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Abstract

We study the mixing time of the Swendsen-Wang dynamics for the ferromagnetic Ising and Potts
models on the integer lattice Z<. This dynamics is a widely used Markov chain that has largely resisted
sharp analysis because it is non-local, i.e., it changes the entire configuration in one step. We prove that,
whenever strong spatial mixing (SSM) holds, the mixing time on any n-vertex cube in Z% is O(logn),
and we prove this is tight by establishing a matching lower bound on the mixing time. The previous
best known bound was O(n). SSM is a standard condition corresponding to exponential decay of
correlations with distance between spins on the lattice and is known to hold in d = 2 dimensions
throughout the high-temperature (single phase) region. Our result follows from a modified log-Sobolev
inequality, which expresses the fact that the dynamics contracts relative entropy at a constant rate at
each step. The proof of this fact utilizes a new factorization of the entropy in the joint probability space
over spins and edges that underlies the Swendsen-Wang dynamics, which extends to general bipartite
graphs of bounded degree. This factorization leads to several additional results, including mixing time
bounds for a number of natural local and non-local Markov chains on the joint space, as well as for the
standard random-cluster dynamics.
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1 Introduction

The ferromagnetic Potts model is a classical spin system in statistical physics and theoretical computer
science. It is specified by a finite graph G = (V,E), a set of spins (or colors) [¢q] = {1,...,q}, and an
edge weight or inverse temperature parameter 3 > 0. A configuration 0 € Q = {1,...,q}" of the
model assigns a spin value to each vertex v € V, and the probability of finding the system in a given
configuration o is given by the Gibbs (or Boltzmann) distribution

4(0) = 1i6,5(0) i=  exp(—=|D(o)]), (1)

where D(0) := {{v,w} € E : 0, # 0y} is the set of edges whose endpoints have disagreeing spins in
oand Z := ) .qexp(—SB|D(o)|) is the normalizing factor or partition function. Note that this model
is ferromagnetic, in the sense that neighboring spins want to align with each other. The Ising model of
ferromagnetism is exactly the case ¢ = 2.

We focus on the classical setting where G is a subgraph of the infinite d-dimensional lattice Z?. We
will mostly restrict attention to the case where V' = {0, ..., £}? is a cube, but our results can be extended
to more general subgraphs of Z¢; see Remark 2.2. In fact, our main technical contributions apply to general
bipartite graphs of bounded degree.

A popular Markov chain for sampling from the Gibbs distribution (1.1) is the Swendsen-Wang (SW)
dynamics [55], which utilizes the random-cluster representation of the Potts model to derive a sophisticated
non-local Markov chain in which every vertex can update its spin in each step. From the current spin
configuration o (t) € €2, the SW dynamics generates o (¢t + 1) € Q as follows:

1. Let M(o(t)) =E\ D(c(t)) = {{v,w} € E: 0,(t) = 0u(t)} be the set of monochromatic edges of
G ino(t).

2. Independently for each edge e € M (o (t)), retain e with probability 1 — exp(—f) and delete it oth-
erwise, resulting in the subset A(t) C M (o (t)). (This is equivalent to performing bond percolation
with probability 1 — exp(—/3) on the subgraph (V, M (o (t))).)

3. For each connected component C in the subgraph (V, A(t)), independently choose a spin s¢ uni-
formly at random from [g] and assign s¢ to all vertices in C, yielding (¢t + 1) € Q.

The Swendsen-Wang dynamics is ergodic, and has (1.1) as its stationary distribution; see [24] for a proof.

This non-local dynamics has the ability to flip large regions of spins in one step and was thus originally
proposed as an alternative algorithm for overcoming the slow convergence at low temperatures of the
Glauber dynamics, the standard local Markov chain that updates the spin of a single, randomly chosen
vertex in each step. At high temperatures where the Glauber dynamics is quite fast, the SW dynamics
provides a powerful alternative sampling algorithm since one can efficiently parallelize its global steps.

In this paper, we are interested in the speed of convergence of the SW dynamics to stationarity, and
in particular its mixing time. The mixing time captures the convergence rate in total variation distance of
a Markov chain from the worst possible starting configuration and is the most standard measure of the
speed of convergence. Results proving tight bounds for the mixing time of the SW dynamics are rare,
and are limited to very special classes of graphs, such as the complete graph and trees [36, 40, 26, 8], or
to very high temperatures [47, 52]. Most bounds for the mixing time of the SW dynamics are derived by
comparison with the Glauber dynamics [56], and are consequently often very far from sharp. We also
know of multiple examples where the mixing time of the SW dynamics is exponential in the number of
vertices of the graph; see, e.g., [28, 26, 8, 27, 11, 12].

There is a long line of work studying the connection between spatial mixing (i.e., decay of correlations)
properties of Gibbs distributions and the speed of convergence of Markov chains (see, e.g., [35, 1, 57, 54,



44, 45, 16, 23, 51]). These results focus on local Markov chains, such as the Glauber dynamics, but there has
also been some recent progress in understanding this connection for non-local Markov chains such as the
SW dynamics [6, 5, 14]. In particular, it was established in [5] that the strong spatial mixing (SSM) property
implies that the mixing time T1,ix(SW) of the SW dynamics is O(n), where n := |V| is the number of
vertices.

SSM is a standard formalization of decay of correlations in spin systems and, roughly speaking, ex-
presses the fact that the correlation between spins at different vertices decreases exponentially with the
distance between them. More precisely, given a pair of fixed configurations 1 and ¢,, on the boundary
of V such that v and 1, differ only in the spin of the vertex u, the effect on the (conditional) marginal
distribution at a set B C V decays exponentially with the distance between B and the disagreement at u;
see Section 2 for a precise definition. Our main algorithmic result in this paper is that the mixing time of
the SW dynamics is in fact O(log n) whenever SSM holds, and this is tight.

Theorem 1.1. In an n-vertex cube of Z2, for all integer q > 2, SSM implies that for all boundary conditions
Tmix(SW) = @(log n)

We recall that a boundary condition T for the Potts model is a fixed assignment of spins to the boundary
of V; in the presence of a boundary condition, we consider the Gibbs distribution on V' conditional on the
assignment 7 on the boundary of V. The case where there is no boundary condition is known as the free
boundary case and is also covered by our results.

In Z?, SSM is known to hold for all ¢ > 2 and all 3 < S.(q), where B:(g) = In(1 + \/q) is the
uniqueness threshold [4, 2, 46]. Therefore, we obtain the following immediate corollary of Theorem 1.1.

Corollary 1.2. In an n-vertex square region of Z2, for all ¢ > 2, all 3 < B.(q) and all boundary conditions,
we have Tyix(SW) = O(logn).

The best previous bound in the setting of Corollary 1.2 was Ty,ix(SW) = O(n) and follows from the
results in [5]. Nam and Sly [52] recently proved an O(log n) mixing time bound (as well as the cutoff phe-
nomenon) for the periodic boundary condition for sufficiently high temperatures (5 < 5.(q)), a stronger
assumption than SSM. In higher dimensions d > 3, SSM is not known to hold up to the corresponding
uniqueness threshold (it is only known for sufficiently small ; see [43]), but we expect the SW dynamics
to be rapidly mixing throughout the high temperature regime for all d > 3.

The key to our improved mixing time analysis is a novel factorization of entropy based on the joint
probability space of spins and edges that underlies the SW dynamics. This factorization implies that the
relative entropy decays at a constant rate, which in turn implies a tight bound on the mixing time via a
modified log-Sobolev inequality. In contrast, previous bounds for the SW dynamics [56, 9, 30, 5, 6] have
used the spectral gap, which inherently loses a factor of O(n) when transferred to mixing time bounds and
cannot deliver a tight result. We discuss our new technique and its ramifications in the next subsection.

A priori the correct order of the mixing time of the SW dynamics is unclear. In some settings, such as
on the complete graph (the mean-field Potts model) for all 3 below the uniqueness threshold, the dynamics
mixes in ©(1) steps [40, 26]. In this paper, to complement our main result of an O(logn) upper bound,
we also establish a lower bound of 2(logn) for all boundary conditions whenever SSM holds. To prove
our lower bound, we follow the strategy introduced by Hayes and Sinclair [33], who proved a tight lower
bound on the mixing time of the local Glauber dynamics. However, the synchronicity and non-locality of
the updates in the SW dynamics presents a significant obstacle to the adaptation of their techniques and
some new ideas are required. The main novel ingredient in our proof of the lower bound is an analysis of
the speed of propagation of disagreements under a coupling of the steps of the SW dynamics, provided SSM
holds. To establish this we use a recent breakthrough result of Duminil-Copin, Raoufi, and Tassion [20]
establishing exponential decay of correlations (i.e., weak spatial mixing) in the entire high-temperature



phase for the Potts model on Z¢. We believe that our analysis of the speed of disagreement propagation
could be useful for establishing lower bounds for the mixing time of SW dynamics in other settings.

Our methods also provide new results for the low-temperature regime 3 > B.(q) in Z? for specific
boundary conditions. We say that a boundary condition 7 is monochromatic if T fixes the spin of every
boundary vertex to the same color. One of the most fundamental open problems in the study of the Glauber
dynamics for the Ising and Potts model concerns the mixing time at low temperatures with a monochro-
matic boundary [48, 41]. We provide new bounds for the mixing time of the SW dynamics in this setting.

Theorem 1.3. In an n-vertex square region of Z2, for all ¢ > 2 and all B > B.(q) we have Tpix(SW) =
O(nlogn) for the free or monochromatic boundary condition.

The best previously known bound for the mixing time of the SW dynamics in an n-vertex square
region of Z? when 8 > f.(q) was O(n?log?n), which follows from the results in [9, 56]; see also [42]
for better (sub-linear) bounds for the mixing time when ¢ = 2 and > (.(q). The bound in Theorem 1.3
is likely not tight, and establishing that the SW dynamics mixes in O(logn) steps in Z? throughout the
low-temperature regime remains an important open problem. Furthermore, our result for low temperature
with a monochromatic boundary does not extend to higher dimensions d > 3, since it crucially uses the
self-duality for the associated random-cluster distribution on Z?2. For the Ising model with d > 3, the state
of the art seems to be the results from [42] for § > (.(q).

1.1 A new analytic tool

A standard tool for the analysis of Markov chains are comparison inequalities, which relate the spectral
gap of a chain of interest to that of some simpler chain that has already been analyzed. This approach has
proven particularly useful for analysis of the SW dynamics; indeed, some of the currently best known upper
bounds on its mixing time are obtained in this manner [56, 9, 30, 5, 6]. As mentioned earlier, this approach
is unable to yield tight bounds on the mixing time of the SW dynamics since bounds obtained via the
spectral gap inherently introduce a factor log(1/.) = (n) on the mixing time, where 1, = min, u(o).

A potentially more powerful approach is to compare instead the (classical) log-Sobolev constants (see
Definition 2.6). This yields mixing time bounds with only a log log(1/u.) = O(logn) dependence on pi,
which is potentially tight. Unfortunately, however, log-Sobolev inequalities are not tight for the SW dy-
namics, and the best possible mixing time bound obtained in this way would be O(n) (see Remark 3.2 for
details).

A modified log-Sobolev inequality (which essentially bounds the rate of decay of relative entropy; see
again Definition 2.6) is a strictly weaker (and hence easier to satisfy) inequality than the classical log-
Sobolev inequality, but still strong enough to establish mixing time bounds with the same dependence
on (i,. There have been several notable recent results bounding the modified log-Sobolev constant for
various Markov chains [17, 34]. However, there are no prior results addressing the modified log-Sobolev
constant for the SW dynamics and, more generally, no comparison inequalities are available for the modi-
fied log-Sobolev constant. In this paper, we develop new machinery that essentially allows us to compare
the modified log-Sobolev contant of the SW dynamics with that of a much simpler dynamics, and hence
obtain tight mixing time bounds. This comparison is at the level of entropy factorization rather than the
modified log-Sobolev constant itself, as we now describe.

Approximate factorization of the entropy of the Gibbs distribution s with constant C says that, for any
nonnegative function f : 2 +— R,

Ent,(f) < C Y u[Enty(f)], (1.2)

veV



where p[f] = > cqu(o) f(o) and Ent,, (f) := u[flog(f/u[f])] are the expectation and entropy, respec-
tively, of f with respect to i, and Ent,, is the entropy with respect to the conditional distribution at vertex v

given the spins of its neighbors. Note that necessarily C' > 1, and C' = 1 when y is a product measure.
(The term“constant” here indicates that (1.2) holds for fixed C, independent of f. In most applications, C'
will in fact be a constant independent of the size of the underlying graph G; we will write C' = O(1) to
indicate this.) Approximate factorization with C' = O(1) played a central role in classical results proving
that SSM implies O(n log n) mixing time of the Glauber dynamics; see, e.g., [57, 54, 45, 16].

Until recently it was unclear how to apply this approach to more general Markov chains. However, in
a very recent paper, Caputo and Parisi [14] took an important step in this direction by extending the above
factorization as follows:

Definition 1.4. For a spin configuration o on a bipartite graph G, let o (respectively, o) denote the spins
on the even (respectively, odd) side of the bipartition. We say that approximate even/odd factorization with
constant C' holds if for all functions f : Q — R,

Ent, (f) < C(u[Ent,(f | o8)] + p[Ent,(f | 00)). (13)

To clarify the meaning of the inequality (1.3), we use the notation Ent,(f | og) for the entropy of f
with respect to the conditional probability u(- | og), that is the Gibbs measure conditioned on a given
realization of the even spins o, with similar notation for odd spins. In particular, taking the expectation
one has

plEnty(f [ op)] = plflog(f/ulf [ or))], w[Ent,(f | oo)] = ulflog(f/ulf | ool)]-

Caputo and Parisi [14] showed that for spin systems on Z¢, under the SSM assumption, approximate
even/odd factorization holds with C' = O(1), and used this fact to establish a tight mixing time bound for
“block dynamics” in Z%, a generalization of Glauber dynamics in which a randomly chosen block of spins
(rather than a single spin) is updated in each step.

Our main analytic tool in this paper establishes that, on any bounded degree bipartite graph, even/odd
factorization is in fact sufficient to ensure O(log n) mixing time for the much more complex SW dynam-
ics. Note that SW is very far from a block dynamics, in that the configurations of multiple, dynamically
changing clusters of spins are updated simultaneously in each step.

Theorem 1.5. For all constant A, for any bipartite graph of maximum degree A, if the Gibbs distribution
satisfies approximate even/odd factorization with C = O(1) then the mixing time of the Swendsen-Wang
dynamics is O(logn).

We remark that Theorem 1.5 holds for arbitrary boundary conditions (or pinnings of vertices) of the bipar-
tite graph, and thus Theorem 1.1 for the lattice Z? follows immediately from this theorem and the above
mentioned results in [14].

The main technical step in the proof of Theorem 1.5 is to show that even/odd factorization implies a
novel spin/edge factorization of entropy (see Defintion (1.6) below), which is tailored to the SW dynamics
so that it implies O(log n) mixing fairly directly.

1.2 The spin/edge factorization

Our new entropy factorization is based on the joint probability space on spins and edges introduced by
Edwards and Sokal [24], that underlies the SW dynamics. Let ; = Q x {0, 1}F be the set of joint con-
figurations (o, A) consisting of a spin assignment to the vertices o € ) and a subset of edges A C E,
where recall that [ is the set of edges with both endpoints in V. The Edwards-Sokal distribution on G



with parameters p € [0, 1] and ¢ € N, and free boundary condition, is the probability measure on 2, given

by

v(o,A) := Zipw(l —p)E=1 (5 ~ A), (1.4)
]
where 0 ~ A means that A C M (o) (i.e., that every edge in A is monochromatic in ¢) and Z, is the
corresponding normalizing constant or partition function. When p = 1 — e, the “spin marginal” of v
is precisely the Potts distribution 1 and Z = Z; the “edge marginal” of v corresponds to the well-known
random-cluster measure; see [25, 29]. The SW dynamics alternates between spin configurations and joint
spin/edge configurations in a manner consistent with (1.4).

We note that a boundary condition on the joint space allows fixing the state of both spins and edges and
thus may introduce more complex dependencies. While our results in the joint space are stated here only
for the free boundary condition, they actually extend to any spin-only boundary condition. By a “spin-
only” boundary condition we mean any boundary condition that fixes the spins of a subset of vertices,
and fixes no values for the edges. In fact, in Z%, we can handle a slightly more general class of boundary
conditions we call admissible (see Definition 4.1) which will be useful for proving Theorem 1.3 and our
results for random-cluster dynamics.

Our entropy factorization for the SW dynamics is defined as follows.

Definition 1.6. We say that approximate spin/edge factorization with constant C holds if for all functions
f:Q =Ry,

Ent,(f) < C (v[Ent,(f | )] + v[Ent,(f | A)]). (1.5)

Let us explain the terms in (1.5) in more detail. We write v(- | o) for the probability obtained from v by
conditioning the on whole spin configuration being equal to a given o € Q and v(- | A) for the probability
obtained from v by conditioning on the whole edge configuration being equal to a given A C E. With this
notation, Ent, (f | o) and Ent, (f | A) denote the entropy of f with respect to the conditional measures
v(- | o) and v(- | A), respectively. Therefore, taking their expectation with respect to v one obtains

v [Enty (f | o) = vlflog(F/vlf | o], v[Bnt,(f | A)) = v[flog(f/vif | AD].  (16)

The main technical ingredient in proving Theorem 1.5 is the following “comparison lemma” for entropy
factorization.

Lemma 1.7. For the Potts model at inverse temperature 3 on any bipartite graph of maximum degree A, ap-
proximate even/odd factorization with constant C' implies approximate spin/edge factorization with constant

Cl = C/(C7 A? q? 5)'

To complete the proof of Theorem 1.5, we show that the spin/edge factorization in (1.5) implies decay
of entropy for the SW dynamics: namely, there exists a constant 4 > 0 such that, for all functions f :  —
R, we have

Enty,(Powf) < (1 8)Ent, (), (17)

where Py, denotes the transition matrix of the SW dynamics. As we recall in Section 2.2, standard argu-
ments then imply a modified log-Sobolev inequality, and a bound of O(logn) on the mixing time of the
SW dynamics.

Lemma 1.8. For the Potts model on any n-vertex graph, approximate spin/edge factorization with constant

C = O(1) implies that (1.7) holds with § = 1/C' and hence Tpyix(SW) = O(logn).



1.3 Further results

Our new entropy factorization framework leads to several additional algorithmic results on Z¢ that hold
under the condition of SSM, which we briefly summarize here. First, we prove optimal O(logn) mixing
time for alternating systematic scan dynamics, a natural non-local dynamics in which even and odd sides
of the bipartition are updated on alternate steps. Systematic scan dynamics, in which updates are per-
formed in a deterministic rather than random sequence, are widely used in practice but are non-reversible
and typically much harder to analyze. Second, we are able to show that various versions of the SW dy-
namics on the joint spin/edge space mix in O(logn) time, as does the SW dynamics for the random-cluster
model. Finally, we show that a natural local Glauber dynamics in the joint space has optimal mixing time
©(nlogn). Formal statements of all these results can be found in the main body of the paper.

Organization of the paper: In Section 2 we gather definitions of various standard concepts used through-
out the paper. Section 3 proves Lemma 1.8 showing that the spin/edge entropy factorization implies
O(log n) mixing for the SW dynamics. We prove Lemma 1.7 relating even/odd factorization to spin/edge
factorization in Section 4, and then combine Lemmas 1.7 and 1.8 to establish our main technical tool (The-
orem 1.5) and our main algorithmic result (Theorem 1.1). Our lower bound on the mixing time is proved
in Section 5. We discuss further applications in the remaining sections. Section 6 proves entropy decay
for non-local and local dynamics in the joint space, and Section 7 discusses the alternating scan dynamics.
Finally, we address the random-cluster dynamics in Section 8, concluding with a proof of Theorem 1.3.

2 Background

In this section, we formally define the spatial mixing property to be used throughout the paper. We also
recall some known relations and prove some preliminary facts concerning entropy and mixing times.

2.1 Strong spatial mixing (SSM)

We assume V' C Z? is a d-dimensional cube of Z%. Thatis, V = {0, 1, ..., ¢}¢ where £ is a positive integer.
We use OV C V to denote the internal boundary of V; i.e., the set of vertices in V" adjacent to at least one
vertex in Z4 \ V. A boundary condition 1) for V is an assignment of spins to some (or all) vertices in OV;
ie, 1 : UY — [q] with U¥ C V. The boundary condition where U¥ = {) is called the free boundary
condition. Given a boundary condition 1, each configuration o € ) that agrees with 1) on U is assigned
probability
(o) = %  e=BID@)

where ZV is the corresponding normalizing constant and D(o) := {{v,w} € E : 0, # 04, }. We define
p¥ (o) = 0 for o € (2 that does not agree with .

Let C(V, a, b) be the property that, for all B C V, all u € 9V and any pair of boundary conditions ),
1, on OV that differ only in the spin of the vertex u, we have

||Hlé — ujé“HTV < bexp(—a-dist(u, B)), (2.1)

where ;fé and uﬁ“ are the probability measures induced in B by the Potts distribution with boundary con-
ditions 1 and 1), respectively, || - ||-v denotes total variation distance and dist(u, B) = min,ep ||lu — v||;.

Definition 2.1. We say that strong spatial mixing (SSM) holds if there exist a,b > 0 such that C(V,a,b)
holds for every cube V C 7.



We note that the definition of SSM varies in the literature, but we work here with one of the weakest
(easiest to satisfy) versions. In Z2, this form of SSM has been established for all ¢ > 2 and 3 < B.(q),
where .(¢) = In(1 4 /q) is the uniqueness threshold [4, 2, 46]. Finally, we stress that the SSM property
is determined only by the values of the parameters ¢ and p = 1 — e~?, and not by any particular boundary
condition.

Remark 2.2. For definiteness, we have stated all of our results for n-vertex d-dimensional cubes but they
extend to more general regions of Z¢. In particular, we can consider regions which are the union of disjoint
translates of a given large enough cube. The variant of the SSM condition that requires C(U, a,b) to hold for
every such region U is equivalent to the one in Definition 2.1 (see [44, Theorem 2.6]). As noted in [44], a version
of SSM which requires C(V, a,b) to hold for arbitrarily shaped regions V' does not hold all the way to the
uniqueness threshold.

2.2 Mixing time, entropy, and log-Sobolev inequalities

Let P be the transition matrix of an ergodic Markov chain with finite state space I' and stationary dis-
tribution 7. Let P'(Xj, ) denote the distribution of the chain after ¢ steps starting from the initial state
Xy € I'. The mixing time Tyix(P) of the chain is defined as

Tix(P) = max min {t > 0+ |[P(Xo,") — 7

Xocl = 1/4} '

TV
To prove upper bounds on the mixing time, in this paper we mostly rely on functional inequalities related
to entropy.

For a function f : I = R, let n[f] = Y . 7(c) f(0) and Var,(f) = 7[f?] — n[f]? denote its mean
and variance with respect to 7. Likewise, for f positive, the entropy of f with respect to 7 is defined as

f
Bute(7) = |1+ 1og ()| =17 10w 11~ w17 og 1. 22)

We often consider these functionals and their conditional versions with respect to the Potts measure
u or the joint measure v (as defined in (1.1) and (1.4) respectively). In particular, if the function f is
such that f : € — Ry, for fixed 0 € Q and A C E, we write v[f | o] = > ,cpv(A | 0)f(0,4),

v[f [ Al =2 seqv(o | A)f(o; A) and

Ent,(f | o) = v [f-log <V[ff‘a]> a}, Enty(fA):y[f-log (M) ’A].

Note that Ent, (f | o) and Ent, (f | A) are functions of ¢ € Q and A C E, respectively, and with slight
abuse of notation, we write v [Ent, (f | 0)] and v [Ent, (f | A)] for the corresponding expectations with
respect to v; see (1.6). The following identities hold:

Ent, (f) = Ent, (v[f | A]) 4+ v[Ent,(f | A)];
Ent, (f) = Ent, (v[f | o) + v[Ent,(f | o)]. (2.4)

Indeed, both statements follow from the general decomposition
Entr(f) = Entr ([ | F]) + n[Ent(f [ F)], (2.5)

valid for any distribution 7, and any sub o-algebra F, which follows by adding and subtracting the term
7w(flogm[f | F]) in (2.2). Another basic property of entropy that we shall use is the variational principle

Ent,(f) = sup {n[fy], 7w[e¥] <1}, (2.6)



valid for any distribution 7, and any f > 0, where the supremum ranges over all functions ¢ : I' — R
such that w[e®] < 1, see e.g. Proposition 2.2 in [39].

When f > 0 is such that 7[f] = 1, then Ent,(f) = H(fw|m) corresponds to the relative entropy, or
Kullback-Leibler divergence, between the distribution fm and 7.

Definition 2.3. A Markov chain with transition matrix P and stationary distribution 7 is said to satisfy the
(discrete time) relative entropy decay with rate § > 0 if for all distributions (,

H(P | m) < (1=08)H(C| ). (2.7)

We recall a well known consequence of entropy decay for the mixing time. For completeness, we
include a proof.

Lemma 2.4. If a Markov chain with transition matrix P and stationary distribution 7 satisfies relative
entropy decay with rate § > 0, then its mixing time Tryix(P) satisfies

Tix(P) < 1+ 6" Hlog(8) + loglog(1/m)] (2.8)
where 7, = min, (o).

Proof of Lemma 2.4. Pinsker’s inequality says that
1
165 P" = 7|7y < SH(G6 P | 7), (2.9)

where 0,(7) = 1(7 = o) is the Dirac mass at 0. Iterating (2.7),

1
165 P = 7y < 5 (1= 0)"H (35 | 7). (2.10)
Since H(6, | 1) = —logm(c) and (1 — §)™ < e~°" we obtain
n 1
106 P = mllrv < 7, (2.11)
as soon as 7 is an integer such that n > 6~ log[8log(1/m.)]. O

Remark 2.5. If ( has density f with respect to (i.e, ( = fm), then (P has density P* f with respect to ,

where P* is the adjoint or time-reversal matrix P*(o,0’) = fr((c(';l)) P(d’',0). Thus, (2.7) is equivalent to

Entr(P*f) < (1 — 6)Ent(f), (2.12)

for all f > 0 such that 7[f] = 1. By homogeneity, this is equivalent to (2.12) for all f > 0. When P is
reversible, that is when P = P*, (2.7) is equivalent to Ent(Pf) < (1 — §)Ent.(f) forall f > 0.

The inequality (2.12) can be considered as a discrete time analogue of the so-called modified log-Sobolev
inequality characterizing the relative entropy decay for continuous time Markov chains; see, e.g. [10].
Below we discuss some basic relations among (2.12), the standard log-Sobolev inequality and the modified
log-Sobolev inequality.

Consider a transition matrix P with stationary distribution 7. The Dirichlet form associated to the pair
(P,7) is defined as

DP(fag) = <f7(1_P)g>a (2-13)



where f, g are real functions on ', and (f, g) = 7[fg] denotes the scalar product in L?(7). Since f is real
we also have

De(f, ) = (1= Qf ) = = 3 (@) Q1) (f(2) — F W), (2.14)

2
$7y
where () = %(P + P*). Moreover, if P = P* one has

1

Dp(f,9) = 3

> (@) P(a,y)(f(z) - F®))g(x) = 9(v)), (2.15)

T,y
forall f,g.

Definition 2.6. The pair (P, ) is said to satisfy the (standard) log-Sobolev inequality (LSI) with constant «
if forall f > 0:

Dp(\/f,\/f) > aEnt,f. (2.16)
It is said to satisfy the modified log-Sobolev inequality (MLSI) with constant § if for all f > 0:
Dp(f,log f) > d Ent, f. (2.17)

It is well known that the Log-Sobolev inequality is equivalent to the so-called hypercontractivity (see
[19, Theorem 3.5]), while the modified Log-Sobolev inequality (2.17) is equivalent to exponential decay
of the relative entropy with rate § for the continuous time kernel K; = ¢(Z~1? (see [19, Theorem 3.6]).
Note that we are not assuming reversibility. To see the relation between the MLSI and the entropy decay

in continuous time, note that if K; = e ~D* and f has mean 7[f] = 1 then using K; = (""" =1’ one
checks that the time derivative of the relative entropy satisfies

d d * * *

SH(CK | m) = SE(K] ) = ~Dp(K; f,log K f), @18)

where ¢ = f - . Therefore (2.17) implies, for all ¢ > 0:
H(CKy | w) < H(¢ | m)e™.
Next, we observe that the bound (2.12) is stronger than the MLSI in (2.17).

Lemma 2.7. If the entropy decay holds with rate § in discrete time then it holds with the same rate in con-
tinuous time. That is, (2.12) implies the MLSI with constant 9.

Proof. Suppose that
Ent,(P*f) < (1—0)Ent,f.
From the variational principle (2.6) it follows that for any f > 0 with 7[f] = 1:
7[(P* f) log f] < EntP* .
Therefore,

Dp(f.log f) = 7l((1 — P*)f)log f] > Entf — EntP*f > 6 Entf.



It is well known that the standard LSI with constant o implies entropy decay in continuous time with
rate § = 2aq, since Dp(f,log f) > 2Dp(\/f,/f) forall f > 0, and this can be improved to § = 4« in the
reversible case; see [19, Lemma 2.7]. Here we recall a result of Miclo [50] showing in what sense the LSI
implies the discrete time entropy decay.

Lemma 2.8. If the pair (P* P, ) satisfies the standard LSI with constant «, then the discrete time entropy
decay holds for (P, ) with constant 6 = «. In particular, if P is reversible and (P, ) satisfies the LSI with
constant «, then for all f > 0:

Ent,Pf < (1 — «)Ent,f. (2.19)

Proof. The first assertion is proved in [50, Proposition 6]. The second assertion follows from the first and
the simple observation that if P = P* then the LSI for (P, 7) implies the LSI for (P* P, 7) with the same
constant since P*P = P? < P as quadratic forms in L?(). O

3 Spin/edge factorization implies fast mixing: proof of Lemma 1.8

As mentioned in the introduction, the proof of our main new analytic tool (Theorem 1.5) has two com-
ponents. We show that approximate even/odd factorization implies spin/edge factorization (Lemma 1.7),
and then that spin/edge factorization implies O(log n) mixing for the SW dynamics (Lemma 1.8). In this
section, we provide the proof of the latter result, whereas Lemma 1.7 is proved in the subsequent section.

Proof of Lemma 1.8. We show that the spin/edge factorization with constant C' implies that for all functions
f > 0with u[f] = 1, one has

Enty,(Powf) < (1 8)Ent,(f), (3.1)

with 6 = 1/C. Since the SW dynamics is reversible with respect to 1, we have Py, = and the desired
mixing time bound follows from Lemma 2.4 and Remark 2.5.
The transition matrix of the SW dynamics satisfies Pow (0, 7) = - scpr(o) V(A | 0)v(7 | A), where

we recall that M (o) is the set of monochromatic edges in 0. Hence,

swf ZPSWUT Z Z A’U T’A)fA(T,A),

TEN TEQ ACM (o)

SW’

where the function f : Q; — R, is the “lift” of f to the joint space, ie., f(c,4) = f(o) for every
(0,A) € €. Recalling that we write v[f], v[f|A], v[f|o] for the expectations of f with respect to the
measures 1/( ), v(- | A), v(- | o), respectively, we obtain

Pwf(o)= > wv(Alow[f| Al =v[f|A]l|o]=vlg|0d],

ACM (o)
where for ease of notation we set g := v[f | A]. Since u[f] = 1, we have [Py f] = 1 and

Entu(Pswf) = p[(Pswf)log(Pwf)] = plvlg | o]log(vg | a])].

The convexity of the function x - log x and Jensen’s inequality imply

vig|ollog(vlg|o]) <vlglogyg|oa],

10



and then, since v[g] = v[f] = p[f] = 1, we have
Ent, (Powf) < plv(glogg | o]l = v[v[glogg] | o] = v [glog g] = Enty(g). (3.2)
For any function / : Q; — R, we have by (2.3) that Ent, (h) = Ent,, (v[h|A]) +v[Ent, (h| A)]. Hence,
Ent,(f) = Ent, (g) + v[Ent, (f|A)],

which by (3.2) gives Ent, (P f) < Ent,(f) — v[Ent,(f|A)]. The function f depends on & only, so
Ent,(f | o) = 0. Therefore,

Entu( P f) < Bnty (f) = v [Enty (f | 4) + Ent(f | 0)] .

The assumed spin/edge factorization (1.5) then implies that Ent, (Psy f) < (1— §)Ent,,(f), withd = 1/C.

Inequality (3.1) follows from the fact that Ent, (f) = Ent,(f). O

Remark 3.1. We do not assume anything about the underlying graph in the previous proof, so Lemma 1.8
holds for any graph G. In addition, our proof as stated applies to the Potts measure (1 obtained as the marginal
on spins of the joint measure v. If v is as in (1.4), this yields only the Potts measure on V with the free
boundary condition. However, the proof extends to the Potts measure with any boundary condition (or pinning
of vertices) by choosing a spin-only boundary condition for v. In particular, Theorem 1.1 holds for arbitrary
boundary conditions, as stated in the introduction. For the special case when G is a cube of Z%, we allow a
slightly more general class of boundary conditions, involving both spin and edges, which we call admissible;
see Definition 4.1 and the examples immediately following it.

Remark 3.2. The entropy contraction established in (3.1) implies a modified log-Sobolev inequality, and
can be viewed as a discrete time version of it; see Section 2.2. The classical log-Sobolev constant, however,
is not tight for the SW dynamics. Indeed, the remark in [43, Section 3.7] shows a test function f such that

Var,(v/f)/Ent,(f) = O(n™1). Since Dp,,(V/f,Vf) = v[Var(\/f | A)], it follows from monotonicity of

variance functional that Dp,,(\/f,\/f) < Var,(y/f) and so %\/W = O(n~1) for this function.

4 Factorization of entropy in the joint space

In this section, we prove our main technical result, Lemma 1.7, which states that approximate even/odd
factorization implies approximate spin/edge factorization for the Potts measure on bipartite graphs. For
clarity of notation, and to simplify the proofs, we will restrict attention to n-vertex cubes in Z%, but it
should be clear that everything extends to arbitrary bipartite graphs of constant degree with any spin-
only boundary condition. In addition, on Z¢ we are able to extend our results to a more general class of
boundary conditions in the joint space, involving both edges and vertices, that we call admissible.

Admissible boundary conditions. Let 9V be the set of vertices of V with a neighbor in Z¢\ V. Let O
denote the set of edges in E with at least one endpoint in JV. (Recall that E is the set of edges with both
endpoints in V'.) We consider boundary conditions for the joint space on subsets V5 C 9V and Ey C OE.
Specifically, we let ¢ : V — [¢] and ¢ : Eg — {0, 1} and define

vV (o, A) = P = p)F (o ~ A)1(o ~ 9)1(A ~ ), (4.1)

VAR

where o ~ A means that A C M (o), o0 ~ 1) that o and 1) agree on the spins in Vj, and A ~ ¢ that A and
¢ agree on the edges in Eq. As usual, Z%% is the corresponding partition function.

11



Definition 4.1. We call the boundary condition admissible if Eg C {{u,v} € OE : u € Vy}; that is, if all
edges in Eg have at least one endpoint in V.

Notice that the free boundary condition (V) = () and Ey = () is admissible, and all spin-only boundary
conditions (V; C 9V and Ey = () are also admissible. In this case, the marginal on spins is just the
Potts measure with ¢ as the boundary condition on OV with U¥ = Vj,. For some additional examples
of admissible boundary conditions see Section 8 and Figure 8.1; in particular, (8.2) captures the effects an
admissible boundary condition may have on the random-cluster marginal.

The main motivation for introducing the notion of admissible boundary conditions is that it guaran-
tees that the spin marginal of v¥>% has the desired exponential decay of correlations if the parameters ¢
and [ are such that SSM holds. We shall see that all of our results concerning the joint measure and its
dynamics on Z¢ extend to the more general class of admissible boundary conditions. We can therefore
restate Lemma 1.7 from the introduction for the special case of Z? allowing arbitrary admissible boundary
conditions.

Lemma 4.2. Let v := v¥*% be the joint distribution with an admissible boundary condition (1, ¢). Approx-
imate even/odd factorization with constant C' of the spin marginal of v implies that approximate spin/edge
factorization holds with constant C' = C'(C,d, q, ).

For simplicity, we will continue to write v for the joint measure ¥*# and y for its marginal on spins.
We shall see that our proofs in this section are largely oblivious to the boundary condition or the geometry
of Z% (in fact, we only require the underlying graph to be bipartite). We also remark that, while we could
allow a slightly more general family of boundary conditions than the admissible ones, some limitations
are needed. For instance, arbitrary edge boundary conditions may cause long-range dependencies; see,
e.g., [9, 7]. We proceed next with the proof of Lemma 4.2.

4.1 Proof of Lemma 4.2

Overview. The following high level observations might be of help before entering the technical details of
the proof. First, notice that the conclusion in the theorem would trivially hold true with constant C' = 1 if
v were a product measure with respect to the two sets of variables (o, A). This is a consequence of standard
factorization properties of product measures. Thus, the minimal constant C' for which that statement holds
is a measure of the “cost” for “separating” the two sets of variables.

When the dependencies between the two sets of variables are very weak, a factorization statement
could be obtained as in [16]. However, in our case the dependencies are not weak, since the spin variables
interact locally with the edge variable in a strong way. For instance, the presence of the edge zy in A
forces deterministically the condition o, = 0. Thus, the fact that our statement holds with a constant C
independent of n is highly nontrivial.

On the other hand, for every x € V one can separate locally the two variables (o,, A, ), where A,
denotes the set of edge variables for edges incident to x, by paying a finite cost C; this is the content
of Lemma 4.7 below. We can then lift this local factorization to a global factorization statement for the
conditional measure v (- | o), respectively v(- | o), obtained by conditioning on the spin variables of all
even vertices ¥ C V, respectively of all odd vertices O C V. This is the content of Lemma 4.4.

Lemma 4.4 is the heart of the proof and relies crucially on the fact that v(- | o) is a product measure
with respect to {(04, A;),z € O}, and v(- | 00) is a product measure with respect to {(o, Az),x € E}.
Thus, we reduce the problem of separating the spin/edge variables (o, A) to the problem of separating
the even/odd spin variables (0p,00) for the joint distribution . We then conclude by showing that
even/odd factorization for the Potts measure 1 implies the even/odd factorization for v. This is the content
of Lemma 4.5.

12



We now turn to the actual proof. Let v(- | o, A) denote the measure v conditioned on o = {0, v €
E} and A C E. Similarly, v(- | 00, A) denotes the measure v conditioned on op = {0y, v € O} and
A. We use Ent, (f | og, A) and Ent, (f | 00, A) to denote the corresponding conditional entropies and
v[Ent,(f | og, A)], v[Ent,(f | 00, A)] for their expectations with respect to v. The next lemma shows
that conditioning on the spin configuration of the even or the odd sub-lattice can only decrease the entropy
of a function with respect to v(- | A).

Lemma 4.3. For all functions f : Q; — R we have

v[Ent,(f | A)] > v[Ent,(f | og, A)]; and
v[Ent,(f | A)] > v[Ent,(f | 00, A)].

s ()]

=y [flog (Wﬂ +v [flog (W)}

= v [Ent,(f | op, A)] +v [V flop,A log( ;Ti >]

=v[Ent,(f |og, A)] +v[Ent, (v[f | o, A] | A)]
> v[Ent,(f | og, A).

Proof. We can write

v [Ent,(f | A)]

The same argument applies to the odd sites to deduce that v [Ent, (f | A)] > v [Ent,(f | 00, 4)] O

The advantage of working with v(- | 0o, A) orv(- | o, A) instead of v(- | A) is that once we condition
on the spins on all odd (resp. even) sites the measure becomes a product over the even (resp. odd) vertices,
and we can exploit tensorization properties of entropy for product measures. The next lemma is a key step
in the proof.

Lemma 4.4. There exists a constant o1 > 0 depending only ond, 3, q such that, for all functions f : {2, — R,

v[Ent,(f | 0)] + v [Ent,(f | 00,A4)] > é1v[Ent,(f | 00)], (4.2)
v[Ent,(f | 0)] + v[Ent,(f | og, A)] > 61 v [Ent,(f | o)]. (4.3)

We defer the proof of Lemma 4.4 to later. Adding up (4.2) and (4.3) and using Lemma 4.3 we obtain the
estimate

v[Ent,(f | o)+ Ent,(f | A)] > %y [Ent,(f | op) +Ent,(f | 00)]. (4.4)

We then use a generalization of the entropy factorization from [14] to reconstruct, in the presence of
approximate even/odd factorization, the global entropy Ent, (f) from the conditional average entropies
v[Ent,(f | og)] and v [Ent,(f | 00)] on the right hand side of (4.4).

Lemma 4.5. Approximate even/odd factorization with consant C' implies that for all functions f : €, — R,
v[Ent,(f | og) + Enty(f | 00)] = 02Ent, (f),

where § = 1/C.
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Proof. We need the following observations:

Ent,(f | 00) = Ent, (v[f [ o] | 00) + v [Ent,(f | o) | o0],
Ent,(f | op) =Ent, (v[f | o] | og) + v [Ent,(f | o) | og]. (4.6)

Indeed, to establish (4.5) note that from the definition of conditional entropy we get

oo]

T /
=v|floe <V[f | aE,ao]>

Ent,(f | co) =v | flog (f)

vif | ool

ao} +v [flog (’WW>

! ArTool )1°°
:y_flog<w> o0 +y[y[f|a]1og(m> o0

= v [Ent,(f | 0) | 0o] + Ent, (v[f | o] | 00),

where we also use the fact that v[- | o, 00] = V|- | o]. The same argument applies to (4.6).
Now, since the function v [f | o] depends only on the spin configuration o,

v [Ent, (v[f [ o] | op) + Ent, (v[f | o] | 00)] = p[Enty(v[f [ o] [ or) + Entu(v[f | o] [ 00)];

and we may apply the approximate even/odd factorization to the function v [f | o]. Then, there exists a
constant d3 € (0, 1] such that

p[Ent,(v(f | o] | op) +Entu(v[f | 0] | 00)] = 02 Enty, (v [f | o]). (4.7)
Therefore, observing that
v[v[Ent,(f | o) | ool +v[Ent,(f | o) | op]l = 2v [Ent,(f | 0)],
we obtain from (4.5), (4.6) and (4.7)
v [Ent, (f | o) + Enty(f | 00)] > &2 Ent, (v [f | 0]) + 2v [Ent, (f | )]
Since dy < 1, the standard decomposition in (2.4) implies
v[Ent,(f | op) + Ent,(f | 00)] = 02 Ent, (f),

as claimed. O

4.2 Proofs of main results

The proofs of Lemma 1.7 and Theorems 1.1 and 1.5 are now immediate.

Proof of Lemma 1.7. We note that inequality (4.4) and Lemma 4.5 are valid for any bipartite graph of
bounded degree; the result follows by taking C' = 2/6;02. O

Proof of Theorem 1.5. It follows immediately from Lemmas 1.7 and 1.8. O

We now also prove our main theorem (Theorem 1.1). We use the following result of [14] that under
SSM the even/odd factorization holds.

14



Theorem 4.6 (Theorem 4.3 in [14]). SSM implies that there exists a constant § > 0 such that for all cubes of
72 all boundary conditions, and for all functions f : Q — R,

u[Ent,(f | o) + Ent,(f | 00)] > 6 Ent,, (/).

Proof of Theorem 1.1. Theorem 4.6 [14, Theorem 4.3] implies that the even/odd factorization holds for any
boundary condition whenever SSM holds. Then, from Lemma 4.2 we know that approximate spin/edge
factorization holds; the result then follows from applying Lemmas 1.7 and 1.8. O

It remains for us to provide the proof of Lemma 4.4, which we do in the next subsection.

4.3 Proof of Lemma 4.4

Before giving the proof of Lemma 4.4, we mention several useful facts about the joint distribution v. The
first key fact is that, for any fixed configuration o of spins on the odd sub-lattice, the conditional proba-
bility (- | 00) is a product measure. That is,

v(-|00) = Q) val- | 00), (4.8)

zeE

where, for each 2 € E, v,(- | 00) is the probability measure on {1,...,q} x {0,1}9(®) where deg(z)
denotes the degree of x, described as follows: pick the spin of site z according to the Potts measure on x
conditioned on the spin of its neighbors in op; then, independently for every edge xy € E incident to the
vertex z, if 0, = o, set A, = 1 with probability p and set A;, = 0 otherwise; if 0, # o, set A, = 0.
(Note that in this section, to simplify notation, we shall use zy to denote the edge {z,y}, and view the
edge configuration A as a vector in {0, 1}*.)

Consider now the measure v(- | 0o, A) obtained by further conditioning on a valid configuration of
all edge variables A. Here A is valid if it is compatible with the fixed spins 0. This is again a product
measure; namely

V(' | O-OaA) = ®Vm( ‘ UOaA)a (4.9)
ek
where v, (- | 00, A) is the probability measure on {1, ..., ¢} that is uniform if = has no incident edges

in A, and is concentrated on the unique admissible value given 0o and A otherwise.
Next, we note that v(- | o) is a product of Bernoulli(p) random variables over all monochromatic edges
in o, while it is concentrated on A. = 0 on all remaining edges. Therefore we may write

v(-| o) = Q) va(- | o), (4.10)

zelR

where v, (- | 0) is the probability measure on {0, 1}9°¢(*) given by the product of Bernoulli(p) variables
on all edges xy incident to = such that o, = o, and is concentrated on A,, = 0if 0, # o,.

We write Ent, (- | 00), Entx (- | 00, A), Ent, (- | o) for the entropies with respect to the distributions
ve(- | 00), vz(- | 00, A), vz(- | o) respectively. The first observation is that, for every site z, there is a
local factorization of entropies in the following sense.

Lemma 4.7. There exists a constant 61 > 0 such that, for all functions f > 0 and allxz € E,

vy [Enty(f | o) | 00] + vz [Ent,(f | 00, A) | 00] > 01 Ent,(f | 00). (4.11)
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Proof. For z € V, let A, be random variable in {0, 1}9°8(*) corresponding to the configuration of the
edges incident to  in A. If we replace entropy by variance, then (4.11) is a spectral gap inequality for the
Markov chain where the variable (o, A;) € [q] x {0,1}9°8() =: & is updated as follows. At each step,
with probability 1/2 the spin o, is updated with a sample from v, (- | 0o, A), and with probability 1/2 the
edges A, incident to x are simultaneously updated with a sample from v, (- | o). Let P, = % denote
the transition matrix of this Markov chain, where (), S, are the stochastic matrices corresponding to the
spin and edge moves at x, respectively. Let Dp,, Dg, and Dg, denote the corresponding Dirichlet forms.
Observe that, by updating first the edges with an empty configuration and then the spin, two arbitrary
initial configurations can be coupled after two steps with probability at least %(1 —p)~24, and thus for any
function f : S — Ry

2

— DPx(f? f) Z 50Varx(f ‘ 00)7

where dg > 0 is a constant depending only on p and d. Using the standard facts that Do, (f, f) =
vy [Vary(f | o) | oo] and Dg, (f, f) = vy [Vary(f | 00, A) | 0], we arrive at the inequality

Vg [Var:r:(f ’ J) | UO] + Vg [Varx(f | UOvA) ‘ O-O}
2

> 0o Vary(f | 00). (4.12)

A well known general relation between entropy and variance (see, e.g., Theorem A.1 and Corollary A.4
in [19]) shows that, for all f > 0,

Ent,(f | 00) < Cy Vary(v/f | 00), (4.13)

where C; = C1(q, p,d) is a constant independent of n, since we are considering the conditional measure
at the single site 2. Thus, applying (4.12) to \/f instead of f, we obtain

vy [Vary(Vf | 0) | o0] + va [Vara(VF | 00, 4) | oo] )
2 C

Ent.(f | 00). (4.14)

The conclusion (4.11) follows by recalling that for any f > 0 the variance of 1/f is at most the entropy of f
for any underlying probability measure; see, e.g., [37, Lemma 1]. In particular, Var,(v/f | o) < Ent,(f |
o) and Var,(\/f | 00, A) < Ent,(f | 00, A). O

To prove Lemma 4.4, we need to lift the inequality of Lemma 4.7 to the product measure v(- | 0p) =
®x€EVx(' | UO)'

Proof of Lemma 4.4. We will prove (4.2); exactly the same argument applies to (4.3). Letz = 1,...,w
denote an arbitrary ordering of the even sites z € E. Let A, € {0,1}9°¢(®) be the random variable
corresponding to the state of the edges incident to x. We write &, = (04, A;) for the pair of variables at
2. We first observe that

w
Ent,(f | 00) =Y v[Enty(g—1 | 00) | 0], (4.15)
r=1

where g, = v[f | 00,&u+1,--.,&w], so that go = f and g, = v[f | 0p]. To prove (4.15), we note that
since (- | 00) = Quep Vz(- | 00), one has v;[g.—1 | 00| = g». Therefore,

Ent, (f | 00) = v [g010g (90/9w) | 00] = > v 90108 (92-1/92) | 0]
rx=1
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Since the g, are (conditional) expectations, we deduce

Ent,(f | o0) = v [9z—110g (9z-1/9x) | 00]

NE

i
I

v [Ve [9z-1108 (92-1/9z) | o0] | 0]

1
NE

8
Il
_

I
M=

v[Enty(g:—1 | 00) | 00] - (4.16)

8
Il
—

From (4.16), using Lemma 4.7 we obtain

o1 Entv(f ’ UO) < ZV [Va: [Entx(gx—l | U) | UO] + vz [Entx(gx—l ‘ UOaA) | UO] ‘ UO}
1

8
Il

I
M=

v([Enty(gz—1 | 0) + Enty(g.—1 | 00, 4) | 00]. (4.17)

I
A

T

Observe that Y. v [Enty(gz—1 | 0) | 0o] and >, v [Enty(gz—1 | 00, A) | 00| are “tensorized” ver-
sions of v [Ent, (f | o) | 0o] and v [Ent, (f | 00, A)], respectively, which are the terms on the right hand
side of (4.2). Using similar but somewhat more involved ideas to those used to derive (4.16), we can estab-

lish the following.

Lemma 4.8.
1. Y0 v[Enty(gz—1]0) [ oo] <v[Ent,(f | o) | o0

2. Y e v[Enty(ge—1 | 00, A) | 00] S v[Ent,(f | 00, A) | 00]

Before providing the proof of this lemma, we finish the proof of Lemma 4.4. Inequality (4.17) together
with parts 1 and 2 of Lemma 4.8 show that

01 Ent,(f | 00) < v[Ent,(f | o) | oo] + v [Ent,(f | 00, 4) | 00]. (4.18)
Taking expectations with respect to v in (4.18) we arrive at (4.2) and the proof is complete. O
We finish the proof of Lemma 4.4 by providing the proof of Lemma 4.8.

Proof of Lemma 4.8. We start with part 2. Let h, = v [f | 00,0441, - .., 0w, A, so that hg = f and h,, =
v|f | oo, A]. Since v(- | 0o, A) is a product measure, v,[hy—1 | 00, A] = h;. Therefore, reasoning as in
(4.15) we obtain

Ent, (f | oo, A Z” Ent,(he_1 | 00, A) | 00, A4]. (4.19)
r=1

Taking expectations with respect to v(- | 0p) in (4.19) we see that it is sufficient to show that, for all z,
v([Enty(gz—1 | 00,A) | 00] < v[Enty(hs—1 | 00, A4) | 00]. (4.20)

To prove (4.20), we introduce the measures i, = ®@*_ v, (- | 00) and pjt = @*_,v,(- | 00, A). Then we
have g, = pz[f], he = p2[f], and g, = pz[hz]. Also, we simplify the notation by writing v, (- | 00, A) =
v Now the product structure implies the commutation relation between expectations

V;,qu,1 = Vfﬂwflhxfl = szly;fhzfl' (4.21)
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Therefore,

v [Ente(ga—1 | 00, A) | 00] = v [go—110g (g—1/V} ga—1) | 00]
= v [po—1ha—110g (tto—1ho—1/tto—1Vi ha—1) | 00)]
[ho—110g (fta—1ho-1/ a1V ha—1) | 00)]
=v [VmA (hx_l log (gz_l/ufgm_l)) | ao] : (4.22)

From the variational principle (2.6) it follows that
V;q [hmfl log (gmfl/yf[ngl])] < Ent:]c(hxfl ‘ g0, A), (4.23)

which combined with (4.22) proves (4.20). This completes the proof of part 2.
We use a similar argument for part 1. Let ¢, = v (f | 0, Ay41,. .., Aw), so that g = f and ¥, =
v (f | o). Notice that v,[¢),—1 | 0] = 1. Therefore, as in (4.15),

Ent,(f | o) = ZVEIlt (Yz—1]0) | 0]
=1

Taking expectations with respect to v(- | o) we see that it is sufficient to show that, for all x € E,
v[Entz(gz—1 | 0) | 00] < v [Enty(Ye—1 | 0) | 00]. (4.24)

Introducing the measures py = ®F_ v,(- | 00), uf = ®F_ v,(- | 0), and v = v,(- | o), we have
9z = tz|f], Yo = p2[f], and gz = pg[t0z]. As in (4.21), we have the commutation relation

Vggz—l = Vg/iz—lwm—l = Mm—ll/ng—l-
Therefore, as in (4.22)-(4.23) we obtain
v[Enty(gz—1 | o) | 00] —V[gx 110g (gz-1/v3 gu—1) | 00]
V [pe—19z—110g (Ha—1%z—1/pz—1V5Yz—1) | 00]
vV [hp—110g (pho—1Ve—1/pa—1V5 ¥e—1) | 00]
v
v

vy (Yz—1l0g (92-1/v792-1)) | 00]
Enty(¢Yz—1 | 0) | 00].

This proves (4.24) and completes the proof of part 1. O

5 A lower bound for the SW dynamics

In this section we establish an asymptotically tight lower bound for the mixing time of SW dynamics
whenever SSM holds; this result implies the lower bound in Theorem 1.1 from the introduction.

Theorem 5.1. In an n-vertex cube of Z¢, for all integer ¢ > 2 and all § > 0, SSM implies that for all
boundary conditions Tpnix(SW) = Q(logn).

The main new ingredient in the proof of this result is a bound on the speed of propagation of disagree-
ments under a coupling of the steps of the SW dynamics provided SSM holds. With this new tool, we are
able to adapt the lower bound framework of Hayes and Sinclair [33] for the Glauber dynamics to the SW
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setting. We also use a recently established fact about concentration properties of the Potts measure due
to [20].

SW coupling. Consider two copies of the SW dynamics on the graph G = (V, E), where V is an n-vertex
cube of Z%. Let X; and Y; be the configurations of these copies at time ¢ > 0. We can couple the steps of
the SW dynamics as follows:

1. Draw |E| independent, uniform random numbers from [0, 1], one for each edge. Let r.(¢) € [0, 1]
denote the random number corresponding to the edge e € E.

2. Draw |V| independent, uniform random numbers from {1, ..., ¢}, one for each vertex. Let s,(t) €
{1, ..., q} denote the random number for v € V.

3. Let Ax = {e € M(Xy) : re(t) < p}and Ay = {e € M(Yy) : rc(t) < p}, where recall that M (X;)
and M (Y;) denote the set of monochromatic edges in X; and Y%, respectively

4. For each connected component C of (V, Ax) or (V, Ay ), we let s¢ = s,(t), where v is the vertex in
C with the smallest coordinate sum. (If two or more vertices in C have the same coordinate sum, we
break ties “lexicographically” using the coordinates.) Then, every vertex of C is assigned the spin sc.

The key property of the SW coupling is that, after assigning the edges, two identical connected com-
ponents in Ax and Ay will be assigned the same spin (namely, the spin s, of their common vertex v with
smallest coordinate sum). We show that, under SSM, the SW coupling propagates disagreements slowly
for a suitable starting condition.

To describe our starting condition we introduce the notion of L-shattered configurations.

Definition 5.2. Consider the graph G = (V,E), where V is an n-vertex cube of 7. For a configuration
ogonV,let A, C M(o) be the configuration that results from keeping each monochromatic edge in M (o)
independently with probability p = 1 — exp(—[3). We say that o is L-shattered in V' if, with probability at
least 1 — |V | exp(—vL) where~y > 0 is a fixed constant we choose later, for every v € |V| at distance at least
2L from the boundary of |V'|, the connected component of v in A, does not reach the boundary of the cube
Ay (L) centered at v of side length L.

Note that the above defined notion involves a probability that decays exponentially with L, so the
dimension of the cube V' will not be as significant as long as logn < L < n. The following lemma estab-
lishes a concentration of the probability mass on shattered configurations under SSM (for the monochro-
matic “all 1” boundary condition).

Lemma 5.3. Let & be the set of L-shattered configurations of the n-vertex cube G = (V,E) of Z%. There
exists a constant ¢ > 0 such that for all integers ¢ > 2 and L > 1, SSM implies that ' (&) > 1 — exp(—cL).

The proof of this lemma, which follows straightforwardly from the results in [20], will be provided
later in Section 5.1. We can now describe our starting condition for the SW dynamics.

A starting condition. We consider a regular pattern of non-overlapping d-dimensional cubes of side
length ¢ = (logn)3 with a fixed minimal distance between cubes. Formally, consider the cubes of side
length ¢ centered at (£ + 3) - h where h € Z%. These cubes have volume /7 and are at distance 4 from each
other. We let By, B, ... By C V be the collection of those cubes that are contained in V' and at distance
at least 4 from the boundary 9V; then, N = ©(n/{%).

Let B = Uzj\i1 B;, 0B = Ufil 0B; and let e; be an edge at the center of B;. For definiteness, we may
assume that ¢ is odd so that there is a unique vertex v; at the center of each B;; we take e; = {v;, u;}
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where u; = v; + (1,0,...,0) € Z%. Let A; be the set of configurations on B; in which the spins at the
endpoints of e; are the same, and let S; be the set of L-shattered configurations in each B;. (Later we will
set L = C(logn) with C' > 0 a large constant.)

We consider two variants of the SW dynamics, { X; } and {Y; }, with the same initial condition Xy = Yj.
The chain {X;} is an instance of the standard SW dynamics on (V, E); for the initial state X of { X;} we
set the spins of all the vertices in U = (V' \ B) U 9B to 1. The configuration in each cube B; is sampled
(independently) proportional to '“}32' on S; N A;, where ,u,%gi denotes the Potts measure on B; with the “all
1” monochromatic boundary condition.

The other instance we consider, {Y;}, only updates the spins of the vertices in B \ dB. That is, after
adding all the monochromatic edges independently with probability p = 1 —exp(—/3), only the connected
components fully contained in B update their spins. (Note that if a component touches the boundary of
B, then it is not updated since the boundary is frozen to the spin 1 by the boundary condition.) We set
Yy = Xo and couple the evolution of Y; and X; using the SW coupling defined earlier. We can view {Y;}
as a dynamics on the configurations on B whose stationary measure is pk5 = ®£\L1 ,ujlgi. We also observe
that a step of {Y}} is equivalent to performing one step of the SW dynamics in each B; independently.

Note that Xy = Y), and any disagreements between X, Y; at later times ¢ can arise only from the
fact that Y; does not update the spins outside B: i.e., disagreements must propagate into the B; from their
boundaries. The following result, whose proof we defer until after the proof of Theorem 5.1, provides a
bound on the speed of propagation of these disagreements under the SW coupling with the specified initial
condition. In particular it says that, for t = Q(logn) steps, X;, Y; agree w.h.p. on the spins at the center
of every cube B;.

Theorem 5.4. Let C = Ufil e; and set L = C(logn). For any constant A > 0, for a sufficiently large
constant C' > 0 SSM implies that

Pr vt < Alogn: Xi(C) =Y;(C)] =1—o(1).

A key ingredient in the proof of Theorem 5.4 (and also of Theorem 5.1) is the following discrete time
version of the completely monotone decreasing (CMD) property of reversible Markov chains from [33];
the proof of this lemma is provided in Section 5.1.

Lemma 5.5. Let { X} denote a discrete time Markov chain with finite state space (2, reversible with respect to
m and with a positive semidefinite transition matrix. Let B C () denote an event. If X is sampled proportional
tom on B, then Pr(Xy € B) > w(B) forallt > 0, and forallt > 1

Pr(X; € B) > n(B) + (1 — n(B)) """ (Pr(X; € B) — n(B))".
We now proceed with the proof of Theorem 5.1.

Proof of Theorem 5.1. Our goal is to show that at some time 7' = ©(log n)
1
X7~ bl >
where with a slight abuse of notation we use X7 for the distribution of the chain {X;} at time 7. This
clearly implies that the mixing time of the SW dynamics is Q2(logn).
Let C = (Je; and let e; = {a;, b;}. Let fic and fi}; be the marginals of y and uk, respectively, on C.
Then,
1 X7 = prllpy = 1X7(C) = ficllry
> [Y2(C) = ficllyy = 1X7(C) = Y7 (C)l 1y
> [Y7(C) = fgllry — liie = ficllyy = [ X7(C) = Y7 (C) - (5.1)
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We bound each term of (5.1) independently. We note first that by Theorem 5.4
1X7(C) = Y7(C)lyy < Pr(Xr(C) # Y7(C)) = of1).

We proceed to bound the term ||i} — fic||,, in (5.1), for which we use SSM. Let (A) be the set of all
possible configurations on the set A C V. For a configuration ¢ on U, let [Lg denote the marginal of ;fé
on C. Let ﬂib ﬂg’i be the marginals of /l}gi, ﬂﬁi on e;, respectively. Then,

o A N
& = ficlley < D7 ) lig —iglly < > Zu Mite, = 1, < — = o(1),

YeQ(U) YeQU) i=

where the second inequality follows from the fact that u}; and ujé are product measures over the B;’s, and
the last one follows from the SSM property for a suitable constant £ > 0.

It remains for us to provide a lower bound for the term || Y7(C) — fi;||,., in (5.1). For this, we introduce
an auxiliary copy of the chain {Y}}, denoted {Z; }, which is coupled with {Y;} but with a slightly different
starting condition. Namely, Z is sampled proportmnal to B, on the set A;, independently for each B;.
(Recall that Yy = X is sampled proportional to z} B, onS;N .A instead.) Then,

Y7 (C) = ficlley = 127(C) = il vy = Y7 (C) = Z7(C) |1y (5.2)
We first provide an upper bound for the second term in (5.2). Plainly,
”YT(C) - ZT(C)HTV < HYT - ZTHTV < PI‘[Yb e ZO]

Let pg, ¥ be the initial distribution for {Y;} and {Z;}, respectively, and let S = ®S; and A = ®A;. For
o € SN A, we have u} (0) = uh(0)/u5(S N A), and for o € A, pé (o) = ph(o)/uk(A). Therefore,
if the configurations Yj and Zj are sampled from the optimal coupling between p, uZ and the steps of
{Y;}, {Z;} are then coupled with the SW coupling, we have

Zi Y,1 Z,1
IYr(C) = Zr(C)|lpy < Il — 115 |y < Z o™ = 18 Ny = Nllpg™ — 2

TV?

where ug’i, ug " are the initial distributions of Yoy, Zp on B;. Then,

_ pip, (A1 \ S1) - pp, (SF)
v pp, (A1) T g (Ar)

where the last inequality follows from Lemma 5.3 and the fact that ,u%;l (A1) = (1) . In summary, since
L = C(logn) and C can be taken large enough, we have proved

Y7 (C) = Zr(C)l+y = of1).

Y1 Z,1
g™ — pg" |

=0 (e_CL) ,

It remains for us to find a lower bound for || Z7(C) — fi;||.., in (5.2) for a suitable 7". For a configuration
o on B, let f(o) denote the number of edges e; € C that are monochromatic in o. For any a > 0 we have

127(C) = ey = Pr[f(Z7) = a] = Pr, 0 [f(0) = a]. (5.3)

We will show that, for a suitable 7"and any i = 1,..., N,

Pr[Zp(B;) € Aj] > M%ai (Ai) + =7



Assuming this is the case, then setting W = Zf\il “1191- (A;) we obtain by Hoeffding’s inequality

Pr [f(ZT) > W4+ N3/4 \/NlogN} >1— %
and
Pr,.,. [ >W+\/NlogN} N2’

which yields from (5.3) that || Z7(C) — fit||,, > 1 — 2/N? by taking, e.g.,a =W + /N log N.
To establish (5.4), note that by Lemma 5.5

Pr(Zr(Bi) € Ai) > p, (Ai) + (1= p, (A)) 7 TH(Pr(Zu(By) € Ai) — pp, (A))'. (5.5)

We remark that { Z; } has positive semidefinite transition matrix; this follows from the fact { Z; } is a product
of SW dynamics in each B;, and the SW dynamics has positive semidefinite transition matrix [5].
Let PS(ZW) denote the transition matrix of the SW dynamics on B;. Then

L o . 1 o _ .
Pr(Z1(B;) € Ai) = Z MlBi( )Ps(lw)(O',AZ’) = Z /‘131-( ) <9(0—)+19()>

S ks, (A) S3 ke (Ai) q
= 1 q ! Z 1, (5.6)

q QMB Ai) oeA;

where 6(o) denotes the probability that, after the edge percolation phase of the SW step, the end points
of the edge e; are connected in the edge configuration. Similarly,

Mle('Az) = Z /J’}Bi(a)Ps(\?V)(Uv -Az) = Z NlB (U) sw U -A Z ,UB sw U A)

G’EQ(Bi) O'GQ(Bl)\.AZ o€EA;
1
o Z.(U) 1-6(oc q -1
=y s (9<a> ¥ ”) S b
ccO(BNA 1 oeA; q oeA;

Combining with (5.6) we get

-1
Pr(Z1(By) € Ai) =, (Ai) = T— | = = 1] 3 nh(
q 'UB' o€A;

7

> 1 (m Lm_l)p b, (A) = q;1<1—uB<A>)p,

B;

where in the last inequality we use the fact that #(c) > p when o € A;; recall thatp = 1 — e,
Plugging this bound into (5.5), we obtain

1

: (1—MB<A>)p>

Pr(Zr(B;) € Ai) > u}gi (A;) + (1 — M}Bi (A;))~ T+ <q

B T
— b (A0 + (1= s () (U2 b (A0 +

where the last inequality holds for 7' = £ log n for a suitable constant £ > 0 since “}3,- (A;)=92(1). O

We provide next the proof of Theorem 5.4, our bound on the speed of disagreement propagation under
the SW coupling.
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Proof of Theorem 5.4. We will show inductively that with high probability disagreements propagate a dis-
tance of at most L in each step. Let A;(k) C B; be the cube of side length k < ¢ centered at v;; recall that
e; = {v;, u;} where v; is the center of B;. Let A(k) = Uf\;1 A; (k). Note that at time 0, Xy and Y| agree
on B =A(Y).

Let us assume that X; and Y; agree on A(k) for some £k < ¢ — 2L. Suppose Y; is L-shattered in
each B;; ie, Yi(B;) € S;fori = 1,...,N. If E(k) is the set of edges with both endpoints in A(k),
after adding the monochromatic edges of E(k) in X; and Y; coupled with the SW coupling, the joint
edge/spin configuration on (A(k), E(k)) will be the same in both copies. However, when assigning the new
spins, the connected components are not necessarily the same since there can be external connections; i.e.,
monochromatic paths in V'\ A(k). This may create disagreements between the two chains on A (k) but only
in the components touching the boundary of A(k). Since we are assuming that Y; is L-shattered in each
B, then with probability 1 — N|B;| - exp(—vL), the disagreements cannot propagate to A(k —2(L +1)).
Consequently, the spin configurations of X;1 and Y; 41 on A(k — 2(L + 1)) are the same.

Proceeding inductively, and assuming that Y; is L-shattered in each B; forallt = 0,...,T, we deduce
from a union bound that X7 and Y7 agree on A(¢ — 2L — 2T (L + 1)) with probability at least 1 —
TN|B;| exp(—vL), provided ¢ > 2T (L 4 1) 4+ 2L. Therefore, X;(C) = Y;(C) for all ¢t < T since C C
Al —2L —2t(L+1)).

It remains for us to show that Y; is L-shattered in each B; for allt = 0, ..., T with probability at least
1 — o(1). The configuration of Y{ on B; is sampled proportional to ”}32- onS;NA;. Foro € §;N A, let
mi(0) = pp, (0)/up, (Si N A;) and for 0 € S;, let 7 (0) = pp (0)/pup, (Si). We have

Pryy(B,)~a; (Ye(Bi) € Si) =Pryy,y~s, (Ye(Bi) € Si | Yo(Bi) € Ai)Pryy(B,)~s, (Yo(Bi) € Ai)+
Pry, B~ (Ye(Bi) € Si | Yo(Bi) € Ai)Pryy(B,)~s; (Yo(Bi) € Ai),
and so
Pry, (B))or, (Yi(Bi) € Si) = Pryy)~s, (Yi(Bi) € Si | Yo(B;) € A;)

5 1 L= Py~ (Yi(B;) € Si)
- Pry,(B,)~s,; (Yo(Bi) € A;)

By Lemmas 5.5 and 5.3,

1

Pryy(gymi (YVe(Bi) € 8i) > pp (Si) > 1 — o

Moreover, Pry; (g,)~# (Yo(B;) € A;) = a(B, q,d) = (1), and so we obtain from (5.7)
1
PrYO(Bi)Nm(Yt(Bi) €S5)=1-0 <ecL) :
Setting S = ®£V:15i, a union bound over the B;’s implies

Pr(YteS):1—0<N>.

ecL

It follows from another union bound over the steps that Pr(Vt < T :Y, € §) > 1 -0 (ZC]X ) . Setting
T = A(logn) (which satisfies £ > 2T (L + 1) + 2L as required), recalling that N = ©(n/¢¢), and taking
C sufficiently large, we obtain that Pr(Vt <7 :Y; € §) > 1 — o(1), and hence

Privt < Alogn: X;(C) =Yi(C)]=1-o(1),

as claimed. O
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5.1 Proof of auxiliary lemmas

We conclude the section with the proofs of Lemma 5.5 and 5.3.

Proof of Lemma 5.5. From the spectral decomposition (see, e.g., [38]), one has

1
Pr(X; € B) = n(B) + (1 — =( Z KA, (5.8)
where ky > 0 and Zz o ke = 1,and Ag, ..., Ajg| denote the non-negative eigenvalues of the transition

matrix of the Markov chain except for the principal eigenvalue A\; = 1. In particular,

2]
Pr(Xy € B)—n(B)=(1—m( Z Ko (5.9)

The convexity of the function f(z) = a! for ¢t > 1, x > 0 and Jensen’s inequality imply that
t

Pr(X; € B) > n(B) + (1 — =( Z Y

From (5.9) it follows that Z‘ﬁg kede = (1 —7(B)) "1 (Pr(X1 € B) — 7(B)), and so for t > 1
Pr(X; € B) > n(B) + (1 — n(B))""" (Pr(X; € B) — n(B)))".
Finally, observe also that from (5.8) it follows that Pr(X; € B) — n(B) > 0. O

Proof of Lemma 5.3. Let G = (V, E) be an n-vertex cube in Z¢. Let £, be the set of all edge configurations
A C E such that for all v € V at distance at least 2L from partial OV, the connected component of v in
A does not reach the boundary of the cube A, (L) centered at v of side length L. Consider the admissible
boundary condition (1, 1) of the joint space that is wired and all spins are 1; i.e., in Definition 4.1 we set
Vo =0V, Ey =0F,y = 1and ¢ = 1. From Theorem 1.2 in [20], we get that for a suitable constant a > 0

yDE) > 1 - 2 (5.10)

eal”
We remark that Theorem 1.2 from [20] is stated for the random-cluster measure with the wired boundary
condition, but our statement for the joint measure v is equivalent; see Section 8 below for a definition of
the random-cluster measure and its boundary conditions. We also note that Theorem 1.2 from [20] requires
a weaker (easier to satisfy) condition than SSM. Recall that & is the set of L-shattered configurations of
V. Then,

(11 EL Z/-L (11 5L|U ZM 11)8L|O_)

7€S seee
1
&)+ n n np (&
<#(E) (1_“1(6))<1‘ﬁ):1‘ﬁ+ m(L)-

Comblnmg this with (5.10), we obtain that 4! (&) > 1 — exp(—(a — v)L); the result follows by choosing
=a/2=c O

24



6 Entropy decay for dynamics in the joint space

In this section we study the implications of our spin/edge factorization of entropy with respect to the joint
measure v for various dynamics on the joint space on Z¢.
6.1 Swendsen-Wang in the joint space

First, we consider the SW dynamics in the joint space. Let K denote the |€2;| x |€);| stochastic matrix
corresponding to re-sampling the spins of a joint configuration given the edges, and similarly let 7" be the
stochastic matrix corresponding to re-sampling the edges given the spins. Specifically,

K((o,A),(1,B)) =1(A=B)v(r | A)
T((o,A),(1,B)) =1(c = 1)v(B | 0).

Note that T = T* = T? and K = K* = K?;ie., K and T are self-adjoint idempotent operators.

The Markov chains with transition matrices KI" and 7K are natural variants of the SW dynamics in
the joint space. In the terminology of [19], they are the Markov chains in the joint space corresponding
to the two-component Gibbs sampler. The chains with transition matrices (K + T), KTK and TKT
are also of interest as reversible versions of K'T" and T'K. We show that, under SSM, all of these dynamics
satisfy entropy decay with respect to v and hence have O(log n) mixing time.

Theorem 6.1. Let P be any of the stochastic matrices KT, TK, %(K +7T), KTK orTKT. SSM implies
that there exists constant d > 0 such that, for all functions f : {1, — R,

Ent,(Pf) < (1 —0)Ent,(f).
In particular, the Markov chain with transition matrix P satisfies Tyix(P) = O(logn).

First we state the following lemma, which is proved later and will be useful in several of our proofs,
including that of Theorem 6.1.

Lemma 6.2. Let S and S’ be two idempotent stochastic matrices reversible with respect to a distribution 7 over
I, and let () = S+T*9/ Suppose there exists & € (0, 1) such that, for any positive function f : T' — R, we have
Ent,(Qf) < (1 —§)Ent,(f). Then Ent,(SS'f) < (1 — §)Ent,(f) and Ent(S'Sf) < (1 — 6)Ent.(f).

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. Let us consider first the case when P = % Since P = P*, from Lemma 2.4 and
Remark 2.5 it is sufficient to prove that, for all functions f : €; — R with u[f] = 1,

Ent,(Pf) < (1 — 8)Ent, (f).
The convexity of the function x log x implies
1 1
Pflog(Pf) < SK flog(K ) + 5T log(T ) (6.1

If v[f] = 1, then v[Pf] = v[K f] = v[Tf] = 1, and therefore taking expectations with respect to v in
(6.1) we obtain

Bnty (Pf) < 3 [Bnty (K F) + Ent, (T£)]. (62)
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Noting that K f(0, A) = v(f | A) and T'f(0, A) = v(f | o), the decompositions in (2.3) and (2.4) imply
Ent,(f) = Ent, (K f)+ v [Ent,(f | A)] = Ent,(Tf) + v [Ent,(f | 0)].

Hence, (6.2) becomes
Bty (Pf) < Bnty(f) — 5w [Bnty (f | A) + Bnty(f | 0)]. (63)
Lemma 4.2 now implies
Ent, (Pf) < (1 - 8)Ent, (f),

with 6 = 1/2C. This proves the theorem for the case when P = % The result for K7 and T'K follows
from Lemma 6.2, by noting that K? = K = K* and T? = T = T*, and noting that (KT)* = TK and
(TK)* = KT. (Note that in Lemma 6.2, we do not require the matrices to be ergodic.) Finally, the cases
P = KTK, P=TKT follow from the cases P = KT and P = T K with the observation that, by (6.6),
Ent,(KTKf) < Ent,(TK f) and Ent,(TKTf) < Ent, (KTf). O

Finally, we go back and supply the missing proof of Lemma 6.2.

Proof of Lemma 6.2. Let us first show that
Ent,(Sf) < Ent(Sf), (6.4)

where § = 2 +I is alazy version of S; I denotes the identity matrix. To this end, define U,, = B (S+1 )] ",

Then we have U = S and U, = (2721# — S as n — oo. Therefore, (6.4) follows if we prove that for
alln>1

Enty (Up+1f) < Entr (U, f). (6.5)

On the other hand, if U is any stochastic matrix with stationary distribution 7, then for any function
f:T'+— Ry with 7[f] = 1 we have n[U f] = 1. Hence, Ent (U f) = «[(Uf)log(Uf)]. Since U is a
stochastic matrix, the convexity of the function x log = implies (U f) log(U f) < U(flog f), and so

Entr (U f) < w[U(flog f)] = w[flog f] = Entx(f). (6.6)

Since Uy 41 f = U1 U, f, applying (6.6) with f replaced by U,, f and with U = U; proves (6.5) and (6.4). We
note that since (5)? = 5,

5SS = (s + 58" = QS
Applying (6.4) with f replaced by S’ f we obtain
Entr(SS'f) < Ent-(SS'f) = Ent(QS'f) < (1 - 6)Ent(S'f) < (1 - 0)Ent(f),

where the second inequality follows from the assumption that () contracts entropy for any function and
the last one follows again from (6.6). This completes the proof for S.S’. The same argument with S and S’
exchanged applies for S’.S and we are done. O
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6.2 The local dynamics in the joint space

In this section, we use Lemma 4.2 to derive tight bounds for the local (Glauber) dynamics in the joint
space; this dynamics has been recently considered in [15], but as far as we know there are no results in
the literature concerning its rate of convergence to stationarity. The dynamics is defined as follows: in
each step, with probability 1/2 update a vertex and with probability 1/2 update an edge. To update a
vertex, pick v € V uniformly at random and perform a “heat-bath” update at v (i.e., replace the spin of
v with a new spin sampled from the conditional distribution of the spin at v given the current spin/edge
configuration); to update an edge, pick e € E uniformly at random and perform a “heat-bath” update at e.

Foranyv € V, e € E, let ), denote the stochastic matrix corresponding to the single heat-bath update
at vertex v, and let W, denote the stochastic matrix for the single heat-bath update at the edge e. Then the
transition matrix P4, of the Glauber dynamics in the joint space is given by

1 1
P = — E —_ g We. 6.7
LOCAL 2‘V| = QU + 2‘]}3‘ — € ( )
&

Theorem 6.3. SSM implies that there exists a constant 6 > 0 such that, for all f : Q; — R

Entll(PLOCALf) < (1 - Z) Entz/(f)~ (6.8)

Moreover, the mixing time of the local dynamics satisfies Tix(Procar) = O(nlogn).

The mixing time bound in this theorem is asymptotically tight. This follows from the lower bounds
in [33] by considering the projection of P,ocs; On the spins; see Remark 6.4.

The heat-bath updates in the joint space are quite simple. For a vertex v € V, the heat-bath update
at v assigns a new spin to v chosen u.a.r. from {1,...,q}, provided v is isolated (i.e., there are no edges
incident to v in the edge configuration); otherwise, the spin at v does not change. On the other hand, the
heat-bath update at e € [E updates the state of e only if it is monochromatic in the spin configuration; if this
is the case, the new state of e corresponds to a Bernoulli(p) random variable. We note that ), and W, are
reversible with respect to . Moreover, they are projection operators in L?({;, v); that is, Q2 = Q, = Q

and T/V2 We =W,

Proof of Theorem 6.3. First note that since (), and W, are reversible with respect to v, so is P,oca; and by
Lemma 2.4 and Remark 2.5 it is sufficient for us to establish that

Ent, (Pocarf) < (1 —6/n)Ent, (f) (6.9)

for all functions f : €; — Ry such that v[f] = 1. Here § > 0 is a constant independent of n and the
admissible boundary condition.
By the convexity of the function x log x, reasoning as in (6.2), we can write

Entl/(PLOCALf |V‘ Z Ent, Qv
veV

ZEnt Wef).

2|E| ecE

Let oy, (resp., Ag) ) denote the spin (resp., edge) configuration excluding v (resp., excluding e). Since
Quf(o,A) = v(f | ov\{u}, A) and W f(0, A) = v(f | 0, Ag\¢), from the decompositions of entropy
in (2.3) and (2.4) we obtain

Entu(@vf) = Entu(f) -V [Entu(f ‘ OV\{v}s A)] )
Ent,(W.f) = Ent,(f) — v [Enty(f | o, AE\e)} .
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Therefore,

1 1
Ent, (Pocaf) < Ent, (f) — o > v [Enty(f | ov\jop, A)] — SE| > v [Ent,(f | 0, Ag\e)] -
veV eckE

We show next that there exists a constant C' > 0 such that

Ent,(f) <C > v[Enty(f | ov\op, A)] +C Y v [Enty(f | 0, Apy.)] - (6.10)

veV ecE

The desired estimate (6.9) then follows from the fact that [E| = O(|V]) = O(n).
To establish (6.10), note that by Theorem 4.6 we know that SSM implies approximate even/odd factor-
ization. Then, from Lemma 4.5 we know that, for some constant C; > 0,

Ent,(f) < Civ[Ent,(f | og) + Ent,(f | 00)], (6.11)

where we recall that £ C V and O C V are the even and odd sub-lattices, respectively. Since v(- | 0p) =
Ruer Vu(- | 00) (see (4.8)), the standard tensorization of entropy for product measures (see, e.g., [3])
implies

Ent,(f | 00) < Y v [Enty(f | 00) | o0], (6.12)
vER

where as before we use Ent, (- | 0¢) for the entropy with respect to v, (- | o). From Lemma 4.7 we see
that

Ent,(f | 00) < C1 Y v [Enty(f | 00, A) + Enty(f | 0) | o0], (6.13)
vEE

for some constant C7 > 0.
For v € F, the distribution of the spin o, given 0o and A is the same as the distribution of ¢, given
oy\{v} and A; thatis, v, (- | 00, A) = V(- | o\ {v}, A). Therefore we may write

Ent,(f ‘ 0’0,14) = Ent, (f ‘ O'V\{v},A). (6.14)
Let us also observe that, for every v € F,
Ent,(f o)< Y Ent(f| 0, Ap\fu)- (6.15)
weV:{w,w}eE

Indeed, v, (- | o) is a product measure on A, = {A,y, {w,v} € E}, and the entropy appearing on the
right hand side above is simply the entropy of A,,, once every other spin or edge variable has been fixed.
Therefore, (6.15) is again the standard tensorization statement for product measures. In conclusion, we
have shown that

Ent,(f | c0) < Cy Z v [Ent, (f | o\ (o} A4) | oo] +Cy Zy [Ent,(f | o, Agye) | oo],  (6.16)
veEE ecE

where the second sum is now over the set of all edges [E. The same estimate can be obtained with the role
of even and odd sites reversed:

Ent,(f |op) < C1 Y _ v [Enty(f | ov\fo, A) | o8] +C1 Y v [Enty(f | 0, Ar\) [ o8] . (6.17)
veO eck

Taking expectations with respect to v and summing (6.16) and (6.17), from (6.11) we obtain (6.10) which
finishes the proof. O
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Remark 6.4. By taking f that depends only on spins, we derive as a corollary of Theorem 6.3 entropy decay
for the Potts model Glauber dynamics (up to a constant laziness factor to account for the probability of a site
being isolated); similarly, taking f that depends only on edges, we obtain entropy decay for the corresponding
Glauber dynamics for the random-cluster model. While entropy decay was previously known for the Potts
Glauber dynamics under SSM [16], the same statement for the random-cluster dynamics appears to be a new
result. (Note in particular that entropy decay does not follow from the mixing time results for this dynamics

in [9].)

We briefly mention several other consequences of our results. First, we note that Theorem 6.3 can be
extended to the more general case of (weighted) block dynamics for the joint space. In addition, since the
“edge marginal” of the joint measure v is the random-cluster distribution, we can show that the mixing time
of the SW dynamics for the random-cluster model, which alternates between edge and joint configurations,
is also O(logn) for all integer ¢ > 2 provided SSM holds; see Section 8 for more details about our results
for random-cluster dynamics.

Finally, we note that while our results in the joint space are all stated for the free boundary condition,
they actually extend to the more general class of admissible boundary conditions; see Definition 4.1 in
Section 4 for the definition of this class.

7 Entropy decay for the alternating scan dynamics

The fact that classical log-Sobolev inequalities do not capture the mixing time of the SW dynamics seems
to be a more general phenomenon afflicting non-local Markov chains. These chains are popular due to
their presumed speed-up over Glauber dynamics and to the fact that their updates can be parallelized.
With our techniques, we are able to establish entropy contraction for another standard non-local Markov
chain for the Potts model known as the alternating scan dynamics. This chain, which is used in practice to
sample from the Gibbs distribution and has received some theoretical attention [5, 53, 31], also has a “bad”
log-Sobolev constant, but we can show that entropy decays at a constant rate over the steps of the chain.

In one step of the alternating scan dynamics, all the even vertices (i.e., those with even coordinate sum)
are updated simultaneously with a new configuration distributed according to the conditional measure on
the even sub-lattice given the configuration on the odd sub-lattice; the process is then repeated for the
odd vertices. The key observation is that the conditional distributions on the even and odd sub-lattices are
product distributions, which makes this chain particularly amenable to parallelization and thus attractive
in applications.

Let Pg, be the stochastic matrix corresponding to the update of the even sites conditional on the spins
of the odd sites, and define Py analogously for the odd sites. The alternating scan dynamics is the Markov
chain with transition matrix Sgo = PgPp (or, equivalently, Sop = PoPg). Note that Pg, Po do not
commute (unless 5 = 0), so Sgo and Spg are not reversible with respect to their stationary measure .
In [5] it was shown that whenever SSM holds, the mixing time of the reversibilized version Spopo =
Po Pg Po of this dynamics is O(n). Here we prove a much tighter bound by showing that the alternating
scan dynamics itself contracts entropy at a constant rate.

Theorem 7.1. Let P be either of the stochastic matrices Sgo or Sog. SSM implies that there exists a constant
0 > 0 such that, for all boundary conditions and all functions f : Q0 — R,

Ent,(Pf) < (1 —6)Ent,(f).
In particular, the Markov chain with transition matrix P satisfies Tyyix(P) = O(logn).

We note that the alternating scan dynamics is a version of so-called systematic scan dynamics, a variant
of Glauber dynamics in which vertices are updated in some fixed, rather than random, ordering. Due to
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their widespread use in practice, the effect of decay of correlations properties on the speed of convergence
of this class of dynamics has been widely studied; see, e.g. [21, 32, 22]. Recently in [14], a result analogous
to Theorem 7.1 was obtained for the simpler reversible dynamics with transition matrix w.

Proof of Theorem 7.1. We will show that the discrete entropy contraction in (2.12) holds for Sgp and Sog
for any positive function f : 2 — R such that u[f] = 1. The mixing time bounds then follow from Lemma
2.4 and the fact that S7,, = Sop and S5, = Sgo. In view of Lemma 6.2, it is sufficient for us to establish
(2.12) for P := Lﬁ. The convexity of the function x log = implies the pointwise bound

(Pf)log(PS) < 3 (Pof)log(Pef) + 5 (Pof) oa(Po ).
From this and the fact that u[Pf] = 1 we get

[Ent,(Pgf)+ Ent,(Pof)]. (7.1)

N

Ent,(Pf) = u[(Pf)log(Pf)] <

Note that Pg and Py are the orthogonal projections in L2(Q, 1) such that Pz f = u(f | 00) and Po f =
w(f | o). Therefore,

Ent,,(f) = Ent,(u(f | 00)) + p[Ent,(f [ 00)] = Ent,(Pef) + p[Entu(f | 00)];
Ent,,(f) = Ent,(u(f | og)) + p[Ent,(f [ op)] = Ent,(Pof) + p[Ent,u(f | op)],

and we see that (7.1) is equivalent to

1
Enty, (Pf) < Ent,,(f) — S p[Buty(f | 00) + Bnty(f [ op)].
We may now apply Theorem 4.6 which implies that, when SSM holds,
Ent, (Pf) < (1 —6)Ent,(f), (7.2)

for a suitable constant § € (0, 1). This establishes (2.12) for P = w. Since P2 = Py = Pj, and
P(% = Po = P}, and (PpPp)* = PoPg, (PoPr)* = PgPo, the remainder of the result follows from
Lemma 6.2. O

8 Random-cluster dynamics

In this section we study the implications of our results for the dynamics of the random-cluster model for
both the high and low temperatures regimes. This allows us to derive Theorem 1.3 from the introduction
using a comparison mechanism we establish in Section 8.2.
The random-cluster model on G = (V, E) with parameters p € (0, 1) and ¢ > 0 assigns toeach A C E
a probability
0(A) = 06.pq(A) = %p'A'(l — p)/FI 7 Alge), (8.1)

RC
where ¢(A) is the number of connected components in (V, A) and Zy is the corresponding partition func-
tion. The random-cluster model was first introduced by Fortuin and Kasteleyn [25] as a unifying framework
for random graphs, spin systems and electrical networks; see the book [29] for extensive background.
A boundary condition for the random-cluster model is a partition £ = {&1,&s,...} of the internal
boundary OV of V' such that all vertices in each &; are constrained to be in the same connected component
of any configuration A. (We can think of the vertices in &; as being connected through a configuration
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(a) (b) (©) (d)

Figure 8.1: The figures above show four distinct admissible boundary conditions of a square region V of the joint space. The
boundary condition in (a) is obtained by taking Vo = 0V, Eg = JE, ) = “red” and ¢ = 0. The boundary condition in (b) is the
spin-only monochromatic boundary condition obtained by taking Vo = 9V, Eq = 0 and 1) = “red”; (c) is obtained by taking
Vo = OV, Eog = OE, ¢ = “red” and ¢ = 1 (wired edges are colored blue); note that the vertices incident to OV will be “red”
with probability 1. Boundary condition (d) is obtained by taking Vo = 0V, Eq = JE \ E1, ¢ = “red” and ¢ = 1. The marginal
on edges of v¥¥) in (a) is the random-cluster measure on the internal square V/ \ 9V with the free boundary condition, while
in (b), (c) and (d) the edge marginal is a wired random-cluster measure over (V,E), (V \ OV,E \ OE) and (V,E \ (9E \ E1)),

respectively.

in V¢.) These connections are considered in the counting of the connected components in (8.1); i.e., ¢(A)
becomes c(A4,§) (see, e.g., [7, 29]).

The distribution ¢ with a free boundary condition (i.e., every element of ¢ is a single vertex) corre-
sponds to the edge marginal of the joint measure also with free boundary condition (1.4); that is, o(A) =
ZU;AQM(U) v(o,A) and Zy. = Zj; see, e.g., [24, 29]. The wired boundary condition corresponds to the
case when all vertices of OV are connected by the boundary condition (i.e., £ = {0V }). More generally, if
(1, ¢) is an admissible boundary condition for the joint space (see Definition 4.1), we have

oo P = p)E gm0 (A ) 1(A~ ), (82)

A= Y ) =

0:ACM (o)

where A ~ 1) means that A does not connect vertices of V{, with different colors in 1), A ~ ¢ that A and ¢
agree on the edges in Eq and ¢y(A) denotes the number of connected components that intersect Vy C 0V/;
see Figure 8.1 for some admissible boundary conditions.

As an example, consider the admissible boundary condition that is obtained by taking Vy = 0V,
Eog = OE, with ¢ = i for some i € [g] (i.e., the monochromatic spin boundary condition) and ¢ = 1; see
Figure 8.1(c). In this case, o¥'% is the random-cluster measure on the cube R = {1,...,/ —1}? C V with
wired boundary condition. On the other hand, the marginal on the spins is the Potts measure on R with
the “all #” monochromatic boundary condition.

Another relevant random-cluster boundary condition is the one obtained by adding to the random-
cluster space the edges “sticking in” from OV. Namely, let E; C JE be the set of edges with exactly one
endpoint in 9V, and take the monochromatic boundary condition ¢y = i and the wired edge boundary
condition on Ey = JE\E;. The marginal on edges is the random-cluster distribution measure on (V, E\E)
with wired boundary condition on 9V, while the spin marginal is the Potts measure on R with the “all ¢”
boundary condition on OV’; see Figure 8.1(d).

Reasoning in this way one can obtain, as the edge marginal of the joint measure with an admissible
boundary condition, any random-cluster measure with a boundary condition where the vertices in the
boundary are either free or wired into a single component, simply by fixing monochromatic spins on that
component and fixing an edge configuration realizing the wiring of that component.

Planar duality. A useful tool in two dimensions is planar duality. Let Gq = (Vg,Eq) denote the planar
dual of G = (V,E), where V = {0,...,¢} x {0,..., ¢} is a square region of Z2. That is, V3 corresponds
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to the set of faces of V, and for each e € [, there is a dual edge eq € [Eq connecting the two faces
bordering e. The random-cluster distribution (8.1) satisfies oG p¢(A) = 0G4pa,q(Ad), Where Aq is the
dual configurationto A C E; i.e., eq € Aqiffe & A), and

q(1—p)
q1—p)+p
The self-dual point (i.e, the value of p such that p = p,) corresponds to the critical threshold p.(q) =
1 — exp(—pe(q)).

Since Vj is not a subset of Z?, it is convenient to consider the graph Gq = (Vd,Ed) with Vg =
{-1,...,6} x {~1,...,£} + (3, 3) and identify all boundary vertices of V4 with the vertex of G4 corre-
sponding to its external face. Then, ‘QG,p,q(A) = ngmd q(Ad) and ,QGjp’q(A) = QGd,pd,q(Ad)’ where the 0
and 1 superscripts denote the free and and wired boundary conditions respectively (see Section 6.1 in [29]
for a detailed discussion).

Observe that both random cluster measures gg

Pd =

0

and o,
d>Pd,q QGd:Pd,q
of the joint measure in a square region of Z? with a monochromatic admissible boundary condition as

described above.

on (G4 can be obtained as marginals

8.1 SW dynamics for the random-cluster model

Our first result concerns the SW dynamics for the random-cluster model. In this variant of the SW dy-
namics, given an edge configuration A, we assign spins to the connected components of A uniformly
at random to obtain a joint configuration, and then update the edge configuration by percolating on the
monochromatic edges with probability p. The transition matrix P,y of this chain satisfies

-[::)SW(A7B): Z V(O-‘A)V(B ’U);
0:ACM (o)
JBSW is reversible with respect to g; see, e.g., [24, 56]. The following lemma follows from Theorem 6.1.

Lemma 8.1. Let v := v¥% be the joint distribution with an admissible boundary condition (1, ©). If ¢ and
8= ln(ﬁ) are such that SSM holds, then the SW dynamics on random-cluster configurations with boundary
conditions inherited from (1, @) satisfies the discrete time entropy decay with rate 6, and its mixing time is

bounded by O(logn).
Proof. If f depends only on the edge configuration, then
Pavf(4) = vlv(f | 0) | Al = TK f (o, A). (8.3)

Here and below, with slight abuse of notation, if a function f on the joint space depends only on the edge
configuration, we again write f for the corresponding (projection) function on edges. Therefore, we have
Ent,(Pswf) = Ent,(TK f). More precisely, for any f > 0 depending only on the edge configuration,
and such that o[f] = v[f] = 1, one has

Ento(Pow f) = ol(Pow f)log(Pow f)] = v[(TK f) log(TK )] = Ent, (KT).
Theorem 6.1 says that, for any function f in the joint space, one has
Ent, [KT f] < (1 —6)Ent,(f).
In particular, for our f,

Ent ( swf) (1 —6)Ent,(f) =(1- 5)Entg(f)'

This is the desired discrete time entropy decay for P,y in the edge space. t
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Remark 8.2. The same argument in the previous proof applies to the spin dynamics. In particular, if g is
a function depending only on the spin configuration, then Psy,g(0) = KTg(o, A). Repeating the previous
steps with K'T' in place of T K one has discrete time entropy decay with rate § for the SW dynamics on spin
configurations. This provides an alternative view of the proof of Theorem 1.1 as a corollary of Theorem 6.1 for
the joint space.

In Z2, we can take advatange of self-duality of the random-cluster model to obtain bounds for the SW
dynamics in the low temperature regime.

Theorem 8.3. In an n-vertex square region of Z* with free or wired boundary conditions, for all integer q > 2
and all p > pc(q), there exists a constant § > 0 such that for all functions f : {0, 1}F — R

~ )
Ent,(Psyf) < (1 — ) Ent,(f).
In particular, the mixing time of the SW dynamics on random-cluster configurations satisfies Tmix(ﬁsw) =

O(nlogn).

Let G = (V,E) where V is n-vertex square region of Z2. Let g := Q% p.q Where 0 € {0,1} and let Pyg
be the transition matrix of the heat-bath Glauber dynamics on G. This is the standard Markov chain that,
from a random-cluster configuration A; C [E, transitions to a new configuration A;+1 C E as follows:

1. choose an edge e € E uniformly at random;

2. let Ay1q1 = Ay U {e} with probability

o(A U {e}) B { m if e is a “cut-edge” in (V, Ay);
o(ArU{e}) + o(Ae\ {e}) p

otherwise;

3. otherwise, let A,y = A\ {e}.

We say e is a cut-edge in (V, A;) if the number of connected components in A; U {e} and A; \ {e} differ.
Py is (by design) reversible with respect to g. It is also straightforward to check that with the free (resp.,
wired) boundary condition and parameters p and g, for any pair of configurations A and B, we have
Pus(A, B) = P3.(Aq, By), where P, denotes the transition matrix of the heat-bath chain on Gy with
wired (resp., free) boundary condition and paramaters pq and g.

Theorem 8.3 follows from the following two results.

Lemma 8.4. There exists a constant ¢ > 0 such that, for every function f : {0,1}F > R,

Dy (1) > ¢ Dy (f ).
Lemma 8.5. For all integer ¢ > 2 and all p > p.(q), there exists a constant § > 0 such that, for every
function f: {0,1}F — Ry,
Dpy (VI AT) 2 & Enty(f).
Proof of Theorem 8.3. Lemmas 8.4 and 8.5 imply

Dy (V1) = — - Enty(f). (8.4)

In words, this says that the SW dynamics on random-cluster configurations when p > p.(q) satisfies a

standard log-Sobolev inequality with constant % An inequality of Miclo relating the standard log-Sobolev
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inequality and discrete time entropy decay (see Proposition 6 in [50]) shows that (8.4) implies the entropy

decay bound

Ent,(Poy f) < <1 — 56) Ent,(f),

and the mixing time bound follows from Lemma 2.4 and Remark 2.5 since Poy = ﬁs*w O

It remains to prove Lemmas 8.4 and 8.5. We note that a version of the comparison inequality in
Lemma 8.4 was proved in [56] (see Theorem 4.8 there), but it is stated for the spectral gap under the
free boundary condition.

In both of these proofs, we consider the single-bond variant of the Glauber dynamics. In one step of
this chain every connected component is assigned a spin from [¢] uniformly at random; a random edge e
is then chosen and if the endpoints of e are monochromatic, then the edge is added to the configuration
with probability p and deleted otherwise. The state of e does not change if its endpoints are bi-chromatic.
Note that this chain is the projection onto edges of the local dynamics on the joint space, see (6.7); in
particular, the update at the edge e corresponds to W,. Let Py, denote the transition matrix of the single
bond dynamics, which is reversible with respect to g. The Dirichlet form associated to this chain satisfies

DPSB(f7 f) = <(I - PSB)f7 f>Q = Q[((I - PSB)f) : f |E’ Z Varu f | g, A]E\e)] (8'5)

ecE

since

Pyf(A ‘ Z vif|o, AIE\e] | A]

eck

where with a slight abuse of notation (here and below) we use f also for the “lift” of f to the joint space.
We note that for some constants ¢; = ¢;(q,p) > 0,1 = 1,2,

Clpss(A>B) < PHB(A7 B) < CQPSB(Aa B)
for all random-cluster configurations A, B. Therefore the same bounds apply to the Dirichlet forms:

C]-Dpss(f7f)SDPHB(f’f)SCZDPSB(f7f)7 (86)
for any function f : {0,1}* — R.
Proof of Lemma 8.4. The Dirichlet form associated with Py is given by

Dp, (f:9) = (I = Pa)f.9)o = 0 [ (T = Pu)f) - g
and since Py f(A) = v[v[f | o] | A], we obtain
Dp (1) =vI(f =vllf | ol [A]) - fl=vI(f=vIf o)) []=v[Var,(f [o)].
Then, for any function f > 0,
Dy (VTN =v [Varu VIlo)]
|IE| Z [Var,, flo, AE\Q)}

ecE

= DPSB f? \/?)7
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where we have used (8.5) and the fact that, for any e € E,

v [Vary(\/f \ a)} > v [Vary(\/? | o, AE\@)]

by monotonicity of the variance functional. The result then follows from (8.6). O

Proof of Lemma 8.5. By duality (see discussion at the beginning of the section), we have

DPHB(\/?’ \/-?) = DPSB(\/-]Ta \/fid)v (8.7)

where fq is the function such that fq(A4) = f(A) and P4, is the transition matrix corresponding to the
dual of p.

Thus, if Dp,, is at low temperature (p > p.(q)), then D pa is at high temperature (p < pc(q)). Moreover,
from (8.5) and (8.6),

Dy (VI 2 ePrg (VI = 3 va [Var (VF [0, s

ecE

where 14 is the dual joint measure. Specifically, if g4 is the dual measure of o (and the stationary distri-
bution of PL), v is a joint measure whose edge marginal is g4. Observe that since g is a random-cluster
distribution on the square region V' = {0, ..., ¢} x {0,. .., ¢} with free (or wired) boundary condition, g4
is a distribution over Vg = {—1,..., ¢} x {=1,..., 0} +( %, 3) with wired (or free) boundary condition. As
discussed earlier, in either case there exists a joint measure with an admissible boundary condition whose
edge marginal is g .

Observe also that, as before, with a slight abuse of notation, we also use f for the “lift” of f to the joint
space. Now, as in (4.13) we know that for some constant C' = C(p, q), for all e € E and for all f > 0,

Var,, (v f | 0, Ag\.) = C'Enty, (f | 0, Ag\.)-

Therefore,

-1
Dpy (VI VF) = “fm > va [Enty, (f | 0. Az)] (53)
eckE

Since for p < p.(q) and ¢ > 2 the SSM property holds, we can use (6.10) to obtain

> v [Enty,(f | 0, Ag\e)] > 61Enty, (f). (8.9)

ecE

Indeed, if f is a function of edges only then the first term on the right hand side of (6.10) is zero. Moreover
for such an f we have Ent, (f) = Ent,, (f). Summarizing, we have proved, for all f > 0,

DPgB(\/JTd: Vi) > %Entgd(fd), (8.10)

for a suitable constant d2 > 0. The result follows from (8.7) and the fact that Ent,, (fq) = Ent,(f). O

Remark 8.6. We remark that (8.10) says that the heat-bath Glauber dynamics for the random-cluster model
in square regions of Z*> with free or wired boundary conditions satisfies the standard log-Sobolev inequality
with constant § /n for some § = (p, q) for allp # p.(q). This bound is optimal up to a multiplicative constant,
as can be seen by choosing an appropriate test function.
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8.2 Decay for spins from decay for edges and vice versa

We will use Theorem 8.3 to deduce our low temperature results for the SW dynamics on spin configurations.
We do so using the following entropy contraction “transfer” result between the spin and edge variants of
the SW dynamics. A similar comparison result for the spectral gap was provided by Ullrich [56].

Lemma 8.7. Suppose we know that the SW dynamics on edges with invariant measure o, corresponding to
an n-vertex square region V' with some boundary condition, has entropy decay with rate . Then the SW
dynamics on spins on V, with any boundary condition inherited from a joint measure v whose marginal
on edges equals o, satisfies the same entropy decay (asymptotically) and has the same mixing time bound
Tmix = O(6~logn). The same applies with the roles of spins and edges reversed.

Proof. The assumption on p says that

Ent,(Psywg) < (1 — 6)Ent,(g), (8.11)
for any function g = g(A), A C E. Recalling (8.3) we see that (8.11) can be rewritten as

Ent,(TKg) < (1 —6)Ent,(g), (8.12)

for any g = g(A) and any joint measure v such that the marginal on edges equals o. Now, let f = f(0)
be any function depending only on the spin configuration. Since ¢ = T'f depends only on the edge
configuration, we have

Ent,(TKTf) < (1—9)Ent,(Tf). (8.13)
If we apply (8.13) with f replaced by (KT)*~! f, then
Ent, (T(KT)'f) < (1 — 6)Ent, (T(KT)*"1f), (8.14)
for any ¢ € N. Iterating this inequality we find, for any ¢ € N,
Ent, (T(KT)"f) < (1 —0)"Ent,(Tf). (8.15)
Recalling that P&y, f = (KT)*f, from (8.15) we get
Enty, (Péy f) = Ent, (KT)" f)
= Ent, (KT(KT)"1f)
< Ent, (T(KT) 1 f)
< (1 -6 1Ent, (Tf)
< (1=0)" Enty (f) = (1 - 6)" " Entyu(f),
where the first inequality follows from (6.6). This shows that the discrete time entropy decay for SW on
spins is asymptotically the same as the one assumed for SW on edges, and Lemma 2.4 allows us to conclude
the desired mixing time bound. The same argument (with KT replaced by T'K') shows that if we assume an

entropy decay for spins then we obtain (asymptotically) the same entropy decay for edges, and therefore
the same mixing time bound. O

We can now provide the proof of Theorem 1.3 from the introduction.

Proof of Theorem 1.3. From the discussion at the beginning of Section 8, note that there is an admissible
boundary condition in the joint space for which the edge marginal is the random-cluster measure on
a square region of Z? with a wired boundary condition, and the spin marginal is the monochromatic
boundary condition. The result then follows from Theorem 8.3 and Lemma 8.7. O
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