trajectories minimize the travel time between
he way points and satisfy all safety constraints (i.e., ensure
gent containment with no inter-agent or obstacle collisions).
ompared to the existing literature and the authors’ previous
ork (Rastgoftar et al., 2021), we propose an approach to speed
p the computations of collision-free continuum deformation
oordination by removing the previously needed requirement
o bring the formation to rest at each waypoint. Furthermore,
his paper provides sufficient safety conditions for continuum
eformation coordination of a heterogeneous agent team with
ifferent sizes and characteristics.
The problem statement is presented in Section 2 and is fol-

owed by the derivation of the MAS collective and error dynamics
n Section 3. The proposed approach to continuum deformation
oordination planning is addressed in Section 4. Simulation re-
ults are presented in Section 5 and followed by the discussion
nd conclusions in Section 6.

. Preliminaries and problem formulation

We consider an MAS consisting of N agents moving collec-
ively in a 3-D space where every agent is uniquely identified by
n index number i ∈ V = {1, . . . ,N}. By classifying agents as
eaders and followers, V can be expressed as V = VL

⋃
VF , where

L = {1, . . . , n + 1} and VF = V \ VL define the leaders’ and
ollowers’ index numbers, respectively, in an n-D affine transfor-
ation where n ∈ {1, 2, 3}. Inter-agent communication is defined
y digraph G (V, E) with node set V and edge set E ⊂ V×V . Given
n edge set E , in-neighbor agents of agent i ∈ V are defined by
i = {j ∈ V

⏐⏐(j, i) ∈ E}. Note that leaders move independently,
herefore Ni = ∅, if i ∈ VL.

The dynamics of each of N agents i ∈ V is modeled by{
ẋi = fi (xi)+ gi (xi)ui

ri = Cixi
(1)

ith state xi ∈ Rnx,i×1, input ui ∈ Rnu,i×1, and output ri ∈ Rn×1.
ere, Ci ∈ Rn×nx,i , ri is the actual position of agent i ∈ V , and

nx,i nx,i nx,i nx,i×nu,i
i : R → R and gi : R → R are smooth functions.

2

e assume that the dynamics of every agent i ∈ V is feedback-
inearizable; with state transformation xi → (yi, ϖi), the model
(1) is converted to

ẏi =
[
0n(ρ−1)×n In(ρ−1)

0n×n 0n×n(ρ−1)

]
yi +

[
0n(ρ−1)×n

In

]
si (2)

ϖ̇i = h (ϖi, yi, si) , (3)

where h (ϖi, yi, si) is smooth, and yi =
[
rTi · · ·

(
dρ−1ri
dtρ−1

)T]T

.

For every agent i ∈ V , we define a global desired position
ri,HT (t) over the time interval

[
tinit , tf

]
with fixed initial time tinit

and final time tf , by homogeneous transformation that is given by

ri,HT (t) = Q (t) ri,0 + d (t) , ∀i ∈ V, (4)

where Q (t) ∈ Rn×n is a non-singular Jacobian matrix, d(t) ∈ Rn

is the rigid-body displacement vector at time t , and ri,0 is the
reference position of agente i ∈ V . Each agent i ∈ V is controlled
to stably track the desired trajectory

ri,d (t) =

{
ri,HT i ∈ VL∑

j∈Ni
wi,jrj ∀i ∈ VF

. ∀t ∈
[
t0, tf

]
(5)

by choosing

si =
ρ−1∑
h=0

γi,h
dh

(
ri,d − ri

)
dth

, (6)

where γi,1 through γi,ρ−1 are constant control gains and wi,j > 0
s the communication weight between agent i ∈ V and the in-
eighbor agent j ∈ Ni. Given control gains γi,1 through γi,ρ−1, we
efine gain matrix

h = diag
(
γ1,h, . . . , γN,h

)
, h = 0, . . . , ρ − 1. (7)

Then the model for the external dynamics of the MAS is obtained
as follows (Rastgoftar, 2020):

dρY(t)
dtρ

=

ρ−1∑
h=0

(
Iρ ⊗ (Gh (−I+ L))

) dh (Yd(t)− Y(t))
dth

+

ρ−1∑
h=0

(
Iρ ⊗ (GhL0)

) dhRL(t)
dth

,

(8)

where L0 =
[
In+1 0

]T
∈ RN×(n+1) while the matrix L =

[
Lij

]
∈

RN×N and vectors RL(t) ∈ Rn(n+1)×1, Yd(t) ∈ RnN×1, and Y(t) ∈
RnN×1, aggregating components of the global desired positions
of leaders, reference desired positions of all agents, and actual
positions of all agents, respectively, are defined as follows:

Lij =
{
wi,j i ∈ VF ∧ j ∈ Ni

0 otherwise.
(9a)

RL(t) = vec
([

r1,HT (t) · · · rn+1,HT (t)
]T)

, ∀t ∈
[
tinit , tf

]
,

(9b)

Yd(t) = vec
([

r1,d(t) · · · rN,d(t)
]T)

,∀t ∈
[
tinit , tf

]
, (9c)

Y(t) = vec
([

r1(t) · · · rN (t)
]T)

,∀t ∈
[
tinit , tf

]
, (9d)

where ‘‘vec’’ is the matrix vectorization symbol.
The main objective of this paper is to develop a method for

planning a safe continuum deformation by prescribing the vector
RL(t) over a finite time interval. To this end, we define

R (t) = P
[

3
]T (10)
L k (η(t)− η(tk)) · · · η(t)− η(tk) 1
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or t ∈ [tk, tk+1) and k = 1, . . . , nw , where Pk ∈ Rn(n+1)×4 is the
th shape matrix that remains constant over [tk, tk+1), and the
volution of the generalized coordinate η is defined as follows:

η̇ (t) = vk, t ∈ [tk, tk+1) , (11)

ubject to conditions

(tk) = k, k = 1, . . . , nw − 1, (12a)

(tk+1) = k+ 1, k = 1, . . . , nw − 1, (12b)

where vk is constant over the time-interval [tk, tk+1). Thus, vk =
1
Tk

is constant at any time t ∈ [tk, tk+1) for k = 1, . . . , nw − 1,
here Tk = tk+1− tk. As a result, RL(t), can be written as follows:

L(t) = Pk

[(
t − tk
Tk

)3 (
t − tk
Tk

)2 t − tk
Tk

1

]T

(13)

Given the above problem setting, continuum deformation
planning is decomposed into spatial and temporal optimization
problems. For the spatial optimization, we determine leaders’
intermediate waypoints by minimizing the travel distance be-
tween the leaders’ initial and final configurations. Then, the
shape matrix Pk is assigned using the spline method such that
leaders’ desired paths are defined by C1 continuous polynomial
onnecting consecutive leaders’ way-points. For the temporal
ptimization, we solve the following problem:

T ∗1 , . . . , T ∗nw−1

)
= argmin

v1,...,vnw−1

nw−1∑
k=1

Tk (14)

such that

∀t,
⋀
i∈V

(
∥ri(t)− ri,HT (t)∥ ≤ δi

)
, (15a)

∀t, ∀i, j ∈ V, i ̸= j, ∥ri(t)− rj(t)∥ ≥ ϵi + ϵj (15b)

∀t,
⋀
i∈V

(ri(t) ∈ B(t)) , (15c)

where Tk = tk+1−tk (k = 1, . . . , nw−1), and δi is an upper-bound
on the deviation of every agent i ∈ V from global desired position
ri,HT (t), defined by Eq. (4) at time t , and

B(t) = {r : ∥r− d(t)∥ ≤ rmax} (16)

is the rigid containment ball with radius rmax which is centered
at d(t) at any time t .

Although, we assume that dynamics of every agent i ∈ V
is deterministic, the deviation upper-bound δi can account for
model uncertainty and control errors when planning a large-
scale continuum deformation coordination. Let ϵi and ϵj be the
radii of the smallest rigid balls enclosing agents i and j (i ̸= j),
then constraint equation (15b) ensures the inter-agent collision
avoidance for every two different agents at any time t . The above
optimization problem is computationally-expensive and the com-
putation cost is large, if nw is large. To reduce the computation
cost, we impose the following condition:

k = 1, . . . , nw − 1,
⋀
i∈V

(djri(tk)
dt j

−
djri,HT (tk)

dt j

 ≤ βjδi

)
,

(17)

or 0 < βj < 1 (j = 1, . . . , ρ). Then we can plan continuum
eformation by solving the following independent optimization
roblems:

= 1, . . . , nw − 1, min Tk (18)

vk

3

subject to constraint equations (15a), (15b), (15c), and (17) for
tk ≤ t < tk+1.

In what follows, we first obtain the MAS collective dynamics
and assign the coordination error (Section 3). Then, Section 4
addresses planning of a safe plan continuum deformation co-
ordination using the above spatio-temporal reference trajectory
planner approach.

3. MAS collective dynamics

Given RL(t), defined by Eq. (13), the time derivatives of RL(t)
are obtained as

j = 1, . . . , ρ − 1,
djRL

dt j
=

3∑
h=j

(h)!
(h− j)!

ph,k (t − tk)h−j . (19)

where[
p3,k · · · p0,k

]
= Pkdiag

(
1
T 3
k
,
1
T 2
k
,
1
Tk

, 1
)

. (20)

Substituting RL(t), · · · ,
dρ−1RL

dtρ−1
(t) into Eq. (8), the MAS collective

dynamics becomes

t ∈ [tk, tk+1) , ẊMAS(t) = AMASXMAS(t)+
3∑

h=0

(t − tk)h ch,k, (21)

where

XMAS(t) =

[
YT (t) · · ·

(
dρ−1Y(t)
dtρ−1

)T
]T

∈ RnρN×1, (22a)

AMAS =

⎡⎢⎢⎣
0nN InN · · · 0nN
...

...
. . .

...

0nN 0nN · · · InN
In ⊗ (G0 (−IN + L)) In ⊗ (G1 (−IN + L)) · · · In ⊗

(
Gρ−1 (−IN + L)

)
⎤⎥⎥⎦ ,

(22b)

ch,k =
3∑

j=0

ζ (j)∑
h=0

(h+ j)!
h!

[
0n(ρ−1)N×n(n+1)
In ⊗

(
GjL0

) ]
ph+j,k, (22c)

ζ (j) = min{3, 3− j}. (22d)

Theorem 1. Definine YHT (t) = vec
([

r1,HT · · · rN,HT
]T)

, and
E = Y − YHT as the error vector, characterizing from theglobal
desired positions. If ρ < 4, the error dynamics is given by

t ∈ [tk, tk+1), Ż(t) = AMASZ(t)+
3∑

h=0

dh,k (t − tk)ρ (23)

where Z(t) =

[
ET (t) · · ·

(
dρ−1E(t)
dtρ−1

)T
]T

∈ RnρN×1 and

dh,k =

ζ (ρ)∑
h=0

(h+ ρ)!
h!

[
09N×n(n+1)
In ⊗

(
GρL0

)] ph+ρ,k (24)

for k ∈ [tk, tk+1) and k = 1, . . . , nw − 1.

Proof. Per Theorem 3 of Rastgoftar and Kolmanovsky (2021).

In ⊗
(
Gj (−IN + L)

djY
j + GjL0

djRL
j

)
= In ⊗

(
Gj (−IN + L)

djE
j

)

dt dt dt
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or j = 1, · · · , ρ and the error dynamics becomes

˙(t) = AMASZ(t)+
[

0n(ρ−1)N×n(n+1)

In ⊗
(
Gρ (−IN + L)−1 L0

)] dρRL

dtρ
(25)

for t ∈ [tk, tk+1). By substituting
dρRL

dtρ
from Eq. (19) in Eq. (25),

q. (25) can be written in the form of Eq. (23) where dh,k is given
by (24). □

Per Theorem 1,

Z(t) = Φ(t, tk)Zk +

ζ (ρ)∑
h=0

Θh(t, tk)dh,k, (26)

at t ∈ [tk, tk+1) where ρ < 4,

Φ(t, tk) = eAMAS(t−tk), (27a)

Θh(t, tk) =
∫ t

tk
(τ − tk)h eAMAS(τ−tk)dτ , (27b)

and Zk = Z(tk) for k = 1, . . . , nw − 1.

Remark 1. To characterize error, we can writedjri
dt j
−

djri,HT
dt j

2

2
= ZT (t)OT

ijOijZ(t) (28)

here ∥ · ∥2 denotes the 2-norm symbol, j = 0, . . . , ρ − 1, i ∈ V ,
ij =

[
Oij lh

]
∈ Rn×(nNρ), and the (l, h) element of matrix Oij is

efined as follows:

ij lh
=

{
1

⋀n
l=1 (h = jNn+ (l− 1)N + i)

0 otherwise.
(29)

ote that n ∈ {1, 2, 3} is the dimension of the homogeneous
ransformation coordination, N = |V| is the total number of
gents, and ρ is the dimension of the feedback linearized dynam-
cs (see Eq. (2)).

emark 2. Note that positive control gains γ1,1, · · · , γρ,1, · · · ,
1,N , · · · , γρ,N are such that the matrix AMAS is Hurwitz. As the
esult, the external dynamics of the MAS, given by (8), is BIBO
table.

heorem 2. Define

max,j =

√
max
t,∀i∈V

1TΦT (t, 0)OT
ijOijΦ(t, 0)1.

for j = 0, . . . , ρ − 1. Assume safety condition (17) is satisfied,
0 < βj < 1 for j = 0, . . . , ρ − 1, and control gains γi,h (i ∈ V
and h ∈ {0, . . . , ρ − 1}) are selected such that

∀j ∈ {0, . . . , ρ − 1}, βj < min
∀i∈V

(
δi

Φmax,j

)
, (30)

here 1 is the one-entry vector. Then, there exist travel times
T1, . . . , Tnw−1 such that safety condition (15a) and (17) are satisfied
at any time t ∈

[
t1, tnw

]
where t1 = tinit and tnw = tf are the initial

and final time, respectively.

Proof. Because AMAS is Hurwitz, Φ(t, tk) and Θ(t, tk), defined
by (27), are bounded. Per Eqs. (24) and (20), dh,k → 0, if
Tk → ∞. This implies that the second term on the right-hand
side of Eq. (26) converges to 0, if Tk → ∞. Therefore, safety
condition (15a) can be satisfied, if⋀(

ZT
kΦ

T (t, tk)OT
ijOijΦ(t, tk)Zk < δ2i

)
, ∀t ∈ [tk, tk+1) . (31)
i,j,k

4

Fig. 1. Functionality of the continuum deformation guidance.

If (17) is satisfied, then,⋀
i,j,k

(
ZT
kΦ

T (t, tk)OT
ijOijΦ(t, tk)Zk < β2

j 1
TΦ(t, tk)OT

ijOijΦ(t, tk)1
)

where⋀
i,j,k

(
1TΦT (t, tk)OT

ijOijΦ(t, tk)1 ≤ Φ2
max,j

)
.

Hence, (31) is satisfied, if (30) holds. □

Theorem 2 assures safety by assigning an upper bound for βj
(j = 0, . . . , ρ− 1) in a continuum deformation planning problem
minimizing the cost function (18) and satisfying the constraints
given in (15a) and (17).

4. Continuum deformation coordination planning

We propose a two-layer continuum deformation planning ap-
proach to ensure safety by defining leaders’ desired trajectories
at every time t ∈ [tinit , tf ] (see Fig. 1). At the top level, the
continuum deformation shape functions P1 through Pnw−1 are
assigned through planning desired leaders’ paths. At the low
level, desired trajectories of leaders are assigned by planning the
generalized coordinate η as the solution of optimization problem
(18) subject to the constraints (15). This paper assumes that the
geometry of the obstacles, the initial displacement vector d1 =

dinit = d (tinit), the initial Jacobian matrix Q1 = Qinit = Q (tinit),
the final displacement vector dnw = df = d

(
tf
)
, the final Jacobian

matrix Qnw = Qf = Q
(
tf
)
are assumed to be known, where tf =

tnw is free. Then, d2, . . . ,dnw−1 and Q2, . . . ,Qnw−1 are determined
in Section 4.1.

4.1. High-level planning: Leader path planning

To plan leaders’ desired paths, we first determine leaders’ de-
sired waypoints and then the leaders’ desired paths are obtained
using the cubic spline method.

4.1.1. Way-point planing
The desired way-points of leader i ∈ VL are denoted by

ri,HT ,k = ri,HT (tk) and given by

ri,HT ,k = Qkri,0 + dk,

where Qk = Q(tk) and dk = d(tk) are the Jacobian matrix and
rigid-body displacement vector at time tk (k = 1, 2, . . . , nw − 1).
Therefore, the desired way-points of each leader i ∈ VL are
assigned at discrete time instants tk by determining dk and Qk
as described below.
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.1.1.1. Assignment of rigid-body displacement. The A* search
Tseng et al., 2014) is applied to determine desired way-points
f the center of containment ball B by minimizing the travel
istance between the initial position and target destination. To
his end, we uniformly discretize the space and represent it by a
inite number of characteristic nodes defined by set

=

{
d̃ =

(
i1∆̄, . . . , in∆̄

)
: ik ∈

{
ik,min, . . . , ik,max

}
, ik,min,

ik,max ∈ Z, k = 1, . . . , n, ∆̄ ∈ R>0

}
,

bstacles defined by a set M ⊂ D must be avoided by the
containment ball. Therefore, the immediate in-neighbors of a
characteristic node d̃ ∈ D \M form a set

I
(
d̃
)
=

{
d̃′ ∈ D \M : ∥d̃′ − d̃∥ ≤ ∆̄1n×1

}
. (32)

For every d̃ ∈ D \M and d̃′ ∈ I
(
d̃
)
,

CH

(
d̃, df

)
= ∥d̃− d̄f ∥ (33a)

CO

(
d̃, d̃′

)
= ∥d̃− d̃′∥ (33b)

are defined as the heuristic cost and the operation cost for a given
final destination df .

Proposition 1. By choosing ∆̄ > rmax, we can ensure that the
containment ball does not collide with obstacles, if: (i) the MAS is
always contained by the containment ball B, and (ii) the center of
the containment ball B moves along the line segment connecting
d̃ ∈ D \M and d̃′ ∈ I

(
d̃
)
.

Proof. If followers always remain inside the containment ball
B, and the containment ball B moves along the line segment
connecting d̃ ∈ D \M and d̃′ ∈ I

(
d̃
)
, the minimum distance of

the center of the containment ball from any obstacle node defined
by O is ∆̄. If rmax < ∆̄, then, no interior point of the containment
ball can collide with obstacle nodes and hence collision avoidance
is guaranteed. □

Per Proposition 1, our multi-agent path planning can be re-
duced to a way-point planning problem, where the intermediate
way-points of the center of the containment ball, denoted by d2,
· · · , dnw−1, are determined by Algorithm 1.

4.1.1.2. Assignment of Jacobian matrix. Given d1 through dnw as-
signed by the A* solver, Qinit , and Qf , Qk is interpolated by

Qk = (1− µk)Qinit + µkQf , (34)

for k = 2, . . . , nw − 1, where µk =

∑k
h=2 ∥dh − dh−1∥∑nw

h=2 ∥dh − dh−1∥
∈ [0, 1].

4.1.2. Desired leaders’ paths
The desired position of leader i ∈ VL is defined by a third-order

polynomial

k = 0, . . . , nw, t ∈ [tk, tk+1) , ri,HT (t) =
3∑

l=0

hi,l,k (t − tk)l

subject to ri,HT (t−k ) = ri,HT (t+k ) and ṙi,HT (t−k ) = ṙi,HT (t+k ) for
k = 2, . . . , nw − 1. This paper uses the cubic spline method
to determine hi,l,k ∈ R3×1 for every i ∈ VL, l = 1, 2, 3, and
= 0, 1, . . . , nw − 1. Therefore, RL(t) is defined as in Eq. (13)
here

= 1, . . . , 3, p = vec
([

h1,h,k · · · hn+1,h,k
]T)

.
h,k

5

Algorithm 1 A* Procedure for Optimal Planning of the Leaders’
Paths
1: Get: d1, df , obstacle set M
2: Define: Open set O = {d1}, Closed set C = ∅, and d̃best = d1

3: while d̃best ̸= df or O ̸= ∅ do
4: d̃best ← argmin

d̃∈O

(
g

(
d̃
)
+ CH

(
d̃, df

))
5: Update O: O← O \

{
d̃best

}
and C: C← C

⋃{
d̃best

}
6: Assign I

(
d̃best

)
7: R

(
d̃best

)
← I

(
d̃best

)
\

(
I

(
d̃best

)⋂
C
)

8: for < every d̃ ∈ R
(
d̃best

)
> do

9: if d̃ ∈ O then
0: if g

(
d̃best

)
+ CO

(
d̃best, d̃

)
< g

(
d̃
)
then

1: g
(
d̃
)
← g

(
d̃best

)
+ CO

(
d̃best, d̃

)
2: b̃

(
d̃
)
← d̃best

3: end if
4: end if
5: end for
6: O← R

(
d̃best

)⋃
O

7: end while

4.2. Trajectory planning

Given the leaders’ desired paths, the shape matrix Pk is known
over the time interval [tk, tk+1). Then, the optimal travel inter-
vals T ∗1 through T ∗nw−1 are assigned by solving the optimization
problem (18) subject to constraints (15).

It is computationally-expensive to ensure inter-agent colli-
sion avoidance and agent containment using constraint equa-
tions (15b) and (15c) when the total number of agents is large.
In Lemma 1 and Theorem 3, we exploit the properties of the ho-
mogeneous deformation to reduce the computation cost by pro-
viding sufficient conditions for inter-agent and obstacle collision
avoidance and agent containment.

Lemma 1. Let every agent i ∈ V be enclosed by a ball of radius ϵi
and the deviation of agent i from its global desired position be less
than δi at any time t (safety condition (15a)). Then,

∀t, i, j ∈ V, i ̸= j,
⏐⏐∥ri(t)− rj(t)∥ −

(
δi + δj

)⏐⏐ ≤ ∥ri,HT (t)− rj,HT (t)∥.

(35)

lso, inter-agent collision between two different agents i and j is to
e avoided if

∀t, i, j ∈ V, i ̸= j, ∥ri,HT (t)− rj,HT (t)∥ ≥ ϵi + δi + ϵj + δj.

(36)

roof. Let ri−rj =
(
ri − ri,HT

)
+

(
ri,HT − rj,HT

)
+

(
rj,HT − rj

)
. Then,

∥ri − rj∥ ≤∥ri − ri,HT∥ + ∥ri,HT − rj,HT∥ + ∥rj,HT − rj∥
≤δi + ∥ri,HT − rj,HT∥ + δj.

(37a)

∥ri − rj∥ ≥∥ri − ri,HT∥ − ∥ri,HT − rj,HT∥ − ∥rj,HT − rj∥
≥∥ri,HT − rj,HT∥ − δi − δj.

(37b)

Eq. (37b) implies that inter-agent collision avoidance condition,
given in (15b), is satisfied, if ∥r − r ∥ ≥ ϵ + δ + ϵ + δ . □
i,HT j,HT i i j j
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heorem 3. Assume every agent can execute proper trajectory
controller such that the safety condition (15a) is satisfied where
he global desired position of every agent i ∈ V is defined by
homogeneous transformation, given in (4), and

∑
i∈V ri,0 = 0.

Inter-agent collision avoidance is guaranteed for t ∈ [tinit , tf ], if

i ∈ {1, . . . , n}, λi(t) ≥ λmin (38)

t any time t ∈ [tinit , tf ] where λi(t) is the ith eigenvalue of

eformation matrix UD(t) =
(
QT (t)Q(t)

) 1
2 and

min = max
i,j∈V, j̸=i

δi + ϵi + δj + ϵj

∥ri,0 − rj,0∥
. (39)

urthermore, agents are all located inside the containment ball B(t),
defined by Eq. (16) if

i ∈ {1, 2, 3}, λi(t) ≤ λmax, ∀t ∈ [tinit , tf ] (40)

where

λmax = min
i∈V

rmax − δi − ϵi

∥ri,0∥2
. (41)

Proof. Using Eq. (4), we can write

∥ri,HT − rj,HT∥22 =
(
ri,0 − rj,0

)T QTQ
(
ri,0 − rj,0

)
.

hus,

t ∈ [tinit , tf ], λmin ≤
∥ri,HT (t)− rj,HT (t)∥2
∥ri,0 − rj,0∥2

≤ λmax

here λmin = mint∈[tinit ,tf ] {λ1(t), λ2(t), λ3(t)} and λmax =

axt∈[tinit ,tf ] {λ1(t), λ2(t), λ3(t)}. Inter-agent collision avoidance is
uaranteed if

min
t∈[tinit ,tf ], i,j∈V, i̸=j

(
∥ri,HT (t)− rj,HT (t)∥2 − ϵi − δi − ϵj − δj

)
=

min
i,j∈V, i̸=j

(
λmin∥ri,0 − rj,0∥2 − ϵi − δi − ϵj − δj

)
≥ 0.

hus, λmin is obtained by Eq. (39) and inter-agent collision avoid-
nce is guaranteed, if Eq. (38) is satisfied at any time t ∈ [tinit , tf ].
oreover, all agents remain inside the containment ball B(t), if

max
t∈[tinit ,tf ], i∈V

(
∥ri,HT (t)− d(t)∥2 + ϵi + δi

)
=

max
i∈V

(
λmax∥ri,0∥2 + ϵi + δi

)
≤ rmax.

his implies that λmax is obtained by Eq. (41) and follower con-
ainment is assured if Eq. (40) is satisfied. □

Given the sufficient conditions provided by Theorem 3, a de-
ired continuum deformation coordination is planned by solving
he following constrained optimization problem:

= 1, . . . , nw − 1, min Tk
ubject to

t ∈ [t1, tnw−1], Z(t) = Φ(t, tk)Zk +

ζ (ρ)∑
h=0

Θh(t, tk)dh,k (42a)

∀t ∈ [t1, tnw−1], ∀i ∈ V, j = 1, . . . , ρ, ZT (t)OT
ijOijZ(t) ≤ δ2i ,

(42b)

k = 1, . . . , nw, ∀i ∈ V, j = 1, . . . , ρ, ZT (tk)OT
ijOijZ(tk) ≤ β2

j δ
2
i

(42c)

t ∈ [t1, tnw−1], i = 1, 2, 3, λmin ≤ λi(t) ≤ λmax, (42d)

here Φ(t, tk), Θh(t, tk), Oij, λmin, and λmax were previously de-
ined, and λi(t) is the ith eigenvalue of the deformation matrix
(t) =

(
QT (t)Q(t)

) 1
2 .
D

6

5. Simulation results

We consider an MAS consisting of N = 8 UGVs, with the half-
car dynamic model given in Rastgoftar, Zhang, and Atkins (2018).
In this example, UGV team is identified by unique index numbers
defined by set V = {1, 2. · · · , 8} with leaders and followers
defined by VL = {1, 2, 3} and VF = {4, . . . , 8}, respectively. The
MAS is supposed to move in an obstacle-laden environment from
the initial (reference) configuration, shown in Fig. 2(a), to the
target configuration shown in Fig. 2(b). UGVs are assumed to have
the same size and characteristics: ϵ = ϵi = 0.25, δ = δi = 1m,
for every i ∈ V , and β = β1 = β2 = 0.05. Given UGVs’ reference
(initial) formation, Eq. (39) is used and λmin = 0.7217 is obtained.
We constrain UGVs to remain inside the containment ball B(t)
with constant rmax = 40 m at any time t . This requirement is
satisfied by assigning λmax = 1.2917 using Eq. (41). Therefore, it
is necessary that eigenvalues of the matrix UD(t) =

(
QT (t)Q(t)

)
satisfy the following safety constraints at any time t: 0.7217 ≤
λi(t) ≤ 1.2917, i = 1, 2.

Fig. 2(c) plots the paths of all agents (shown by blue) and
the center of the containment ball B (shown by red), from the
initial configuration to the target destination. Continuum defor-
mation coordination is simulated under two different inter-agent
communication protocols shown in Fig. 2(d, e). Under the com-
munication topology defined by graph G1, every follower directly
accesses position information of the three leaders, thus Ni =

{1, 2, 3} for every agent i ∈ V . Under the communication
topology defined by graph G2, each follower communicates with
three in-neighbor agents shown in Fig. 2(e) where wi,j =

1
3 for

very follower UGV i ∈ VF and every in-neighbor agent j ∈ Ni.
In Fig. 3(a, b), ∥ri − ri,HT∥ is plotted versus time for UGVs 1

hrough 8. It is shown that deviation of every UGV does not δ =
m. Also, ∥ri(tk)− ri,HT (tk)∥ ≤ 0.05δ for k = 1, . . . , 21 (nw = 21),

where β = 0.05. It is observed that safety conditions (15a) and
(17) are both satisfied when MAS applies graph G1 or graph G2 to
cquire the desired coordination. Fig. 3(c) plots travel intervals
1 through T20 under communication graphs G1 or graph G2.
ote that the total travel time under communication topology G1
t21 − t1 = 491.17 s) is smaller than the total travel time under
ommunication topology G2 (t21 − t1 = 763.38 s), respectively.

. Conclusion and discussion

This paper proposed an approach to planning a decentralized
omogeneous deformation coordination of an MAS in an obstacle
aden environment. We use the A* search to assign the optimal
ath of the center of the containment ball B, assuring collision
voidance of the MAS with obstacles, while the follower con-
ainment and inter-agent collision avoidance are independently
lanned and ensured by using the underlying principles of con-
inuum mechanics. The proposed A*-based planning, is much
aster than the one used in Rastgoftar et al. (2021) to assign
he optimal paths of leaders and assures (i) obstacle collision
voidance, (ii) inter-agent collision avoidance, and (iii) follower
ontainment through constraining the eigenvalues of the matrix
D(t) =

(
QTQ

)T in every single search. While spatial planning
f continuum deformation was completed in 8.01 seconds in
his paper, Rastgoftar et al. (2021) need at least 10 minutes to
patially plan the leaders’ paths optimizing a continuum deforma-
ion coordination in an obstacle-laden environment. Furthermore,
he entire (spatial and temporal) continuum deformation plan-
ing was completed is 65.30 seconds. Note that the proposed
emporal planning approach also speeds up the continuum de-
ormation planning since the generalized coordinate ηk is inde-
pendently determined over the time-interval [tk, tk+1] for every
= 1, . . . , n −1. Compared to Rastgoftar et al. (2021), Rastgoftar
w
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c
l

Fig. 2. (a, b) MAS initial and final formations enclosed by containment ball with radius rmax = 40 m. (c) UGVs’ paths (shown by blue) and path of the center of the
ontainment ball (shown by red) from initial positions to target destinations. (d, e) Graphs G1 and G2 . (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)
Fig. 3. Deviation of every UGV i ∈ V = {1, . . . , 8} versus time t under (a) communication protocol defined by graph G1 (V, E1) and (b) communication protocol
defined by graph G2 (V, E2). (c) Optimal travel intervals T ∗1 through Tn∗w (nw = 21) under communication protocols G1 and G2 .
and Kolmanovsky (2021), our proposed approach also speeds up
the continuum deformation coordination, since the agents are not
required to fully stop at the intermediate configurations obtained
by integration of the A* search and eigen-decomposition of the
homogeneous transformation coordination.
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